Chapter 35

Notes and References

35.1 Probability theory and martingales.

Probability theory is usually learned in two stages. In the first stage, one learns that a discrete ran-
dom variable has a probability mass function and a continuousrandom variable has a density. These
can be used to compute expectationsand variances, and even conditional expectations. Furthermore,
one learns how transformations of continuous random variables cause changesin their densities. A
well-written book which contains all these thingsis DeGroot (1986).

The second stage of probability theory is measure theoretic. In this stage one views a random
variable as a function from a sample space 2 to the set of real numbers IR. Certain subsets of €2 are
called events, and the collection of all eventsformsac-agebraF. Each set A in F hasaprobability
IP(A). Thispoint of view handles both discrete and continuous random variables within the same
unifying framework. A conditional expectation isitself arandom variable, measurable with respect
to the conditioning o-algebra. Thispoint of view isindispensiblefor treating the rather complicated
conditional expectationswhich arisein martingaletheory. A well-written book on measure-theoretic
probability is Billingsley (1986). A succinct book on measure-theoretic probability and martingales
in discretetime isWilliams (1991). A more detailed book is Chung (1968).

The measure-theoretic view of probability theory was begun by Kolmogorov (1933). The term
martingalewas apparently first used by Ville (1939), although the concept dates back to 1934 work
of Lévy. Thefirst complete account of martingale theory is Doob (1953).

35.2 Binomial asset pricing model.

The binomial asset pricing model was developed by Cox, Ross & Rubinstein (1979). Accounts of
this model can be found in several places, including Cox & Rubinstein (1985), Dothan (1990) and
Ritchken (1987). Many models are first developed and understood in continuous time, and then
binomial versions are devel oped for purposes of implementation.
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35.3 Brownian motion.

In 1828 Robert Brown observed irregular movement of pollen suspended in water. This motion is
now known to be caused by the buffeting of the pollen by water molecules, as explained by Einstein
(1905). Bachelier (1900) used Brownian motion (not geometric Brownian motion) as a model of
stock prices, even though Brownian motion can take negative values. Lévy (1939, 1948) discov-
ered many of the nonintuitive properties of Brownian motion. The first mathematically rigorous
construction of Brownian motion was carried out by Wiener (1923, 1924).

Brownian motion and its properties are presented in a numerous texts, including Billingsley (1986).
The development in this course is a summary of that found in Karatzas & Shreve (1991).

35.4 Stochasticintegrals.

The integral with respect to Brownian motion was developed by [td (1944). It was introduced to
finance by Merton (1969). A mathematical construction of thisintegral, with a minimum of fuss, is
given by @ksendal (1995).

The quadratic variation of martingales was introduced by Fisk (1966) and developed into the form
used in this course by Kunita & Watanabe (1967).

355 Stochastic calculusand financial markets.

Stochastic calculus begins with 110 (1944). Many finance books, including (in order of increasing
mathematical difficulty) Hull (1993), Dothan (1990) and Duffie (1992), include sections on It0’s
integral and formula. Some other bookson dynamic modelsin finance are Cox & Rubinstein (1985),
Huang & Litzenberger (1988), Ingersoll (1987), and Jarrow (1988). An excellent reference for
practitioners, now in preprint form, is Musiela & Rutkowski (1996). Some mathematics texts on
stochastic calculus are @ksendal (1995), Chung & Williams (1983), Protter (1990) and Karatzas &
Shreve (1991).

Samuelson (1965, 1973) presents the argument that geometric Brownian motion is a good model
for stock prices. Thisis often confused with the efficient market hypothesis, which asserts that all
information which can belearned from technical analysisof stock pricesisalready reflected in those
prices. According to this hypothesis, past stock prices may be useful to estimate the parameters of
the distribution of future returns, but they do not provide information which permits an investor to
outperform the market. The mathematical formulation of the efficient market hypothesisisthat there
is a probability measure under which all discounted stock prices are martingales, a much weaker
condition than the claim that stock prices follow a geometric Brownian maotion. Some empirical
studies supporting the efficient market hypothesis are Kendall (1953), Osborne (1959), Sprenkle
(1961), Boness (1964), Alexander (1961) and Fama (1965). The last of these papers discusses
other distributionswhich fit stock prices better than geometric Brownian motion. A criticism of the
efficient market hypothesisis provided by LeRoy (1989). A provocative article on the source of
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stock price movementsis Black (1986).

