Chapter 22

Summary of Arbitrage Pricing Theory

A *simple European derivative security* makes a random payment at a time fixed in advance. The *value at time* t of such a security is the amount of wealth needed at time t in order to replicate the security by trading in the market. The *hedging portfolio* is a specification of how to do this trading.

22.1 Binomial model, Hedging Portfolio

Let Ω be the set of all possible sequences of *n* coin-tosses. We have *no probabilities* at this point. Let $r \ge 0$, $u > r + 1$, $d = 1/u$ be given. (See Fig. 2.1)

Evolution of the value of a portfolio:

$$
X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k).
$$

Given a simple European derivative security $V(\omega_1, \omega_2)$, we want to start with a nonrandom X_0 and use a portfolio processes

$$
\Delta_0,\ \Delta_1(H),\ \Delta_1(T)
$$

so that

$$
X_2(\omega_1, \omega_2) = V(\omega_1, \omega_2) \quad \forall \omega_1, \omega_2.
$$
 (four equations)

There are four unknowns: X_0 , Δ_0 , $\Delta_1(H)$, $\Delta_1(T)$. Solving the equations, we obtain:

$$
X_1(\omega_1) = \frac{1}{1+r} \left[\frac{1+r-d}{u-d} \frac{X_2(\omega_1, H)}{V(\omega_1, H)} + \frac{u-(1+r)}{u-d} \frac{X_2(\omega_1, T)}{V(\omega_1, T)} \right],
$$

\n
$$
X_0 = \frac{1}{1+r} \left[\frac{1+r-d}{u-d} X_1(H) + \frac{u-(1+r)}{u-d} X_1(T) \right],
$$

\n
$$
\Delta_1(\omega_1) = \frac{X_2(\omega_1, H) - X_2(\omega_1, T)}{S_2(\omega_1, H) - S_2(\omega_1, T)},
$$

\n
$$
\Delta_0 = \frac{X_1(H) - X_1(T)}{S_1(H) - S_1(T)}.
$$

The probabilities of the stock price paths are irrelevant, because we have a hedge which works on *every path.* From a practical point of view, what matters is that the paths in the model include all the possibilities. We want to find a description of the paths in the model. They all have the property

$$
(\log S_{k+1} - \log S_k)^2 = \left(\log \frac{S_{k+1}}{S_k}\right)^2
$$

$$
= (\pm \log u)^2
$$

$$
= (\log u)^2.
$$

Let $\sigma = \log u > 0$. Then

$$
\sum_{k=0}^{n-1} (\log S_{k+1} - \log S_k)^2 = \sigma^2 n.
$$

The paths of $\log S_k$ accumulate quadratic variation at rate σ^2 per unit time.

If we change u , then we change σ , and the pricing and hedging formulas on the previous page will give different results.

We reiterate that the probabilities are only introduced as an aid to understanding and computation. Recall:

$$
X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k).
$$

Define

$$
\beta_k = (1+r)^k.
$$

Then

$$
\frac{X_{k+1}}{\beta_{k+1}} = \Delta_k \frac{S_{k+1}}{\beta_{k+1}} + \frac{X_k}{\beta_k} - \Delta_k \frac{S_k}{\beta_k},
$$

i.e.,

$$
\frac{X_{k+1}}{\beta_{k+1}} - \frac{X_k}{\beta_k} = \Delta_k \left(\frac{S_{k+1}}{\beta_{k+1}} - \frac{S_k}{\beta_k} \right).
$$

the company's company's company's

In continuous time, we will have the analogous equation

$$
d\left(\frac{X(t)}{\beta(t)}\right) = \Delta(t) d\left(\frac{S(t)}{\beta(t)}\right).
$$

If we introduce a probability measure \mathbb{P} under which $\frac{\partial k}{\partial k}$ is a martingale, then $\frac{\partial k}{\partial k}$ will also be a martingale, regardless of the portfolio used. Indeed,

$$
\widetilde{E}\left[\frac{X_{k+1}}{\beta_{k+1}}\bigg|\mathcal{F}_k\right] = \widetilde{E}\left[\frac{X_k}{\beta_k} + \Delta_k \left(\frac{S_{k+1}}{\beta_{k+1}} - \frac{S_k}{\beta_k}\right)\bigg|\mathcal{F}_k\right]
$$

$$
= \frac{X_k}{\beta_k} + \Delta_k \underbrace{\left(\widetilde{E}\left[\frac{S_{k+1}}{\beta_{k+1}}\bigg|\mathcal{F}_k\right] - \frac{S_k}{\beta_k}\right)}_{=0}.
$$

