
Chapter 34

Brace-Gatarek-Musiela model

34.1 Review of HJM under risk-neutral IP

f�t� T � � Forward rate at timet for borrowing at timeT�

df�t� T � � ��t� T ����t� T � dt � ��t� T � dW �t��

where
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The interest rate isr�t� � f�t� t�. The bond prices

B�t� T � � IE

�
exp

�
�
Z T

t
r�u� du

�����F�t�

�

� exp

�
�
Z T

t
f�t� u� du

�

satisfy
dB�t� T � � r�t� B�t� T � dt� ���t� T �� �z �

volatility of T -maturity bond.

B�t� T � dW �t��

To implement HJM, you specify a function

��t� T �� � � t � T�

A simple choice we would like to use is

��t� T � � �f�t� T �

where� � � is the constant “volatility of the forward rate”. This is not possible because it leads to
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dt� �f�t� T � dW �t��
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and Heath, Jarrow and Morton show that solutions to this equation explode beforeT .

The problem with the above equation is that thedt term grows like the square of the forward rate.
To see what problem this causes, consider the similar deterministic ordinary differential equation

f ��t� � f��t��

wheref��� � c � �. We have
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This solution explodes att � ��c.

34.2 Brace-Gatarek-Musiela model

New variables:

Current timet

Time to maturity� � T � t�

Forward rates:

r�t� �� � f�t� t� ��� r�t� �� � f�t� t� � r�t�� (2.1)

�

��
r�t� �� �

�

�T
f�t� t� �� (2.2)

Bond prices:

D�t� �� � B�t� t � �� (2.3)
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�
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B�t� t � �� � �r�t� ��D�t� ��� (2.4)
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We will now write��t� �� � ��t� T � t� rather than��t� T �. In this notation, the HJM model is

df�t� T � � ��t� �����t� �� dt � ��t� �� dW �t�� (2.5)

dB�t� T � � r�t�B�t� T � dt� ���t� ��B�t� T � dW �t�� (2.6)

where

���t� �� �

Z �

�
��t� u� du� (2.7)

�

��
���t� �� � ��t� ��� (2.8)

We now derive the differentials ofr�t� �� andD�t� ��, analogous to (2.5) and (2.6) We have

dr�t� �� � df�t� t� ��� �z �
differential applies only to first argument

�
�

�T
f�t� t� �� dt

(2.5),(2.2)
� ��t� �����t� �� dt� ��t� �� dW �t� �

�

��
r�t� �� dt

(2.8)
�

�

��

h
r�t� �� � �

���
��t� ����

i
dt� ��t� �� dW �t�� (2.9)

Also,

dD�t� �� � dB�t� t� ��� �z �
differential applies only to first argument

�
�

�T
B�t� t� �� dt

(2.6),(2.4)
� r�t� B�t� t � �� dt� ���t� ��B�t� t� �� dW �t�� r�t� ��D�t� �� dt

(2.1)
� 	r�t� ��� r�t� ��
D�t� �� dt� ���t� ��D�t� �� dW �t�� (2.10)

34.3 LIBOR

Fix � � � (say,� � �
� year). $D�t� �� invested at timet in a �t� ��-maturity bond grows to $ 1 at

time t � �. L�t� �� is defined to be the corresponding rate of simple interest:
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o
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34.4 Forward LIBOR

� � � is still fixed. At timet, agree to invest $D�t�����
D�t��� at timet � � , with payback of $1 at time

t � � � �. Can do this at timet by shortingD�t�����
D�t��� bonds maturing at timet � � and going long

one bond maturing at timet � � � �. The value of this portfolio at timet is

�D�t� � � ��

D�t� ��
D�t� �� �D�t� � � �� � ��

Theforward LIBOR L�t� �� is defined to be the simple (forward) interest rate for this investment:

D�t� � � ��
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o
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Connection with forward rates:
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o
� �

�
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(4.2)

r�t� �� is the continuously compounded rate.L�t� �� is the simple rate over a period of duration�.

We cannot have a log-normal model forr�t� �� because solutions explode as we saw in Section 34.1.
For fixed positive�, wecan have a log-normal model forL�t� ��.

