Chapter 24

An outside barrier option

Barrier process:

\[\frac{dY(t)}{Y(t)} = \lambda \, dt + \sigma_1 \, dB_1(t), \]

Stock process:

\[\frac{dS(t)}{S(t)} = \mu \, dt + \rho \sigma_2 \, dB_1(t) + \sqrt{1 - \rho^2} \, \sigma_2 \, dB_2(t), \]

where \(\sigma_1 > 0, \, \sigma_2 > 0, \, -1 < \rho < 1, \) and \(B_1 \) and \(B_2 \) are independent Brownian motions on some \((\Omega, \mathcal{F}, \mathbb{P})\). The option pays off:

\[(S(T) - K)^+ \, \mathbf{1}_{\{Y^*(T) < L\}} \]

at time \(T \), where

\[0 < S(0) < K, \quad 0 < Y(0) < L, \]

\[Y^*(T) = \max_{0 \leq t \leq T} Y(t). \]

Remark 24.1 The option payoff depends on both the \(Y \) and \(S \) processes. In order to hedge it, we will need the money market and two other assets, which we take to be \(Y \) and \(S \). The risk-neutral measure must make the discounted value of every traded asset be a martingale, which in this case means the discounted \(Y \) and \(S \) processes.

We want to find \(\theta_1 \) and \(\theta_2 \) and define

\[d\bar{B}_1 = \theta_1 \, dt + dB_1, \quad d\bar{B}_2 = \theta_2 \, dt + dB_2, \]
so that
\[
\begin{align*}
\frac{dY}{Y} &= r \, dt + \sigma_1 \, dB_1 \\
&= r \, dt + \sigma_1 \theta_1 \, dt + \sigma_1 \, dB_1, \\
\frac{dS}{S} &= r \, dt + \rho \sigma_2 \, dB_1 + \sqrt{1 - \rho^2} \, \sigma_2 \, dB_2 \\
&= r \, dt + \rho \sigma_2 \, \theta_1 \, dt + \sqrt{1 - \rho^2} \, \sigma_2 \theta_2 \, dt \\
&\quad + \rho \sigma_2 \, dB_1 + \sqrt{1 - \rho^2} \, \sigma_2 \, dB_2.
\end{align*}
\]

We must have
\[
\begin{align*}
\lambda &= r + \sigma_1 \theta_1, \\
\mu &= r + \rho \sigma_2 \theta_1 + \sqrt{1 - \rho^2} \, \sigma_2 \theta_2.
\end{align*}
\]

(0.1) (0.2)

We solve to get
\[
\begin{align*}
\theta_1 &= \frac{\lambda - r}{\sigma_1}, \\
\theta_2 &= \frac{\mu - r - \rho \sigma_2 \theta_1}{\sqrt{1 - \rho^2} \, \sigma_2}.
\end{align*}
\]

We shall see that the formulas for θ_1 and θ_2 do not matter. What matters is that (0.1) and (0.2) uniquely determine θ_1 and θ_2. This implies the existence and uniqueness of the risk-neutral measure. We define
\[
\begin{align*}
Z(T) &= \exp \left\{ -\theta_1 B_1(T) - \theta_2 B_2(T) - \frac{1}{2} (\theta_1^2 + \theta_2^2) T \right\}, \\
\tilde{\mathbb{P}}(A) &= \int_A Z(T) \, d\mathbb{P}, \quad \forall A \in \mathcal{F}.
\end{align*}
\]

Under $\tilde{\mathbb{P}}$, B_1 and B_2 are independent Brownian motions (Girsanov’s Theorem). $\tilde{\mathbb{P}}$ is the unique risk-neutral measure.

Remark 24.2 Under both \mathbb{P} and $\tilde{\mathbb{P}}$, Y has volatility σ_1, S has volatility σ_2 and
\[
\frac{dY}{dS} = \rho \sigma_1 \sigma_2 \, dt,
\]
i.e., the correlation between $\frac{dY}{dS}$ and $\frac{dS}{dS}$ is ρ.

