Chapter 31

Cox-lnger soll-Ross model

IntheHull & Whitemodel, () isaGaussian process. Since, for each ¢, r(t) isnormally distributed,
thereisapositiveprobability that r(¢) < 0. The Cox-Ingersoll-Rossmodel isthe simplest onewhich
avoids negative interest rates.

We begin with a d-dimensional Brownian motion (W1, W5, ... W,). Let g > 0 ando > 0 be
constants. For j = 1,...,d, let X;(0) € IR be given so that

XP(0) + X3(0) + ...+ X7(0) > 0,
and let X ; be the solution to the stochastic differential equation
dX;(t) = —1BX;(t) dt + Fo dW;(1).

X iscalled the Orstein-Uhlenbeck process. It always has a drift toward the origin. The solution to
this stochastic differential equationis

X;(t) = e 3% [Xj(()) 1o /Ote%ﬁu dwj(u)] .
Thissolutionis a Gaussian process with mean function
mj () = 27X (0)
and covariance function

1 1 SNt
p(s,t) = 1026_25(5“)/0 e du.

Define
A

r(t) = X7 + X3 +...+ X3(0).
If d =1, wehaver(t) = X{(t) andfor each ¢, IP{r(t) > 0} = 1, but (see Fig. 31.1)

P{Thereareinfinitely many valuesof ¢ > 0 for which r(t) = 0} =1
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r() = X5 (0

5%3/— (X ®, %®)

Figure 31.1: »(t) can be zero.

If d > 2, (seeFig. 31.1)

IP{Thereisat least onevalue of ¢ > 0 for whichr(t) =0} = 0.
Let f(z1,22,...,2q) = 27+ 23+ ...+ 2% Then

2 ifi=j,

Joo =200 Jain, {0 if i £ 7.

[t0'sformulaimplies

d d

d d
1
:g;z&(—%ﬂxﬂu+%adwxo)+§:Zgzﬂ%dwg

= —ﬁf‘(t) dt + Uzd:XZ’ dW; + d;‘z dt
2 - d .
:(%}_ﬁmo)a+a¢ﬁﬁgjﬁiimm@.

Define
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Then W isamartingale,

>
dW = - dW;,
=1 \/F

d X2
dW dw =" =t dt = dt,

N r
=1

so W is a Brownian motion. We have

do?

dr(t) = (T — ﬁr(t)) dt + oy/r(t) dW (t).
The Cox-Ingersoll-Ross (CIR) processis given by

dr(t) = (a = Br(t) dt + oy/r(t) dW (1),
We define

but we do not require d to be an integer. If d < 2 (i.e., a < £0?), then
IP{There are infinitely many valuesof ¢ > 0 for whichr(t) =0} = 1.

Thisis not a good parameter choice.
Ifd > 2 (i.e, o > L0?), then

IP{Thereisat least onevalue of ¢ > 0 for whichr(t) =0} = 0.

With the CIR process, one can derive formulas under the assumption that d = ;47—% is a positive
integer, and they are still correct even when d is not an integer.

For example, hereisthe distributionof »(¢) for fixed¢ > 0. Let »(0) > 0 be given. Take
X1(0) =0, X2(0) =0, ..., Xg-1(0) =0, X4(0) = /7r(0).

Fori=1,2,...,d— 1, X;(¢) isnormal with mean zero and variance

0.2
p(t ) = E(l —e .
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X4(t) isnormal with mean

and variance p(t, t). Then

d—1 ) 2
= ety ( j%) i X2 (1) ©.1)

Normal squared and independent of the other

fas 2% degreesof  term

Chi-squarewithd — 1 =
freedom

Thusr(t) has anon-central chi-square distribution.

31.1 Equilibrium distribution of r(t)

Ast—o0, my(t)—0. We have

r(t) = p(t,t) Z: (\/)%) :

Ast—oo, we have p(t,t) = %, and so the limiting distribution of »(t) is Z—; times a chi-square

with d = % degrees of freedom. The chi-sguare density with ;47—% degrees of freedom is

1 20—02

fW) = ———F—~vy o
(y) 220/ T (22)

We make the change of variable r = Z-y. Thelimiting density for r(t) is

20—
=G (Br) T
0?2 92a/02T (2_a)

2

2a
o2 a=0?
=(B)7 e
o

o2 2_a)
0'2

We computed the mean and variance of () in Section 15.7.