34.5 The dynamics of L�t� � �

We want to choose��t� ��� t � �� � � �, appearing in (2.5) so that

dL�t� �� � �� � �� dt� L�t� �� 	�t� �� dW �t�
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for some	�t� ��� t � �� � � �. This is the BGM model, and is a subclass of HJM models,
corresponding to particular choices of��t� ��.

Recall (2.9):

dr�t� �� �
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But
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Therefore,
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�

�
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	���t� � � ��� ���t� ��
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Take	�t� �� to be given by

	�t� ��L�t� �� �
�

�
	� � �L�t� ��
	���t� � � ��� ���t� ��
� (5.3)

Then

dL�t� �� � 	
�

��
L�t� �� � 	�t� ��L�t� �����t� � � ��
 dt� 	�t� ��L�t� �� dW �t��

(5.4)

Note that (5.3) is equivalent to

���t� � � �� � ���t� �� �
�L�t� ��	�t� ��

� � �L�t� ��
� (5.3’)

Plugging this into (5.4) yields

dL�t� �� �

�
�

��
L�t� �� � 	�t� ��L�t� �����t� �� �

�L��t� ��	��t� ��

� � �L�t� ��

�
dt

� 	�t� ��L�t� �� dW �t�� (5.4’)

34.6 Implementation of BGM

Obtain the initialforward LIBOR curve

L��� ��� � � ��

from market data. Choose aforward LIBOR volatility function (usually nonrandom)

	�t� ��� t � �� � � ��
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Because LIBOR gives no rate information on time periods smaller than�, we must also choose a
partial bond volatility function

���t� ��� t � �� � � � 
 �

for maturities less than� from the current time variablet.

With these functions, we can for each� � 	�� �� solve (5.4’) to obtain

L�t� ��� t � �� � � � 
 ��

Plugging the solution into (5.3’), we obtain���t� �� for � � � 
 ��. We then solve (5.4’) to obtain

L�t� ��� t � �� � � � 
 ���

and we continue recursively.

Remark 34.1 BGM is a special case of HJM with HJM’s���t� �� generated recursively by (5.3’).
In BGM, 	�t� �� is usually taken to be nonrandom; the resulting���t� �� is random.

Remark 34.2 (5.4) (equivalently, (5.4’)) is a stochasticpartial differential equation because of the
�
��
L�t� �� term. This is not as terrible as it first appears. Returning to the HJM variablest andT ,

set
K�t� T � � L�t� T � t��

Then

dK�t� T � � dL�t� T � t�� �

��
L�t� T � t� dt

and (5.4) and (5.4’) become

dK�t� T � � 	�t� T � t�K�t� T � 	���t� T � t � �� dt� dW �t�


� 	�t� T � t�K�t� T �

�
���t� T � t� dt �

�K�t� T �	�t� T � t�

� � �K�t� T �
dt� dW �t�

�
�

(6.1)

Remark 34.3 From (5.3) we have

	�t� ��L�t� �� � 	� � �L�t� ��

���t� � � ��� ���t� ��

�
�

If we let ���, then

	�t� ��L�t� ��� �

��
���t� � � ��

����
���

� ��t� ���

and so
	�t� T � t�K�t� T ����t� T � t��

We saw before (eq. 4.2) that as���,

L�t� ���r�t� �� � f�t� t� ���



342

so

K�t� T ��f�t� T ��

Therefore, the limit as��� of (6.1) is given by equation (2.5):

df�t� T � � ��t� T � t� 	���t� T � t� dt � dW �t�
 �

Remark 34.4 Although thedt term in (6.1) has the term��
��t�T�t�K��t�T �
��K�t�T � involvingK�, solutions

