Chapter 3

Arbitrage Pricing

3.1 Binomial Pricing

Return to the binomial pricing model

Please see:

- Cox, Ross and Rubinstein, *J. Financial Economics*, **7**(1979), 229–263, and
- Cox and Rubinstein (1985), **Options Markets**, Prentice-Hall.

Example 3.1 (Pricing a Call Option) Suppose $u = 2, d = 0.5, r = 25\%$ (interest rate), $S_0 = 50$. (In this and all examples, the interest rate quoted is per unit time, and the stock prices S_0, S_1, \ldots are indexed by the same time periods). We know that

$$
S_1(\omega)=\left\{\begin{array}{cc}100&\text{ if }\omega_1=H\\25&\text{ if }\omega_1=T\end{array}\right.
$$

Find the value *at time zero* of a call option to buy one share of stock at time 1 for \$50 (i.e. the *strike price* is \$50).

The value of the call at time 1 is

$$
V_1(\omega)=(S_1(\omega)-50)^+=\left\{\begin{array}{ll}50 & \text{ if }\omega_1=H\\0 & \text{ if }\omega_1=T\end{array}\right.
$$

Suppose the option sells for \$20 at time 0. Let us construct a portfolio:

- 1. Sell 3 options for \$20 each. Cash outlay is $-$ \$60.
- 2. Buy 2 shares of stock for \$50 each. Cash outlay is \$100.
- 3. Borrow \$40. Cash outlay is $-$ \$40.

This portfolio thus requires no initial investment. For this portfolio, the cash outlay at time 1 is:

Г

The *arbitrage pricing theory (APT)* value of the option at time 0 is $V_0 = 20$.

Assumptions underlying APT:

- Unlimited short selling of stock.
- Unlimited borrowing.
- No transaction costs.
- Agent is a "small investor", i.e., his/her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabilities of ^H and T .

3.2 General one-step APT

Suppose a derivative security pays off the amount V_1 at time 1, where V_1 is an \mathcal{F}_1 -measurable random variable. (This measurability condition is important; this is why it does not make sense to use some stock unrelated to the derivative security in valuing it, at least in the straightforward method described below).

- Sell the security for V_0 at time 0. (V_0 is to be determined later).
- Buy Δ_0 shares of stock at time 0. (Δ_0 is also to be determined later)
- Invest $V_0 \Delta_0 S_0$ in the money market, at risk-free interest rate r. $(V_0 \Delta_0 S_0$ might be negative).
- Then wealth at time 1 is

$$
X_1 \stackrel{\Delta}{=} \Delta_0 S_1 + (1+r)(V_0 - \Delta_0 S_0)
$$

= $(1+r)V_0 + \Delta_0 (S_1 - (1+r)S_0).$

• We want to choose V_0 and Δ_0 so that

X - V

regardless of whether the stock goes up or down.

60

The last condition above can be expressed by *two* equations (which is fortunate since there are *two* unknowns):

$$
(1+r)V_0 + \Delta_0(S_1(H) - (1+r)S_0) = V_1(H)
$$
\n(2.1)

$$
(1+r)V_0 + \Delta_0(S_1(T) - (1+r)S_0) = V_1(T)
$$
\n(2.2)

Note that this is where we use the fact that the derivative security value V_k is a function of S_k , i.e., when S_k is known for a given ω , V_k is known (and therefore non-random) at that ω as well. Subtracting the second equation above from the first gives

$$
\Delta_0 = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)}.
$$
\n(2.3)

Plug the formula (2.3) for Δ_0 into (2.1):

$$
(1+r)V_0 = V_1(H) - \Delta_0(S_1(H) - (1+r)S_0)
$$

= $V_1(H) - \frac{V_1(H) - V_1(T)}{(u-d)S_0}(u-1-r)S_0$
= $\frac{1}{u-d}[(u-d)V_1(H) - (V_1(H) - V_1(T))(u-1-r)]$
= $\frac{1+r-d}{u-d}V_1(H) + \frac{u-1-r}{u-d}V_1(T).$

