Chapter 34

Brace-Gatarek-M usiela modd

34.1 Review of HIM under risk-neutral IP

f(t,T) = Forward rate at timeé for borrowing at timef".
df(t,T)y= o(t, 7)o" (t,T)dt + o(t,T) dW(t),
where
T
o*(t,T) :/ o(t,u) du
t

The interest rate is(t) = f(¢,¢). The bond prices

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]

:exp{—/tTf(t,u) du}

dB(t,T)=r(t) B(t,T) dt — o*(t,T) B(t,T) dW(t).
N——
volatility of 7'-maturity bond.
To implement HIM, you specify a function

o(t,T), 0<t<T.

satisfy

A simple choice we would like to use is
o(t,T)=0of(t,T)

wheres > 0 is the constant “volatility of the forward rate”. This is not possible because it leads to
T
o (t,T) = O'/ f(t,u) du,
t
T
At T) = o2 f(t, T) (/ Ft ) du | di+ o f(t,T) dW (1),
t
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and Heath, Jarrow and Morton show that solutions to this equation explode Before

The problem with the above equation is that theerm grows like the square of the forward rate.
To see what problem this causes, consider the similar deterministic ordinary differential equation

;') =),
wheref(0) = ¢ > 0. We have
' _
HONE
d 1
def(t)y
1 1 ¢
—m+mz : ldu=t
_L—t_i—t_l/czd_l
ft) f(0) ’
C
J&) = 1—-

This solution explodes at= 1/c.

34.2 Brace-Gatarek-Musiela model

New variables:

Current timet
Time to maturityr =7 — t.

Forward rates:

r(t,7) = f(t,t+7), rt,0)=f(t,t)=r(t), (2.1)
J J
Er(t,r) = 8—Tf(t,t—|—7') (2.2)
Bond prices:
D(t,7)=B(t,t+ 1) (2.3)

= exp{—/tH—T f(t,v) dv}

(u=wv—t; du=dv): :exp{—/OTf(t,t—l—u) du}

= exp {— /OTr(t,u) du}
d

d
ED(t7 T) = 8—TB(t,t—|— T) = —r(t,7)D(t, 7). (2.4)
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We will now write o (¢, 7) = o (¢, T — t) rather tharw (¢, T'). In this notation, the HIM model is

A (6, T) = olt, 7)o" (t,7) di + o (t,7) AW (1), 2.5)
dB(t,T) = r(1)B(t,T) di — o™ (t, ) B(t,T) dW (1), 2.6)
where
o (t,7) = /0 o(t, u) du, @2.7)
%a*(t, ) = a(t, 7). 2.8)

We now derive the differentials eft, 7) and D (¢, 7), analogous to (2.5) and (2.6) We have

dr(t,7) = df(t,t 4+ 1) + %f(t,t—l—r) dt

differential applies only to first argument

(2'52(2'2)0(@ 7)o" (t,7) di +o(t,7) dW (1) + %Mu ) dt

@8 0 [(t,7) + 307 (0.7)7] dt 4 o(t,7) VY (1), (2.9)
Also,

dD(t, 1) = dB(t,t+ ) —I—%B(t,t—l—r) dt

differential applies only to first argument
@OCDL 1) Blt,t +7) dt — o (t, 1) B(t, t +7) dW(t) — r(t, 7)D(t, 7) dt
@D (1,0) = r(t, )] D(t, 7) dt — o™ (t, ) D(t, 7) W (2). (2.10)

343 LIBOR

Fix § > 0 (say,6 = } year). $D(t, §) invested at time in a (¢ + &)-maturity bond grows to $ 1 at
timet 4+ §. L(¢,0) is defined to be the corresponding rate of simple interest:

D(t,8)(1 + 6L (t,0)) = 1,

2]
14 6L(t,0) = = :exp{ r(t, u) du}7
0

D(t,9)
foa r(t, u) du} -1

L(t,0) = eXp{
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344 Forward LIBOR

§ > 0 is still fixed. Attimet, agree to invest % at timet + 7, with payback of $1 at time

t + 7+ 4. Can do this at time by shorting%ﬁf) bonds maturing at time+ = and going long

one bond maturing at time+ 7 + 8. The value of this portfolio at timeis
D(t, 7+ 9)

D(t,7)
Theforward LIBOR L(t, 7) is defined to be the simple (forward) interest rate for this investment:
D(t, 74 9)

D(t,7)

D(t,7)+ D(t,7+6) = 0.

