Chapter 22

Summary of Arbitrage Pricing Theory

A simple European derivative security makes a random payment at a time fixed in advance. The value at time t of such a security is the amount of wealth needed at time t in order to replicate the security by trading in the market. The *hedging portfolio* is a specification of how to do this trading.

22.1 Binomial model, Hedging Portfolio

Let Ω be the set of all possible sequences of *n* coin-tosses. We have *no probabilities* at this point. Let $r \ge 0$, u > r + 1, d = 1/u be given. (See Fig. 2.1)

Evolution of the value of a portfolio:

$$X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k).$$

Given a simple European derivative security $V(\omega_1, \omega_2)$, we want to start with a nonrandom X_0 and use a portfolio processes

$$\Delta_0, \ \Delta_1(H), \ \Delta_1(T)$$

so that

$$X_2(\omega_1, \omega_2) = V(\omega_1, \omega_2) \quad \forall \omega_1, \omega_2.$$
 (four equations)

There are four unknowns: $X_0, \Delta_0, \Delta_1(H), \Delta_1(T)$. Solving the equations, we obtain:

$$\begin{split} X_1(\omega_1) &= \frac{1}{1+r} \left[\frac{1+r-d}{u-d} \underbrace{X_2(\omega_1, H)}_{V(\omega_1, H)} + \underbrace{\frac{u-(1+r)}{u-d}}_{U-d} \underbrace{X_2(\omega_1, T)}_{V(\omega_1, T)} \right], \\ X_0 &= \frac{1}{1+r} \left[\frac{1+r-d}{u-d} X_1(H) + \frac{u-(1+r)}{u-d} X_1(T) \right], \\ \Delta_1(\omega_1) &= \frac{X_2(\omega_1, H) - X_2(\omega_1, T)}{S_2(\omega_1, H) - S_2(\omega_1, T)}, \\ \Delta_0 &= \frac{X_1(H) - X_1(T)}{S_1(H) - S_1(T)}. \end{split}$$

The probabilities of the stock price paths are irrelevant, because we have a hedge which works on *every path*. From a practical point of view, what matters is that the paths in the model include all the possibilities. We want to find a description of the paths in the model. They all have the property

$$(\log S_{k+1} - \log S_k)^2 = \left(\log \frac{S_{k+1}}{S_k}\right)^2$$
$$= (\pm \log u)^2$$
$$= (\log u)^2.$$

Let $\sigma = \log u > 0$. Then

$$\sum_{k=0}^{n-1} (\log S_{k+1} - \log S_k)^2 = \sigma^2 n.$$

The paths of log S_k accumulate quadratic variation at rate σ^2 per unit time.

If we change u, then we change σ , and the pricing and hedging formulas on the previous page will give different results.

We reiterate that the probabilities are only introduced as an aid to understanding and computation. Recall:

$$X_{k+1} = \Delta_k S_{k+1} + (1+r)(X_k - \Delta_k S_k).$$

Define

$$\beta_k = (1+r)^k.$$

Then

$$\frac{X_{k+1}}{\beta_{k+1}} = \Delta_k \frac{S_{k+1}}{\beta_{k+1}} + \frac{X_k}{\beta_k} - \Delta_k \frac{S_k}{\beta_k},$$

i.e.,

$$\frac{X_{k+1}}{\beta_{k+1}} - \frac{X_k}{\beta_k} = \Delta_k \left(\frac{S_{k+1}}{\beta_{k+1}} - \frac{S_k}{\beta_k} \right).$$

In continuous time, we will have the analogous equation

$$d\left(\frac{X(t)}{\beta(t)}\right) = \Delta(t) \ d\left(\frac{S(t)}{\beta(t)}\right).$$

If we introduce a probability measure \widetilde{IP} under which $\frac{S_k}{\beta_k}$ is a martingale, then $\frac{X_k}{\beta_k}$ will also be a martingale, regardless of the portfolio used. Indeed,

$$\widetilde{E}\left[\frac{X_{k+1}}{\beta_{k+1}}\middle|\mathcal{F}_k\right] = \widetilde{E}\left[\frac{X_k}{\beta_k} + \Delta_k\left(\frac{S_{k+1}}{\beta_{k+1}} - \frac{S_k}{\beta_k}\right)\middle|\mathcal{F}_k\right] \\ = \frac{X_k}{\beta_k} + \Delta_k\underbrace{\left(\widetilde{E}\left[\frac{S_{k+1}}{\beta_{k+1}}\middle|\mathcal{F}_k\right] - \frac{S_k}{\beta_k}\right)}_{=0}.$$