to this equation do not explode because

�	��t� T � t�K��t� T �

� � �K�t� T �
� �	��t� T � t�K��t� T �

�K�t� T �

� 	��t� T � t�K�t� T ��

34.7 Bond prices

Let ��t� � exp
nR t

� r�u� du
o
� From (2.6) we have

d

�
B�t� T �

��t�

�
�

�

��t�
	�r�t�B�t� T � dt� dB�t� T �


� �B�t� T �

��t�
���t� T � t� dW �t��

The solutionB�t�T �
��t� to this stochastic differential equation is given by

B�t� T �

��t�B��� T �
� exp

�
�
Z t

�
���u� T � u� dW �u�� �

�

Z t

�
����u� T � u��� du

�
�

This is a martingale, and we can use it to switch to theforward measure

IPT �A� �
�

B��� T �

Z
A

�

��T �
dIP

�
Z
A

B�T� T �

��T �B��� T �
dIP �A � F�T ��

Girsanov’s Theorem implies that

WT �t� � W �t� �
Z t

�
���u� T � u� du� � � t � T�

is a Brownian motion underIPT .
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34.8 Forward LIBOR under more forward measure

From (6.1) we have

dK�t� T � � 	�t� T � t�K�t� T � 	���t� T � t� �� dt� dW �t�


� 	�t� T � t�K�t� T � dWT���t��

so

K�t� T � � K��� T � exp

�Z t

�
	�u� T � u� dWT���u�� �

�

Z t

�
	��u� T � u� du

�

and

K�T� T � � K��� T � exp

�Z T

�
	�u� T � u� dWT���u�� �

�

Z T

�
	��u� T � u� du

�
(8.1)

� K�t� T � exp

�Z T

t
	�u� T � u� dWT���u�� �

�

Z T

t
	��u� T � u� du

�
�

We assume that	 is nonrandom. Then

X�t� �
Z T

t
	�u� T � u� dWT���u�� �

�

Z T

t
	��u� T � u� du (8.2)

is normal with variance

���t� �
Z T

t
	��u� T � u� du

and mean��
��

��t�.

34.9 Pricing an interest rate caplet

Consider a floating rate interest payment settled in arrears. At timeT � �, the floating rate interest
payment due is�L�T� �� � �K�T� T �� the LIBOR at timeT . A caplet protects its owner by
requiring him to pay only the cap�c if �K�T� T � � �c. Thus, the value of the caplet at timeT � �
is ��K�T� T �� c��. We determine its value at times� � t � T � �.

Case I: T � t � T � �.

CT���t� � IE

�
��t�

��T � ��
��K�T� T �� c��

����F�t�

�
(9.1)

� ��K�T� T �� c��IE

�
��t�

��T � ��

����F�t�

�
� ��K�T� T �� c��B�t� T � ���
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Case II: � � t � T .
Recall that

IPT���A� �
Z
A
Z�T � �� dIP� �A � F�T � ���

where

Z�t� �
B�t� T � ��

��t�B��� T � ��
�

We have

CT���t� � IE

�
��t�

��T � ��
��K�T� T �� c��

����F�t�

�

� �B�t� T � ��
��t�B��� T � ��

B�t� T � ��� �z �
�

Z�t�

IE


�����

B�T � �� T � ��

��T � ��B��� T � ��� �z �
Z�T���

�K�T� T �� c��
����F�t�

�
�����

� �B�t� T � ��IET��

�
�K�T� T �� c��

����F�t�

�

From (8.1) and (8.2) we have

K�T� T � � K�t� T � expfX�t�g�

whereX�t� is normal underIPT�� with variance���t� �
R T
t 	��u� T � u� du and mean��

��
��t�.

Furthermore,X�t� is independent ofF�t�.

CT���t� � �B�t� T � ��IET��

�
�K�t� T � expfX�t�g � c��

����F�t�

�
�

Set

g�y� � IET��

h
�y expfX�t�g � c��

i
� y N

�
�

��t�
log

y

c
� �

���t�

�
� c N

�
�

��t�
log

y

c
� �

���t�

�
�

Then

CT���t� � � B�t� T � �� g�K�t� T ��� � � t � T � �� (9.2)

In the case of constant	, we have
��t� � 	

p
T � t�

and (9.2) is called theBlack caplet formula.



