Chapter 33

Change of nuneraire

Consider a Brownian motion driven market model with time horiZoh For now, we will have
one asset, which we call a “stock” even though in applications it will usually be an interest rate
dependent claim. The price of the stock is modeled by

dS(t) = r(t) S(t) dt + o(1)S(t) dW (1), (0.1)

where the interest rate procesg) and the volatility process(¢) are adapted to some filtration
{F(t); 0 <t <T*}. Wis aBrownian motion relative to this filtration, bl (¢); 0 < ¢ < T*}
may be larger than the filtration generatediby

This isnota geometric Brownian motion model. We are particularly interested in the case that the
interest rate is stochastic, given by a term structure model we have not yet specified.

We shall work only under the risk-neutral measure, which is reflected by the fact that the mean rate
of return for the stock is(¢).

We define theaccumulation factor

50 =esp{ [ rw au},

so that the discounted stock prié{% is a martingale. Indeed,

SN _ S()
d <W) = S0 v,

The zero-coupon bond prices are given by

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]
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SO

T = o]

is also a martingale (tower property).

TheT-forward price F'(¢,T") of the stock is the price set at timédor delivery of one share of stock
at timeT" with payment at timd’. The value of the forward contract at timés zero, so

0= I [% (S(T) — F(1,T)) ‘}'(t)]
_ S B
= sy | (1) o] pe e [M) 70
_an>@
= () 3]~ F.T)B.T)
= S(t) - F(t,T)B(t, T)
Therefore,
PO = g

Definition 33.1 (Numéraire) Any asset in the model whose price is always strictly positive can be
taken as the nuaraire. We then denominate all other assets in units of thisnaine"

Example 33.1 (Money market as nurefaire) The money market could be the namire. At timet, the

stock is Worth% units of money market and thématurity bond is Worth% units of money market.
[ |

Example 33.2 (Bond as nurafaire) The7'-maturity bond could be the nweméire. Attimes < 7', the stock
is worth F'(¢, T') units of T-maturity bond and th&-maturity bond is worth 1 unit. [ |

We will say that a probability measuiBy; is risk-neutral for the nurefaire N if every asset price,
divided by V, is a martingale unddP» . The original probability measur® is risk-neutral for the
numéraire (Example 33.1).

Theorem 0.71 Let N be a nuneraire, i.e., the price process for some asset whose price is always
strictly positive. TherPy defined by

Px(4) = 55 /A ;Vg:)) AP, VA€ F(T*),

is risk-neutral for/V.
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Note: IP and Py are equivalent, i.e., have the same probability zero sets, and

P(A) = N(0) /A ]@‘(g*)) APy, WA € F(T%).

Proof: BecauseV is the price process for some ass€t,d is a martingale undef’. Therefore,

P9 = 5755 o <( =
1 *
~ N(0) ]E[ ]
_ 1N
= N 50)
=1,

and we see thaP’y is a probability measure.

LetY be an asset price. Unddr, Y/ is a martingale. We must show that undex, Y/N is
a martingale. For this, we need to recall how to combine conditional expectations with change of
measure (Lemma 1.54). 0f< ¢t <7 < 7™ andX is F(T')-measurable, then

_ N(O)B@E) N(T)
Ex [X‘}'(t)] - 56 [N(O)ﬁ(T)X‘}'(t)]
_ B0 p [N
= 5 [ o)
Therefore,
Y(T) _ B L [N(T) Y(T)
Ex [y 7] = w5 [y w0
_ B Yw
N(t) p(t)
_ Y@
= W’
which is the martingale property faf/N underPy. [ |

33.1 Bond price as nungraire

Fix T' € (0,7*] and letB(¢, T') be the nurefaire. The risk-neutral measure for this reraife is

o B(T,T)
P = 57y, sy

_B(l )/Aﬂ( T)

dIP YA ¢ F(T).



328

Because this bond is not defined after tiffiewe change the measure only “up to timg i.e.,

using%%%) and only forA € F(T).

