Chapter 24

An outside barrier option

Barrier process:

av() _
W = A dt—|— 01 dBl(t)
Stock process:
dS(t
T(t)) =pdt+ poy dBi(t) + /1 — p? 03 dBsy(t),

whereo; > 0, 09 > 0, —1 < p < 1, and By and B, are independent Brownian motions on some
(Q, F,P). The option pays off:

(S(T) = K) 1y (ry<ry
attime?’, where

0<S0)< K, 0<Y(0)<L,

(1) = Y (t).
YAHT) = max V(1)

Remark 24.1 The option payoff depends on both the Y and .S processes. In order to hedgeit, we
will need the money market and two other assets, which we taketo be Y and S. The risk-neutral
measure must make the discounted value of every traded asset be a martingale, which in this case
means the discounted Y and .S processes.

We want to find ¢, and 6, and define

dBy = 0, dt +dB;, dBy =05 dt + dB,
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so that
dY ~
7 =T dt—|— O'ldBl
=T dt—|— 0'101 dt—|— 01 ch
dS ~ ~
?:rdt—l—pag dBy 4+ /1 — p? 09d By
=rdt+ poy 01 dt ++/1 — p? o260, dt
—|—p0’2 dB1—|— 1—p2 (] dB2
We must have
A= r+0-1017 (01)
=1+ poyby + /1 — p? o96;. (0.2

We solveto get

A —
01: r7

01
02:u—r—p0201

V1—=p? oy '

We shall see that the formulas for §; and 6, do not matter. What matters is that (0.1) and (0.2)
uniquely determine 8, and #,. Thisimpliesthe existence and uniquenessof the risk-neutral measure.
We define

2(T) = exp {01 By (T) — 62 B(T) — 5(63 + 63)T},
PA) = /AZ(T) AP, VA€ F.

Under P, B; and B, are independent Brownian motions (Girsanov’'s Theorem). P isthe unique
risk-neutral measure.

Remark 24.2 Under both /P and 713, Y hasvolatility o, .S hasvolatility o5 and

dy ds »
W = po102 at,

i.e., the correlation between X and 42 is p.
The value of the option at time zero is
0(0,8(0),Y(0) = I [T (S(T) = K)* 1 yw(py<ry] -

We need to work out a density which permits us to compute the right-hand side.
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Recall that the barrier processis

dy ~
TITdt-I—O'l dB17

SO
Y (1) =Y (0)exp{rt+ o1 By (t) — Lot}
Set
0=r/c,— 012
B(t) = 6t + By (t),
M(T) = max B(t)
Then

Thejoint density of B(T) and M (T'), appearing in Chapter 20, is
IP{B(T) € db, M(T) € dn}

N AL .
:Mexp{_w+0b—%§2T} db dn,

TV2rT 2T
m > 0,b < 1.
The stock process.
d ~
; =rdt+ pUQdBl +1/1 = p? 09d By,

S(T) = S(0) exp{rT + pagBl( — 5,0 22T +4/1 — p? 0‘2B2
= 5(0) exp{rT — Lo3T + poaBy(T) 4+ /1 — p? 03By (T)}

From the above paragraph we have

By(T) = —8T + B(T),

S(T) = S(0) exp{rT + po, B(T) — LodT — pa T + /1 — p? 03B, (T)}

— )

03T}
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24.1 Computing the option value

0(0,5(0),Y(0)) = IB [ (S(T) = K)* L yyaryeny]

. . N - +
= TE[ (3@ exp{(r = S0} - poa)T 4 praBIT) 41— 2 0uBa(D) ) - )

Liv ) exp[almT)kL}]

We know the joint density of (B(T'), M (T)). Thedensity of B,(T) is

1 2
— X
V2T P { 2T

Furthermore, the pair of random variables (B(T'), M (T)) isindependent of Bz( ) becauseBlA and
B, areindependent under P. Therefore, thejoint density of therandom vector (B, (T)), B(T), M (T))
is

P{By(T) € db} = }db be R.

IP{B,y(T) € db, B(T) € db, M(T) € din,} = IP{By(T) € db}.IP{B(T) € db, M(T) € din}
The option value at time zero is

v(0,5(0), ¥Y(0))

O' logY m

R ) 3 +
=7 / //( exp{ — 305 = po2f)T + pasb + 1—,0202(’}_[()

0 —00 —00

1 b2
L expd -
2T P 2T

(21 — b) 2m—b)? ~ |
e expl———— 40— LT
TV27T p{ 2T 2

.db db din.

