
Chapter 25

American Options

This and the following chapters form part of the course Stochastic Differential Equations for Fi-
nance II.

25.1 Preview of perpetual American put

dS � rS dt � �S dB

Intrinsic value at time t � �K � S�t����

Let L � ��� K� be given. Suppose we exercise the first time the stock price is L or lower. We define

�L � minft � �	S�t� � Lg�
vL�x� � IEe�r�L�K � S��L��

�

�

�
K � x if x � L,

�K � L�IEe�r�L if x � L�

The plan is to comute vL�x� and then maximize over L to find the optimal exercise price. We need
to know the distribution of �L.

25.2 First passage times for Brownian motion: first method

(Based on the reflection principle)

Let B be a Brownian motion under IP , let x � � be given, and define

� � minft � �	B�t� � xg�

� is called the first passage time to x. We compute the distribution of � .
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Figure 25.1: Intrinsic value of perpetual American put

Define

M�t� � max
��u�t

B�u��

From the first section of Chapter 20 we have

IPfM�t� � dm�B�t� � dbg � 
�
m� b�

t
p

�t

exp

�
��
m� b��


t

�
dm db� m � �� b � m�

Therefore,

IPfM�t� � xg �
Z �

x

Z m

��

�
m� b�

t
p

�t

exp

�
��
m� b��


t

�
db dm

�
Z �

x


p

�t

exp

�
��
m� b��


t

� ����b�m
b���

dm

�
Z �

x


p

�t

exp

�
�m

�


t

�
dm�

We make the change of variable z � mp
t

in the integral to get

�
Z �

x�
p
t


p

�

exp

�
�z

�




�
dz�

Now

� � t��M�t� � x�
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so

IPf� � dtg �
�

�t
IPf� � tg dt

�
�

�t
IP fM�t� � xg dt

�

�
�

�t

Z �

x�
p
t


p

�

exp

�
�z

�




�
dz

�
dt

� � 
p

�

exp

�
�x

�


t

�
�
�

�t

�
xp
t

�
dt

�
x

t
p

�t

exp

�
�x

�


t

�
dt�

We also have the Laplace transform formula

IEe��� �
Z �

�
e��tIPf� � dtg

� e�x
p
��� 	 � �� (See Homework)

Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96.

25.3 Drift adjustment

Reference: Karatzas/Shreve, Brownian motion and Stochastic Calculus, pp 196–197.

For � � t ��, define eB�t� � 
t � B�t��

Z�t� � expf�
B�t� � �
�


�tg�
� expf�
 eB�t� � �

�

�tg�

Define

�� � minft � �	 eB�t� � xg�
We fix a finite time T and change the probability measure “only up to T”. More specifically, with
T fixed, define fIP �A� �

Z
A
Z�T � dP� A � F�T ��

Under fIP , the process eB�t�� � � t � T , is a (nondrifted) Brownian motion, sofIP f�� � dtg � IPf� � dtg

�
x

t
p

�t

exp

�
�x

�


t

�
dt� � � t � T�
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For � � t � T we have

IPf�� � tg � IE
h
�f���tg

i
� fIE �

�f���tg
�

Z�T �

	
� fIE h

�f���tg expf
 eB�T �� �
�


�Tg
i

� fIE �
�f���tgfIE �

expf
 eB�T �� �
�


�Tg
����F��� � t�

		
� fIE h

�f���tg expf
 eB��� � t�� �
�


���� � t�g
i

� fIE h
�f���tg expf
x � �

�

���g

i
�

Z t

�
expf
x� �

�

�sgfIPf�� � dsg

�

Z t

�

x

s
p

�s

exp

�

x � �

�

�s � x�


s

�
ds

�

Z t

�

x

s
p

�s

exp

�
��x� 
s��


s

�
ds�

Therefore,

IPf�� � dtg � x

t
p

�t

exp

�
��x� 
t��


t

�
dt� � � t � T�

Since T is arbitrary, this must in fact be the correct formula for all t � �.