31.2 Kolmogorov forward equation

Consider a Markov process governed by the stochastic differential equation

AX () = b(X (1)) dt + o(X (1)) dW (2).
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Figure 31.2: The function i (y)

Because we are going to apply the following analysis to the case X (t) = r(t¢), we assume that
X(t) > 0forall t.

We start at X (0) = = > 0 at time 0. Then X (¢) is random with density p(0,¢, z,y) (in the y
variable). Since 0 and = will not change during the following, we omit them and write p(t, y) rather
than p(0,¢, 2, y). We have

BhX0) = [ k() dy

for any function h.

The Kolmogorov forward equation (KFE) isa partial differential equationin the“forward” variables
t and y. We deriveit below.

Let 4(y) beasmooth function of y > 0 which vanishesnear y = 0 and for all large values of y (see
Fig. 31.2). Ito’'sformulaimplies

dh(X (1)) = [W(X ()X (1) + SH" (X (0)* (X ()] dt + 1/ (X (£)a(X (£) dW (1),

PO 0) = X))+ [ WX DB )+ 3 X ()X ()] ds+
[ H e ) aw s,

A (0) = WX )+ 1 [ [0 ) di -+ 1 (X () (X ()] s,
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or equivalently,

/Oooh(y)p(t y) dy = —I—/ / h'(y (s,y) dy ds +

// R (y p(s,y) dy ds.

Differentiate with respect to ¢ to get

[ vt dy = [0 @b@pe) dy+ 5 [T 10 ) dy.

Integration by partsyields

y=oo

| W @@ty dy = iy

/0 TRy (y)p(t, ) dy = B ()0 ()p(t, y)

_ /OOO h(y)é% (0(y)p(t,y)) dy,

y=0

- [Trg () dy

y=0

Therefore,
[ mpt s dy == [ ) 2 @t ) dy+ [ ) (@) dy
T o 3y ’ 2 o 8y2 ’ ’
or equivalently,
82

/OOO h(y) [pt(t y) + a% bwrt:v) = 353 (o*ww(t, y))] dy = 0.

Y

Thislast equation holdsfor every function % of the form in Figure 31.2. It implies that

2

plt.) + 5 (G ) - S5 (it ) =0, (KFE)

If there were a place where (KFE) did not hold, then we could take . (y) > 0 at that and nearby
points, but take / to be zero elsewhere, and we would obtain

/OOO h lpt + g(bp) - —88—2(0219)] dy # 0.
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If the process X (¢) has an equilibrium density, it will be
ply) = lim p(t,y).
In order for thislimit to exist, we must have
0= t1i>moo Pt (tv y)
Letting t— oo in (KFE), we obtain the equilibrium Kolmogorov forward equation

55 )~ b (W) = 0.

When an equilibrium density exists, it isthe unique solution to this equation satisfying

ply) 20 Vy >0,

/Ooop(y) dy = 1.

31.3 Cox-Ingersoll-Ross equilibrium density

We computed thisto be

2002 28

where
28\ 1
C:(ﬁ) I
(%)
We compute
2
pry= 20— p) 26,

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

% ((ev = Br)p(r)) — %;—;(Uzr‘p(r)) =0. (EKFE)



Now
% (o = Br)p(r)) = =Bp(r) + (a = pr)p'(r),
%(02@(7‘)) = %(Uzp(f‘) +a*rp'(r))

= 202])’(7‘) + 0'27‘])//(7‘).
The LHS of (EKFE) becomes

—Bp(r) + (o = Br)p'(r) = P/ (r) — So2rp" (r)

— p(r) :—ﬂ b (a— Br— 02)%(04 _ 152 gy

+ %(a — 307 = fr) + 4 - %(a —30° - ﬂr)2]
= p0)[(0 = 3% = 1) St — b = )

~ ot e ot — )

+ %(04 — 30— pr) - %(a — 0% - mﬂ]

as expected.