Suppose we want to have $X_2 = V$, where V is some \mathcal{F}_2 -measurable random variable. Then we must have

$$
\frac{1}{1+r}X_1 = \frac{X_1}{\beta_1} = \widetilde{E}\left[\frac{X_2}{\beta_2}\bigg|\mathcal{F}_1\right] = \widetilde{E}\left[\frac{V}{\beta_2}\bigg|\mathcal{F}_1\right],
$$

$$
X_0 = \frac{X_0}{\beta_0} = \widetilde{E}\left[\frac{X_1}{\beta_1}\right] = \widetilde{E}\left[\frac{V}{\beta_2}\right].
$$

To find the risk-neutral probability measure \mathbb{P} under which $\frac{\partial k}{\partial k}$ is a martingale, we denote $\tilde{p} =$ $\widetilde{I\!\!P} \{\omega_k = H\}$, $\tilde{q} = \widetilde{I\!\!P} \{\omega_k = T\}$, and compute

$$
\widetilde{E}\left[\frac{S_{k+1}}{\beta_{k+1}}\bigg|\mathcal{F}_k\right] = \tilde{p}u\frac{S_k}{\beta_{k+1}} + \tilde{q}d\frac{S_k}{\beta_{k+1}}
$$

$$
= \frac{1}{1+r}[\tilde{p}u + \tilde{q}d]\frac{S_k}{\beta_k}.
$$

We need to choose \tilde{p} and \tilde{q} so that

$$
\tilde{p}u + \tilde{q}d = 1 + r,
$$

$$
\tilde{p} + \tilde{q} = 1.
$$

The solution of these equations is

$$
\tilde{p} = \frac{1+r-d}{u-d}, \quad \tilde{q} = \frac{u-(1+r)}{u-d}.
$$

22.2 Setting up the continuous model

Now the stock price $S(t)$, $0 \le t \le T$, is a continuous function of t. We would like to hedge along every possible path of $S(t)$, but that is impossible. Using the binomial model as a guide, we choose $\sigma > 0$ and try to hedge along every path $S(t)$ for which the quadratic variation of $\log S(t)$ accumulates at rate σ^2 per unit time. These are the paths with volatility σ^2 .

To generate these paths, we use Brownian motion, rather than coin-tossing. To introduce Brownian motion, we need a probability measure. However, the only thing about this probability measure which ultimately matters is the set of paths to which it assigns probability zero.

Let $B(t), 0 \le t \le T$, be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For any $\rho \in \mathbb{R}$, the paths of

$$
\rho t + \sigma B(t)
$$

accumulate quadratic variation at rate σ^2 per unit time. We want to define

$$
S(t) = S(0) \exp\{\rho t + \sigma B(t)\},
$$

so that the paths of

$$
\log S(t) = \log S(0) + \rho t + \sigma B(t)
$$

accumulate quadratic variation at rate σ^2 per unit time. Surprisingly, the choice of ρ in this definition is irrelevant. Roughly, the reason for this is the following: Choose $\omega_1 \in \Omega$. Then, for $\rho_1 \in \mathbb{R}$,

$$
\rho_1 t + \sigma B(t, \omega_1), \quad 0 \le t \le T,
$$

is a continuous function of t. If we replace ρ_1 by ρ_2 , then $\rho_2 t + \sigma B(t, \omega_1)$ is a different function. However, there is an $\omega_2 \in \Omega$ such that

$$
\rho_1 t + \sigma B(t, \omega_1) = \rho_2 t + \sigma B(t, \omega_2), \quad 0 \le t \le T.
$$

In other words, regardless of whether we use ρ_1 or ρ_2 in the definition of $S(t)$, we will see the same paths. The mathematically precise statement is the following:

If a set of stock price paths has a positive probability when $S(t)$ is defined by

$$
S(t) = S(0) \exp\{\rho_1 t + \sigma B(t)\},\
$$

then this set of paths has positive probability when $S(t)$ is defined by

$$
S(t) = S(0) \exp\{\rho_2 t + \sigma B(t)\}.
$$

Since we are interested in hedging along every path, except possibly for a set of paths which has probability zero, the choice of ρ is irrelevant.