(1+6L(t, 7)) =1,

D(t,7) _ exp{— Jo r(t,u) du}
D(t,7+9)  exp {— f07+5 r(t, u) du}

= exp {/:+5 r(t, u) du} )

exp {f:"’é r(t, u) du} -1

1+ 0L(t, 1) =

L{t,7) = ; (4.1)
Connection with forward rates:
d T+6 T+6
— exp / r(t,u) du =r(t,7+ ) exp / r(t,u) du
85 T §=0 T §=0
=r(t, 1),
SO
exp f:"'ér tybu)dup —1
flt,t+71)=r(t,7)=Ilim { () }
slo 6
exp f:+5rt,u dup —1
L(t,T)= { (5 ) } ,  0>0 fixed.
4.2)

r(t, 7) is the continuously compounded rafe(t, 7) is the simple rate over a period of duratién

We cannot have a log-normal model fdt, 7) because solutions explode as we saw in Section 34.1.
For fixed positive’, we can have a log-normal model fat (¢, 7).

345 Thedynamicsof L(t, 1)

We want to choose (¢, 7), t > 0, 7 > 0, appearing in (2.5) so that
dL(t,7) = (...)dt+ L(t,7)y(t,7) dW(t)
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for somey(t,7), t > 0,7 > 0. This is the BGM model, and is a subclass of HIM models,
corresponding to particular choicesaft, 7).

Recall (2.9):
dr(t, ) = % [t w) + L(o™ (8, w))?] dt+ o (t,u) AWV (D).
Therefore,
d (/T-I_(g r(t, u) du) = /T-I_(g dr(t,u) du (5.1)
T+6 T+6
= /T ’ % {r(t,u) + %(U*(t,u))ﬂ du dt—l—/T ' o(t,u) du dW(t)
= [r(t 4 6) = r(t,7) + S(07 (6,7 + ) = Lo (t,7))?] dt
+[o"(t, 7+ 0) — o™ (t, )] dW(¥)
and
dr(t, ) " g [GXP {f:+5r(§’ u) du} - 1]

1 T+6 T+6
= s exp {/ r(t, u) du} d/ r(t,u) du

T+6 T+6 2
—I—%exp{/T ' r(t, u) du} (d/T ' r(t, u) du)

41), 611
8

[1+0L(t, )] X (5.2)
X {[r(t, T4 68) —r(t, )+ %(U*(t7 T+ 5))2 - %(U*(t7 T))z] dt

+[o*(t, 7+ 0) — o™ (t, )] AW (1)

+ Lo (b T+ 8) — o™ (t, ) dt}

1

5[1 + dL(t, T)]{[r(t, T+ 68) —r(t,0)] dt

+ o (t, T+ 0)[o"(t, T+ &) — o™(t, )] dt

= +o*(t, T+ 0) — (¢, T)] dW(t)}.
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But
9 9 exp{f:-l'ér(t,u) du}—l
a7 = 57 [ 5
— exp {/:+5 r(t, ) du} [t 7+ 8) = r(t, 8)]
- %[1 b SL( It + 6) — r(t, 5)].
Therefore,

dL(t,7) = iL(t7 T) dt + l[1 +SL(t, )][o"(t, T+ 8) — o™ (t, 7)].[o"(t, T+ O) dt + dW ()]

or 5
Take~(t, 7) to be given by
y(t, T)L(t, T) = %[1 +0L(t,T)][o"(t, 7+ &) — o™(t, T)]. (5.3)
Then
dL(t,7) = [%L(t, )+t )L, 7)o" (6, T+ 0)] dt + (¢, 7)L(t, 7) dW (2).
(5.4)
Note that (5.3) is equivalent to
o*(t,7 4 8) = (1, ) 4 LTI (5.3)

14+ 0L(t,7)
Plugging this into (5.4) yields

SLA(t, T)y*(t, )
14+ 68L(t,T)
+7(t, T)L(t, T) dW (). (5.4

dt

dL(t,7) = %L(t7 )+, 7)L(t, T)o" (t, T) +

34.6 Implementation of BGM

Obtain the initiaforward LIBOR curve
L(0,7), 72>0,
from market data. Choosefarward LIBOR volatility function (usually nonrandom)

v(t,7), t>0,7>0.
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Because LIBOR gives no rate information on time periods smaller dhare must also choose a
partial bond volatility function

o*(t,7), t>0,0<7<$

for maturities less thaf from the current time variable

With these functions, we can for eacke [0, §) solve (5.4") to obtain
L(t,7), t>0,0<7 <4

Plugging the solution into (5.3’), we obtadri (¢, 7) for 6 < 7 < 24. We then solve (5.4’) to obtain
L(t,7), t>0,8<7 <20,

and we continue recursively.

Remark 34.1 BGM is a special case of HIM with HIM¢s* (¢, 7) generated recursively by (5.3’).
In BGM, ~(t, 7) is usually taken to be nonrandom; the resultrigt, 7) is random.

