Chapter 3

Arbitrage Pricing

3.1 Binomial Pricing

Return to the binomial pricing model

Please see:

e Cox, Ross and Rubinsteid, Financial Economics, 7(1979), 229-263, and

e Cox and Rubinstein (1985 ptions M arkets, Prentice-Hall.

Example 3.1 (Pricing a Call Option) Suppose: = 2,d = 0.5,r = 25%(interest rate)S, = 50. (In this
and all examples, the interest rate quoted is per unit time, and the stock fyicas. . . are indexed by the
same time periods). We know that

i) = { 25w =T

Find the valueat time zero of a call option to buy one share of stock at time 1 for $50 (i.e.sthi&e priceis
$50).

The value of the call attime 1 is

= s B =

Suppose the option sells for $20 at time 0. Let us construct a portfolio:

1. Sell 3 options for $20 each. Cash outlay-i$60.
2. Buy 2 shares of stock for $50 each. Cash outlay is $100.
3. Borrow $40. Cash outlay is$40.
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This portfolio thus requires no initial investment. For this portfolio, the cash outlay at time 1 is:

wle wlzT

Pay off option $150 $0
Sell stock —$200 —$50
Pay off debt $50 $50
$0 $0
Thearbitrage pricing theory (APT) value of the option at time 0 i, = 20. ]

Assumptions underlying APT:

e Unlimited short selling of stock.

¢ Unlimited borrowing.

¢ No transaction costs.

e Agentis a “small investor”, i.e., his/her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabiliti¢s of
andT'.

3.2 General one-step APT

Suppose a derivative security pays off the amaddntt time 1, wherél; is an F7{-measurable
random variable. (This measurability condition is important; this is why it does not make sense
to use some stock unrelated to the derivative security in valuing it, at least in the straightforward
method described below).

e Sell the security fob/, at time 0. {4 is to be determined later).
e Buy A, shares of stock at time 0A( is also to be determined later)

e InvestVy — AySp in the money market, at risk-free interest rate(Vy, — AgSe might be
negative).

e Thenwealth attime 1 is

>

X1 = AgSi+ (1 + T‘) (VO - AOSO)
= (1—|—T‘)V0—|—A0(Sl—(1—|—7‘)50)

e \We want to choos&, andA so that
X1 =V

regardless of whether the stock goes up or down.
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The last condition above can be expressetidmyequations (which is fortunate since there t@ave
unknowns):

(1—|—T‘)V0—|—A0(51(H)— (1—|—7‘)50) :V1(H) (21)

(1—|—T‘)V0—|—A0(51(T) - (1—|—7‘)50) = Vl(T) (22)

Note that this is where we use the fact that the derivative security ¥§Jus a function ofSjy,
i.e., whenSy, is known for a givenv, Vj is known (and therefore non-random) at thaas well.
Subtracting the second equation above from the first gives

_WH) - W)

Bo = Sy(H) — S((T)

(2.3)

Plug the formula (2.3) for\, into (2.1):

(14+rVe = Vi(H) = Ao(S1(H) — (14 7)5So)
Vi(H) — Vi (T)
C(u-d)S,
= (= d)Vi(H) — (Vi(H) = V(D)) (1~ 1 = 1)

1+r—d u—1-—r
u—d

= Vi(H) - (u—1-7r)S

Vi(T).

We have already assumed> d > 0. We now also assume< 1 + r < u (otherwise there would
be an arbitrage opportunity). Define

él—l—r—d

éu—l—r
u—d -

uw—d

Thenp > 0andq > 0. Sincep+ ¢ = 1, we haved < p < 1 andg = 1 — p. Thus,p, ¢ are like
probabilities. We will return to this later. Thus the price of the call at time 0 is given by

p q

3.3 Risk-Neutral Probability Measure

Let Q2 be the set of possible outcomes frantoin tosses. Construct a probability measiiton (2
by the formula
Plwr,ws, ... wy,) 2 ptlwi=H) g#{iw;=T)

P is called therisk-neutral probability measure. We denote byiE the expectation unddP. Equa-

tion 2.4 says
— /1
=F .
Yo (1 + rvl)
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Theorem 3.11 Under /P, the discounted stock price process{(1+r) %S, Fi}i_, isamartingale.

Pr oof:

E[(1+ )~ 0554 [ Fy]
= (1+ )" (u + §d) Sy
= (14 )" (+D (u(l +r—d) N d(u—1- r)) 5

uw—d uw—d
_ (1+r)_(k+1)u—|—ur—ud—|—du—d—drsk
uw—d
= (1—|-r)_(k+1)—(u_ d)(l—l_r)Sk
uw—d

= (1 + T‘)_ksk.

3.3.1 Portfolio Process

The portfolio process i& = (Ag, Ay, ... ,A,_1), where

e A} is the number of shares of stock held between tilnandk 4+ 1.

e EachAj is Fi-measurable. (No insider trading).

3.3.2 Sdf-financing Value of a Portfolio Process A

e Start with nonrandom initial wealtl ¢, which need not be 0.

e Define recursively

Xeg1 = AkSkH + (1 + T‘) (Xk — AkSk) (31)
= (1—|—T‘)Xk—|—Ak(Sk+1 — (1—|—T‘)Sk) (32)

e Then eachX}, is F-measurable.

Theorem 3.12 Under P, the discounted self-financing portfolioprocessvalue { (1 4 r) ~* Xy, Fr}7_,
isamartingale.