31.4 Bond pricesin the CIR mode

Theinterest rate process r(t) is given by
dr(t) = (o — pr(t)) dt + or/r(t) dW (1),

where (0) isgiven. The bond price processis

B(t,T)=IF [exp{—/tTr(u) du} ‘]—'(t)] .

exp{—/otr(u) du}B(t,T) - [exp{—/OTr(u) du} ‘}'(t)],

the tower property implies that thisis a martingale. The Markov property impliesthat B(¢, T) is
random only through a dependence on r(¢). Thus, thereisafunction B(r, ¢, 1) of the three dummy
variablesr, ¢, T such that the process B(t, T') isthe function B(r,¢,7T") evaluated at r(t),t, 7', .,

Because

B(t,T) = B(r(t),t,T).



CHAPTER 31. Cox-Ingersoll-Ross model

311

Because exp {— o r(u) du} B(r(t),t,T) isamartingale, itsdifferential has no dt term. We com-

pute

Theexpressionin[...] equals

=—rBdt+ B,(oo— fr) dt + B,o\/r dW
+ %BMU27‘ dt + B; dt.

Setting the d¢ term to zero, we obtain the partia differential equation

—rB(r,t,TY+ Bi(r,t,T)+ (o« — pr)B,.(r, ¢, T) + %UerM(r, t,T)=0,

0<t<T, r>0.

Theterminal conditionis
B(r,T,7)=1, r>0.

(4.1)

Surprisingly, this equation has a closed form solution. Using the Hull & White model as a guide,

we look for a solution of theform
B(T‘, ¢, T) _ e—rC’(t,T)—A(t,T)7

whereC'(1,T) = 0, A(T,T) = 0. Then we have

Bt = (—T‘Ct — At)B7
B, =-CB, B, =C"B,

and the partial differential equation becomes

0=—-rB+4 (—rC;— A)B — (v — gr)CB+ %UerzB
=rB(-1-Cy+ BC 4 £0°C?*) = B(Ai 4 oC)

We first solve the ordinary differential equation
—1-Cy(t,T) 4+ BC(t,T) + 36°C*(t,T) =0; C(T,T)=0,

and then set .
A(L,T) :a/ C(u,T) du,
1
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0o A(T,T)=0and
A, T) = —aC(t,T).

It istediousbut straightforward to check that the solutionsare given by
sinh(y(T —t))
yeosh(y(T = 1)) + 3B sinh(y(T = 1))’
B )
veosh(y(T = t)) + 13sinh(y(T — t))

Ct,T) =

9

2
A(t,T) = —U—O;log

where _ _
v = %\/ﬁQ + 202, sinhu= %, coshu = %.

Thusin the CIR model, we have

T
E [exp{—/t r(u) du} ‘}'(t)] - B(r(1),t,T),
where
B(r,t,T) = exp{—rC(t,T) - A(t,T)}, 0<t<T, r>0,

and C'(t,T) and A(t,T') are given by the formulas above. Because the coefficientsin

dr(t) = (a = fr(t)) dt + oy/r(t) AV (1)

do not depend on ¢, the function B(r, ¢, T") depends on ¢ and 7" only through their difference r =
T —t. Similarly, C'(¢t,T) and A(t,T') are functionsof 7 = T — t. We write B(r, 1) instead of
B(r,t,T), and we have

B(r,7) = exp{—rC(r) = A(r)}, 720, r>0,

where
sinh (y7)
C =
) v cosh(y7) + 13sinh(y7)’
1
200 ~e2PT
A(r) = —=1
(7) o 8 ['y cosh(y7) 4+ 13 sinh('yr)]
v = %\/ﬁQ + 202,
We have

B(r(0),T) = Eexp{—/OTr(u) du}.

Now r(u) > 0 for each u, almost surely, so B(r(0),1") isstrictly decreasing in 7’. Moreover,



CHAPTER 31. Cox-Ingersoll-Ross model 313

Tli_r>nooB(r(0),T) = IFexp {— /OOO r(u) du} =0.

