Chapter 3

Arbitrage Pricing

3.1 **Binomial Pricing**

Return to the binomial pricing model Please see:

- Cox, Ross and Rubinstein, J. Financial Economics, 7(1979), 229-263, and
- Cox and Rubinstein (1985), Options Markets, Prentice-Hall.

Example 3.1 (Pricing a Call Option) Suppose u = 2, d = 0.5, r = 25% (interest rate), $S_0 = 50$. (In this and all examples, the interest rate quoted is per unit time, and the stock prices S_0, S_1, \ldots are indexed by the same time periods). We know that

$$S_1(\omega) = \begin{cases} 100 & \text{if } \omega_1 = H \\ 25 & \text{if } \omega_1 = T \end{cases}$$

Find the value *at time zero* of a call option to buy one share of stock at time 1 for \$50 (i.e. the *strike price* is \$50).

The value of the call at time 1 is

$$V_1(\omega) = (S_1(\omega) - 50)^+ = \begin{cases} 50 & \text{if } \omega_1 = H \\ 0 & \text{if } \omega_1 = T \end{cases}$$

Suppose the option sells for \$20 at time 0. Let us construct a portfolio:

- 1. Sell 3 options for \$20 each. Cash outlay is -\$60.
- 2. Buy 2 shares of stock for \$50 each. Cash outlay is \$100.
- 3. Borrow \$40. Cash outlay is -\$40.

This portfolio thus requires no initial investment. For this portfolio, the cash outlay at time 1 is:

	$\omega_1 = H$	$\omega_1 = T$
Pay off option	\$150	\$0
Sell stock	-\$200	-\$50
Pay off debt	\$50	\$50
	\$0	0

The arbitrage pricing theory (APT) value of the option at time 0 is $V_0 = 20$.

Assumptions underlying APT:

- Unlimited short selling of stock.
- Unlimited borrowing.
- No transaction costs.
- Agent is a "small investor", i.e., his/her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabilities of H and T.

3.2 General one-step APT

Suppose a derivative security pays off the amount V_1 at time 1, where V_1 is an \mathcal{F}_1 -measurable random variable. (This measurability condition is important; this is why it does not make sense to use some stock unrelated to the derivative security in valuing it, at least in the straightforward method described below).

- Sell the security for V_0 at time 0. (V_0 is to be determined later).
- Buy Δ_0 shares of stock at time 0. (Δ_0 is also to be determined later)
- Invest $V_0 \Delta_0 S_0$ in the money market, at risk-free interest rate r. $(V_0 \Delta_0 S_0$ might be negative).
- Then wealth at time 1 is

$$X_1 \stackrel{\triangle}{=} \Delta_0 S_1 + (1+r)(V_0 - \Delta_0 S_0) = (1+r)V_0 + \Delta_0 (S_1 - (1+r)S_0).$$

• We want to choose V_0 and Δ_0 so that

 $X_1 = V_1$

regardless of whether the stock goes up or down.

60

The last condition above can be expressed by *two* equations (which is fortunate since there are *two* unknowns):

$$(1+r)V_0 + \Delta_0(S_1(H) - (1+r)S_0) = V_1(H)$$
(2.1)

$$(1+r)V_0 + \Delta_0(S_1(T) - (1+r)S_0) = V_1(T)$$
(2.2)

Note that this is where we use the fact that the derivative security value V_k is a function of S_k , i.e., when S_k is known for a given ω , V_k is known (and therefore non-random) at that ω as well. Subtracting the second equation above from the first gives

$$\Delta_0 = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)}.$$
(2.3)

Plug the formula (2.3) for Δ_0 into (2.1):

$$(1+r)V_0 = V_1(H) - \Delta_0 (S_1(H) - (1+r)S_0)$$

= $V_1(H) - \frac{V_1(H) - V_1(T)}{(u-d)S_0} (u-1-r)S_0$
= $\frac{1}{u-d} [(u-d)V_1(H) - (V_1(H) - V_1(T))(u-1-r)]$
= $\frac{1+r-d}{u-d}V_1(H) + \frac{u-1-r}{u-d}V_1(T).$