The answer depends on 7, S(0) and Y (0). It also dependson 01,02, p, 7, K and L. It does not
depend on \, ¢, 8, nor 6,. The parameter § appearing in the answer is§ = 91

U_T'

Remark 24.3 If we had not regarded Y as a traded asset, then we would not have tried to set its
mean return equal to ». We would have had only one equation (see Egs (0.1),(0.2))
=1+ poyby +1/1 — p? o96s (1.2

to determine #; and #;. The nonuniqueness of the solution alerts us that some options cannot be
hedged. Indeed, any option whose payoff dependson Y cannot be hedged when we are allowed to
trade only in the stock.
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If we have an option whose payoff depends only on 5, then Y is superfluous. Returning to the
original equation for 5,

g:udt—kpaz dB1 + /1 — p? 05 dBs,
we should set

dW = P dB1 + 1- pde27

so W isa Brownian motion under IP (Levy’stheorem), and

d
?S = p dt + oodW.

Now we have only Brownian mation, there will be only one ¢, namely,

o=L""

g2

sowith dW = 6 dt + dW, we have

g:rdt—l—ag dW7

and we are on our way.

24.2 ThePDE for the outside barrier option

Returning to the case of the option with payoff
(S(T) — K) gy« (ry<rys
we obtain a formulafor
ot 2,y) = T [(S(T) = KV fimas,gocr Vi) < L
by replacing 7", S(0) and Y (0) by 7" — ¢, = and y respectively in the formulafor v(0, .5(0), Y(0)).
Now start at timeO at .S(0) and Y (0). Using the Markov property, we can show that the stochastic

process
e "o(t, S(t),Y(t))

isamartingale under /P. We compute
d et (t, S(1), Y (1))]
= e‘”[ (—rv + v+ rSv, +rYo, + %U%Szvm + po102SY vy, + %O‘%szyy) dt

+ poaSv, dBy 4+ /1 — p? o9Sv, dBy + O'1Y1jyd§1
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vit,x,L)=0, x >= 0

V\\

V(t,0,0)= 0

Figure 24.1: Boundary conditionsfor barrier option. Notethat ¢ € [0, 7] isfixed.

Setting the dt term equal to 0, we obtain the PDE

1.2.2
— TV 4 U+ rev; + ryvy + 5058 Vg

+ P0102$yvxy + %U%yQUyy = 07
0<t<T,

The terminal conditionis

o(T,z,y)= (x — K)T, 2>0,0<y<1l,

and the boundary conditionsare

v(t,0,0)=0, 0<t<T,
v(t,z,L)=0, 0<¢t<T, a>0.
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z=0 y=20

12,2 12,2
—rv 4+ v+ ryvy + 507y 0y =0 —TUF v+ rTvy + 5052

Vpy = 0

This is the usual Black-Scholes formula | This is the usua Black-Scholes formula

iny. inz.

The boundary conditionsare The boundary conditionis

v(t,0,1) =0, v(t,0,0) = 0; v(t,0,0) = e (T=0(0 - K)t = 0;
the terminal conditionis theterminal conditionis

o(T,0,y)=(0— K)T =0, y>0. o(T,2,0)= (z — K)*, a>0.

On the z = 0 boundary, the option value | On the y = 0 boundary, the barrier isir-
isv(t,0,y)=0, 0<y<L. relevant, and the option value is given by
the usual Black-Scholesformulafor aEu-
ropean call.

24.3 Thehedge

After setting the dt term to O, we have the equation
d e~ (e, (1), Y (1))]

= e—rt [pUQSUx dél + 1- P2 UQSUx dEQ + Ulyvydgl] ’

where v, = v,.(t, S(t), Y (1)), v, = v,(t,S(t),Y(t)), and By, By, S,Y are functions of . Note
that

d e S(1)] = e [-rS (1) di + dS(1)]
=" [,OUQS(t) dB, (t) + /1 — p? 725(t) dB, (t)] :
d ey (1)] = e [=rY (1) di + dY ()]
= e "oy Y (t) dBy(t).
Therefore,

d e~ to(t, S(1), Y (£)] = vpd[e " S] + vyd[e™1Y ],

Let A, () denote the number of shares of stock held at time ¢, and let A (¢) denote the number of
“shares’ of thebarrier process Y. Thevalue X (¢) of the portfolio has the differential

dX = Agds + AldY + T‘[X - AQS - A1Y] dt.
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Thisis equivalent to
dle™" X ()] = Ay (t)d[e™" S ()] + A ()d[eY (1)].
Toget X (1) = v(t, S(t), Y (1)) for al £, we must have
X(0) = v(0,5(0),Y(0))

and