But also,
B(r(0),T) = exp{-r(0)C(T) — A(T)},
S0
r(0)C'(0)+ A(0) =0,
Tli_1r>nOO r(0)C(T) + A(T)] = oo,
and

r(0)C(T)+ A(T)

isstrictly inreasingin 7.

31.5 Option on abond

Thevaue at time¢ of an option on abond inthe CIR model is

T
o(t,r(t) = IE [exp {—/t r(u) du} (B(T1, T) — K)* }'(t)] ,

where T} isthe expiration time of the option, 7', isthe maturity time of thebond, and 0 < ¢ < 7 <
Ty. Asusual, exp { - 5 r(u) du} v(t, (1)) isamartingale, and thisleads to the partial diifferential
equation

—rv+ v+ (o = friv,. + %O‘ZT‘UW =0, 0<t<Ty, r>0.

(where v = v(t, r).) Theterminal conditionis
o(Ty,r) = (B(r,T1,T2) - K)*, r>0.

Other European derivative securities on the bond are priced using the same partia differential equa-
tion with the terminal condition appropriate for the particular security.

31.6 Deterministictimechange of CIR model

Processtime scale: In thistime scale, the interest rate r(¢) is given by the constant coefficient CIR
equation

dr(t) = (o — pr(t)) dt + or/r(t) dW(t).
Real timescale: In thistime scale, the interest rate () is given by atime-dependent CIR equation

di(f) = (a(f) — BE)#(D)) di 4+ 6(D)\/#(f) dW ({).
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A pe-
riod of high inter-
est rate volatility

Figure 31.3: Time change function.

Thereis astrictly increasing time change function ¢ = () which relates the two time scales (See
Fig. 31.3).

Let B(#,#,1) denotethe price at real time{ of abond with maturity 7" when the interest rate at time
t is#. We want to set things up so

B(#, 1, T) = B(r,t,T) = e—T’C(t,T)—A(t7T)7

wheret = (1), T = o(T),and C'(t, T) and A(t, T) are as defined previously.
We need to determine the relationship between 7 and ». We have

B(r(0),0,T) = IE exp {— /Tr(t) dt} ,
B(#(0),0,T) = IE exp {— /Tf(f) df} .

With 7' = ¢(T"), make the change of variablet = o (f), dt = /(i) df inthefirst integral to get

T A~ ~
B(r(0),0,T) = IE exp {— | rtetine dt},

and thiswill be B(#(0), 0, T if we set

P(f) = r(e(D) ¢'(1)-
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31.7 Calibration

P ()

@(5&(@)

¢ ()
e {—f@w - Al (D), so(T))}
©'(t)

= exp {—f‘(f)é'(f, 1) - A(i, T)} )

B(#(t),1,T) :B(

where

(i T) = %(;(TD
AL, T) = Alp(d), 9(1))

do not depend on 7 and 7" only through 7" — #, since, in the real time scale, the model coefficients
are time dependent.

Suppose we know #(0) and B(#(0), 0, T) for all 7' € [0, 7). We calibrate by writing the equation
B(#(0),0,7) = exp {=#(0)C(0,7) = A(0,7) },

or equivalently,

g B0).0,7) = JEEC((0), (1)) + A((0), (1),

Take «, # and o so the equilibrium distribution of r(¢) seems reasonable. These values determine
the functions C', A. Take ¢'(0) = 1 (we justify thisin the next section). For each 7', solve the
equation for p(1'):

—log B(#(0),0,T) = #(0)C(0, (1)) + A0, o(T)). *)

The right-hand side of this equation isincreasing in the ¢(7') variable, starting at O at time 0 and
having limit co at oo, i.e.,
7(0)C'(0,0) + A(0,0) =0,

Jlim [#(0)C(0,7) 4 A(0,T)] = oc.

Since0 < —log B(#(0),0,T) < oo, (*) hasaunique solution for each 7". For 7' = 0, this solution

iSp(0) = 0. If Ty < Ty, then
—logB(r(O),O,Tl) < —10)5_);3(7‘(0),0,1%2)7

s0 (1) < ¢(1,). Thusp isastrictly increasing time-change-function with the right properties.
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31.8 Trackingdown ¢'(0) in the time change of the CIR model

Result for general term structure models:

0 log B(0,T)

~a7 =r(0).