We have already assumed u > d > 0. We now also assume $d \le 1 + r \le u$ (otherwise there would be an arbitrage opportunity). Define

$$\tilde{p} \stackrel{\Delta}{=} \frac{1+r-d}{u-d}, \quad \tilde{q} \stackrel{\Delta}{=} \frac{u-1-r}{u-d}.$$

Then $\tilde{p} > 0$ and $\tilde{q} > 0$. Since $\tilde{p} + \tilde{q} = 1$, we have $0 < \tilde{p} < 1$ and $\tilde{q} = 1 - \tilde{p}$. Thus, \tilde{p}, \tilde{q} are like probabilities. We will return to this later. Thus the price of the call at time 0 is given by

$$V_0 = \frac{1}{1+r} [\tilde{p}V_1(H) + \tilde{q}V_1(T)].$$
(2.4)

3.3 Risk-Neutral Probability Measure

Let Ω be the set of possible outcomes from n coin tosses. Construct a probability measure $\widetilde{I\!P}$ on Ω by the formula

$$\widetilde{I\!P}(\omega_1,\omega_2,\ldots,\omega_n) \stackrel{\triangle}{=} \widetilde{p}^{\#\{j;\omega_j=H\}} \widetilde{q}^{\#\{j;\omega_j=T\}}$$

 \widetilde{IP} is called the *risk-neutral probability measure*. We denote by \widetilde{IE} the expectation under \widetilde{IP} . Equation 2.4 says

$$V_0 = \widetilde{I\!\!E} \left(\frac{1}{1+r} V_1 \right).$$

Theorem 3.11 Under $\widetilde{\mathbb{P}}$, the discounted stock price process $\{(1+r)^{-k}S_k, \mathcal{F}_k\}_{k=0}^n$ is a martingale.

Proof:

$$\widetilde{E}[(1+r)^{-(k+1)}S_{k+1}|\mathcal{F}_k] = (1+r)^{-(k+1)}(\widetilde{p}u + \widetilde{q}d)S_k$$

$$= (1+r)^{-(k+1)}\left(\frac{u(1+r-d)}{u-d} + \frac{d(u-1-r)}{u-d}\right)S_k$$

$$= (1+r)^{-(k+1)}\frac{u+ur-ud+du-d-dr}{u-d}S_k$$

$$= (1+r)^{-(k+1)}\frac{(u-d)(1+r)}{u-d}S_k$$

$$= (1+r)^{-k}S_k.$$

3.3.1 Portfolio Process

The portfolio process is $\Delta = (\Delta_0, \Delta_1, \dots, \Delta_{n-1})$, where

- Δ_k is the number of shares of stock held between times k and k + 1.
- Each Δ_k is \mathcal{F}_k -measurable. (No insider trading).

3.3.2 Self-financing Value of a Portfolio Process Δ

- Start with nonrandom initial wealth X_0 , which need not be 0.
- Define recursively

$$X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k)$$
(3.1)

$$= (1+r)X_k + \Delta_k (S_{k+1} - (1+r)S_k).$$
(3.2)

• Then each X_k is \mathcal{F}_k -measurable.

Theorem 3.12 Under $\widetilde{\mathbb{P}}$, the discounted self-financing portfolio process value $\{(1+r)^{-k}X_k, \mathcal{F}_k\}_{k=0}^n$ is a martingale.

Proof: We have

$$(1+r)^{-(k+1)}X_{k+1} = (1+r)^{-k}X_k + \Delta_k \left((1+r)^{-(k+1)}S_{k+1} - (1+r)^{-k}S_k \right).$$