The most *convenient* choice of ρ is

$$
\rho = r - \frac{1}{2}\sigma^2,
$$

so

$$
S(t) = S(0) \exp\{rt + \sigma B(t) - \frac{1}{2}\sigma^2 t\},
$$

and

$$
e^{-rt}S(t) = S(0) \exp{\lbrace \sigma B(t) - \frac{1}{2}\sigma^2 t \rbrace}
$$

is a martingale under $\mathbb P$. With this choice of ρ ,

$$
dS(t) = rS(t) dt + \sigma S(t) dB(t)
$$

and $\mathbb P$ is the risk-neutral measure. If a different choice of ρ is made, we have

$$
S(t) = S(0) \exp{\{\rho t + \sigma B(t)\}},
$$

\n
$$
dS(t) = \underbrace{(\rho + \frac{1}{2}\sigma^2)}_{\mu} S(t) dt + \sigma S(t) dB(t).
$$

\n
$$
= rS(t) dt + \sigma \underbrace{\left[\frac{\mu - r}{\sigma}dt + dB(t)\right]}_{d\widetilde{B}(t)}.
$$

B has the same paths as B. We can change to the risk-neutral measure \mathbb{P} , under which B is a Brownian motion, and then proceed as if ρ had been chosen to be equal to $r - \frac{1}{2}\sigma^2$.

22.3 Risk-neutral pricing and hedging

Let \widetilde{I} denote the risk-neutral measure. Then

$$
dS(t) = rS(t) dt + \sigma S(t) d\tilde{B}(t),
$$

where B is a Brownian motion under $I\!\!P$. Set

$$
\beta(t) = e^{rt}.
$$

Then

$$
d\left(\frac{S(t)}{\beta(t)}\right) = \sigma \frac{S(t)}{\beta(t)} d\widetilde{B}(t),
$$

so $\frac{S(t)}{S(t)}$ is $\frac{S(t)}{\beta(t)}$ is a martingale under \mathbb{P} .

Evolution of the value of a portfolio:

$$
dX(t) = \Delta(t)dS(t) + r(X(t) - \Delta(t)S(t)) dt,
$$
\n(3.1)

which is equivalent to

$$
d\left(\frac{X(t)}{\beta(t)}\right) = \Delta(t)d\left(\frac{S(t)}{\beta(t)}\right)
$$

= $\Delta(t)\sigma\frac{S(t)}{\beta(t)}d\tilde{B}(t).$ (3.2)

Regardless of the portfolio used, $\frac{A(t)}{\beta(t)}$ is a martingale under \mathbb{P} .

Now suppose V is a given $\mathcal{F}(T)$ -measurable random variable, the payoff of a simple European derivative security. We want to find the portfolio process $\Delta(T)$, $0 \le t \le T$, and initial portfolio value $X(0)$ so that $X(T) = V$. Because $\frac{X(t)}{\beta(t)}$ must be a martingale, we must have

$$
\frac{X(t)}{\beta(t)} = \widetilde{E}\left[\frac{V}{\beta(T)}\bigg|\mathcal{F}(t)\right], \quad 0 \le t \le T.
$$
\n(3.3)

This is the *risk-neutral pricing formula.* We have the following sequence:

- 1. V is given,
- 2. Define $X(t)$, $0 \le t \le T$, by (3.3) (not by (3.1) or (3.2), because we do not yet have $\Delta(t)$).
- 3. Construct $\Delta(t)$ so that (3.2) (or equivalently, (3.1)) is satisfied by the $X(t)$, $0 \le t \le T$, defined in step 2.