T=0

Justification:
T
B(0,T) = Eexp{—/ r(u) du} .
0

—log B(0,T) = —logEexp{—/OTr(u) du}

F [r(T)e_ foT r(w) d“]

d
~a7 log B(0,T) =

Fe~ fOT r(u) du

=r(0).
T=0

0

Inthereal time scale associated with the calibration of CIR by time change, we write the bond price
as

B(#(0),0,T),
thereby indicating explicitly theinitial interest rate. The above says that
0 R .
——log B(#(0),0,T = #(0).
o7 08 BE0,0.1)] = (0)

The calibration of CIR by time change requires that we find a strictly increasing function ¢ with
©»(0) = 0 such that

~log B(#(0),0,T) = FO)C (o(D) + Ale(T)), T 20, (cal)

¢'(0)
where B(#(0),0 T) determined by market data, isstrictly increasingin T, startsat 1when 7' = 0,
and goes to zero as T—oc. Therefore, — log B(#(0), 0, T) isasshownin Fig. 31.4.

Consider the function

HO)C(T) + A(T),
Here C'(T') and A(T') are given by
sinh (47T
cry=— 0D
7 cosh(yT) 4 38 sinh (yT)
1
200 e2T
A(T) = = log R
o ycosh(yT) + 58sinh(yT)

= 1./B% + 202
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— log B(#(0),0,T)
Goesto oo

Strictly increasing

Figure 31.4: Bond pricein CIR model

H0)C(T)+ A(T)

—log B(#(0),0,7) ~F--—-----;

Figure 31.5: Calibration

The function #(0)C(1T") + A(T) iszeroat T' = 0, is strictly increasing in 7', and goes to co as
T—oco. Thisisbecause the interest rate is positive in the CIR model (see last paragraph of Section
31.4).

To solve (cal), let usfirst consider the related equation
—log B(#(0),0, 1) = #(0)C((1)) + A(p(T)). (cal’)
Fix 7' and define @(T) to be the unique T" for which (see Fig. 31.5)
—log B(#(0),0,T) = #(0)C(T) 4 A(T)

If 7 = 0, then p(T) = 0. If T} < Ty, then p(T1) < @(12). AsT—o0, p(T)—o0. We have thus
defined a time-change function ¢ which has al the right properties, except it satisfies (cal’) rather
than (cal).



318

We conclude by showingthat ’(0) = 1 so ¢ also satisfies(cal). From (cal’) we compute

Weshowina

F(O):—ailogB 7(0),0 )

T=0

(
= #(0)C"((0))#'(0) + A((0))'(0)
= #(0)C(0)'(0) + A'(0)¢'(0),

moment that C’(0) = 1, A’(0) = 0, sowe have

#0) = #(0)¢(0).

Notethat 7(0) istheinitial interest rate, observed in the market, and is striclty positive. Dividing by
7(0), we obtain
¢'(0) = 1.
Computation of C’(0):
1
C'(r) = 5 ['y cosh(y7) (’y cosh(vy1)+ %ﬁ sinh('yr))

c'(0)

('y cosh(y7) 4+ £ sinh(’ﬂ))
— sinh(y7) (72 sinh(y71) 4+ %ﬂ'y cosh('yr))]

= % [+ 0 =00+ 3] = 1.

Computation of A’(0):

Al(r) = -

__2fk[il;t11] ! [%37

2« [y cosh(y7) 4+ $3sinh(y7)
o2 vePT/2

1 [éﬁleﬁr/z
. 2 2
('y cosh(yr) 4+ %ﬁ smh('yr))

__ya%42(72$nh(7r)+-%ﬂvcoﬂ477>)]

X

('y cosh(y7) + 16 sinh(’ﬂ))

(r+0) = 3(0+ 167)|

o>l v 1(y+0)?
200 1 | py? 1.2
o2 42|72 2P