Therefore,

$$\begin{split} \widetilde{E}[(1+r)^{-(k+1)}X_{k+1}|\mathcal{F}_k] \\ &= \widetilde{E}[(1+r)^{-k}X_k|\mathcal{F}_k] \\ &\quad +\widetilde{E}[(1+r)^{-(k+1)}\Delta_k S_{k+1}|\mathcal{F}_k] \\ &\quad -\widetilde{E}[(1+r)^{-k}\Delta_k S_k|\mathcal{F}_k] \\ &= (1+r)^{-k}X_k \quad \text{(requirement (b) of conditional exp.)} \\ &\quad +\Delta_k \widetilde{E}[(1+r)^{-(k+1)}S_{k+1}|\mathcal{F}_k] \quad \text{(taking out what is known)} \\ &\quad -(1+r)^{-k}\Delta_k S_k \quad \text{(property (b))} \\ &= (1+r)^{-k}X_k \quad \text{(Theorem 3.11)} \end{split}$$

3.4 Simple European Derivative Securities

Definition 3.1 () A simple European derivative security with expiration time m is an \mathcal{F}_m -measurable random variable V_m . (Here, m is less than or equal to n, the number of periods/coin-tosses in the model).

Definition 3.2 () A simple European derivative security V_m is said to be *hedgeable* if there exists a constant X_0 and a portfolio process $\Delta = (\Delta_0, \ldots, \Delta_{m-1})$ such that the self-financing value process X_0, X_1, \ldots, X_m given by (3.2) satisfies

$$X_m(\omega) = V_m(\omega), \quad \forall \omega \in \Omega.$$

In this case, for k = 0, 1, ..., m, we call X_k the APT value at time k of V_m .

Theorem 4.13 (Corollary to Theorem 3.12) If a simple European security V_m is hedgeable, then for each k = 0, 1, ..., m, the APT value at time k of V_m is

$$V_k \stackrel{\Delta}{=} (1+r)^k \widetilde{I\!\!E}[(1+r)^{-m} V_m | \mathcal{F}_k]. \tag{4.1}$$

Proof: We first observe that if $\{M_k, \mathcal{F}_k; k = 0, 1, ..., m\}$ is a martingale, i.e., satisfies the martingale property

$$\mathbb{E}[M_{k+1}|\mathcal{F}_k] = M_k$$

for each $k = 0, 1, \dots, m - 1$, then we also have

$$\overline{E}[M_m | \mathcal{F}_k] = M_k, k = 0, 1, \dots, m - 1.$$
(4.2)

When k = m - 1, the equation (4.2) follows directly from the martingale property. For k = m - 2, we use the tower property to write

$$\widetilde{I\!\!E}[M_m|\mathcal{F}_{m-2}] = \widetilde{I\!\!E}[\widetilde{I\!\!E}[M_m|\mathcal{F}_{m-1}]|\mathcal{F}_{m-2}] \\ = \widetilde{I\!\!E}[M_{m-1}|\mathcal{F}_{m-2}] \\ = M_{m-2}.$$

We can continue by induction to obtain (4.2).

If the simple European security V_m is hedgeable, then there is a portfolio process whose selffinancing value process X_0, X_1, \ldots, X_m satisfies $X_m = V_m$. By definition, X_k is the APT value at time k of V_m . Theorem 3.12 says that

$$X_0, (1+r)^{-1}X_1, \dots, (1+r)^{-m}X_m$$

is a martingale, and so for each k,

$$(1+r)^{-k}X_k = \widetilde{I\!\!E}[(1+r)^{-m}X_m|\mathcal{F}_k] = \widetilde{I\!\!E}[(1+r)^{-m}V_m|\mathcal{F}_k].$$

Therefore,

$$X_k = (1+r)^k I\!\!E[(1+r)^{-m} V_m | \mathcal{F}_k]$$

3.5 The Binomial Model is Complete

Can a simple European derivative security always be hedged? It depends on the model. If the answer is "yes", the model is said to be *complete*. If the answer is "no", the model is called *incomplete*.

Theorem 5.14 The binomial model is complete. In particular, let V_m be a simple European derivative security, and set

$$V_k(\omega_1,\ldots,\omega_k) = (1+r)^k \overline{E}[(1+r)^{-m} V_m | \mathcal{F}_k](\omega_1,\ldots,\omega_k),$$
(5.1)

$$\Delta_k(\omega_1,\ldots,\omega_k) = \frac{V_{k+1}(\omega_1,\ldots,\omega_k,H) - V_{k+1}(\omega_1,\ldots,\omega_k,T)}{S_{k+1}(\omega_1,\ldots,\omega_k,H) - S_{k+1}(\omega_1,\ldots,\omega_k,T)}.$$
(5.2)

Starting with initial wealth $V_0 = \widetilde{IE}[(1+r)^{-m}V_m]$, the self-financing value of the portfolio process $\Delta_0, \Delta_1, \ldots, \Delta_{m-1}$ is the process V_0, V_1, \ldots, V_m .

