
Chapter 29

Gaussian processes

Definition 29.1 (Gaussian Process) A Gaussian process X�t�, t � �, is a stochastic process with
the property that for every set of times � � t� � t� � � � � � tn, the set of random variables

X�t��� X�t��� � � � � X�tn�

is jointly normally distributed.

Remark 29.1 If X is a Gaussian process, then its distribution is determined by its mean function

m�t� � IEX�t�

and its covariance function

��s� t� � IE��X�s��m�s�� � �X�t��m�t����

Indeed, the joint density of X�t��� � � � � X�tn� is
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x is the row vector �x�� x�� � � � � xn�, t is the row vector �t�� t�� � � � � tn�, andm�t� � �m�t��� m�t��� � � � � m�tn��.

The moment generating function is

IE exp
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where u � �u�� u�� � � � � un�.
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29.1 An example: Brownian Motion

Brownian motionW is a Gaussian process withm�t� � � and ��s� t� � s� t. Indeed, if � � s � t,
then

��s� t� � IE �W �s�W �t�� � IE
h
W �s� �W �t��W �s�� 
W ��s�

i
� IEW �s��IE �W �t� �W �s�� 
 IEW ��s�

� IEW ��s�

� s � t�

To prove that a process is Gaussian, one must show that X�t��� � � � � X�tn� has either a density or a
moment generating function of the appropriate form. We shall use the m.g.f., and shall cheat a bit
by considering only two times, which we usually call s and t. We will want to show that

IE exp fu�X�s� 
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Theorem 1.69 (Integral w.r.t. a Brownian) Let W �t� be a Brownian motion and ��t� a nonran-
dom function. Then

X�t� �
Z t

�
��u� dW �u�

is a Gaussian process with m�t� � � and

��s� t� �

Z s�t

�
���u� du�

Proof: (Sketch.) We have
dX � � dW�

Therefore,

deuX�s� � ueuX�s���s� dW �s� 
 �
�u

�euX�s����s� ds�

euX�s� � euX��� 
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Z s

�
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Martingale
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This shows that X�s� is normal with mean 0 and variance
R s
� �

��v� dv.
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Now let � � s � t be given. Just as before,

deuX�t� � ueuX�t���t� dW �t� 
 �
�u

�euX�t����t� dt�

Integrate from s to t to get
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Take IE�� � � jF�s�� conditional expectations and use the martingale property
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The solution to this ordinary differential equation with initial time s is
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We now compute the m.g.f. for �X�s�� X�t��, where � � s � t:
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This shows that �X�s�� X�t�� is jointly normal with IEX�s� � IEX�t� � �,
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Remark 29.2 The hard part of the above argument, and the reason we use moment generating
functions, is to prove the normality. The computation of means and variances does not require the
use of moment generating functions. Indeed,

X�t� �

Z t

�
��u� dW �u�

is a martingale and X��� � �, so

m�t� � IEX�t� � � �t � ��

For fixed s � �,

IEX��s� �
Z s

�
���v� dv

by the Itô isometry. For � � s � t,
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Therefore,

IE�X�s�X�t�� � IE�X�s��X�t��X�s�� 
X��s��

� IEX��s� �
Z s

�
���v� dv�

If � were a stochastic proess, the Itô isometry says

IEX��s� �
Z s

�
IE���v� dv

and the same argument used above shows that for � � s � t,

IE�X�s�X�t�� � IEX��s� �
Z s

�
IE���v� dv�

However, when � is stochastic, X is not necessarily a Gaussian process, so its distribution is not
determined from its mean and covariance functions.

Remark 29.3 When � is nonrandom,

X�t� �

Z t

�
��u� dW �u�

is also Markov. We proved this before, but note again that the Markov property follows immediately
from (1.2). The equation (1.2) says that conditioned on F�s�, the distribution of X�t� depends only
on X�s�; in fact, X�t� is normal with mean X�s� and variance

R t
s �

��v� dv.



CHAPTER 29. Gaussian processes 289

y
t

y =
 zz

s

z

s

v =
 z

v

y

z

t

s

y =
 z

v

(a) (b)

(c)

Figure 29.1: Range of values of y� z� v for the integrals in the proof of Theorem 1.70.

Theorem 1.70 Let W �t� be a Brownian motion, and let ��t� and h�t� be nonrandom functions.
Define

X�t� �
Z t

�
��u� dW �u�� Y �t� �

Z t

�
h�u�X�u� du�

Then Y is a Gaussian process with mean functionmY �t� � � and covariance function

�Y �s� t� �

Z s�t

�
���v�
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v
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��Z t

v
h�y� dy
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dv� (1.3)

Proof: (Partial) Computation of �Y �s� t�: Let � � s � t be given. It is shown in a homework
problem that �Y �s�� Y �t�� is a jointly normal pair of random variables. Here we observe that

mY �t� � IEY �t� �
Z t

�
h�u� IEX�u� du � ��

and we verify that (1.3) holds.
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We have
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Remark 29.4 Unlike the process X�t� �
R t
� ��u� dW �u�, the process Y �t� �

R t
� X�u� du is
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neither Markov nor a martingale. For � � s � t,

IE�Y �t�jF�s�� �
Z s

�
h�u�X�u� du
 IE

�Z t

s
h�u�X�u� du

����F�s�
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Z t

s
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X�s�
Z t

s
h�u� du�

where we have used the fact that X is a martingale. The conditional expectation IE�Y �t�jF�s�� is
not equal to Y �s�, nor is it a function of Y �s� alone.