The value of the option at time zero is
\[
v(0, S(0), Y(0)) = \tilde{\mathbb{E}} \left[e^{-rT} (S(T) - K)^+ 1_{\{Y(T) < L\}} \right].
\]

We need to work out a density which permits us to compute the right-hand side.
Recall that the barrier process is

\[
\frac{dY}{Y} = rt + \sigma_1 d\tilde{B}_1,
\]

so

\[
Y(t) = Y(0) \exp \left\{ rt + \sigma_1 \tilde{B}_1(t) - \frac{1}{2} \sigma_1^2 t \right\}.
\]

Set

\[
\hat{\theta} = r/\sigma_1 - \sigma_1/2,
\]

\[
\hat{B}(t) = \hat{\theta} t + \tilde{B}_1(t),
\]

\[
\hat{M}(T) = \max_{0 \leq t \leq T} \hat{B}(t).
\]

Then

\[
Y(t) = Y(0) \exp \{ \sigma_1 \hat{B}(t) \},
\]

\[
Y^*(T) = Y(0) \exp \{ \sigma_1 \hat{M}(T) \}.
\]

The joint density of \(\hat{B}(T) \) and \(\hat{M}(T) \), appearing in Chapter 20, is

\[
\mathbb{P} \left\{ \hat{B}(T) \in d\hat{b}, \hat{M}(T) \in d\hat{m} \right\} = \frac{2(2\hat{m} - \hat{b})}{T \sqrt{2\pi T}} \exp \left\{ -\frac{(2\hat{m} - \hat{b})^2}{2T} + \hat{b} \hat{\theta} - \frac{1}{2} \hat{\theta}^2 T \right\} \ d\hat{b} \ d\hat{m},
\]

\(\hat{m} > 0, \hat{b} < \hat{m} \).

The stock process.

\[
\frac{dS}{S} = rt + \rho \sigma_2 dB_1 + \sqrt{1 - \rho^2} \sigma_2 dB_2,
\]

so

\[
S(T) = S(0) \exp \{ rt + \rho \sigma_2 B_1(T) - \frac{1}{2} \rho^2 \sigma_2^2 T + \sqrt{1 - \rho^2} \sigma_2 B_2(T) - \frac{1}{2} (1 - \rho^2) \sigma_2^2 T \}
\]

\[
= S(0) \exp \{ rt - \frac{1}{2} \sigma_2^2 T + \rho \sigma_2 B_1(T) + \sqrt{1 - \rho^2} \sigma_2 B_2(T) \}
\]

From the above paragraph we have

\[
\tilde{B}_1(T) = -\hat{\theta} T + \hat{B}(T),
\]

so

\[
S(T) = S(0) \exp \{ rt + \rho \sigma_2 \hat{B}(T) - \frac{1}{2} \sigma_2^2 T - \rho \sigma_2 \hat{\theta} T + \sqrt{1 - \rho^2} \sigma_2 B_2(T) \}.
\]
24.1 Computing the option value

\[v(0, S(0), Y(0)) = \mathbb{E} \left[e^{-rT} (S(T) - K)^{+} 1_{[Y(T) < L]} \right] \]

\[= e^{-rT} \mathbb{E} \left[\left(S(0) \exp \left\{ \left(r - \frac{1}{2} \sigma_2^2 - \rho \sigma_2 \theta \right) T + \rho \sigma_2 \tilde{B}(T) + \sqrt{1 - \rho^2} \sigma_2 \tilde{B}_2(T) \right) - K \right)^{+} \right] \]

\[\cdot 1_{[Y(0) \exp(\sigma_1 \tilde{M}(T)) < L]} \]

We know the joint density of \((\tilde{B}(T), \tilde{M}(T)) \). The density of \(\tilde{B}_2(T) \) is

\[\tilde{P}(\tilde{B}_2(T) \in \tilde{b}) = \frac{1}{\sqrt{2\pi T}} \exp \left\{ -\frac{\tilde{b}^2}{2T} \right\} \tilde{b}, \quad \tilde{b} \in \mathbb{R}. \]

Furthermore, the pair of random variables \((\tilde{B}(T), \tilde{M}(T)) \) is independent of \(\tilde{B}_2(T) \) because \(\tilde{B}_1 \) and \(\tilde{B}_2 \) are independent under \(\tilde{P} \). Therefore, the joint density of the random vector \((\tilde{B}_2(T), \tilde{B}(T), \tilde{M}(T)) \) is

\[\tilde{P}(\tilde{B}_2(T) \in \tilde{b}, \tilde{B}(T) \in \tilde{b}, \tilde{M}(T) \in d\tilde{m}, \) \]

\[= \tilde{P}(\tilde{B}_2(T) \in \tilde{b}) \tilde{P}(\tilde{B}(T) \in \tilde{b}) \tilde{P}(\tilde{M}(T) \in d\tilde{m}) \]