25.4 Drift-adjusted Laplace transform

Recall the Laplace transform formula for

� � minft � �	B�t� � xg

for nondrifted Brownian motion:

IEe��� �

Z �

�

x

t
p

�t

exp

�
�	t � x�


t

�
dt � e�x

p
��� 	 � �� x � ��

For

�� � minft � �	 
t�B�t� � xg�
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the Laplace transform is

IEe���� �
Z �

�

x

t
p

�t

exp

�
�	t � �x� 
t��


t

�
dt

�
Z �

�

x

t
p

�t

exp

�
�	t � x�


t
� x
 � �

�

�t

�
dt

� ex�
Z �

�

x

t
p

�t

exp

�
��	� �

�

��t� x�


t

�
dt

� ex��x
p
����� � 	 � �� x � ��

where in the last step we have used the formula for IEe��� with 	 replaced by 	� �
�


�.

If ����� ��, then
lim
�	� e

������� � �	

if ����� ��, then e������� � � for every 	 � �, so

lim
�	� e

������� � ��

Therefore,
lim
�	� e

������� � ������

Letting 		� and using the Monotone Convergence Theorem in the Laplace transform formula

IEe���� � ex��x
p
����� �

we obtain
IPf�� ��g � ex��x

p
�� � ex��xj�j�

If 
 � �, then
IPf�� ��g � ��

If 
 � �, then
IPf�� ��g � e�x� � ��

(Recall that x � �).

25.5 First passage times: Second method

(Based on martingales)

Let � � � be given. Then
Y �t� � expf�B�t� � �

��
�tg
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is a martingale, so Y �t � �� is also a martingale. We have

� � Y �� � ��
� IEY �t � ��
� IE expf�B�t � ��� �

��
��t � ��g�

� lim
t
� IE expf�B�t � ��� �

��
��t � ��g�

We want to take the limit inside the expectation. Since

� � expf�B�t � ��� �
��

��t � ��g � ex�

this is justified by the Bounded Convergence Theorem. Therefore,

� � IE lim
t
� expf�B�t � ��� �

��
��t � ��g�

There are two possibilities. For those � for which ���� ��,

lim
t
� expf�B�t � ��� �

��
��t � ��g � e�x�

�
��

�� �

For those � for which ���� ��,

lim
t
� expf�B�t � ��� �

��
��t � ��g � lim

t
� expf�x� �
��

�tg � ��

Therefore,

� � IE lim
t
� expf�B�t � ��� �

��
��t � ��g

� IE

�
e�x�

�
��

��
����

	
� IEe�x�

�
��

�� �

where we understand e�x�
�
��

�� to be zero if � ��.

Let 	 � �
��

�, so � �
p

	. We have again derived the Laplace transform formula

e�x
p
�� � IEe��� � 	 � �� x � ��

for the first passage time for nondrifted Brownian motion.

25.6 Perpetual American put

dS � rS dt� �S dB

S��� � x

S�t� � x expf�r� �
��

��t� �B�t�g

� x exp


��������
�����
�
r

�
� �




�
� �z �

�

t� B�t�

�����
��������� �
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Intrinsic value of the put at time t: �K � S�t���.

Let L � ��� K� be given. Define for x � L,

�L � minft � �	 S�t� � Lg
� minft � �	 
t �B�t� �

�

�
log

L

x
g

� minft � �	 �
t � B�t� �
�

�
log

x

L
g

Define

vL � �K � L�IEe�r�L

� �K � L� exp

�
� 

�
log

x

L
� �

�
log

x

L

p

r � 
�

�

� �K � L�

�
x

L
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�
p
�r���

�

We compute the exponent
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Therefore,

vL�x� �


��K � x�� � � x � L�

�K � L�
�
x
L

���r���

� x � L�

The curves �K � L�
�
x
L

���r���

� are all of the form Cx��r��
�

.

