
Chapter 33

Change of nuḿeraire

Consider a Brownian motion driven market model with time horizonT �. For now, we will have
one asset, which we call a “stock” even though in applications it will usually be an interest rate
dependent claim. The price of the stock is modeled by

dS�t� � r�t� S�t� dt � ��t�S�t� dW �t�� (0.1)

where the interest rate processr�t� and the volatility process��t� are adapted to some filtration
fF�t�� � � t � T �g. W is a Brownian motion relative to this filtration, butfF�t�� � � t � T �g
may be larger than the filtration generated byW .

This isnot a geometric Brownian motion model. We are particularly interested in the case that the
interest rate is stochastic, given by a term structure model we have not yet specified.

We shall work only under the risk-neutral measure, which is reflected by the fact that the mean rate
of return for the stock isr�t�.

We define theaccumulation factor
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The zero-coupon bond prices are given by
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so
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is also a martingale (tower property).

TheT -forward priceF �t� T � of the stock is the price set at timet for delivery of one share of stock
at timeT with payment at timeT . The value of the forward contract at timet is zero, so
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Therefore,
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Definition 33.1 (Numéraire) Any asset in the model whose price is always strictly positive can be
taken as the num´eraire. We then denominate all other assets in units of this num´eraire.

Example 33.1 (Money market as num´eraire) The money market could be the num´eraire. At timet, the
stock is worthS�t�

��t� units of money market and theT -maturity bond is worthB�t�T �
��t� units of money market.

Example 33.2 (Bond as num´eraire) TheT -maturity bond could be the num´eraire. At timet � T , the stock
is worthF �t� T � units ofT -maturity bond and theT -maturity bond is worth 1 unit.

We will say that a probability measureIPN is risk-neutral for the num´eraireN if every asset price,
divided byN , is a martingale underIPN . The original probability measureIP is risk-neutral for the
numéraire� (Example 33.1).

Theorem 0.71 LetN be a num´eraire, i.e., the price process for some asset whose price is always
strictly positive. ThenIPN defined by

IPN �A� �
�

N���

Z
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dIP� �A � F�T ���

is risk-neutral forN .
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Note: IP andIPN are equivalent, i.e., have the same probability zero sets, and

IP �A� � N���
Z
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N�T ��
dIPN � �A � F�T ���

Proof: BecauseN is the price process for some asset,N�� is a martingale underIP . Therefore,
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and we see thatIPN is a probability measure.

Let Y be an asset price. UnderIP , Y�� is a martingale. We must show that underIPN , Y�N is
a martingale. For this, we need to recall how to combine conditional expectations with change of
measure (Lemma 1.54). If� � t � T � T� andX isF�T �-measurable, then
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Therefore,
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which is the martingale property forY�N underIPN .

33.1 Bond price as nuḿeraire

Fix T � ��� T �	 and letB�t� T � be the num´eraire. The risk-neutral measure for this num´eraire is
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Because this bond is not defined after timeT , we change the measure only “up to timeT ”, i.e.,
using �

B���T �
B�T�T �
��T � and only forA � F�T �.

IPT is called theT -forward measure.Denominated in units ofT -maturity bond, the value of the
stock is

F �t� T � �
S�t�

B�t� T �
� � � t � T�

This is a martingale underIPT , and so has a differential of the form

dF �t� T � � �F �t� T �F �t� T � dWT �t�� � � t � T� (1.1)

i.e., a differential without adt term. The processfWT � � � t � Tg is a Brownian motion under
IPT . We may assume without loss of generality that�F �t� T � � �.

We writeF �t� rather thanF �t� T � from now on.

33.2 Stock price as nuḿeraire

Let S�t� be the num´eraire. In terms of this num´eraire, the stock price is identically 1. The risk-
neutral measure under this num´eraire is
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Denominated in shares of stock, the value of theT -maturity bond is
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This is a martingale underIPS , and so has a differential of the form
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dWS�t�� (2.1)

wherefWS�t�� � � t � T �g is a Brownian motion underIPS . We may assume without loss of
generality that��t� T �� �.