The option value at time zero is

\[v(0, S(0), Y(0)) \]

\[= e^{-rT} \int_0^{\sigma_1 \log \frac{S(0)}{100}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (S(0) \exp \left\{ \left(r - \frac{1}{2} \sigma_2^2 - \rho \sigma_2 \theta \right) T + \rho \sigma_2 \tilde{b} + \sqrt{1 - \rho^2} \sigma_2 \tilde{b}_2 \right) - K \right)^{+} \]

\[\cdot \frac{1}{\sqrt{2\pi T}} \exp \left\{ -\frac{\tilde{b}^2}{2T} \right\} \]

\[\cdot \frac{2(2\tilde{m} - \tilde{b})}{T \sqrt{2\pi T}} \exp \left\{ -\frac{(2\tilde{m} - \tilde{b})^2}{2T} + \tilde{b} \tilde{b} - \frac{1}{2} \tilde{b}^2 T \right\} \]

\[. d\tilde{b} \, d\tilde{b} \, d\tilde{m}. \]

The answer depends on \(T, S(0) \) and \(Y(0) \). It also depends on \(\sigma_1, \sigma_2, \rho, r, K \) and \(L \). It does not depend on \(\lambda, \mu, \theta_1 \), nor \(\theta_2 \). The parameter \(\hat{\theta} \) appearing in the answer is

\[\hat{\theta} = \frac{1}{\sigma_1^2} - \frac{\sigma_2^2}{2\sigma_1^2}. \]

Remark 24.3 If we had not regarded \(Y \) as a traded asset, then we would not have tried to set its mean return equal to \(r \). We would have had only one equation (see Eqs (0.1),(0.2))

\[\mu = r + \rho \sigma_2 \theta_1 + \sqrt{1 - \rho^2} \sigma_2 \theta_2 \]

(1.1)

to determine \(\theta_1 \) and \(\theta_2 \). The nonuniqueness of the solution alerts us that some options cannot be hedged. Indeed, any option whose payoff depends on \(Y \) cannot be hedged when we are allowed to trade only in the stock.
If we have an option whose payoff depends only on \(S \), then \(Y \) is superfluous. Returning to the original equation for \(S \),

\[
\frac{dS}{S} = \mu \, dt + \rho \sigma_2 \, dB_1 + \sqrt{1 - \rho^2} \sigma_2 \, dB_2,
\]

we should set

\[
dW = \rho \, dB_1 + \sqrt{1 - \rho^2} \, dB_2,
\]

so \(W \) is a Brownian motion under \(\mathbb{P} \) (Levy’s theorem), and

\[
\frac{dS}{S} = \mu \, dt + \sigma_2 \, dW.
\]

Now we have only Brownian motion, there will be only one \(\theta \), namely,

\[
\theta = \frac{\mu - r}{\sigma_2},
\]

so with \(d\tilde{W} = \theta \, dt + dW \), we have

\[
\frac{dS}{S} = r \, dt + \sigma_2 \, d\tilde{W},
\]

and we are on our way.

24.2 The PDE for the outside barrier option

Returning to the case of the option with payoff

\[
(S(T) - K)^+ 1_{\{Y^*(T) < L\}},
\]

we obtain a formula for

\[
v(t, x, y) = e^{-r(T-t)} \mathbb{E}^\mathbb{P}_{x,y} \left[(S(T) - K)^+ 1_{\{\max_{0 \leq s \leq T} Y(s) < L\}} \right],
\]

by replacing \(T, S(0) \) and \(Y(0) \) by \(T-t, x \) and \(y \) respectively in the formula for \(v(0, S(0), Y(0)) \). Now start at time 0 at \(S(0) \) and \(Y(0) \). Using the Markov property, we can show that the stochastic process

\[
e^{-r t} v(t, S(t), Y(t))
\]

is a martingale under \(\mathbb{P} \). We compute

\[
d \left[e^{-r t} v(t, S(t), Y(t)) \right]
\]

\[
e^{-r t} \left[(-r v + v_t + rS v_x + rY v_y + \frac{1}{2} \sigma_2^2 S^2 v_{xx} + \rho \sigma_1 \sigma_2 SY v_{xy} + \frac{1}{2} \sigma_1^2 Y^2 v_{yy}) \, dt
ight.
\]

\[+ \rho \sigma_2 S v_x \, dB_1 + \sqrt{1 - \rho^2} \sigma_2 S v_x \, dB_2 + \sigma_1 Y v_y \, dB_1]}