The first derivation of the Black-Scholes formula given in this course, using only Itd’s formula,
is similar to that originally given by Black & Scholes (1973). An important companion paper is
Merton (1973), which makes good reading even today. (This and many other papers by Merton
are collected in Merton (1990).) Even though geometric Brownian motion is a less than perfect
model for stock prices, the Black-Scholes option hedging formula seems not to be very sensitiveto
deficiencies in the model.

35.6 Markov processes.

Markov processes which are solutionsto stochastic differential equations are called diffusion pro-
cesses. A good introduction to this topic, including discussions of the Kolmogorov forward and
backward equations, is Chapter 15 of Karlin & Taylor (1981). The other books cited previoudly,
@ksendal (1995), Protter (1990), Chung & Williams (1983), and Karatzas & Shreve (1991), all treat
this subject. Kloeden & Platen (1992) is a thorough study of the numerical solution of stochastic
differential equations.

The constant elasticity of variance model for option pricing appearsin Cox & Ross (1976). Another
aternative model for the stock price underlying options, due to Follmer & Schweizer (1993), has
the geometric Ornstein-Uhlenbeck process as a special case.

The Feynman-K ac Theorem, connecting stochastic differential equationsto partial differential equa-
tions, is due to Feyman (1948) and Kac (1951). A numerical treastment of the partial differential
equations arising in finance is contained in Wilmott, Dewynne and Howison (1993, 1995) and also
Duffie (1992).

35.7 Girsanov’'stheorem, the martingalerepresentation theorem, and
risk-neutral measures.

Girsanov’s Theorem in the generality stated here is due to Girsanov (1960), although the result for
constant # was established much earlier by Cameron & Martin (1944). The theorem requires a
technical conditionto ensurethat I (7T") = 1, so that IP isa probability measure; see Karatzas &
Shreve (1991), page 198.

The form of the martingale representation theorem presented here is from Kunita & Watanabe
(1967). It can dso befound in Karatzas & Shreve (1991), page 182.

The application of the Girsanov Theorem and the martingal e representation theorem to risk-neutral
pricing is due to Harrison & Pliska (1981). This methodology frees the Brownian-motion driven
model from the assumption of constant interest rate and volatility; these parameters can be random
through dependence on the path of the underlying asset, or even through dependence on the paths of
other assets. When both the interest rate and volatility of an asset are allowed to be stochastic, the
Brownian-motion driven model is mathematically the most general possiblefor asset priceswithout
jumps.
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When asset processes have jumps, risk-free hedging is generally not possible. Some works on
hedging and/or optimization in models which alow for jumps are Aase (1993), Back (1991), Bates
(1988,1992), Beinert & Trautman (1991), Elliott & Kopp (1990), Jarrow & Madan (1991b,¢), Jones
(1984), Madan & Seneta (1990), Madan & Milne (1991), Mercurio & Runggaldier (1993), Merton
(1976), Naik & Lee (1990), Schweizer (1992a,b), Shirakawa (1990,1991) and Xue (1992).

The Fundamental Theorem of Asset Pricing, as stated here, can befound in Harrison & Pliska (1981,
1983). It istempting to believe the converse of Part |, i.e., that the absence of arbitrage impliesthe
existence of arisk-neutral measure. This is true in discrete-time models, but in continuous-time
models, a dlightly stronger conditionis needed to guarantee existence of arisk-neutral measure. For
the continuous-time case, results have been obtained by many authors, including Stricker (1990),
Delbaen (1992), Lakner (1993), Delbaen & Schachermayer (1994a,b), and Fritelli & Lakner (1994,
1995).

In addition to the fundamental papers of Harrison & Kreps (1979), and Harrison & Pliska (1981,
1983), some other works on the relationship between market completeness and uniqueness of the
risk-neutral measure are Artzner & Heath (1990), Delbaen (1992), Jacka (1992), Jarrow & Madan
(19914), Milller (1989) and Tagqu & Willinger (1987).