We want to choose the largest possible constant. The constant is

C � �K � L�L�r���

�
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Figure 25.2: Value of perpetual American put
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and

�C

�L
� �L �r

�� �

r

��
�K � L�L
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We solve

�
�
� �


r

��

�
�


r

��
K

L
� �

to get

L �

rK

�� � 
r
�

Since � � 
r � �� � 
r� we have
� � L � K�

Solution to the perpetual American put pricing problem (see Fig. 25.4):

v�x� �


��K � x�� � � x � L��
�K � L��

�
x
L�
���r���

� x � L��

where

L� �

rK

�� � 
r
�

Note that

v��x� �

�
��� � � x � L��
� �r
�� �K � L���L���r���

x��r������ x � L��

We have

lim
x	L� v

��x� � �
 r

��
�K � L��

�

L�

� �
 r

��

�
K � 
rK

�� � 
r

�
�� � 
r


rK

� �
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�
�� � 
r� 
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�� � 
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Figure 25.4: Solution to perpetual American put.

25.7 Value of the perpetual American put

Set

 �

r

��
� L� �


rK

�� � 
r
�



 � �
K�

If � � x � L�, then v�x� � K � x. If L� � x ��, then

v�x� � �K � L���L���� �z �
C

x�� (7.1)

� IEx
h
e�r� �K � L����f���g

i
� (7.2)

where

S��� � x (7.3)

� � minft � �	 S�t� � L�g� (7.4)

If � � x � L�, then

�rv�x� � rxv��x� � �
��

�x�v���x� � �r�K � x� � rx���� � �rK�
If L� � x ��, then

�rv�x� � rxv��x� � �
��

�x�v���x�

� C��rx�� � rxx���� � �
��

�x��� � ��x�����

� Cx�� ��r � r � �
��

��� � ���

� C�� � ��x��
�
r � �

��
�
�

r

��

�	
� ��

In other words, v solves the linear complementarity problem: (See Fig. 25.5).
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Figure 25.5: Linear complementarity

For all x � IR, x �� L�,

rv � rxv� � �
��

�x�v�� � �� (a)

v � �K � x��� (b)

One of the inequalities (a) or (b) is an equality. (c)

The half-line ����� is divided into two regions:

C � fx	 v�x� � �K � x��g�
S � fx	 rv � rxv� � �

��
�x�v�� � �g�

and L� is the boundary between them. If the stock price is in C, the owner of the put should not
exercise (should “continue”). If the stock price is in S or at L�, the owner of the put should exercise
(should “stop”).

25.8 Hedging the put

Let S��� be given. Sell the put at time zero for v�S����. Invest the money, holding ��t� shares of
stock and consuming at rate C�t� at time t. The value X�t� of this portfolio is governed by

dX�t� � ��t� dS�t� � r�X�t����t�S�t�� dt � C�t� dt�

or equivalently,

d�e�rtX�t�� � �e�rtC�t� dt� e�rt��t��S�t� dB�t��
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The discounted value of the put satisfies

d
 
e�rtv�S�t��

!
� e�rt

h
�rv�S�t�� � rS�t�v��S�t�� � �

��
�S��t�v���S�t��

i
dt

� e�rt�S�t�v��S�t�� dB�t�

� �rKe�rt�fS�t��L�gdt� e�rt�S�t�v��S�t�� dB�t��

We should set

C�t� � rK�fS�t��L�g�

��t� � v��S�t���

Remark 25.1 If S�t� � L�, then

v�S�t�� � K � S�t�� ��t� � v��S�t�� � ���
To hedge the put when S�t� � L�, short one share of stock and hold K in the money market. As
long as the owner does not exercise, you can consume the interest from the money market position,
i.e.,

C�t� � rK�fS�t��L�g�

Properties of e�rtv�S�t��:

1. e�rtv�S�t�� is a supermartingale (see its differential above).

2. e�rtv�S�t�� � e�rt�K � S�t���, � � t ��;

3. e�rtv�S�t�� is the smallest process with properties 1 and 2.

Explanation of property 3. Let Y be a supermartingale satisfying

Y �t� � e�rt�K � S�t���� � � t ��� (8.1)

Then property 3 says that

Y �t� � e�rtv�S�t��� � � t ��� (8.2)

We use (8.1) to prove (8.2) for t � �, i.e.,

Y ��� � v�S����� (8.3)

If t is not zero, we can take t to be the initial time and S�t� to be the initial stock price, and then
adapt the argument below to prove property (8.2).

