
Chapter 31

Cox-Ingersoll-Ross model

In the Hull & White model, r�t� is a Gaussian process. Since, for each t, r�t� is normally distributed,
there is a positive probability that r�t� � �. The Cox-Ingersoll-Ross model is the simplest one which
avoids negative interest rates.

We begin with a d-dimensional Brownian motion �W��W�� � � � �Wd�. Let � � � and � � � be
constants. For j � �� � � � � d, let Xj��� � IR be given so that

X�
���� �X�

���� � � � ��X�
d��� � ��

and let Xj be the solution to the stochastic differential equation

dXj�t� � ��
��Xj�t� dt�

�
�� dWj�t��

Xj is called the Orstein-Uhlenbeck process. It always has a drift toward the origin. The solution to
this stochastic differential equation is

Xj�t� � e�
�
��t

�
Xj��� �

�
��

Z t

�
e
�
��u dWj�u�

�
�

This solution is a Gaussian process with mean function

mj�t� � e�
�
��tXj���

and covariance function

��s� t� �
�

�
��e�

�
���s�t�

Z s�t

�
e�u du�

Define
r�t�

�
� X�

��t� �X�
��t� � � � ��X�

d�t��

If d � �, we have r�t� � X�
��t� and for each t, IPfr�t� � �g � �, but (see Fig. 31.1)

IP

�
There are infinitely many values of t � � for which r�t� � �

�
� �
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Figure 31.1: r�t� can be zero.

If d � �, (see Fig. 31.1)

IPfThere is at least one value of t � � for which r�t� � �g � ��

Let f�x�� x�� � � � � xd� � x�� � x�� � � � �� x�d. Then

fxi � �xi� fxixj �

�
� if i � j�

� if i �� j�

Itô’s formula implies

dr�t� �
dX

i��

fxi dXi �
�
�

dX
i��

fxixi dXi dXi

�
dX

i��

�Xi

�
��

��Xi dt�
�
�� dWi�t�

�
�

dX
i��

�

�
�� dWi dWi

� ��r�t� dt� �
dX

i��

Xi dWi �
d��

�
dt

�

�
d��

�
� �r�t�

	
dt � �

q
r�t�

dX
i��

Xi�t�p
r�t�

dWi�t��

Define

W �t� �
dX

i��

Z t

�

Xi�u�p
r�u�

dWi�u��
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Then W is a martingale,

dW �
dX

i��

Xip
r
dWi�

dW dW �
dX

i��

X�
i

r
dt � dt�

so W is a Brownian motion. We have

dr�t� �

�
d��

�
� �r�t�

	
dt � �

q
r�t� dW �t��

The Cox-Ingersoll-Ross (CIR) process is given by

dr�t� � ��� �r�t�� dt� �
q
r�t� dW �t��

We define

d �
��

��
� ��

If d happens to be an integer, then we have the representation

r�t� �
dX

i��

X�
i �t��

but we do not require d to be an integer. If d � � (i.e., � � �
��

�), then

IPfThere are infinitely many values of t � � for which r�t� � �g � ��

This is not a good parameter choice.

If d � � (i.e., � � �
��

�), then

IPfThere is at least one value of t � � for which r�t� � �g � ��

With the CIR process, one can derive formulas under the assumption that d � ��
�� is a positive

integer, and they are still correct even when d is not an integer.

For example, here is the distribution of r�t� for fixed t � �. Let r��� � � be given. Take

X���� � �� X���� � �� � � � � Xd����� � �� Xd��� �
q
r����

For i � �� �� � � � � d� �, Xi�t� is normal with mean zero and variance

��t� t� �
��

��
��� e��t��
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Xd�t� is normal with mean

md�t� � e�
�
��t

q
r���

and variance ��t� t�. Then

r�t� � ��t� t�
d��X
i��

�
Xi�t�p
��t� t�

	�


 �z �
Chi-square with d� � � �����

�� degrees of

freedom

� X�
d�t�
 �z �

Normal squared and independent of the other

term

(0.1)

Thus r�t� has a non-central chi-square distribution.

31.1 Equilibrium distribution of r�t�

As t��, md�t���. We have

r�t� � ��t� t�
dX

i��

�
Xi�t�p
��t� t�

	�

�

As t��, we have ��t� t� � ��

�� , and so the limiting distribution of r�t� is ��

�� times a chi-square

with d � ��
�� degrees of freedom. The chi-square density with ��

�� degrees of freedom is

f�y� �
�

������	
�
��
��

�y �����

�� e�y���

We make the change of variable r � ��

�� y. The limiting density for r�t� is

p�r� �
��

��
�

�

������	
�
��
��

� ��

��
r

� �����

��

e
�

��

��
r

�


��

��

� ��

�� �

	
�
��
��

�r �����

�� e
�

��

��
r
�

We computed the mean and variance of r�t� in Section 15.7.