Setting the dt term equal to 0, we obtain the PDE

$$-rv + vt + vxv_x + vyv_y + \frac{1}{2} \sigma^2 v_x v_{xx} + \rho \sigma \sigma_2 xy v_{xy} + \frac{1}{2} \sigma^2 y^2 v_{yy} = 0, \quad 0 \leq t < T, \quad x \geq 0, \quad 0 \leq y \leq L.$$

The terminal condition is

$$v(T, x, y) = (x - K)^+, \quad x \geq 0, \quad 0 \leq y < L,$$

and the boundary conditions are

$$v(t, 0, 0) = 0, \quad 0 \leq t \leq T,$$

$$v(t, x, L) = 0, \quad 0 \leq t \leq T, \quad x \geq 0.$$
\[
x = 0 \\
-rv + vt + ryv_y + \frac{1}{2} \sigma_1^2 y^2 v_{yy} = 0
\]

This is the usual Black-Scholes formula in \(y \).

The boundary conditions are
\[
v(t, 0, L) = 0, \ v(t, 0, 0) = 0; \\
\text{the terminal condition is} \\
v(T, 0, y) = (0 - K)^+ = 0, \quad y \geq 0.
\]

On the \(x = 0 \) boundary, the option value is \(v(t, 0, y) = 0, \quad 0 \leq y \leq L \).

\[
y = 0 \\
-rv + vt + rxv_x + \frac{1}{2} \sigma_2^2 x^2 v_{xx} = 0
\]

This is the usual Black-Scholes formula in \(x \).

The boundary condition is
\[
v(t, 0, 0) = e^{-r(T-t)}(0 - K)^+ = 0; \\
\text{the terminal condition is} \\
v(T, x, 0) = (x - K)^+, \quad x \geq 0.
\]

On the \(y = 0 \) boundary, the barrier is irrelevant, and the option value is given by the usual Black-Scholes formula for a European call.

24.3 The hedge

After setting the \(dt \) term to 0, we have the equation
\[
d \left[e^{-rt} v(t, S(t), Y(t)) \right]
= e^{-rt} \left[\rho \sigma_2 S v_x \ d \bar{B}_1 + \sqrt{1 - \rho^2} \ \sigma_2 S v_x \ d \bar{B}_2 + \sigma_1 Y v_y \ d \bar{B}_1 \right],
\]
where \(v_x = v_x(t, S(t), Y(t)), \ v_y = v_y(t, S(t), Y(t)), \) and \(\bar{B}_1, \bar{B}_2, S, Y \) are functions of \(t \). Note that
\[
d \left[e^{-rt} S(t) \right] = e^{-rt} \left[-rS(t) \ dt + dS(t) \right]
= e^{-rt} \left[\rho \sigma_2 S(t) \ d \bar{B}_1(t) + \sqrt{1 - \rho^2} \ \sigma_2 S(t) \ d \bar{B}_2(t) \right].
\]
\[
d \left[e^{-rt} Y(t) \right] = e^{-rt} \left[-rY(t) \ dt + dY(t) \right]
= e^{-rt} \sigma_1 Y(t) \ d \bar{B}_1(t).
\]

Therefore,
\[
d \left[e^{-rt} v(t, S(t), Y(t)) \right] = v_x d \left[e^{-rt} S \right] + v_y d \left[e^{-rt} Y \right].
\]

Let \(\Delta_2(t) \) denote the number of shares of stock held at time \(t \), and let \(\Delta_1(t) \) denote the number of “shares” of the barrier process \(Y \). The value \(X(t) \) of the portfolio has the differential
\[
dX = \Delta_2 dS + \Delta_1 dY + r[X - \Delta_2 S - \Delta_1 Y] \ dt.
\]
This is equivalent to

\[d[e^{-\tau t} X(t)] = \Delta_2(t) d[e^{-\tau t} S(t)] + \Delta_1(t) d[e^{-\tau t} Y(t)]. \]

To get \(X(t) = v(t, S(t), Y(t)) \) for all \(t \), we must have

\[X(0) = v(0, S(0), Y(0)) \]

and

\[\Delta_2(t) = v_x(t, S(t), Y(t)), \]
\[\Delta_1(t) = v_y(t, S(t), Y(t)). \]