Theorem 2.72 The volatility��t� T � in (2.1) is equal to the volatility�F �t� T � in (1.1). In other
words, (2.1) can be rewritten as
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Proof: Let g�x� � ��x, sog��x� � ���x�� g���x� � 
�x�. Then
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UnderIPT � �WT is a Brownian motion. Under this measure,�
F �t� has volatility�F �t� T � and mean

rate of return��F �t� T �. The change of measure fromIPT to IPS makes �
F �t� a martingale, i.e., it

changes the mean return to zero, but the change of measure does not affect the volatility. Therefore,
��t� T � in (2.1) must be�F �t� T � andWS must be
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33.3 Merton option pricing formula

The price at time zero of a European call is
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This is a completely general formula which permits computation as soon as we specify�F �t� T �. If
we assume that�F �t� T � is a constant�F , we have the following:
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If r is constant, thenB��� T � � e�rT ,
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and we have the usual Black-Scholes formula. Whenr is not constant, we still have the explicit
formula

V ��� � S���N�	���KB��� T �N�	���



CHAPTER 33. Change of num´eraire 331

As this formula suggests, if�F is constant, then for� � t � T , the value of a European call expiring
at timeT is

V �t� � S�t�N�	��t���KB�t� T �N�	��t���
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This formula also suggests a hedge: at each timet, hold N�	��t�� shares of stock and short
KN�	��t�� bonds.

We want to verify that this hedge isself-financing.Suppose we begin with $V ��� and at each time
t holdN�	��t�� shares of stock. We short bonds as necessary to finance this. Will the position in
the bond always be�KN�	��t��? If so, the value of the portfolio will always be

S�t�N�	��t���KB�t� T �N�	��t�� � V �t��

and we will have a hedge.

Mathematically, this question takes the following form. Let

��t� � N�	��t���

At time t, hold��t� shares of stock. IfX�t� is the value of the portfolio at timet, thenX�t� �
��t�S�t� will be invested in the bond, so the number of bonds owned isX�t����t�

B�t�T � S�t� and the
portfolio value evolves according to

dX�t� � ��t� dS�t� �
X�t����t�

B�t� T �
S�t� dB�t� T �� (3.1)

The value of the option evolves according to

dV �t� � N�	��t�� dS�t� � S�t� dN�	��t�� � dS�t� dN�	��t��

�KN�	��t�� dB�t� T ��K dB�t� T � dN�	��t���KB�t� T � dN�	��t��� (3.2)

If X��� � V ���, will X�t� � V �t� for � � t � T?

Formulas (3.1) and (3.2) are difficult to compare, so we simplify them by a change of num´eraire.
This change is justified by the following theorem.

Theorem 3.73 Changes of num´eraire affect portfolio values in the way you would expect.

Proof: Suppose we have a model withk assets with pricesS�� S�� � � � � Sk. At each timet, hold
�i�t� shares of asseti, i � �� 
� � � � � k � �, and invest the remaining wealth in assetk. Begin with
a nonrandom initial wealthX���, and letX�t� be the value of the portfolio at timet. The number
of shares of assetk held at timet is
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andX evolves according to the equation
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This is the formula for the evolution of a portfolio which holds� i shares of asseti, i � �� 
� � � � � k�
�, and all assets and the portfolio are denominated in units ofN .

We return to the European call hedging problem (comparison of (3.1) and (3.2)), but we now use
the zero-coupon bond as num´eraire. We still hold��t� � N�	��t�� shares of stock at each timet.
In terms of the new num´eraire, the asset values are

Stock:
S�t�

B�t� T �
� F �t��

Bond:
B�t� T �

B�t� T �
� ��

The portfolio value evolves according to

d bX�t� � ��t� dF �t� � � bX�t����t��
d���

�
� ��t� dF �t�� (3.1’)

In the new num´eraire, the option value formula

V �t� � N�	��t��S�t��KB�t� T �N�	��t��

becomes bV �t� �
V �t�

B�t� T �
� N�	��t��F �t��KN�	��t���

and

d bV � N�	��t�� dF �t� � F �t� dN�	��t�� � dN�	��t�� dF �t��K dN�	��t���
(3.2’)

To show that the hedge works, we must show that

F �t� dN�	��t�� � dN�	��t�� dF �t��K dN�	��t�� � ��

This is a homework problem.