31.2 Kolmogorov forward equation

Consider a Markov process governed by the stochastic differential equation

dX�t� � b�X�t�� dt� ��X�t�� dW �t��
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�

h

� y

Figure 31.2: The function h�y�

Because we are going to apply the following analysis to the case X�t� � r�t�, we assume that
X�t� � � for all t.

We start at X��� � x � � at time 0. Then X�t� is random with density p��� t� x� y� (in the y

variable). Since 0 and x will not change during the following, we omit them and write p�t� y� rather
than p��� t� x� y�. We have

IEh�X�t�� �

Z
�

�
h�y�p�t� y� dy

for any function h.

The Kolmogorov forward equation (KFE) is a partial differential equation in the “forward” variables
t and y. We derive it below.

Let h�y� be a smooth function of y � � which vanishes near y � � and for all large values of y (see
Fig. 31.2). Itô’s formula implies

dh�X�t�� �
h
h��X�t��b�X�t��� �

�h
���X�t�����X�t��

i
dt� h��X�t����X�t�� dW �t��

so

h�X�t�� � h�X�����
Z t

�

h
h��X�s��b�X�s��� �

�h
���X�s�����X�s��

i
ds�Z t

�
h��X�s����X�s�� dW �s��

IEh�X�t�� � h�X����� IE

Z t

�

h
h��X�s��b�X�s�� dt� �

�h
���X�s�����X�s��

i
ds�
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or equivalently,

Z
�

�
h�y�p�t� y� dy � h�X�����

Z t

�

Z
�

�
h��y�b�y�p�s� y� dy ds�

�
�

Z t

�

Z
�

�
h���y����y�p�s� y� dy ds�

Differentiate with respect to t to get

Z
�

�
h�y�pt�t� y� dy �

Z
�

�
h��y�b�y�p�t� y� dy � �

�

Z
�

�
h���y����y�p�t� y� dy�

Integration by parts yields

Z
�

�
h��y�b�y�p�t� y� dy � h�y�b�y�p�t� y�

����y��
y��
 �z �

��

�
Z
�

�
h�y�

	

	y
�b�y�p�t� y�� dy�

Z
�

�
h���y����y�p�t� y� dy � h��y����y�p�t� y�

����y��
y��
 �z �

��

�
Z
�

�
h��y�

	

	y

�
���y�p�t� y�

�
dy

� �h�y� 	
	y

�
���y�p�t� y�

� ����y��
y��
 �z �

��

�

Z
�

�
h�y�

	�

	y�

�
���y�p�t� y�

�
dy�

Therefore,

Z
�

�
h�y�pt�t� y� dy � �

Z
�

�
h�y�

	

	y
�b�y�p�t� y�� dy � �

�

Z
�

�
h�y�

	�

	y�

�
���y�p�t� y�

�
dy�

or equivalently,

Z
�

�
h�y�

�
pt�t� y� �

	

	y
�b�y�p�t� y��� �

�

	�

	y�

�
���y�p�t� y�

��
dy � ��

This last equation holds for every function h of the form in Figure 31.2. It implies that

pt�t� y� �
	

	y
��b�y�p�t� y��� �

�

	�

	y�

�
���y�p�t� y�

�
� �� (KFE)

If there were a place where (KFE) did not hold, then we could take h�y� � � at that and nearby
points, but take h to be zero elsewhere, and we would obtain

Z
�

�
h

�
pt �

	

	y
�bp�� �

�

	�

	y�
���p�

�
dy �� ��
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If the process X�t� has an equilibrium density, it will be

p�y� � lim
t��

p�t� y��

In order for this limit to exist, we must have

� � lim
t��

pt�t� y��

Letting t�� in (KFE), we obtain the equilibrium Kolmogorov forward equation

	

	y
�b�y�p�y��� �

�

	�

	y�

�
���y�p�y�

�
� ��

When an equilibrium density exists, it is the unique solution to this equation satisfying