Proof: We have

(L)~ X = (14 7) 7R X+ Ay ((1 + )G — (14 r)_kSk) )
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Therefore,

E[(1+ )~ DX | Fy

= FE[(1+r) "X, |Fx)
FIE[(1+ )~ F DAL Sk | Fi
—ﬁ[(l + T‘)_kAkSku:k]

= (1+r)"*X, (requirement (b) of conditional exp.)
FALE[(14 r)~ DG, |FL]  (taking out what is known)
—(1+7r)7*ARSk  (property (b))

= (1+r) %X, (Theorem 3.11)

3.4 SimpleEuropean Derivative Securities

Definition 3.1 () A simpleEuropean derivative security with expiration timen is anF ,,,-measurable
random variabléd/,,. (Here,m is less than or equal te, the number of periods/coin-tosses in the
model).

Definition 3.2 () A simple European derivative security, is said to behedgeable if there exists
a constantYy and a portfolio procesa = (Ao, ...,A,,_1) such that the self-financing value
processXy, Xy, ..., X,, given by (3.2) satisfies

Xp(w) =Viy(w), Ywel

In this case, fok = 0,1, ..., m, we callX; the APT valueat time k of V,,,.

Theorem 4.13 (Corollary to Theorem 3.12) If a simple European security V,,, is hedgeable, then

foreachk =0,1,...,m,the APT valueat time k of V,,, is
A —
Ve = (14+ ) IE[(1+r) ™"V, | Fil. (4.1)
Proof: We first observe that if My, Fi;k = 0,1,...,m} is a martingale, i.e., satisfies the

martingale property

F[Mpy1|Fr] = M,
foreachk =0,1,...,m — 1, then we also have
E[M,|Fi] = My, k=0,1,...,m— 1. (4.2)

Whenk = m — 1, the equation (4.2) follows directly from the martingale property. Fer m — 2,
we use the tower property to write
ﬁ[Mme—z] = ﬁ[ﬁ[Mmu:m—l”]:m—?]
E[Mm—l |]:m—2]
= M, _,.
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We can continue by induction to obtain (4.2).

If the simple European security,,, is hedgeable, then there is a portfolio process whose self-
financing value proces’,, Xy, ..., X,, satisfiesX,, = V,,,. By definition, X}, is the APT value
at timek of V,,. Theorem 3.12 says that

Xoy (147" Xy, ..o, (1+7)"™X,,
is a martingale, and so for eaéh
(L4 )% Xy = E[(1+ )" X | Fi] = E[(1+ 1)V, | Fil.

Therefore, .
Xy = (1+ ) E[(1+ 7)™V, | Frl.

3.5 TheBinomial Mode is Complete

Can a simple European derivative security always be hedged? It depends on the model. If the answer
is “yes”, the model is said to beomplete. If the answer is “no”, the model is calledcomplete.

Theorem 5.14 The binomial model iscomplete. In particular, let V,,, be a simple European deriva-
tive security, and set

Vilwis - wp) = (L4 )P E[(1+ 7)™ Vo | Fil (w1 - - - wp), (5.1)

- Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)

Ak(wh s 7wk) (52)

- Sk+1(wl7... 7Wk7H)—Sk+1(wl7... 7Wk7T)'

Sartingwithinitial wealth Vo = 7E[(1 + r)~"V,,], the self-financing val ue of the portfolio process
Ag, Ay, ..., Ay, istheprocess Vo, Vi, ..., V.

Proof: LetVp,...,V,,_1andAg,...,A,, 1 be defined by (5.1) and (5.2). S&, = 1}, and
define the self-financing value of the portfolio procéss . .. , A,,_1 by the recursive formula 3.2:

Xit1 = ApSi1 + (14 7) (X — ApSk).
We need to show that
X =V, Vke {0,1,... ,m}. (53)

We proceed by induction. Fdr = 0, (5.3) holds by definition oXy. Assume that (5.3) holds for
some value ok, i.e., for each fixedw, ... ,wy), we have

Xk(wh s 7wk) = Vk(wh s 7wk)‘
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We need to show that
Xk—l—l(wlv o ,Wk,H) = Vk—l—l(wlv o 7wk7H)7

Xk_|_1(w1, e 7Wk7T) = Vk+1(w1, e 7Wk7T).

We prove the first equality; the second can be shown similarly. Note first that

E[(1+r)" V| Fi] = EE[(L+ )" Vil Fra]| Fi]
= E[(1+7)"Vu| Fy]
= (1—|—T‘)_ka

In other words{ (1 + r)~*V}}2_, is a martingale undelP. In particular,

Vilwr,..oowr) = E[1+7) """V Frl@r, ... wi)

1 . -
= o Ve @ ) 4 Ve (o T))
Since(wr, . .. ,wy) Will be fixed for the rest of the proof, we simplify notation by suppressing these
symbols. For example, we write the last equation as
1 . -
Vi= T (PVit1 (H) + ¢V (1) -
We compute
Xpy1(H)

= AkSk+1(H)+ (1—|—T‘)(Xk—AkSk)

= Ay (Sk+1(H)— (1—|—T‘)Sk)—|—(1—|—7‘)vk

Ve (H) = Vi (7) (14

— T Sk - (14 S
Vg1 (H) + GViq 1 (1)

- VHI?(LZZ = Z;ZI(T) (wSk = (147)5k)

FPVis1(H) + Vi (T)
= Wi () = Vira (D) () o BV () + Vi (1)

= (Vi1 (H) = Vit (1)) G+ pViyr (H) + Vi1 (T)
= Vi (1),