CHAPTER 34. Brace-Gatarek-Musiela model 345

34.10 Pricing an interest rate cap

Let
T� � �� T� � �� T� � ��� � � � � Tn � n��

A cap is a series of payments

��K�Tk� Tk�� c�� at timeTk��� k � �� �� � � � � n� ��

The value at timet of the cap is the value of all remaining caplets, i.e.,

C�t� �
X

k	t�Tk

CTk�t��

34.11 Calibration of BGM

The interest rate capletc onL��� T � at timeT � � has time-zero value

CT����� � �B��� T � �� g�K��� T ���

whereg (defined in the last section) depends on

Z T

�
	��u� T � u� du�

Let us suppose	 is a deterministic function of its second argument, i.e.,

	�t� �� � 	����

Theng depends on Z T

�
	��T � u� du �

Z T

�
	��v� dv�

If we know the caplet priceCT�����, we can “back out” the squared volatility
R T
� 	��v� dv. If we

know caplet prices
CT������� CT������� � � � � CTn������

whereT� 
 T� 
 � � � 
 Tn, we can “back out”Z T�

�
	��v� dv�

Z T�

T�

	��v� dv �
Z T�

�
	��v� dv �

Z T�

�
	��v� dv�

� � � �

Z Tn

Tn��

	��v� dv� (11.1)

In this case, we may assume that	 is constant on each of the intervals

��� T��� �T�� T��� � � � � �Tn��� Tn��
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and choose these constants to make the above integrals have the values implied by the caplet prices.

If we know caplet pricesCT����� for all T � �, we can “back out”
R T
� 	��v� dv and then differen-

tiate to discover	���� and	��� �
p
	���� for all � � �.

To implement BGM, we need both	���� � � �, and

���t� ��� t � �� � � � 
 ��

Now ���t� �� is the volatility at timet of a zero coupon bond maturing at timet � � (see (2.6)).
Since� is small (say�� year), and� � � 
 �, it is reasonable to set

���t� �� � �� t � �� � � � 
 ��

We can now solve (or simulate) to get

L�t� ��� t � �� � � ��

or equivalently,
K�t� T �� t � �� T � ��

using the recursive procedure outlined at the start of Section 34.6.

34.12 Long rates

The long rate is determined by long maturity bond prices. Letn be a large fixed positive integer, so
thatn� is 20 or 30 years. Then

�

D�t� n��
� exp

�Z n�

�
r�t� u� du

�

�
nY

k��

exp

�Z k�

�k����
r�t� u� du

�

�
nY

k��

	� � �L�t� �k� ����
�

where the last equality follows from (4.1). The long rate is

�

n�
log

�

D�t� n��
�

�

n�

nX
k��

log	� � �L�t� �k� ����
�

34.13 Pricing a swap

Let T� � � be given, and set

T� � T� � �� T� � T� � ��� � � � � Tn � T� � n��
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The swap is the series of payments

��L�Tk� ��� c� at timeTk��� k � �� �� � � � � n� ��

For � � t � T�, the value of the swap is
n��X
k��
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��t�

��Tk���
��L�Tk� ��� c�

����F�t�

�
�

Now

� � �L�Tk� �� �
�

B�Tk � Tk���
�

so
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�
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�
�

B�Tk� Tk���
� �

�
�

We compute
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� IE
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��Tk���
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��Tk�B�Tk� Tk���
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��Tk�
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B�Tk�Tk���

����F�t�
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� IE

�
��t�

��Tk���

����F�t�

�
� �� � �c�B�t� Tk���

� B�t� Tk�� �� � �c�B�t� Tk����

The value of the swap at timet is
n��X
k��

IE

�
��t�

��Tk���
��L�Tk� ��� c�

����F�t�

�

�
n��X
k��

	B�t� Tk�� �� � �c�B�t� Tk���


� B�t� T��� �� � �c�B�t� T�� �B�t� T��� �� � �c�B�t� T�� � � � �� B�t� Tn���� �� � �c�B�t� Tn�

� B�t� T��� �cB�t� T��� �cB�t� T��� � � �� �cB�t� Tn��B�t� Tn��

The forward swap ratewT��t� at time t for maturityT� is the value ofc which makes the time-t
value of the swap equal to zero:

wT��t� �
B�t� T���B�t� Tn�

� 	B�t� T�� � � � ��B�t� Tn�

�

In contrast to the cap formula, which depends on the term structure model and requires estimation
of 	, the swap formula is generic.