p�y� � � �y � ��Z
�

�
p�y� dy � ��

31.3 Cox-Ingersoll-Ross equilibrium density

We computed this to be

p�r� � Cr
�����

�� e
�

��

��
r
�

where

C �


��

��

� ��

�� �

	
�
��
��

� �
We compute

p��r� �
��� ��

��
�
p�r�

r
� ��

��
p�r�

�
�

��r

�
�� �

��
� � �r

�
p�r��

p���r� � � �

��r�

�
�� �

��
� � �r

�
p�r� �

�

��r
����p�r� � �

��r

�
�� �

��
� � �r

�
p��r�

�
�

��r


��

r
��� �

��
� � �r�� � �

�

��r
��� �

��
� � �r��

�
p�r�

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

	

	r
���� �r�p�r��� �

�

	�

	r�
���rp�r�� � �� (EKFE)
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Now

	

	r
���� �r�p�r�� � ��p�r� � ��� �r�p��r��

	�

	r�
���rp�r�� �

	

	r
���p�r� � ��rp��r��

� ���p��r� � ��rp���r��

The LHS of (EKFE) becomes

��p�r� � ��� �r�p��r�� ��p��r�� �
��

�rp���r�

� p�r�

�
�� � ��� �r � ���

�

��r
��� �

��
� � �r�

�
�

r
��� �

��
� � �r� � � � �

��r
��� �

��
� � �r��

�

� p�r�

�
��� �

��
� � �r�

�

��r
��� �

��
� � �r�

� �
��

� �

��r
��� �

��
� � �r�

�
�

r
��� �

��
� � �r�� �

��r
��� �

��
� � �r��

�
� ��

as expected.

31.4 Bond prices in the CIR model

The interest rate process r�t� is given by

dr�t� � ��� �r�t�� dt� �
q
r�t� dW �t��

where r��� is given. The bond price process is

B�t� T � � IE

�
exp

�
�
Z T

t
r�u� du

� ����F�t�

�
�

Because

exp

�
�
Z t

�
r�u� du

�
B�t� T � � IE

�
exp

�
�
Z T

�
r�u� du

�����F�t�

�
�

the tower property implies that this is a martingale. The Markov property implies that B�t� T � is
random only through a dependence on r�t�. Thus, there is a functionB�r� t� T � of the three dummy
variables r� t� T such that the process B�t� T � is the function B�r� t� T � evaluated at r�t�� t� T , i.e.,

B�t� T � � B�r�t�� t� T ��
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Because exp
n
� R t

� r�u� du
o
B�r�t�� t� T � is a martingale, its differential has no dt term. We com-

pute

d


exp

�
�
Z t

�
r�u� du

�
B�r�t�� t� T �

�

� exp

�
�
Z t

�
r�u� du

��
�r�t�B�r�t�� t� T � dt�Br�r�t�� t� T � dr�t� �

�
�Brr�r�t�� t� T � dr�t� dr�t� � Bt�r�t�� t� T � dt

�
�

The expression in 
� � � � equals

� �rB dt �Br��� �r� dt� Br�
p
r dW

� �
�Brr�

�r dt� Bt dt�

Setting the dt term to zero, we obtain the partial differential equation

� rB�r� t� T � �Bt�r� t� T �� ��� �r�Br�r� t� T ��
�
��

�rBrr�r� t� T � � ��

� � t � T� r � �� (4.1)

The terminal condition is
B�r� T� T � � �� r � ��

Surprisingly, this equation has a closed form solution. Using the Hull & White model as a guide,
we look for a solution of the form

B�r� t� T � � e�rC�t�T ��A�t�T ��

where C�T� T � � �� A�T� T � � �. Then we have

Bt � ��rCt �At�B�

Br � �CB� Brr � C�B�

and the partial differential equation becomes

� � �rB � ��rCt �At�B � ��� �r�CB � �
��

�rC�B

� rB��� � Ct � �C � �
��

�C��� B�At � �C�

We first solve the ordinary differential equation

��� Ct�t� T � � �C�t� T � � �
��

�C��t� T � � �� C�T� T � � ��

and then set

A�t� T � � �

Z T

t
C�u� T � du�
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so A�T� T � � � and
At�t� T � � ��C�t� T ��

It is tedious but straightforward to check that the solutions are given by

C�t� T � �
sinh�
�T � t��


 cosh�
�T � t�� � �
�� sinh�
�T � t��

�

A�t� T � � ���

��
log

�
� 
e

�
���T�t�


 cosh�
�T � t�� � �
�� sinh�
�T � t��

�
� �

where


 � �
�

q
�� � ���� sinh u �

eu � e�u

�
� cosh u �

eu � e�u

�
�

Thus in the CIR model, we have

IE

�
exp

�
�
Z T

t
r�u� du

� ����F�t�

�
� B�r�t�� t� T ��

where
B�r� t� T � � exp f�rC�t� T �� A�t� T �g � � � t � T� r � ��

and C�t� T � and A�t� T � are given by the formulas above. Because the coefficients in

dr�t� � ��� �r�t�� dt � �
q
r�t� dW �t�

do not depend on t, the function B�r� t� T � depends on t and T only through their difference � �
T � t. Similarly, C�t� T � and A�t� T � are functions of � � T � t. We write B�r� �� instead of
B�r� t� T �, and we have

B�r� �� � exp f�rC���� A���g � � � �� r � ��

where

C��� �
sinh�
��


 cosh�
�� � �
�� sinh�
��

�

A��� � ���

��
log

�
� 
e

�
���


 cosh�
�� � �
�� sinh�
��

�
� �


 � �
�

q
�� � ����

We have

B�r���� T � � IE exp

�
�
Z T

�
r�u� du

�
�

Now r�u� � � for each u, almost surely, so B�r���� T � is strictly decreasing in T . Moreover,

B�r���� �� � ��



CHAPTER 31. Cox-Ingersoll-Ross model 313

lim
T��

B�r���� T � � IE exp

�
�
Z
�

�
r�u� du

�
� ��

But also,
B�r���� T � � exp f�r���C�T ��A�T �g �

so

r���C���� A��� � ��

lim
T��


r���C�T � �A�T �� ���

and

r���C�T � � A�T �

is strictly inreasing in T .

31.5 Option on a bond

The value at time t of an option on a bond in the CIR model is

v�t� r�t�� � IE

�
exp

�
�
Z T�

t
r�u� du

�
�B�T�� T���K��

����F�t�

�
�

where T� is the expiration time of the option, T� is the maturity time of the bond, and � � t � T� �
T�. As usual, exp

n
� R t

� r�u� du
o
v�t� r�t�� is a martingale, and this leads to the partial differential

equation
�rv � vt � ��� �r�vr �

�
��

�rvrr � �� � � t � T�� r � ��

(where v � v�t� r�.) The terminal condition is

v�T�� r� � �B�r� T�� T���K�� � r � ��

Other European derivative securities on the bond are priced using the same partial differential equa-
tion with the terminal condition appropriate for the particular security.

31.6 Deterministic time change of CIR model

Process time scale: In this time scale, the interest rate r�t� is given by the constant coefficient CIR
equation

dr�t� � ��� �r�t�� dt� �
q
r�t� dW �t��

Real time scale: In this time scale, the interest rate r�t� is given by a time-dependent CIR equation

dr�t� � ���t�� ��t�r�t�� dt� ��t�
q
r�t� d W�t��
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t � Real time
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Figure 31.3: Time change function.

There is a strictly increasing time change function t � ��t� which relates the two time scales (See
Fig. 31.3).

Let B�r� t� T� denote the price at real time t of a bond with maturity T when the interest rate at time
t is r. We want to set things up so

B�r� t� T� � B�r� t� T � � e�rC�t�T ��A�t�T ��

where t � ��t�� T � �� T �, and C�t� T � and A�t� T � are as defined previously.

We need to determine the relationship between r and r. We have

B�r���� �� T � � IE exp

�
�
Z T

�
r�t� dt

�
�

B�r���� �� T� � IE exp

�
�
Z 	T

�
r�t� dt

�
�

With T � �� T�, make the change of variable t � ��t�, dt � ���t� dt in the first integral to get

B�r���� �� T � � IE exp

�
�
Z 	T

�
r���t�����t� dt

�
�

and this will be B�r���� �� T� if we set

r�t� � r���t�� ���t��
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31.7 Calibration

B�r�t�� t� T� � B

�
r�t�

���t�
� ��t�� �� T�

	

� exp

�
�r�t�

C���t�� �� T��

���t�
� A���t�� �� T��

�

� exp
n
�r�t� C�t� T�� A�t� T�

o
�

where

C�t� T� �
C���t�� �� T��

���t�

A�t� T� � A���t�� �� T��

do not depend on t and T only through T � t, since, in the real time scale, the model coefficients
are time dependent.