Proof: Let V_0, \ldots, V_{m-1} and $\Delta_0, \ldots, \Delta_{m-1}$ be defined by (5.1) and (5.2). Set $X_0 = V_0$ and define the self-financing value of the portfolio process $\Delta_0, \ldots, \Delta_{m-1}$ by the recursive formula 3.2:

$$X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k).$$

We need to show that

$$X_k = V_k, \quad \forall k \in \{0, 1, \dots, m\}.$$
 (5.3)

We proceed by induction. For k = 0, (5.3) holds by definition of X_0 . Assume that (5.3) holds for some value of k, i.e., for each fixed $(\omega_1, \ldots, \omega_k)$, we have

$$X_k(\omega_1,\ldots,\omega_k)=V_k(\omega_1,\ldots,\omega_k).$$

We need to show that

$$X_{k+1}(\omega_1,\ldots,\omega_k,H) = V_{k+1}(\omega_1,\ldots,\omega_k,H),$$
$$X_{k+1}(\omega_1,\ldots,\omega_k,T) = V_{k+1}(\omega_1,\ldots,\omega_k,T).$$

We prove the first equality; the second can be shown similarly. Note first that

$$\widetilde{E}[(1+r)^{-(k+1)}V_{k+1}|\mathcal{F}_k] = \widetilde{E}[\widetilde{E}[(1+r)^{-m}V_m|\mathcal{F}_{k+1}]|\mathcal{F}_k] \\ = \widetilde{E}[(1+r)^{-m}V_m|\mathcal{F}_k] \\ = (1+r)^{-k}V_k$$

In other words, $\{(1+r)^{-k}V_k\}_{k=0}^n$ is a martingale under $\widetilde{I\!\!P}$. In particular,

$$V_k(\omega_1,\ldots,\omega_k) = \widetilde{I\!\!E}[(1+r)^{-1}V_{k+1}|\mathcal{F}_k](\omega_1,\ldots,\omega_k)$$

= $\frac{1}{1+r} \left(\tilde{p}V_{k+1}(\omega_1,\ldots,\omega_k,H) + \tilde{q}V_{k+1}(\omega_1,\ldots,\omega_k,T) \right).$

Since $(\omega_1, \ldots, \omega_k)$ will be fixed for the rest of the proof, we simplify notation by suppressing these symbols. For example, we write the last equation as

$$V_k = \frac{1}{1+r} \left(\tilde{p} V_{k+1}(H) + \tilde{q} V_{k+1}(T) \right).$$

We compute

$$\begin{aligned} X_{k+1}(H) &= \Delta_k S_{k+1}(H) + (1+r)(X_k - \Delta_k S_k) \\ &= \Delta_k \left(S_{k+1}(H) - (1+r)S_k \right) + (1+r)V_k \\ &= \frac{V_{k+1}(H) - V_{k+1}(T)}{S_{k+1}(H) - S_{k+1}(T)} \left(S_{k+1}(H) - (1+r)S_k \right) \\ &\quad + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T) \\ &= \frac{V_{k+1}(H) - V_{k+1}(T)}{uS_k - dS_k} \left(uS_k - (1+r)S_k \right) \\ &\quad + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T) \\ &= \left(V_{k+1}(H) - V_{k+1}(T) \right) \left(\frac{u-1-r}{u-d} \right) + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T) \\ &= \left(V_{k+1}(H) - V_{k+1}(T) \right) \left(\tilde{q} + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T) \right) \\ &= \left(V_{k+1}(H) - V_{k+1}(T) \right) \tilde{q} + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T) \\ &= V_{k+1}(H). \end{aligned}$$