Suppose we want to have $X_2 = V$, where V is some \mathcal{F}_2 -measurable random variable. Then we must have

$$\frac{1}{1+r}X_1 = \frac{X_1}{\beta_1} = \widetilde{I\!\!E}\left[\frac{X_2}{\beta_2}\Big|\mathcal{F}_1\right] = \widetilde{I\!\!E}\left[\frac{V}{\beta_2}\Big|\mathcal{F}_1\right],$$
$$X_0 = \frac{X_0}{\beta_0} = \widetilde{I\!\!E}\left[\frac{X_1}{\beta_1}\right] = \widetilde{I\!\!E}\left[\frac{V}{\beta_2}\right].$$

To find the risk-neutral probability measure \widetilde{IP} under which $\frac{S_k}{\beta_k}$ is a martingale, we denote $\tilde{p} = \widetilde{IP} \{ \omega_k = H \}, \tilde{q} = \widetilde{IP} \{ \omega_k = T \}$, and compute

$$\widetilde{I\!\!E}\left[\frac{S_{k+1}}{\beta_{k+1}}\Big|\mathcal{F}_k\right] = \widetilde{p}u\frac{S_k}{\beta_{k+1}} + \widetilde{q}d\frac{S_k}{\beta_{k+1}} \\ = \frac{1}{1+r}[\widetilde{p}u + \widetilde{q}d]\frac{S_k}{\beta_k}.$$

We need to choose \tilde{p} and \tilde{q} so that

$$\tilde{p}u + \tilde{q}d = 1 + r,$$
$$\tilde{p} + \tilde{q} = 1.$$

The solution of these equations is

$$\tilde{p} = \frac{1+r-d}{u-d}, \quad \tilde{q} = \frac{u-(1+r)}{u-d}.$$

22.2 Setting up the continuous model

Now the stock price $S(t), 0 \le t \le T$, is a continuous function of t. We would like to hedge along every possible path of S(t), but that is impossible. Using the binomial model as a guide, we choose $\sigma > 0$ and try to hedge along every path S(t) for which the quadratic variation of $\log S(t)$ accumulates at rate σ^2 per unit time. These are the paths with volatility σ^2 .

To generate these paths, we use Brownian motion, rather than coin-tossing. To introduce Brownian motion, we need a probability measure. However, the only thing about this probability measure which ultimately matters is the set of paths to which it assigns probability zero.

Let $B(t), 0 \leq t \leq T$, be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For any $\rho \in \mathbb{R}$, the paths of

$$\rho t + \sigma B(t)$$

accumulate quadratic variation at rate σ^2 per unit time. We want to define

$$S(t) = S(0) \exp\{\rho t + \sigma B(t)\},\$$

so that the paths of

$$\log S(t) = \log S(0) + \rho t + \sigma B(t)$$

accumulate quadratic variation at rate σ^2 per unit time. Surprisingly, the choice of ρ in this definition is irrelevant. Roughly, the reason for this is the following: Choose $\omega_1 \in \Omega$. Then, for $\rho_1 \in \mathbb{R}$,

$$\rho_1 t + \sigma B(t, \omega_1), \quad 0 \le t \le T,$$

is a continuous function of t. If we replace ρ_1 by ρ_2 , then $\rho_2 t + \sigma B(t, \omega_1)$ is a different function. However, there is an $\omega_2 \in \Omega$ such that

$$\rho_1 t + \sigma B(t, \omega_1) = \rho_2 t + \sigma B(t, \omega_2), \quad 0 \le t \le T.$$

In other words, regardless of whether we use ρ_1 or ρ_2 in the definition of S(t), we will see the same paths. The mathematically precise statement is the following:

If a set of stock price paths has a positive probability when S(t) is defined by

$$S(t) = S(0) \exp\{\rho_1 t + \sigma B(t)\},\$$

then this set of paths has positive probability when S(t) is defined by

$$S(t) = S(0) \exp\{\rho_2 t + \sigma B(t)\}.$$

Since we are interested in hedging along every path, except possibly for a set of paths which has probability zero, the choice of ρ is irrelevant.

