
Chapter 23

Recognizing a Brownian Motion

Theorem 0.62 (Levy) Let B�t�� � � t � T� be a process on ���F�P�, adapted to a filtration
F�t�� � � t � T , such that:

1. the paths of B�t� are continuous,

2. B is a martingale,

3. hBi�t� � t� � � t � T , (i.e., informally dB�t� dB�t� � dt).

Then B is a Brownian motion.

Proof: (Idea) Let � � s � t � T be given. We need to show that B�t� � B�s� is normal, with
mean zero and variance t � s, and B�t� � B�s� is independent of F�s�. We shall show that the
conditional moment generating function of B�t� � B�s� is
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Since the moment generating function characterizes the distribution, this shows that B�t� � B�s�
is normal with mean 0 and variance t � s, and conditioning on F�s� does not affect this, i.e.,
B�t� �B�s� is independent of F�s�.

We compute (this uses the continuity condition (1) of the theorem)
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Now
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uB�v�dB�v� is a martingale (by condition 2), and so
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It follows that
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Plugging in s, we get
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23.1 Identifying volatility and correlation

Let B� and B� be independent Brownian motions and
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Define processes W� and W� by
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Then W� and W� have continuous paths, are martingales, and
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Therefore, W� and W� are Brownian motions. The stock prices have the representation
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The Brownian motionsW� and W� are correlated. Indeed,
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23.2 Reversing the process

Suppose we are given that
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where W� and W� are Brownian motions with correlation coefficient �. We want to find
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A simple (but not unique) solution is (see Chapter 19)
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so both B� and B� are Brownian motions. Furthermore,
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We can now apply an Extension of Levy’s Theorem that says that Brownian motions with zero
cross-variation are independent, to conclude that B�� B� are independent Brownians.