To carry out step 3, we first use the tower property to show that $\frac{A(t)}{\beta(t)}$ defined by (3.3) is a martingale under \widetilde{P} . We next use the corollary to the Martingale Representation Theorem (Homework Problem 4.5) to show that

$$
d\left(\frac{X(t)}{\beta(t)}\right) = \gamma(t) \; d\widetilde{B}(t) \tag{3.4}
$$

for some proecss γ . Comparing (3.4), which we know, and (3.2), which we want, we decide to define

$$
\Delta(t) = \frac{\beta(t)\gamma(t)}{\sigma S(t)}.\tag{3.5}
$$

Then (3.4) implies (3.2), which implies (3.1), which implies that $X(t)$, $0 \le t \le T$, is the value of the portfolio process $\Delta(t)$, $0 \le t \le T$.

From (3.3), the definition of X , we see that the hedging portfolio must begin with value

$$
X(0) = \widetilde{E}\left[\frac{V}{\beta(T)}\right],
$$

and it will end with value

$$
X(T) = \beta(T) \widetilde{E} \left[\frac{V}{\beta(T)} \middle| \mathcal{F}(T) \right] = \beta(T) \frac{V}{\beta(T)} = V.
$$

Remark 22.1 Although we have taken r and σ to be constant, the risk-neutral pricing formula is still "valid" when r and σ are processes adapted to the filtration generated by B. If they depend on either B or on S, they are adapted to the filtration generated by B. The "validity" of the risk-neutral pricing formula means:

1. If you start with

$$
X(0) = \widetilde{E}\left[\frac{V}{\beta(T)}\right],
$$

then there is a hedging portfolio $\Delta(t)$, $0 \le t \le T$, such that $X(T) = V$;

2. At each time t, the value $X(t)$ of the hedging portfolio in 1 satisfies

$$
\frac{X(t)}{\beta(t)} = \widetilde{E}\left[\frac{V}{\beta(T)}\bigg|\mathcal{F}(t)\right].
$$

Remark 22.2 In general, when there are multiple assets and/or multiple Brownian motions, the risk-neutral pricing formula is valid provided there is a *unique risk-neutral measure.* A probability measure is said to be risk-neutral provided

228

- it has the same probability-zero sets as the original measure;
- it makes all the discounted asset prices be martingales.

To see if the risk-neutral measure is unique, compute the differential of all discounted asset prices and check if there is more than one way to define B so that all these differentials have only dB terms.

22.4 Implementation of risk-neutral pricing and hedging

To get a computable result from the general risk-neutral pricing formula

$$
\frac{X(t)}{\beta(t)} = \widetilde{E}\left[\frac{V}{\beta(T)} \middle| \mathcal{F}(t)\right],
$$

one uses the Markov property. We need to identify some *state variables,* the stock price and possibly other variables, so that

$$
X(t) = \beta(t)\widetilde{E}\left[\frac{V}{\beta(T)}\bigg|\mathcal{F}(t)\right]
$$

is a function of these variables.

Example 22.1 Assume r and σ are constant, and $V = h(S(T))$. We can take the stock price to be the state variable. Define

$$
v(t,x) = \widetilde{E}^{t,x} \left[e^{-r(T-t)} h(S(T)) \right].
$$

Then

$$
X(t) = e^{rt} \widetilde{E} \left[e^{-rT} h(S(T)) \middle| \mathcal{F}(t) \right]
$$

= $v(t, S(t)),$

and $\frac{A(t)}{\beta(t)} = e^{-rt}v(t, S(t))$ is a martingale under \mathbb{P} .

Example 22.2 Assume r and σ are constant.

$$
V = h\left(\int_0^T S(u) \ du\right).
$$

Take $S(t)$ and $Y(t) = \int_0^t S(u) \, du$ to be the state variables. Define

$$
v(t,x,y) = \widetilde{E}^{t,x,y}\left[e^{-r(T-t)}h(Y(T))\right],
$$

where

$$
Y(T) = y + \int_t^T S(u) \ du.
$$

 \blacksquare

230

Then

$$
X(t) = e^{rt} \widetilde{E} \left[e^{-rT} h(S(T)) \middle| \mathcal{F}(t) \right]
$$

= $v(t, S(t), Y(t))$

and

$$
\frac{X(t)}{\beta(t)} = e^{-rt}v(t, S(t), Y(t))
$$

 \blacksquare

 \blacksquare

is a martingale under \widetilde{P} .

