Chapter 26

Options on dividend-paying stocks

26.1 American option with convex payoff function

Theorem 1.64 Consider the stock price process

$$dS(t) = r(t)S(t) dt + \sigma(t)S(t) dB(t),$$

where r and σ are processes and $r(t) \ge 0$, $0 \le t \le T$, a.s. This stock pays no dividends. Let h(x) be a convex function of $x \ge 0$, and assume h(0) = 0. (E.g., $h(x) = (x - K)^+$). An American contingent claim paying h(S(t)) if exercised at time t does not need to be exercised before expiration, i.e., waiting until expiration to decide whether to exercise entails no loss of value.

Proof: For $0 \le \alpha \le 1$ and $x \ge 0$, we have

$$h(\alpha x) = h((1 - \alpha)0 + \alpha x)$$

$$\leq (1 - \alpha)h(0) + \alpha h(x)$$

$$= \alpha h(x).$$

Let T be the time of expiration of the contingent claim. For $0 \le t \le T$,

$$0 \le \frac{\beta(t)}{\beta(T)} = \exp\left\{-\int_t^T r(u) \ du\right\} \le 1$$

and $S(T) \geq 0$, so

$$h\left(\frac{\beta(t)}{\beta(T)}S(T)\right) \le \frac{\beta(t)}{\beta(T)}h(S(T)). \tag{*}$$

Consider a European contingent claim paying h(S(T)) at time T. The value of this claim at time $t \in [0, T]$ is

$$X(t) = \beta(t) \mathbb{I}\!\!E\left[\frac{1}{\beta(T)}h(S(T))\middle|\mathcal{F}(t)\right].$$

Figure 26.1: Convex payoff function

Therefore,

$$\begin{split} \frac{X(t)}{\beta(t)} &= \frac{1}{\beta(t)} I\!\!E \left[\frac{\beta(t)}{\beta(T)} h(S(T)) \middle| \mathcal{F}(t) \right] \\ &\geq \frac{1}{\beta(t)} I\!\!E \left[h\left(\frac{\beta(t)}{\beta(T)} S(T) \right) \middle| \mathcal{F}(t) \right] \quad \text{(by (*))} \\ &\geq \frac{1}{\beta(t)} h\left(\beta(t) I\!\!E \left[\frac{S(T)}{\beta(T)} \middle| \mathcal{F}(t) \right] \right) \quad \text{(Jensen's inequality)} \\ &= \frac{1}{\beta(t)} h\left(\beta(t) \frac{S(t)}{\beta(t)} \right) \quad (\frac{S}{\beta} \text{ is a martingale}) \\ &= \frac{1}{\beta(t)} h(S(t)). \end{split}$$

This shows that the value X(t) of the European contingent claim dominates the intrinsic value h(S(t)) of the American claim. In fact, except in degenerate cases, the inequality

$$X(t) \ge h(S(t)), \quad 0 \le t \le T,$$

is strict, i.e., the American claim should not be exercised prior to expiration.

26.2 Dividend paying stock

Let r and σ be constant, let δ be a "dividend coefficient" satisfying

$$0 < \delta < 1.$$

Let T > 0 be an expiration time, and let $t_1 \in (0, T)$ be the time of dividend payment. The stock price is given by

$$S(t) = \begin{cases} S(0) \exp\{(r - \frac{1}{2}\sigma^2)t + \sigma B(t)\}, & 0 \le t \le t_1, \\ (1 - \delta)S(t_1) \exp\{(r - \frac{1}{2}\sigma^2)(t - t_1) + \sigma(B(t) - B(t_1))\}, & t_1 < t \le T. \end{cases}$$

Consider an American call on this stock. At times $t \in (t_1, T)$, it is not optimal to exercise, so the value of the call is given by the usual Black-Scholes formula

$$v(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x)), \quad t_{1} < t \le T,$$

where

$$d_{\pm}(T-t,x) = \frac{1}{\sigma\sqrt{T-t}} \left[\log \frac{x}{K} + (T-t)(r \pm \sigma^2/2) \right]$$