The most *convenient* choice of ρ is

$$\rho = r - \frac{1}{2}\sigma^2,$$

so

$$S(t) = S(0) \exp\{rt + \sigma B(t) - \frac{1}{2}\sigma^{2}t\},\$$

and

$$e^{-rt}S(t) = S(0) \exp\{\sigma B(t) - \frac{1}{2}\sigma^2 t\}$$

is a martingale under $I\!\!P$. With this choice of ρ ,

$$dS(t) = rS(t) dt + \sigma S(t) dB(t)$$

and $I\!\!P$ is the risk-neutral measure. If a different choice of ρ is made, we have

$$S(t) = S(0) \exp\{\rho t + \sigma B(t)\},\$$

$$dS(t) = \underbrace{(\rho + \frac{1}{2}\sigma^2)}_{\mu} S(t) dt + \sigma S(t) dB(t)$$

$$= rS(t) dt + \sigma \underbrace{\left[\frac{\mu - r}{\sigma}dt + dB(t)\right]}_{d\widetilde{B}(t)}.$$

 \widetilde{B} has the same paths as B. We can change to the risk-neutral measure \widetilde{IP} , under which \widetilde{B} is a Brownian motion, and then proceed as if ρ had been chosen to be equal to $r - \frac{1}{2}\sigma^2$.

22.3 Risk-neutral pricing and hedging

Let $\widetilde{I\!\!P}$ denote the risk-neutral measure. Then

$$dS(t) = rS(t) dt + \sigma S(t) d\tilde{B}(t)$$

where \widetilde{B} is a Brownian motion under \widetilde{IP} . Set

$$\beta(t) = e^{rt}$$

Then

$$d\left(\frac{S(t)}{\beta(t)}\right) = \sigma \frac{S(t)}{\beta(t)} d\widetilde{B}(t),$$

so $\frac{S(t)}{\beta(t)}$ is a martingale under $\widetilde{I\!\!P}$.

Evolution of the value of a portfolio:

$$dX(t) = \Delta(t)dS(t) + r(X(t) - \Delta(t)S(t)) dt, \qquad (3.1)$$

which is equivalent to

$$d\left(\frac{X(t)}{\beta(t)}\right) = \Delta(t)d\left(\frac{S(t)}{\beta(t)}\right)$$

= $\Delta(t)\sigma\frac{S(t)}{\beta(t)}d\widetilde{B}(t).$ (3.2)

Regardless of the portfolio used, $\frac{X(t)}{\beta(t)}$ is a martingale under \widetilde{IP} .

Now suppose V is a given $\mathcal{F}(T)$ -measurable random variable, the payoff of a simple European derivative security. We want to find the portfolio process $\Delta(T)$, $0 \leq t \leq T$, and initial portfolio value X(0) so that X(T) = V. Because $\frac{X(t)}{\beta(t)}$ must be a martingale, we must have

$$\frac{X(t)}{\beta(t)} = \widetilde{I\!\!E} \left[\frac{V}{\beta(T)} \middle| \mathcal{F}(t) \right], \quad 0 \le t \le T.$$
(3.3)

This is the *risk-neutral pricing formula*. We have the following sequence:

- 1. V is given,
- 2. Define $X(t), 0 \le t \le T$, by (3.3) (not by (3.1) or (3.2), because we do not yet have $\Delta(t)$).
- 3. Construct $\Delta(t)$ so that (3.2) (or equivalently, (3.1)) is satisfied by the $X(t), 0 \leq t \leq T$, defined in step 2.

To carry out step 3, we first use the tower property to show that $\frac{X(t)}{\beta(t)}$ defined by (3.3) is a martingale under \widetilde{IP} . We next use the corollary to the Martingale Representation Theorem (Homework Problem 4.5) to show that

$$d\left(\frac{X(t)}{\beta(t)}\right) = \gamma(t) \ d\widetilde{B}(t) \tag{3.4}$$

for some process γ . Comparing (3.4), which we know, and (3.2), which we want, we decide to define

$$\Delta(t) = \frac{\beta(t)\gamma(t)}{\sigma S(t)}.$$
(3.5)

Then (3.4) implies (3.2), which implies (3.1), which implies that $X(t), 0 \le t \le T$, is the value of the portfolio process $\Delta(t), 0 \le t \le T$.

