Chapter 29

Gaussian processes

Definition 29.1 (Gaussian Process) A Gaussianprocess X (t), ¢ > 0, is astochastic process with
the property that for every set of times0 < ¢ <ty < ... < t,, the set of random variables

X(t1), X (t2), ..., X(tn)
isjointly normally distributed.
Remark 29.1 If X isaGaussian process, then itsdistributionis determined by its mean function
m(t) = FEX(t)
and its covariance function
p(s,t) = IE[(X(s) = m(s)) - (X (1) —m(1))].

Indeed, the joint density of X (¢1),..., X (¢,) is

P{X(t;) € dwl,... X (t,) € day}

(zﬂ)n/z det > p{ )X (x - m(t))T} dzy ... dz.,

where Y. isthe covariance matrix

plti,t1)  p(tista) pt1,tn)
= P(t27t1) P(t27t2) p(t27tn)
p(tnvtl) p(tnth) tee p(tnvtn)
x istherow vector [z1, z2, . .. , z,], tistherow vector [¢1, t3, . .. , &), andm(t) = [m(t1), m(t2), ...

The moment generating functionis

Eexp{zn: ukX(tk)} = exp{u-m(t)T + %u-E . uT}7

k=1

where u = [uy, ug, ..., uy,)].
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29.1 An example: Brownian Motion

Brownian motion W isa Gaussian processwith m () = 0 and p(s,t) = s At. Indeed, if 0 < s < ¢,
then

pls,t) = IE[W(s)W ()] = IE [W(s) (W (1) — W(s)) + W(s)]
= EW (s).0E (W (t) — W(s)) + IEW?(s)
= IEW?(s)
=sAt.

To prove that a processis Gaussian, one must show that X (¢4), ..., X (¢,,) haseither adensity or a
moment generating function of the appropriate form. We shall use the m.g.f., and shall cheat a bit
by considering only two times, which we usually call s and ¢. We will want to show that

IE exp {u1 X (s) + us X ()} = exp {u1m1 + ugma + 1[uq ] lffn Ul?] l?h] } ‘

021 022] |U2

Theorem 1.69 (Integral w.r.t. aBrownian) Let 1V (¢) be a Brownian motion and §(¢) a nonran-
dom function. Then

t
X(t) = / 5(u) dW (u)
0
isa Gaussian processwith m(¢) = 0 and

p(s,t) = /OSM 5% (u) du.

Proof: (Sketch.) We have

dX =& dW.
Therefore,
de" X = ue X5 (s) dW (s) + Lue ¥ (52 (s) ds,
X () = nXO) 4y, / T X5 (0) AW (0) +5u? / CXOR () do,
Martingale
EeXO =14 4t [ 82 0)Ee 0 do,
diijEeuX () = L2652 (s) e X (),

X () — uX(0) oy, {%uz /“’ 52(v) dv} (1.2)
0

:exp{%ﬁ/:(s?(v) dv}.

Thisshowsthat X (s) isnormal with mean 0 and variance [; 6%(v) dv.
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Now let 0 < s < ¢ be given. Just as before,
de" X0 = we XD (1) dW (1) + Lue X 52 (2) dt.
Integrate from s to¢ to get
t t
X = guX (o) 4 u/ 5(v)e“X(”) dW(v) + %uz/ 52(v)e“X(”) dv.

Teke IF]. . .| F(s)] conditional expectations and use the martingale property

E [/:5(@)@“(”) AW (v) (s)] —E [/()t5(v)e“X(”) AW (v) (s)] —/055(11)61“(”) AW (v)

=0
to get
B [e“X(t) f(s)] = "X 4 Ly / () E [e“X(”) }'(s)] dv
ZE [ X(0) (s)] — LR [e“X(t) }'(s)] Ltz
The solution to this ordinary differential equation with initia time s is
E [e“X(t) }'(s)] — X0 exp {%qﬁ / "5 (0) dv}, t> . (12)

We now compute the m.g.f. for (X (s), X (¢)), where0 < s < ¢
(s)] _ e XO) g [6“2X(t) (s)]
D ¥ O o {102 [0 v},
E {eulX(s)-I—uQX(t)} _ E{E [eulX(s)+u2X(t) f(s)]}
= {etmtexe], exp{% 2 /St(sz(v) dv}
(lz'l)exp{%(ul—l—UQ) / 52(v) dv + %ug/t(s?(v) dv}
_exp{ (u1—|—2u1u2)/05 52(v) do + L2 /()t52(v) dv}
fi 2 £}
Thisshowsthat (X (s), X (¢)) isjointly normal with IEX (s) = IEX (t) = 0,
EX2(s) :/0552@) dv,  EX() :/(f&?(v) dv,

E[X ()X (1)] = /0 52(v) do.

E [eulX(s)+u2X(t)
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Remark 29.2 The hard part of the above argument, and the reason we use moment generating
functions, isto prove the normality. The computation of means and variances does not require the
use of moment generating functions. Indeed,

isamartingaleand X (0) = 0, so

For fixed s > 0,

by the 1t6 isometry. For 0 < s < ¢,

X (s) (X (1) = X(s))]

[l
&
&
——
ﬁ
=
T
Jal

Therefore,
EIX (5)X (1)] = E[X () (X (1) — X(s)) + X*(s)]
— EX(s) = 05 52(v) do.
If § were a stochastic proess, the Itd isometry says
EX?(s) = /0 " B8 (v) dv
and the same argument used above showsthat for 0 < s < ¢,
E[X ()X (£)] = EX(s) = /0 E6(v) do.

However, when § is stochastic, X is not necessarily a Gaussian process, so its distribution is not
determined from its mean and covariance functions.

Remark 29.3 When ¢ is nonrandom,

X () = /Ot(sw) AW (u)

isalso Markov. We proved thisbefore, but note again that the Markov property followsimmediately
from (1.2). The equation (1.2) saysthat conditioned on (), the distribution of X (¢) dependsonly
on X (s); infact, X (¢) isnormal with mean X (s) and variance [ §2(v) dv.
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Figure 29.1: Range of values of y, z, v for the integralsin the proof of Theorem 1.70.

Theorem 1.70 Let W (¢) be a Brownian motion, and let §(¢) and & (¢) be nonrandom functions.
Define

Then Y isa Gaussian process with mean function my (¢) = 0 and covariance function

py (s,1) = /OSM 6% (v) (/Ush(y) dy) (/:h(y) dy) dv. (L3)

Proof: (Partial) Computation of py (s,?): Let 0 < s < t be given. It is shown in a homework
problem that (Y (s), Y (¢)) isajointly normal pair of random variables. Here we observe that

my (1) = EY (1) = /Oth(u) EX (u) du =0,

and we verify that (1.3) holds.



py(s,1) = I [Y(s)Y(t)]

We have
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0

Remark 29.4 Unlike the process X (1) = |,



CHAPTER 29. Gaussian processes 291

neither Markov nor amartingale. For 0 < s < ¢,

mwmﬂm:/%wmwwwwﬂfumﬂwm

0 i
=Y )+ [ LY (0| F()] du
:w@+luwﬂ@m

:Y@+X@/hwm%

S

where we have used the fact that X isa martingale. The conditional expectation I2[Y (¢)|F(s)] is
not equal to Y (s), nor isit afunction of Y (s) alone.



