Chapter 30

Hull and White model

Consider

dr(t) = (aft) = 5(t)r(t)) dt + o (1) dW (1),
where a(t), 5(t) and o (t) are nonrandom functions of ¢.
We can solve the stochastic differential equation. Set

K(t) = /Ot B(u) du.
Then

4 (K00 (1)) = K10 (ﬂ(t)r(t) dt + dr(t))
=KW (a(t) dt + o (1) dW (1)).

Integrating, we get

(‘ﬁ
A

PO+ [ K Oa dut [ KOt aww),
r(t) = KU [ +/ du—l—/ (u)].

From Theorem 1.69 in Chapter 29, we seethat r(¢) isa Gaussian process with mean function
m,(t) = e KO [r(O) + /0 t KW (u) du] (0.2)
and covariance function
pulsyt) = KK [T 20020 g, 02)
0
The process r(t) isaso Markov.
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We want to study [ r(t) dt. To do this, we define
¢ T
X (1) = / KW () dW (), Y(T) = / EOX (1) du.
0 0

Then

t

r(t) = e KO [r(O) —I—/ KW (u) du] + e KX @),

/OTr(t) dt:/o K [ +/ du] dt +Y(T).

According to Theorem 1.70 in Chapter 29, fOT r(t) dt isnormal. Itsmean is

T
JE/ r(t)dt:/ —K(@ [ +/ du] dt,
0 0
and itsvarianceis
T
var (/ r(t) dt) = EY*(T)
0
T T 2
:/ 2R W2 (p) (/ e~ KW dy) dv.
0 v
The price at time 0 of azero-coupon bond paying $1 at time 7" is
T
B(0,T) :Eexp{ / ()dt}
T
= exp{ E/ t) dt + 2(-1)% var (/ r(t) dt)}
0
:exp{—r(O)/ —K( dt—/ / KO+ () du dt
0
41 / 2K (v (/ —IX( ) dy) dv}

= exp{—r(0)C(0,T) — A(0,T)},

where

T .
c,T) = / KO gy,

T T :
A(0,T) / / ~KO+K) o (u) du dt — / 2R g2 (p) (/ e~ KW dy) dv.
0 v

(0.3)
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— u
Figure 30.1: Range of values of «, ¢ for the integral.
30.1 Fiddling with the formulas
Note that (see Fig 30.1)
T t - ’
/ /6_1‘(75)‘”‘(“)04@) du dt
0 0
T T - ’
:/ / e KO o (4) dt du
0 U
T -

T .
(y=t; v=u) = / e o (v) (/ e~ KW dy) dv.
0 v

Therefore,

T - T - - T - 2
A(0,T) :/ KW a (o) (/ e~ KW dy) — %62B(U)0'2(U) (/ e KW dy) dv,
0 v v

T .
c(0,7) :/ e K@) gy,

B(0,T) =exp{—r(0)C(0,7)— A(0,T)}.

Consider the price at timet € [0, 7] of the zero-coupon bond:

B(t,T)=IF [exp{—/tTr(u) du} ‘]—'(t)] .

Because r isaMarkov process, this should be random only through a dependence on (). In fact,

B(t,T)=exp{—r(t)C(t,T)— A(t,T)},
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where

T - T - - T - 2
A, T) = / KW (o) (/ e~ KW dy) — 12K ®) o2 (1) (/ e~ KW dy) dv,
€ v v

. T .
C(t,T) = K0 / KW gy,

t

The reason for these changesis the following. We are now taking theinitial timeto be ¢ rather than
zero, soitisplausiblethat [ ... dv shouldbereplaced by [ ... dv. Recall that

and this should be replaced by

Similarly, K (y) should be replaced by K (y) — K (t). Making these replacementsin A(0,7"), we
seethat the K (¢) terms cancel. In C'(0,7"), however, the K (¢) term does not cancel.