From (3.3), the definition of X, we see that the hedging portfolio must begin with value

$$X(0) = \widetilde{I\!\!E} \left[\frac{V}{\beta(T)} \right],$$

and it will end with value

$$X(T) = \beta(T)\widetilde{I\!\!E}\left[\frac{V}{\beta(T)}\middle|\mathcal{F}(T)\right] = \beta(T)\frac{V}{\beta(T)} = V.$$

Remark 22.1 Although we have taken r and σ to be constant, the risk-neutral pricing formula is still "valid" when r and σ are processes adapted to the filtration generated by B. If they depend on either \tilde{B} or on S, they are adapted to the filtration generated by B. The "validity" of the risk-neutral pricing formula means:

1. If you start with

$$X(0) = \widetilde{I\!\!E} \left[\frac{V}{\beta(T)} \right],$$

then there is a hedging portfolio $\Delta(t), 0 \le t \le T$, such that X(T) = V;

2. At each time t, the value X(t) of the hedging portfolio in 1 satisfies

$$\frac{X(t)}{\beta(t)} = \widetilde{I\!\!E} \left[\frac{V}{\beta(T)} \middle| \mathcal{F}(t) \right]$$

Remark 22.2 In general, when there are multiple assets and/or multiple Brownian motions, the risk-neutral pricing formula is valid provided there is a *unique risk-neutral measure*. A probability measure is said to be risk-neutral provided

228

- it has the same probability-zero sets as the original measure;
- it makes all the discounted asset prices be martingales.

To see if the risk-neutral measure is unique, compute the differential of all discounted asset prices and check if there is more than one way to define \tilde{B} so that all these differentials have only $d\tilde{B}$ terms.

22.4 Implementation of risk-neutral pricing and hedging

To get a computable result from the general risk-neutral pricing formula

$$\frac{X(t)}{\beta(t)} = \widetilde{I\!\!E} \left[\frac{V}{\beta(T)} \middle| \mathcal{F}(t) \right],$$

one uses the Markov property. We need to identify some *state variables*, the stock price and possibly other variables, so that

$$X(t) = \beta(t)\widetilde{E}\left[\frac{V}{\beta(T)}\middle|\mathcal{F}(t)\right]$$

is a function of these variables.

Example 22.1 Assume r and σ are constant, and V = h(S(T)). We can take the stock price to be the state variable. Define

$$v(t,x) = \widetilde{E}^{t,x} \left[e^{-r(T-t)} h(S(T)) \right].$$

Then

$$X(t) = e^{rt} \widetilde{E} \left[e^{-rT} h(S(T)) \middle| \mathcal{F}(t) \right]$$
$$= v(t, S(t)),$$

and $\frac{X(t)}{\beta(t)}=e^{-r\,t}v(t,S(t))$ is a martingale under $\widetilde{I\!\!P}.$

Example 22.2 Assume r and σ are constant.

$$V = h\left(\int_0^T S(u) \ du\right).$$

Take S(t) and $Y(t) = \int_0^t S(u) \, du$ to be the state variables. Define

$$v(t, x, y) = \widetilde{E}^{t, x, y} \left[e^{-r(T-t)} h(Y(T)) \right],$$

where

$$Y(T) = y + \int_t^T S(u) \ du.$$

230

Then

$$X(t) = e^{rt} \widetilde{I\!\!E} \left[e^{-rT} h(S(T)) \middle| \mathcal{F}(t) \right]$$
$$= v(t, S(t), Y(t))$$

and

$$\frac{X(t)}{\beta(t)} = e^{-rt}v(t, S(t), Y(t))$$

is a martingale under $\widetilde{\mathbb{P}}$.