IPr is called theT'-forward measure Denominated in units of -maturity bond, the value of the
stockis

S() 0<t<T.

rT) = B(t,T) ==

This is a martingale unddPr, and so has a differential of the form
dF(th) = UF(th)F(th) dWT(t)7 0<t<T, (11)

i.e., a differential without @t term. The proces§Wr; 0 < t < T} is a Brownian motion under
IPr. We may assume without loss of generality that(t, 7') > 0.

We write F'(t) rather thar’(¢,7’) from now on.

33.2 Stock price as nuraraire

Let S(¢) be the nurafaire. In terms of this nueraire, the stock price is identically 1. The risk-
neutral measure under this namire is

Ps(A) = ﬁ/fl % AP, VA€ F(T%).

Denominated in shares of stock, the value of thmaturity bond is

This is a martingale unddPs, and so has a differential of the form

d (ﬁ) (1, T) (ﬁ) AW s(t), 2.1)

where{Ws(t); 0 <t < T*} is a Brownian motion undei’s. We may assume without loss of
generality thaty (¢,7) > 0.

Theorem 2.72 The volatilityy (¢, T") in (2.1) is equal to the volatility z(¢,7') in (1.1). In other
words, (2.1) can be rewritten as

d (ﬁ) — op(t,T) (ﬁ) AW s(t), 2.1)
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Proof: Letg(z) = 1/z,s0¢'(z) = —1/2?, ¢"(x) = 2/2>. Then

= g'(F(1)) dF(t) + 39" (F(t)) dF(t) dF(1)

L R (L TYF(LT) dWr(l) + ——o (1, T)F2(1, T) di

1
F3(1)
= = [or(t, 1) dWr() + ok (t,T) di]

— op(t,T) (ﬁ) [—dWr(t) + o (1, T) di].

UnderPr, —Wr is a Brownian motion. Under this measu has volatilitye (¢, T') and mean
t)

rate of returno7.(¢, 7). The change of measure froffi; to IPs makess a martingale, i.e., it
changes the mean return to zero, but the change of measure does not affect the volatility. Therefore,
(¢, T)in (2.1) must ber (¢, T') andWs must be

Wislt) = —Wrp(t) + /Ot or(u,T) du.

33.3 Merton option pricing formula

The price at time zero of a European call is

1 .
VO0) = I | S5 - K7
S .
=FE [%1 )>K}] - KIE [ﬁl{S(TbK}]
S(T) ,

O gy 500700 P KBOD [ Sy
(0)Ps{S(T) > K} — KB(0,T)IPr{S(T) > K}
(0)Ps{F(T) > K} — KB(0,T)IPr{F(T) > K}

1 1

(0) P {m < K} — KB(0, T)IPp{F(T) > K}.

1

S
S
S
S
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This is a completely general formula which permits computation as soon as we spetify’). If
we assume thatz (¢, 7") is a constant i, we have the following:

B(O T)

) S(0)

exp {O‘FWS — %O‘%T} ,

1
BT

_ Ws(T) 1 5()
—’Ps{ \S/T <(,F\/—1g1<1~3(0T)Jr UF\/_}

= N(p1),
where
S(0) | 2
P1= UF\/_[ KB( )—|-§O'FT:|.
Similarly,
KT = Bf(gf)T) exp {O‘FWT T}
Pr{F(T) > K} = IPr {UFWT(T) — 16%T > log KB(( ’) )}
_ Wr(T) 1 KB(0,T)
—PT{ T >UF\/T[1 S(0) +20FT]}
_p, [ ZW(T) 1 SO,
_PT{ VT opdT [1 KB(0,T) FT]}
= N(p2),
where

_ S0 1]
n= e e wmo s -]

If r is constant, the® (0, 7") = e~"7,

_ 1 S(0) | ]

= orVT [log K Tt 2T,
1 S(0

e~ [10g (')“’“‘%"%)T]’

and we have the usual Black-Scholes formula. Whésinot constant, we still have the explicit
formula

V(0) = S(0)N(p1) — KB(0,T)N (py).
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As this formula suggests, df is constant, then far < ¢ < T', the value of a European call expiring
attime? is
V() = SEN(p1(t)) — KB(t, T)N(pa2(t)),

where

B 1 Ft) 1 5 ]
1 (t) - O'Fm |:10g K + QUF(T t) )
B 1 Ft) 4 5 ]
pZ(t) - O'Fm |:10g K - QUF(T t) :
This formula also suggests a hedge: at each timeold N (p;(t)) shares of stock and short
K N (py(t)) bonds.