We have already assumed $u > d > 0$. We now also assume $d \leq 1 + r \leq u$ (otherwise there would be an arbitrage opportunity). Define

$$
\tilde{p} \stackrel{\triangle}{=} \frac{1+r-d}{u-d}, \quad \tilde{q} \stackrel{\triangle}{=} \frac{u-1-r}{u-d}.
$$

Then $\tilde{p} > 0$ and $\tilde{q} > 0$. Since $\tilde{p} + \tilde{q} = 1$, we have $0 < \tilde{p} < 1$ and $\tilde{q} = 1 - \tilde{p}$. Thus, \tilde{p}, \tilde{q} are like probabilities. We will return to this later. Thus the price of the call at time 0 is given by

$$
V_0 = \frac{1}{1+r} [\tilde{p}V_1(H) + \tilde{q}V_1(T)].
$$
\n(2.4)

3.3 Risk-Neutral Probability Measure

Let Ω be the set of possible outcomes from n coin tosses. Construct a probability measure $\widetilde{I\!P}$ on Ω by the formula

$$
\widetilde{I\!\!P}(\omega_1,\omega_2,\ldots,\omega_n) \stackrel{\triangle}{=} \widetilde{p}^{\# \{j;\omega_j=H\}} \widetilde{q}^{\# \{j;\omega_j=T\}}
$$

 \widetilde{P} is called the *risk-neutral probability measure*. We denote by \widetilde{E} the expectation under \widetilde{P} . Equation 2.4 says

$$
V_0 = \widetilde{E}\left(\frac{1}{1+r}V_1\right).
$$

Theorem 3.11 *Under* \mathbb{P} *, the discounted stock price process* $\{(1+r)^{-k}S_k, \mathcal{F}_k\}_{k=0}^n$ is a martingale.

Proof:

$$
\widetilde{E}[(1+r)^{-(k+1)}S_{k+1}|\mathcal{F}_k]
$$
\n= $(1+r)^{-(k+1)}(\tilde{p}u + \tilde{q}d)S_k$
\n= $(1+r)^{-(k+1)}\left(\frac{u(1+r-d)}{u-d} + \frac{d(u-1-r)}{u-d}\right)S_k$
\n= $(1+r)^{-(k+1)}\frac{u+ur - ud + du - d - dr}{u-d}S_k$
\n= $(1+r)^{-(k+1)}\frac{(u-d)(1+r)}{u-d}S_k$
\n= $(1+r)^{-k}S_k$.

3.3.1 Portfolio Process

The portfolio process is $\Delta = (\Delta_0, \Delta_1, \dots, \Delta_{n-1})$, where

- Δ_k is the number of shares of stock held between times k and $k + 1$.
- Each Δ_k is \mathcal{F}_k -measurable. (No insider trading).

3.3.2 Self-financing Value of a Portfolio Process

- Start with nonrandom initial wealth X_0 , which need not be 0.
- Define recursively

$$
X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k)
$$
\n(3.1)

$$
= (1+r)X_k + \Delta_k(S_{k+1} - (1+r)S_k). \tag{3.2}
$$

• Then each X_k is \mathcal{F}_k -measurable.

Theorem 3.12 Under \mathbb{P} , the discounted self-financing portfolio process value $\{(1+r)^{-k}X_k, \mathcal{F}_k\}_{k=0}^n$ *is a martingale.*

Proof: We have

$$
(1+r)^{-(k+1)}X_{k+1} = (1+r)^{-k}X_k + \Delta_k \left((1+r)^{-(k+1)}S_{k+1} - (1+r)^{-k}S_k \right).
$$

Therefore,

$$
\widetilde{E}[(1+r)^{-(k+1)}X_{k+1}|\mathcal{F}_k]
$$
\n
$$
= \widetilde{E}[(1+r)^{-k}X_k|\mathcal{F}_k]
$$
\n
$$
+ \widetilde{E}[(1+r)^{-(k+1)}\Delta_k S_{k+1}|\mathcal{F}_k]
$$
\n
$$
- \widetilde{E}[(1+r)^{-k}\Delta_k S_k|\mathcal{F}_k]
$$
\n
$$
= (1+r)^{-k}X_k \quad \text{(requirement (b) of conditional exp.)}
$$
\n
$$
+ \Delta_k \widetilde{E}[(1+r)^{-(k+1)}S_{k+1}|\mathcal{F}_k] \quad \text{(taking out what is known)}
$$
\n
$$
-(1+r)^{-k}\Delta_k S_k \quad \text{(property (b))}
$$
\n
$$
= (1+r)^{-k}X_k \quad \text{(Theorem 3.11)}
$$