Example 22.3 (Homework problem 4.2)

$$\begin{split} dS(t) &= r(t, Y(t)) \ S(t) dt + \sigma(t, Y(t)) S(t) \ dB(t), \\ dY(t) &= \alpha(t, Y(t)) \ dt + \gamma(t, Y(t)) \ d\widetilde{B}(t), \\ V &= h(S(T)). \end{split}$$

Take S(t) and Y(t) to be the state variables. Define

$$v(t, x, y) = \widetilde{E}^{t, x, y} \left[\underbrace{\exp\left\{-\int_{t}^{T} r(u, Y(u)) \ du\right\}}_{\frac{\beta(t)}{\beta(T)}} h(S(T)) \right]$$

-

Then

$$\begin{split} X(t) &= \beta(t) \,\widetilde{E}\left[\frac{h(S(T))}{\beta(T)} \middle| \mathcal{F}(t)\right] \\ &= \widetilde{E}\left[\exp\left\{-\int_{t}^{T} r(u, Y(u)) \, du\right\} h(S(T)) \middle| \mathcal{F}(t)\right] \\ &= v(t, S(t), Y(t)), \end{split}$$

and

$$\frac{X(t)}{\beta(t)} = \exp\left\{-\int_0^t r(u, Y(u)) \ du\right\} v(t, S(t), Y(t))$$

is a martingale under $\widetilde{\mathbb{P}}$.

In every case, we get an expression involving v to be a martingale. We take the differential and set the dt term to zero. This gives us a partial differential equation for v, and this equation must hold wherever the state processes can be. The $d\tilde{B}$ term in the differential of the equation is the differential of a martingale, and since the martingale is

$$\frac{X(t)}{\beta(t)} = X(0) + \int_0^t \Delta(u) \sigma \frac{S(u)}{\beta(u)} d\widetilde{B}(u)$$

we can solve for $\Delta(t)$. This is the argument which uses (3.4) to obtain (3.5).

-

Example 22.4 (Continuation of Example 22.3)

$$\frac{X(t)}{\beta(t)} = \underbrace{\exp\left\{-\int_0^t r(u, Y(u)) \ du\right\}}_{1/\beta(t)} v(t, S(t), Y(t))$$

is a martingale under $\widetilde{I\!\!P}$. We have

$$\begin{aligned} d\left(\frac{X(t)}{\beta(t)}\right) &= \frac{1}{\beta(t)} \left[-r(t,Y(t))v(t,S(t),Y(t)) \ dt \\ &+ v_t dt + v_x dS + v_y dY \\ &+ \frac{1}{2} v_{xx} dS \ dS + v_{xy} dS \ dY + \frac{1}{2} v_{yy} dY \ dY \right] \\ &= \frac{1}{\beta(t)} \left[(-rv + v_t + rSv_x + \alpha v_y + \frac{1}{2} \sigma^2 S^2 v_{xx} + \sigma \gamma Sv_{xy} + \frac{1}{2} \gamma^2 v_{yy}) \ dt \\ &+ (\sigma Sv_x + \gamma v_y) \ d\widetilde{B} \right] \end{aligned}$$

The partial differential equation satisfied by v is

$$-rv + v_t + rxv_x + \alpha v_y + \frac{1}{2}\sigma^2 x^2 v_{xx} + \sigma \gamma x v_{xy} + \frac{1}{2}\gamma^2 v_{yy} = 0$$

where it should be noted that v = v(t, x, y), and all other variables are functions of (t, y). We have

$$d\left(\frac{X(t)}{\beta(t)}\right) = \frac{1}{\beta(t)} [\sigma S v_x + \gamma v_y] d\widetilde{B}(t),$$

where $\sigma = \sigma(t, Y(t)), \gamma = \gamma(t, Y(t)), v = v(t, S(t), Y(t))$, and S = S(t). We want to choose $\Delta(t)$ so that (see (3.2))

$$d\left(\frac{X(t)}{\beta(t)}\right) = \Delta(t)\sigma(t, Y(t))\frac{S(t)}{\beta(t)} d\widetilde{B}(t).$$

Therefore, we should take $\Delta(t)$ to be

$$\Delta(t) = v_x(t, S(t), Y(t)) + \frac{\gamma(t, Y(t))}{\sigma(t, Y(t)) S(t)} v_y(t, S(t), Y(t)).$$

		4	
		ļ	