We want to verify that this hedge $elf-financingSuppose we begin with §(0) and at each time
t hold N (p1(t)) shares of stock. We short bonds as necessary to finance this. Will the position in
the bond always be K'N (p»(t))? If so, the value of the portfolio will always be

SON(pr(t)) = KB(t, T)N (p2(1)) = V (1),

and we will have a hedge.
Mathematically, this question takes the following form. Let

A(t) = N(pa(t))-
At time ¢, hold A(¢) shares of stock. IX (¢) is the value of the portfolio at timg then X (¢) —
A(t)S(t) will be invested in the bond, so the number of bonds owneé—g%QS(t) and the
portfolio value evolves according to

X() - AQ)

dX (t) = A(t) dS(t) + BT

S(t) dB(t, T). (3.1)

The value of the option evolves according to
AV (t) = N(py(t)) dS(t) + S(t) AN (p1(t)) + dS(t) dN (pa (1))
— KN (p2(t)) dB(t,T) — K dB(t,T) dN(pa(t)) — KB(t,T) dN (p2(t)). (3.2)
If X(0)=V(0),will X(t)=V(t)for0 <t <T?
Formulas (3.1) and (3.2) are difficult to compare, so we simplify them by a change afrauen”
This change is justified by the following theorem.

Theorem 3.73 Changes of nueraire affect portfolio values in the way you would expect.

Proof: Suppose we have a model withassets with prices, Ss, ..., S;. At each timet, hold
A, (t) shares of asset: = 1,2,...,k — 1, and invest the remaining wealth in asBeBegin with
a nonrandom initial wealttX (0), and letX (¢) be the value of the portfolio at timte The number
of shares of assétheld at timet is
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and X evolves according to the equation

k-1
:ZAidSH-( ZAS) 15

=1

k
= ZAZ» ds;.
=1
Note that
k
= Ai(t)Si(1)

=1

and we only get to specif$r, ..., Ar_1, NotAy, in advance.

Let NV be a nunefraire, and define

Then
1 1 1
X = S dX + X d( ) +dXd(
+ (N)+ (N)

k

— ey (Yas)a() X aasa(y)
= f:Ai (N dS; + Sid (%) +d5id <%))

Now

X - il AS)
Sk
(X/N = Sk Asi/N)
Sp/N
_ )A( - Zf:_f Aigi
- = -

A

Therefore,

ZA ds; +( ZAS) 25

=1
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This is the formula for the evolution of a portfolio which holfis shares of asseti = 1,2,... , k—
1, and all assets and the portfolio are denominated in unité.of [

We return to the European call hedging problem (comparison of (3.1) and (3.2)), but we now use
the zero-coupon bond as nemaire. We still holdA(¢) = N(p4(¢)) shares of stock at each time
In terms of the new nuseraire, the asset values are

Stock: S() = F(t),

B(t,T)
. BT) _
Bond: BT) 1.
The portfolio value evolves according to
dX (1) = A(t) dF(t) + (X (1) — A(t))@ = A(t) dF(t). (3.1)

1

In the new nurafaire, the option value formula
V() = N(pa(1))S(t) = KB(t, T)N (p2(t))

becomes

V(t)= = N(p:1(1)) F(t) — KN (p2(1)),
and

AV = N(p1(1)) dF (1) + F(t) dN (p1(1)) + dN (p1 (1)) dF(1) — K dN (palt))- -

To show that the hedge works, we must show that
(1) dN (p1(t)) + dN (pa(1)) dF(t) — K dN(pa(t)) = 0.

This is a homework problem.