Example 22.3 (Homework problem 4.2)

$$
dS(t) = r(t, Y(t)) S(t) dt + \sigma(t, Y(t)) S(t) d\widetilde{B}(t),
$$

\n
$$
dY(t) = \alpha(t, Y(t)) dt + \gamma(t, Y(t)) d\widetilde{B}(t),
$$

\n
$$
V = h(S(T)).
$$

Take $S(t)$ and $Y(t)$ to be the state variables. Define

$$
v(t,x,y) = \widetilde{E}^{t,x,y} \left[\underbrace{\exp \left\{-\int_t^T r(u,Y(u)) du\right\}}_{\frac{\beta(t)}{\beta(T)}} h(S(T)) \right].
$$

and the contract of the contract of

Then

$$
X(t) = \beta(t) \widetilde{E}\left[\frac{h(S(T))}{\beta(T)} \middle| \mathcal{F}(t)\right]
$$

= $\widetilde{E}\left[\exp\left\{-\int_t^T r(u, Y(u)) du\right\} h(S(T)) \middle| \mathcal{F}(t)\right]$
= $v(t, S(t), Y(t)),$

and

$$
\frac{X(t)}{\beta(t)} = \exp\left\{-\int_0^t r(u, Y(u)) du\right\} v(t, S(t), Y(t))
$$

is a martingale under \widetilde{P} .

In every case, we get an expression involving v to be a martingale. We take the differential and set the dt term to zero. This gives us a partial differential equation for v , and this equation must hold wherever the state processes can be. The dB term in the differential of the equation is the differential of a martingale, and since the martingale is

$$
\frac{X(t)}{\beta(t)} = X(0) + \int_0^t \Delta(u)\sigma \frac{S(u)}{\beta(u)} d\widetilde{B}(u)
$$

we can solve for $\Delta(t)$. This is the argument which uses (3.4) to obtain (3.5).

Example 22.4 (Continuation of Example 22.3)

$$
\frac{X(t)}{\beta(t)} = \underbrace{\exp\left\{-\int_0^t r(u, Y(u)) du\right\}}_{1/\beta(t)} v(t, S(t), Y(t))
$$

is a martingale under \widetilde{P} . We have

$$
d\left(\frac{X(t)}{\beta(t)}\right) = \frac{1}{\beta(t)} \left[-r(t, Y(t)) v(t, S(t), Y(t)) dt + v_t dt + v_x dS + v_y dY + \frac{1}{2} v_{xx} dS dS + v_{xy} dS dY + \frac{1}{2} v_{yy} dY dY \right]
$$

$$
= \frac{1}{\beta(t)} \left[(-rv + v_t + rSv_x + \alpha v_y + \frac{1}{2} \sigma^2 S^2 v_{xx} + \sigma \gamma S v_{xy} + \frac{1}{2} \gamma^2 v_{yy}) dt + (\sigma S v_x + \gamma v_y) d\tilde{B} \right]
$$

The partial differential equation satisfied by v is

$$
-rv + v_t + rxv_x + \alpha v_y + \frac{1}{2}\sigma^2 x^2 v_{xx} + \sigma \gamma x v_{xy} + \frac{1}{2}\gamma^2 v_{yy} = 0
$$

where it should be noted that $v = v(t, x, y)$, and all other variables are functions of (t, y) . We have

$$
d\left(\frac{X(t)}{\beta(t)}\right) = \frac{1}{\beta(t)}[\sigma Sv_x + \gamma v_y] d\widetilde{B}(t),
$$

where $\sigma = \sigma(t, Y(t)), \gamma = \gamma(t, Y(t)), v = v(t, S(t), Y(t)),$ and $S = S(t)$. We want to choose $\Delta(t)$ so that (see (3.2))

$$
d\left(\frac{X(t)}{\beta(t)}\right) = \Delta(t)\sigma(t,Y(t))\frac{S(t)}{\beta(t)} d\widetilde{B}(t).
$$

Therefore, we should take $\Delta(t)$ to be

$$
\Delta(t) = v_x(t, S(t), Y(t)) + \frac{\gamma(t, Y(t))}{\sigma(t, Y(t)) S(t)} v_y(t, S(t), Y(t)).
$$