3.4 Simple European Derivative Securities

Definition 3.1 () A *simple European derivative security* with expiration time m is an \mathcal{F}_m -measurable random variable V_m . (Here, m is less than or equal to n, the number of periods/coin-tosses in the model).

Definition 3.2 () A simple European derivative security V_m is said to be *hedgeable* if there exists a constant X_0 and a portfolio process $\Delta = (\Delta_0, \ldots, \Delta_{m-1})$ such that the self-financing value process X_0, X_1, \ldots, X_m given by (3.2) satisfies

$$
X_m(\omega) = V_m(\omega), \quad \forall \omega \in \Omega.
$$

In this case, for $k = 0, 1, \ldots, m$, we call X_k the *APT value at time* k of V_m .

 λ

Theorem 4.13 (Corollary to Theorem 3.12) *If a simple European security* V_m *is hedgeable, then* for each $k = 0, 1, \ldots, m$, the APT value at time k of V_m is

$$
V_k \stackrel{\triangle}{=} (1+r)^k E[(1+r)^{-m}V_m|\mathcal{F}_k]. \tag{4.1}
$$

Proof: We first observe that if $\{M_k, \mathcal{F}_k; k = 0, 1, \ldots, m\}$ is a martingale, i.e., satisfies the martingale property

$$
I\!\!E[M_{k+1}|\mathcal{F}_k] = M_k
$$

for each $k = 0, 1, \ldots, m - 1$, then we also have

 \sim

$$
I\!\!E[M_m|\mathcal{F}_k] = M_k, k = 0, 1, \dots, m - 1. \tag{4.2}
$$

When $k = m - 1$, the equation (4.2) follows directly from the martingale property. For $k = m - 2$, we use the tower property to write

$$
\widetilde{E}[M_m|\mathcal{F}_{m-2}] = \widetilde{E}[\widetilde{E}[M_m|\mathcal{F}_{m-1}]|\mathcal{F}_{m-2}] \n= \widetilde{E}[M_{m-1}|\mathcal{F}_{m-2}] \n= M_{m-2}.
$$

 \blacksquare

We can continue by induction to obtain (4.2) .

If the simple European security V_m is hedgeable, then there is a portfolio process whose selffinancing value process X_0, X_1, \ldots, X_m satisfies $X_m = V_m$. By definition, X_k is the APT value at time k of V_m . Theorem 3.12 says that

$$
X_0, (1+r)^{-1}X_1, \ldots, (1+r)^{-m}X_m
$$

is a martingale, and so for each k ,

$$
(1+r)^{-k}X_k = \widetilde{E}[(1+r)^{-m}X_m|\mathcal{F}_k] = \widetilde{E}[(1+r)^{-m}V_m|\mathcal{F}_k].
$$

Therefore,

$$
X_k = (1+r)^k \overline{E}[(1+r)^{-m}V_m|\mathcal{F}_k].
$$

3.5 The Binomial Model is Complete

Can a simple European derivative security always be hedged? It depends on the model. If the answer is "yes", the model is said to be *complete.* If the answer is "no", the model is called *incomplete.*

Theorem 5.14 The binomial model is complete. In particular, let V_m be a simple European deriva*tive security, and set*

$$
V_k(\omega_1,\ldots,\omega_k)=(1+r)^k\widetilde{\mathbf{E}}[(1+r)^{-m}V_m|\mathcal{F}_k](\omega_1,\ldots,\omega_k), \qquad (5.1)
$$

$$
\Delta_k(\omega_1,\ldots,\omega_k) = \frac{V_{k+1}(\omega_1,\ldots,\omega_k,H) - V_{k+1}(\omega_1,\ldots,\omega_k,T)}{S_{k+1}(\omega_1,\ldots,\omega_k,H) - S_{k+1}(\omega_1,\ldots,\omega_k,T)}.
$$
(5.2)

Starting with initial wealth ${V}_0 =I\!\!E[(1+r)^{-m}V_m]$, the self-financing value of the portfolio process $\Delta_0, \Delta_1, \ldots, \Delta_{m-1}$ is the process V_0, V_1, \ldots, V_m .