Suppose we know r��� and B�r���� �� T� for all T � 
�� T ��. We calibrate by writing the equation

B�r���� �� T� � exp
n
�r��� C��� T�� A��� T�

o
�

or equivalently,

� log B�r���� �� T� �
r���

�����
C������ ��T�� � A������ ��T���

Take �� � and � so the equilibrium distribution of r�t� seems reasonable. These values determine
the functions C�A. Take ����� � � (we justify this in the next section). For each T , solve the
equation for �� T �:

� log B�r���� �� T� � r���C��� ��T�� �A��� �� T��� (*)

The right-hand side of this equation is increasing in the �� T� variable, starting at 0 at time � and
having limit� at �, i.e.,

r���C��� ��� A��� �� � ��

lim
T��


r���C��� T ��A��� T �� ���

Since � � � log B�r���� �� T� ��� (*) has a unique solution for each T . For T � �, this solution
is ���� � �. If T� � T�, then

� log B�r���� �� T�� � � log B�r���� �� T���

so �� T�� � �� T��. Thus � is a strictly increasing time-change-function with the right properties.
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31.8 Tracking down ����� in the time change of the CIR model

Result for general term structure models:

� 	

	T
logB��� T �

����
T��

� r����

Justification:

B��� T � � IE exp

�
�
Z T

�
r�u� du

�
�

� logB��� T � � � log IE exp

�
�
Z T

�
r�u� du

�

� 	

	T
logB��� T � �

IE

�
r�T �e�

R T

�
r�u� du

�
IEe�

R T

�
r�u� du

� 	

	T
logB��� T �

����
T��

� r����

In the real time scale associated with the calibration of CIR by time change, we write the bond price
as

B�r���� �� T��

thereby indicating explicitly the initial interest rate. The above says that

� 	

	 T
log B�r���� �� T�

����
	T��

� r����

The calibration of CIR by time change requires that we find a strictly increasing function � with
���� � � such that

� log B�r���� �� T� �
�

�����
r���C��� T�� � A��� T��� T � �� (cal)

where B�r���� �� T�, determined by market data, is strictly increasing in T , starts at 1 when T � �,
and goes to zero as T��. Therefore, � log B�r���� �� T� is as shown in Fig. 31.4.

Consider the function
r���C�T � �A�T ��

Here C�T � and A�T � are given by

C�T � �
sinh�
T �


 cosh�
T � � �
�� sinh�
T �

�

A�T � � ���

��
log

�
� 
e

�
��T


 cosh�
T � � �
�� sinh�
T �

�
� �


 � �
�

q
�� � ����
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�

�
Goes to �

Strictly increasing

T

� log B�r���� �� T�

Figure 31.4: Bond price in CIR model
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�� T�

� log B�r���� �� T�

Figure 31.5: Calibration

The function r���C�T � � A�T � is zero at T � �, is strictly increasing in T , and goes to � as
T��. This is because the interest rate is positive in the CIR model (see last paragraph of Section
31.4).

To solve (cal), let us first consider the related equation

� log B�r���� �� T� � r���C��� T�� �A��� T��� (cal’)

Fix T and define �� T� to be the unique T for which (see Fig. 31.5)

� log B�r���� �� T� � r���C�T � �A�T �

If T � �, then �� T� � �. If T� � T�, then �� T�� � �� T��. As T��, �� T ���. We have thus
defined a time-change function � which has all the right properties, except it satisfies (cal’) rather
than (cal).
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We conclude by showing that ����� � � so � also satisfies (cal). From (cal’) we compute

r��� � � 	

	 T
log B�r���� �� T�

����
	T��

� r���C������������ � A������������

� r���C��������� � A����������

We show in a moment that C ���� � �, A���� � �, so we have

r��� � r���������

Note that r��� is the initial interest rate, observed in the market, and is striclty positive. Dividing by
r���, we obtain

����� � ��

Computation of C ����:

C���� �
��


 cosh�
�� � �
�� sinh�
��

��
�

 cosh�
��

�

 cosh�
�� � �

�� sinh�
��
�

� sinh�
��
�

� sinh�
�� � �

��
 cosh�
��
��

C���� �
�


�

h

�
� ��� ��� � �

��
�
i
� ��

Computation of A����:

A���� � ���

��

�

 cosh�
�� � �

�� sinh�
��


e����

�

	 ��

 cosh�
�� � �

�� sinh�
��
��
�
�


�
e����

�

 cosh�
�� � �

�� sinh�
��
�

� 
e����
�

� sinh�
�� � �

��
 cosh�
��
��
�

A���� � ���

��

�

 � �
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�

�
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�
�


�
�
 � ��� 
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��
�

�

� ���

��

 �
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�
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�
� �
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