30.2 Dynamicsof the bond price

Let C(,T) and Ay(t, T') denotethe partial derivativeswith respect to . From the formula
B(t,T) = exp {—r(t)C(t,T) — A(t,T)},
we have
dB(t,T) = B(t,T) [~C(t,T) dr(t) = LC?(8,T) dr(t) dr(t) = r(Co(t, T) dt = Ay(t, T) di]
— B(t,T) [ _ O, T) (alt) — Blt)r(t)) di
—C(t, T)o(t) dW(t) — 2C?*(t,T)o?(t) dt

— (1)t T) dt — Ay(t,T) dt] .

Because we have used the risk-neutral pricing formula

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]

to obtain the bond price, its differential must be of the form

AB,T) = r(t) B, T) dt + (...) dW (1)
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Therefore, we must have
—C(t,T) (a(t) = BO)r (1)) — LC?(t, T)o* (1) — r()Ce(t, T) — A (1, T) = r(t).

We leave the verification of this equation to the homework. After this verification, we have the
formula

dB(t,T) = r(t)B(t,T) dt — c()C(t, T)B(t, T) dW (t).

In particular, the volatility of the bond priceis o (t)C'(¢, T').

30.3 Calibration of theHull & White model

Recall:

dr(t) = (a(t) = f(t)r(t)) dt + a(t) dB(1),

T - T - - T - 2
A(t,T) = / KW a (o) (/ e~ KW dy) — LR ©) o2 (1) (/ e~ KW dy) dv,
€ v v

. T .
C(t,T) = KO / KW gy,

t

B(t,T) =exp{—r(t)C(t,T) — A(t,T)}.

Supposewe obtain B(0, T') for al T' € [0, 7] from market data (with some interpolation). Can we
determine the functions a(¢), 5(¢), and o (¢) for all ¢ € [0,7*]? Not quite. Here is what we can do.

We take the following input data for the calibration:
1 B(0,T),0<T<T
2. r(0);
3. a(0);
4. o(t), 0 <t < T (usualy assumed to be constant);

5 ¢(0)C(0,T), 0 <T <T*,i.e,thevolatility at time zero of bonds of al maturities.

Step 1. From 4 and 5 we solve for
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We can then compute

iC(o T) = ¢~ KT

aT
. d
= K(T') = —log 8_TC(O T),
G_TK 8T/ B(T).

We now have 5(T') foral T € [0, T%].
Step 2. From the formula

B(0,T) = exp{~r(0)C(0,T) - A(0,T)},
we can solvefor A(0,7') for all 7' € [0, T*]. Recall that

Ao = [ [e“”)o«(v) ([ as) - g ([ eor ) ] o

We can use thisformulato determine o(7), 0 < 7' < 7™ asfollows:
K2 —K(T) _ 2K () 12 () o~ K(T) / T kW
GTA (0,7) [ e o”(v)e e dy || dv,
oy O T
K(T) — 2]&( ) —-K(y)
e 8TA(O T) [ o*(v) (/U e dy)] dv,
i eK(T) d A(O T) _ ) / 621((1/)0'2(?]) e_K(T) dv
or or ’
e[x"(T)i e[x"(T) 0 A(O T) — 621((T)04(T) _ /T e?]x"(v)O_Q (U) dv
or or 0 '
9 [ ke 9 [ k9 ] 1o 2K (T) 2K(T) 2K (T) .2 .
_ _— —_ — — <T < .
a7 | a7 | 8TA(O,T) | = (T)e +2a(1)B(T)e e o*(T), 0<T<T

Thisgives usan ordinary differential equationfor «, i.e.,
o (1) KD 4 2a(1) f(1) M — 2K 52 (1) = known function of ¢.

From assumption 4 and step 1, we know al the coefficients in this equation. From assumption 3,
we have theinitial condition «(0). We can solve the equation numerically to determine the function
a(t), 0 <t <T™.