Proof: Let V_0, \ldots, V_{m-1} and $\Delta_0, \ldots, \Delta_{m-1}$ be defined by (5.1) and (5.2). Set $X_0 = V_0$ and define the self-financing value of the portfolio process $\Delta_0, \ldots, \Delta_{m-1}$ by the recursive formula 3.2:

$$
X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k).
$$

We need to show that

$$
X_k = V_k, \quad \forall k \in \{0, 1, \dots, m\}.
$$
\n
$$
(5.3)
$$

We proceed by induction. For $k = 0$, (5.3) holds by definition of X_0 . Assume that (5.3) holds for some value of k, i.e., for each fixed $(\omega_1, \dots, \omega_k)$, we have

$$
X_k(\omega_1,\ldots,\omega_k)=V_k(\omega_1,\ldots,\omega_k).
$$

 \blacksquare

We need to show that

$$
X_{k+1}(\omega_1,\ldots,\omega_k,H) = V_{k+1}(\omega_1,\ldots,\omega_k,H),
$$

$$
X_{k+1}(\omega_1,\ldots,\omega_k,T) = V_{k+1}(\omega_1,\ldots,\omega_k,T).
$$

We prove the first equality; the second can be shown similarly. Note first that

$$
\widetilde{E}[(1+r)^{-(k+1)}V_{k+1}|\mathcal{F}_k] = \widetilde{E}[\widetilde{E}[(1+r)^{-m}V_m|\mathcal{F}_{k+1}]|\mathcal{F}_k]
$$

\n
$$
= \widetilde{E}[(1+r)^{-m}V_m|\mathcal{F}_k]
$$

\n
$$
= (1+r)^{-k}V_k
$$

In other words, $\{(1+r)^{-k}V_k\}_{k=0}^n$ is a martingale under \mathbb{P} . In particular,

$$
V_k(\omega_1,\ldots,\omega_k) = \widetilde{E}[(1+r)^{-1}V_{k+1}|\mathcal{F}_k](\omega_1,\ldots,\omega_k)
$$

=
$$
\frac{1}{1+r}(\tilde{p}V_{k+1}(\omega_1,\ldots,\omega_k,H)+\tilde{q}V_{k+1}(\omega_1,\ldots,\omega_k,T)).
$$

Since $(\omega_1, \dots, \omega_k)$ will be fixed for the rest of the proof, we simplify notation by suppressing these symbols. For example, we write the last equation as

$$
V_k = \frac{1}{1+r} \left(\tilde{p} V_{k+1}(H) + \tilde{q} V_{k+1}(T) \right).
$$

We compute

$$
X_{k+1}(H)
$$

= $\Delta_k S_{k+1}(H) + (1+r)(X_k - \Delta_k S_k)$
= $\Delta_k (S_{k+1}(H) - (1+r)S_k) + (1+r)V_k$
= $\frac{V_{k+1}(H) - V_{k+1}(T)}{S_{k+1}(H) - S_{k+1}(T)} (S_{k+1}(H) - (1+r)S_k)$
+ $\tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T)$
= $\frac{V_{k+1}(H) - V_{k+1}(T)}{uS_k - dS_k} (uS_k - (1+r)S_k)$
+ $\tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T)$
= $(V_{k+1}(H) - V_{k+1}(T)) (\frac{u-1-r}{u-d}) + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T)$
= $(V_{k+1}(H) - V_{k+1}(T)) \tilde{q} + \tilde{p}V_{k+1}(H) + \tilde{q}V_{k+1}(T)$
= $V_{k+1}(H)$.

 \blacksquare