Proof of (8.3), assuming Y is a supermartingale satisfying (8.1):

Case I: S��� � L�� We have

Y ��� ���z�
�	���

�K � S����� � v�S�����
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Case II: S��� � L�: For T � �, we have

Y ��� � IEY �� � T � (Stopped supermartingale is a supermartingale)

� IE
h
Y �� � T ��f���g

i
� (Since Y � �)

Now let T
� to get

Y ��� � lim
T
�

IE
h
Y �� � T ��f���g

i
� IE

h
Y ����f���g

i
(Fatou’s Lemma)

� IE

���e�r� �K � S���� �z �
L�

���f���g

��� (by 8.1)

� v�S����� (See eq. 7.2)

25.9 Perpetual American contingent claim

Intinsic value: h�S�t��.

Value of the American contingent claim:

v�x� � sup
�
IEx "e�r�h�S����# �

where the supremum is over all stopping times.

Optimal exercise rule: Any stopping time � which attains the supremum.

Characterization of v:

1. e�rtv�S�t�� is a supermartingale;

2. e�rtv�S�t�� � e�rth�S�t��� � � t ��;

3. e�rtv�S�t�� is the smallest process with properties 1 and 2.

25.10 Perpetual American call

v�x� � sup
�
IEx "e�r� �S����K��

#
Theorem 10.63

v�x� � x x � ��
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Proof: For every t,

v�x� � IEx
h
e�rt�S�t��K��

i
� IEx

h
e�rt�S�t��K�

i
� IEx

h
e�rtS�t�

i
� e�rtK

� x� e�rtK�

Let t
� to get v�x� � x.

Now start with S��� � x and define

Y �t� � e�rtS�t��

Then:

1. Y is a supermartingale (in fact, Y is a martingale);

2. Y �t� � e�rt�S�t��K��� � � t ��.

Therefore, Y ��� � v�S����, i.e.,
x � v�x��

Remark 25.2 No matter what � we choose,

IEx "e�r� �S����K��
#
� IEx "e�r�S���# � x � v�x��

There is no optimal exercise time.

25.11 Put with expiration

Expiration time: T � �.

Intrinsic value: �K � S�t���.

Value of the put:

v�t� x� � (value of the put at time t if S�t� � x)

� sup
t���T� �z �

� 
stopping time

IExe�r���t��K � S������

See Fig. 25.6. It can be shown that v� vt� vx are continuous across the boundary, while vxx has a
jump.

Let S��� be given. Then
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�

�

x

t

L�

T

K

v � K � x

�rv � vt � rxvx �
�
��

�x�vxx � �

v�T� x� � �� x � K

v � K � x

vt � �� vx � ��� vxx � �

�rv � vt � rxvx �
�
��

�x�vxx � �rK

v�T� x� � K � x� � � x � K

Figure 25.6: Value of put with expiration

1. e�rtv�t� S�t��� � � t � T� is a supermartingale;

2. e�rtv�t� S�t��� e�rt�K � S�t���� � � t � T ;

3. e�rtv�t� S�t�� is the smallest process with properties 1 and 2.

25.12 American contingent claim with expiration

Expiration time: T � �.

Intrinsic value: h�S�t��.

Value of the contingent claim:

v�t� x� � sup
t���T

IExe�r���t�h�S�����

Then

rv � vt � rxvx � �
��

�x�vxx � �� (a)

v � h�x�� (b)

At every point �t� x� � ��� T �� �����, either (a) or (b) is an equality. (c)

Characterization of v: Let S��� be given. Then
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1. e�rtv�t� S�t��� � � t � T� is a supermartingale;

2. e�rtv�t� S�t��� e�rth�S�t��;

3. e�rtv�t� S�t�� is the smallest process with properties 1 and 2.

The optimal exercise time is

� � minft � �	 v�t� S�t�� � h�S�t��g

If ���� ��, then there is no optimal exercise time along the particular path �.