Remark 34.2 (5.4) (equivalently, (5.4’)) is a stochaspartial differential equation because of the
%L(t, 7) term. This is not as terrible as it first appears. Returning to the HIM variabies?’,
set
K, T)=L(t,T —1t).
Then
dK(t,T)=dL(t,T —t) — %L(t,T —t)dt

and (5.4) and (5.4’) become

AK(,T) = v(t, T — K (t,T) [0 (t, T — t + &) dt + dW ()]
SK(t,T)y(t, T —1)
1+ 0K (t,T)

=y (t, T - K, T) |o"(t, T — t) dt + dt + dw ()] .

(6.1)

Remark 34.3 From (5.3) we have

o*(t, 7+ 6) — o*(t, T)

y(t, T)L(t, 7) =[1 4 6L(t,7)]

If we let 4]0, then

7(t,7’)L(t,r)—>ﬁU*(t,T—|—5) =o(t, 1),
96 5=0

and so
vy, T —t)K(t,T)—o(t, T —t).

We saw before (eq. 4.2) that &80,

L(t,m)—=r(t,7)= f(t,t+ 1),
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SO
K, T)—=f(t,T).

Therefore, the limit a0 of (6.1) is given by equation (2.5):
df(t, Ty =o(t, T —t)[c"(t, T —t) dt + dW(1)].

52 (¢, T-t)K?(¢,T

) . . -9 .
TTRT) involving K =, solutions

Remark 34.4 Although thedt term in (6.1) has the ter
to this equation do not explode because

§vit, T — t)K2(¢,T) < §v3(, T — t)K2(¢,T)
1+ 6K (t,T) SK(t,T)
<A T - K(t,T).

34.7 Bond prices

Let 3(t) = exp {fg r(u) du} . From (2.6) we have

d(B(t’T)) :ﬁl () B(t,T) dt + dB(t, T)]

B(1) (t)
B(t,T)
=" o*(t, T —t) dW (t).
B(t) ( ) AW (1)
The squtioangfg) to this stochastic differential equation is given by
B(t,T) to .
s = (= [t - ave -1 [ -0 .

This is a martingale, and we can use it to switch toftmevard measure

1 1
P = 5075 J, 50
B(T,T)

~ JaBI)BO.T)

Girsanov’s Theorem implies that

dIP VA ¢ F(T).

—I—/ (u, T —u)du, 0<t<T,

is a Brownian motion undef’r.
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34.8 Forward LIBOR under moreforward measure

From (6.1) we have

AK(,T) = v(t, T — )K(t,T) [o"(t, T — t + &) dt + dW (1)]
=y (t, T — K (t,T) dWrs(t),

SO

t t

Y(u, T —u) dWris(u) — %/0 v (u, T — u) du}

K(t,T) = K(0,T) exp {/0

and

(8.1)
T T
=K(,T) exp{/ Y(u, T —u) dWrys(u) — %/ v (u, T — u) du
t t
We assume that is nonrandom. Then
T T
X(t) = /t Y(u, T — w) dWrys(u) — %/t Y2 (u, T — u) du (8.2)

is normal with variance

and mean-1p?(t).

34.9 Pricingan interest rate caplet

Consider a floating rate interest payment settled in arrears. Atfime, the floating rate interest
payment due i9L(7,0) = §K(T,T), the LIBOR at time7". A caplet protects its owner by
requiring him to pay only the cagr if § K (7', T) > dc. Thus, the value of the caplet at tirie+ &
isS(K(T,T)— c)*. We determine its value at timés< ¢t < 7' + 4.

Casel: T <t <T+54.

Cros(t) = E %5(1{(1 T)— o)
B(t)

_S(K(T,T) = ) IE [m‘m)]

= §(K(T,T)— )" B(t,T + §).

f(t)] (9.1)
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Casell: 0 <t <T.
Recall that

Prys(A) = /AZ(T L 8)dIP, YA€ F(T +34),

where
B(t, T +9)
0= 500+
We have
Cras(t) = IE %5(1{@, T)— o)t }'(t)]
B B(t)B(0,T +9) B(T + 6,17 +9) .
= §B(t,T + 6) BT BT 90T (K(T,T) - )" | (1)
S Z(T+86)

Z(1)

= 0B(t, T+ §) Erys |[(K(T,T) — )T | F(t)

From (8.1) and (8.2) we have
K(T,T)=K(t,T)exp{X(t)},

where X (¢) is normal undetPr s with variancep®(t) = f;" v*(u, T — u) du and mean-1p2(1).
Furthermore X (t) is independent of (¢).

Crys(t) =B, T 4 ) Erys |(K(t, T)exp{X (1)} — ¢)T

}'(t)] .