35.8 Exoticoptions.

Thereflection principle, adjusted to account for drift, istaken from Karatzas & Shreve (1991), pages
196-197.

Explicit formulasfor the prices of barrier optionshave been obtained by Rubinstein & Reiner (1991)
and Kunitomo & Ikeda (1992). Lookback options have been studied by Goldman, Sosin & Gatto
(1979), Goldman, Sosin & Shepp (1979) and Conzé & Viswanathan (1991).

Because it is difficult to obtain explicit formulas for the prices of Asian options, most work has
been devoted to approximations. We do not provide an explicit pricing formula here, although the
partial differential equation given here by the Feynman-Kac Theorem characterizes the exact price.
Bouaziz, Bryis & Crouhy (1994) provide an approximate pricing formula, Rogers & Shi (1995)
provide alower bound, and Geman & Yor (1993) obtain the Laplace transform of the price.

359 American options.

A general arbitrage-based theory for the pricing of American contingent claims and options begins
with the articles of Bensoussan (1984) and Karatzas (1988); see Myneni (1992) for a survey and
additional references. The perpetual American put problem was solved by McKean (1965).

Approximation and/or numerical solutions for the American option problem have been proposed
by severa authors, including Black (1975), Brennan & Schwartz (1977) (see Jaillet et al. (1990)
for atreatment of the American option optimal stopping problem viavariational inequalities, which
leads to ajustification of the Brennan-Schwartz algorithm), by Cox, Ross & Rubinstein (1979) (see
Lamberton (1993) for the convergence of the associated binomial and/or finite difference schemes)
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and by Parkinson (1977), Johnson (1983), Geske & Johnson (1984), MacMillan (1986), Omberg
(1987), Barone-Adesi & Whalley (1987), Barone-Adesi & Elliott (1991), Bunch & Johnson (1992),
Broadie & Detemple (1994), and Carr & Faguet (1994).

35.10 Forward and futurescontracts.

The distinction between futures contracts and daily resettled forward contracts has only recently
been recognized (see Margrabe (1976), Black (1976)) and even more recently understood. Cox,
Ingersoll & Ross (1981) and Jarrow & Oldfield (1981) provide a discrete-time arbitrage-based anal-
ysis of the relationship between forwards and futures, whereas Richard & Sundaresan (1981) study
these claims in a continuous-time, equilibrium setting. Our presentation of thismateria issimilar to
that of Duffie & Stanton (1992), which also considers options on futures, and to Chapte 7 of Duffie
(1992). For additional reading on forward and futures contracts, one may consult Duffie (1989).

35.11 Term structure models.

TheHull & White (1990) model isa generalization of the constant-coefficent Vasicek (1977) model.
Implementations of the model appear in Hull & White (1994a,b). The Cox-Ingersoll-Rossmodel is
presented in (1985a,b). The presentations of these given models here is taken from Rogers (1995).
Other surveys of term structure models are Duffie & Kan (1994) and Vetzal (1994). A partial list of
other term structure modelsis Black, Derman & Toy (1990), Brace & Musiela (1994a,b), Brennan
& Schwartz (1979, 1982) (but see Hogan (1993) for discussion of aproblem with thismodel), Duffie
& Kan (1993), Ho & Lee (1986), Jamshidian (1990), and L ongstaff & Schwartz (1992a,b).

The continuous-time Heath-Jarrow-Morton model appears in Heath, Jarrow & Morton (1992), and
a discrete-time version is provided by Heath, Jarrow & Morton (1990). Carverhill & Pang (1995)
discuss implementation. The Brace-Gatarek-Musiela variation of the HIM model is taken from
Brace, et a. (1995). A summary of this model appears as Reed (1995). Related works on term
structure models and swaps are Flesaker & Hughston (1995) and Jamshidian (1996).

35.12 Change of numéraire.

Thismaterial in this courseis taken from Geman, El Karoui and Rochet (1995). Similar ideas were
used by by Jamshidian (1989). The Merton option pricing formula appearsin Merton (1973).

35.13 Foreign exchange models.

Foreign exchange options were priced by Biger & Hull (1983) and Garman & Kohlhagen (1983).
The pricesfor differential swaps have been worked out by Jamshidian (1993a, 1993b) and Brace &
Musiela (1994a).
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