At time t_1 , immediately *after* payment of the dividend, the value of the call is

$$v(t_1,(1-\delta)S(t_1)).$$

At time t_1 , immediately *before* payment of the dividend, the value of the call is

 $w(t_1, S(t_1)),$

where

$$w(t_1, x) = \max \{ (x - K)^+, v(t_1, (1 - \delta)x \}.$$

Theorem 2.65 For $0 \le t \le t_1$, the value of the American call is w(t, S(t)), where

$$w(t,x) = I\!\!E^{t,x} \left[e^{-r(t_1-t)} w(t_1, S(t_1)) \right].$$

This function satisfies the usual Black-Scholes equation

$$-rw + w_t + rxw_x + \frac{1}{2}\sigma^2 x^2 w_{xx} = 0, \quad 0 \le t \le t_1, \ x \ge 0,$$

(where w = w(t, x)) with terminal condition

$$w(t_1, x) = \max\{(x - K)^+, v(t_1, (1 - \delta)x)\}, x \ge 0,$$

and boundary condition

$$w(t,0) = 0, \quad 0 \le t \le T.$$

The hedging portfolio is

$$\Delta(t) = \begin{cases} w_x(t, S(t)), & 0 \le t \le t_1, \\ v_x(t, S(t)), & t_1 < t \le T. \end{cases}$$

Proof: We only need to show that an American contingent claim with payoff $w(t_1, S(t_1))$ at time t_1 need not be exercised before time t_1 . According to Theorem 1.64, it suffices to prove

1. $w(t_1, 0) = 0$,

2. $w(t_1, x)$ is convex in x.

Since $v(t_1, 0) = 0$, we have immediately that

$$w(t_1, 0) = \max \{ (0 - K)^+, v(t_1, (1 - \delta)0) \} = 0.$$

To prove that $w(t_1, x)$ is convex in x, we need to show that $v(t_1, (1-\delta)x)$ is convex is x. Obviously, $(x - K)^+$ is convex in x, and the maximum of two convex functions is convex. The proof of the convexity of $v(t_1, (1-\delta)x)$ in x is left as a homework problem.

26.3 Hedging at time t_1

Let $x = S(t_1)$.

Case I: $v(t_1, (1 - \delta)x) \ge (x - K)^+$.

The option need not be exercised at time t_1 (should not be exercised if the inequality is strict). We have

$$w(t_1, x) = v(t_1, (1 - \delta)x),$$

$$\Delta(t_1) = w_x(t_1, x) = (1 - \delta)v_x(t_1, (1 - \delta)x) = (1 - \delta)\Delta(t_1 + \lambda),$$

where

$$\Delta(t_1+) = \lim_{t \downarrow t_1} \Delta(t)$$

is the number of shares of stock held by the hedge immediately after payment of the dividend. The post-dividend position can be achieved by reinvesting in stock the dividends received on the stock held in the hedge. Indeed,

$$\Delta(t_1+) = \frac{1}{1-\delta}\Delta(t_1) = \Delta(t_1) + \frac{\delta}{1-\delta}\Delta(t_1)$$

= $\Delta(t_1) + \frac{\delta\Delta(t_1)S(t_1)}{(1-\delta)S(t_1)}$ dividends received

= # of shares held when dividend is paid + $\frac{1}{\text{price per share when dividend is reinvested}}$

Case II: $v(t_1, (1 - \delta)x) < (x - K)^+$.

The owner of the option should exercise before the dividend payment at time t_1 and receive (x - K). The hedge has been constructed so the seller of the option has x - K before the dividend payment at time t_1 . If the option is not exercised, its value drops from x - K to $v(t_1, (1 - \delta)x)$, and the seller of the option can pocket the difference and continue the hedge.

266