Set
9(y) = Brys [(yexp{X ()} - 0)*]
—y N (ﬁlog Ly %p(t)) _eN (ﬁlog J_ %p(t))
Then
Crys(t) =0 B, T+0) g(K(L,T)), 0<t<T -0, 92)

In the case of constant we have
p(t) =T —t,
and (9.2) is called thBlack caplet formula.



CHAPTER 34. Brace-Gatarek-Musiela model 345
34.10 Pricingan interest ratecap

Let
/‘TOIO7 T1:57 T2:257 ey Tn:ncs
A cap is a series of payments
S(K(Ty, Ty) — o)t attimeTyq, k=0,1,...,n— 1.

The value at time of the cap is the value of all remaining caplets, i.e.,

)= 3, Cr().

k:tSTk

34.11 Calibration of BGM

The interest rate capleton L (0, T') at time7" + é has time-zero value
CT+5(0) = 5B(07 T+ 5) g(I((Ov T))7

whereg (defined in the last section) depends on

T
/ Y (u, T — u) du.
0
Let us suppose is a deterministic function of its second argument, i.e.,

vt ) =7(7).

Theng depends on

T T
/ YT — ) du = / v2(v) dv.
0

0

If we know the caplet pric€'r45(0), we can “back out” the squared volatilijf)f 72 (v) do. If we
know caplet prices

CT0+5 (0)7 CT1_|_5 (0)7 sy CTn+5(0)7

wherely, < 1) < ... < T,, we can “back out”

/OTO 7 (v) dv, /Tl v (v) dv = /Tl v (v) dv — /TO +2(0) dv,

Ty 0 0

Ty
oy / 3 (v) dv. (11.1)

Tn—l

In this case, we may assume thas constant on each of the intervals

(07T0)7 (T07T1)7 e (Tn—17Tn)7
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and choose these constants to make the above integrals have the values implied by the caplet prices.

If we know caplet price€T+5( ) for aII T > 0, we can “back out’jl"OT v%(v) dv and then differen-
tiate to discovery?(7) andy () = /42(r) forall + > 0.

To implement BGM, we need botf(r), T >0, and
o*(t,7), t>0,0<7 <4

Now ¢*(t, 7) is the volatility at timet of a zero coupon bond maturing at time- = (see (2.6)).
Sinced is small (say: year), and) < = < 4, itis reasonable to set

o*(t,7)=0, t>0, 0<7 <4
We can now solve (or simulate) to get
L(t,7), t>0,7>0,

or equivalently,
K(t,T), t>0,T>0,

using the recursive procedure outlined at the start of Section 34.6.

3412 Longrates

The long rate is determined by long maturity bond prices./lé a large fixed positive integer, so
thatnd is 20 or 30 years. Then

1 né
Dl n9) = exp{/o r(t, u) du}

ké
exp {/ r(t, u) du}
(k=13

[L+ 0L, (k= 1)d)],

(l
s

o
Il

1

::3

o
Il
—

where the last equality follows from (4.1). The long rate is

! zn: [+ SL(t, (k — 1)8)].

né log D(t,n

34.13 Pricingaswap

Let7, > 0 be given, and set

T1:T0—|—57 T2:T0+2(S7 ey TnIT0—|—n(S
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The swap is the series of payments
O(L(Ty,0)—¢c) attimelyy1,k=0,1,...,n—1.

For0 <t < Ty, the value of the swap is

ZE[ Tk+1) §(L(Ty,0) — ¢)

o).
Now

1
1+ 8L(T}, 0) =

B(Tk, Tht1)’
so

1 1
R Y S —

We compute

B(t)
B(Th1) (t)]

= :ﬂgrgl) () #0)

o [ S(L(Tk, 0) — ¢)

_ B(t) B(Ty) ) )

- B(Tk) B(Tk, Tht1) " [ﬂ(TkH) (Tk)] ‘f(t) (1+0¢)B(t, Thy1)
- B(Tx,Tr11)

_ [ B0 B .

= 575l 0] - 0+ 608 i)

=B(t,Ty) — (14 6¢)B(t, Trt1)-
The value of the swap at timds

Z JE[ SRS (L(T0) = )

]

- Z (t,Tx) — (L+8¢)B(t, Try1)]

= B(t To) — (14 0¢)B(t,T1) + B(t,T1) — (1+ d6¢)B(t,T3) + ...+ B(t,Ty,—1) — (L + 6¢)B(t, T,,)
= B(t,To) — 0cB(t,T1) — 0¢B(t,T3) — ... — 6¢B(t,T,) — B(t,T,).
The forward swap rater, (t) at timet for maturity 7 is the value ofc which makes the time-
value of the swap equal to zero:
_ B(thO) — B(thn)
nll) = STEGT + o+ BT

In contrast to the cap formula, which depends on the term structure model and requires estimation
of v, the swap formula is generic.