Remark 30.1 The derivation of the ordinary differential equation for «(t) requires three differ-
entiations. Differentiation is an unstable procedure, i.e., functions which are close can have very
different derivatives. Consider, for example,

flz)y=0 VzelR,

sin(1000z)

g(z) = 100 Ve € IR.
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Then
— <
@) = g(a)| < o5 Vo€ IR
but because
g'(z) = 10 cos(1000z),
we have

|f'(@) = g'(x)] = 10

for many values of x.

Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-
ties. These volatilities can be implied by the prices of options on bonds. We consider now how the
model prices options.

30.4 Option on abond

Consider a European call option on a zero-coupon bond with strike price K and expirationtime 7', .
The bond matures at time T, > 7. The price of the option at time O is

E [6_ Jo rtw a (B(Th, T») - K)+]
=Fe fOTl r(u) du(exp{—r(Tl)C(Tl, Ty) — A(Ty, Ty)} — K)"',
= /_00 /_OO e " (exp{_yC(ThTz) - A(T1,Ty)} — K)—l_f(av7 y) da dy,

where f(x, y) isthejoint density of (fo r(u) du, r(71)).

We observed at the beginning of this Chapter (equation (0.3)) that fOTl r(u) du isnormal with
A T1 Tl
= IFE l/ r(u) du] :/ Er(u) du
0 0

T
=,
A T T . T . 2
o? = var / r(u) du| = / KW g2 (v) / e KW qy ) do.
0 0 v

We also observed (equation (0.1)) that »(77) isnormal with

v

r(o)e—K(u)_l_e—K(v)/

B (u) du] dv,
0

. . AT
i) = Er(Ty) = r(O)e_B (T1) 4 =K (Tl)/ e (“)a(u) du,
0

. T .
O'% 2 var (r(7T1)) = e 2K (Tl)/ o2k (“)Uz(u) du.
0
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In fact, (fOTl r(u) du, r(Tl)) isjointly normal, and the covarianceis

T
poros = IE l/o (r(u) = Er(w)) du. (r(T1) — Er(Ty))
_ /OTl El(r(u) — Er(w)) (r(T1) — Er(T1))] du

T
= [ petu 1)
0

where p,. (u, T1) isdefined in Equation 0.2.
The option on the bond has price at time zero of

[ [ e (optovemm - g, m) - K)+

1 1 2?2 2pzy  y?
—— | = dz dy. (4.1
exp{ 2<1—p2>[ ] )

2ro109y/ 1 — p? of 0109

The price of theoption at time¢ € [0, Ty] is

}'(t)] (42)

Because of the Markov property, thisis random only through a dependence on »(¢). To compute
this option price, we need the joint distribution of ( tTl r(u) du, r(Tl)) conditioned on r(¢). This
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pair of random variables has ajointly normal conditional distribution, and

pi(t) = IE /tTl r(u) du

f(t)]

T, - Y e
:/ [r(t)e—lx(v)-l—lx(t)_I_e—Ix(v)/ KW o () du] dv,
t t

o) = I ( / ) du ul(t))

Tl_ i T 2
:/ 2R W52 (p) (/ e~ KW dy) dv,
t v

palt) = I [+(1) ()
T

— p(1)e KK ) _I_e—K(Tl)/ W () du,

t

f(t)]

7Hit) = B [(r(T) - al0)* (0

_ 6—2]((T1)/T1 KW 02 (y) du,
1

T
01 0)020) = | [ 1601 =) 07 = st 0

_ /Tl e-]«'@)-K(Tl)/“ KW 62 () dv du.
t t

The variances and covariances are not random. The means are random through a dependence on
r(t).
Advantages of the Hull & White mode!:

1. Leadsto closed-form pricing formulas.
2. Allowscadlibrationtofit initial yield curve exactly.
Short-comings of the Hull & White model:
1. One-factor, so only allows parallel shifts of theyield curve, i.e.,
B(t,T) =exp{-r(t)C(t,T)— A, T)},
so bond prices of al maturities are perfectly correlated.

2. Interest rate is normally distributed, and hence can take negative values. Consequently, the

bond price
T
B(t,T)=IF [exp {—/t r(u) du} ‘]—'(t)]

can exceed 1.



