
Chapter 20

Pricing Exotic Options

20.1 Reflection principle for Brownian motion

Without drift.

Define

M�T � � max
��t�T

B�t��

Then we have:

IPfM�T � � m�B�T � � bg
� IPfB�T � � �m� bg

�
�p
��T

Z �

�m�b
exp

�
� x�

�T

�
dx� m � �� b � m

So the joint density is

IPfM�T � � dm�B�T � � dbg � � ��

�m �b

�
�p
��T

Z �

�m�b
exp

�
� x�

�T

�
dx

�
dm db

� � �

�m

�
�p
��T

exp

�
���m� b��

�T

��
dm db�

�
���m� b�

T
p
��T

exp

�
���m� b��

�T

�
dm db� m � �� b � m�

With drift. Let eB�t� � �t �B�t��
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Figure 20.1: Reflection Principle for Brownian motion without drift
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(B(T),  M(T))  lies in  here

Figure 20.2: Possible values of B�T ��M�T �.
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where B�t�� � � t � T , is a Brownian motion (without drift) on ���F �P�. Define

Z�T � � expf��B�T �� �
��

�Tg
� expf���B�T � � �T � � �

��
�Tg

� expf�� eB�t� � �
��

�Tg�
fIP �A� �

Z
A
Z�T � dIP� �A � F �

SetfM�T � � max��t�T eB�T ��

Under fIP � eB is a Brownian motion (without drift), so

fIP ffM�T � � d 	m� eB�T � � d	bg � ��� 	m� 	b�

T
p
��T

exp

�
��� 	m� 	b��

�T

�
d 	m d	b� 	m � �� 	b � 	m�

Let h� 	m�	b� be a function of two variables. Then

IEh�fM�T �� eB�T �� � fIE h�fM�T �� eB�T ��

Z�T �

� fIE h
h�fM�T �� eB�T �� expf� eB�T �� �

��
�Tg

i
�

�m��Z
�m��

�b� �mZ
�b���

h� 	m�	b� expf�	b� �
��

�Tg fIP ffM�T � � d 	m� eB�T � � d	bg�

But also,

IEh�fM�T �� eB�T �� �

�m��Z
�m��

�b� �mZ
�b���

h� 	m�	b� IPffM �T � � d 	m� eB�T � � d	bg�

Since h is arbitrary, we conclude that

(MPR)

IPffM�T � � d 	m� eB�T � � d	bg
� expf�	b� �

��
�Tg fIP ffM�T � � d 	m� eB�T � � d	bg

�
��� 	m� 	b�

T
p
��T

exp

�
��� 	m� 	b��

�T

�
� expf�	b� �

��
�Tgd 	m d	b� 	m � �� 	b � 	m�
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20.2 Up and out European call.

Let � � K � L be given. The payoff at time T is

�S�T ��K���fS��T ��Lg�

where
S��T � � max

��t�T
S�t��

To simplify notation, assume that IP is already the risk-neutral measure, so the value at time zero of
the option is

v��� S���� � e�rT IE
h
�S�T ��K���fS��T ��Lg

i
�

Because IP is the risk-neutral measure,

dS�t� � rS�t� dt� �S�t� dB�t�

S�t� � S� expf�B�t� � �r� �
��

��tg

� S� exp

����������
	


�B�t� �

�
r

�
� �

�


� �z �

�

t

�����
���������

� S� expf� eB�t�g�
where

� �

�
r

�
� �

�


�

eB�t� � �t �B�t��

Consequently,

S��t� � S� expf�fM�t�g�
where,

fM�t� � max
��u�t

eB�u��

We compute,

v��� S���� � e�rT IE
h
�S�T ��K���fS��T ��Lg

i
� e�rT IE

��
S��� expf� eB�T �g �K

��
�
fS���expf� eM�T �g� Lg

�
� e�rT IE

��
S��� expf� eB�T �g �K

�
��eB�T ���

�
log

K

S���� �z �
�b

� eM�T ��
�

�
log

L

S���� �z �
�m

��
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Figure 20.3: Possible values of eB�T �� fM�T �.

We consider only the case

S��� � K � L� so � � 	b � 	m�

The other case, K � S��� � L leads to 	b � � � 	m and the analysis is similar.

We compute
R �m
�b

R �m
x � � �dy dx:

v��� S���� � e�rT
Z �m

�b

Z �m

x

�S��� expf�xg �K�
���y � x�

T
p
��T

exp

�
���y � x��

�T
� �x� �

��
�T

�
dy dx

� �e�rT
Z �m

�b
�S��� expf�xg �K�

�p
��T

exp

�
���y � x��

�T
� �x � �

��
�T

� ����y� �m

y�x
dx

� e�rT
Z �m

�b
�S��� expf�xg �K�

�p
��T

�
exp

�
� x�

�T
� �x � �

��
�T

�

� exp

�
��� 	m� x��

�T
� �x � �

��
�T

��
dx

�
�p
��T

e�rTS���

Z �m

�b
exp

�
�x� x�

�T
� �x � �

��
�T

�
dx

� �p
��T

e�rTK

Z �m

�b
exp

�
� x�

�T
� �x � �

��
�T

�
dx

� �p
��T

e�rTS���
Z �m

�b
exp

�
�x� �� 	m� x��

�T
� �x � �

��
�T

�
dx

�
�p
��T

e�rTK

Z �m

�b
exp

�
��� 	m� x��

�T
� �x � �

��
�T

�
dx�

The standard method for all these integrals is to complete the square in the exponent and then
recognize a cumulative normal distribution. We carry out the details for the first integral and just
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give the result for the other three. The exponent in the first integrand is

�x� x�

�T
� �x � �

��
�T

� � �

�T
�x� �T � �T �� � �

��
�T � ��T

� � �

�T

�
x� rT

�
� �T

�

�

� rT�

In the first integral we make the change of variable

y � �x� rT	�� �T	��	
p
T� dy � dx	

p
T�

to obtain

e�rTS���p
��T

Z �m

�b
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�
�x� x�

�T
� �x � �

��
�T

�
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�
�p
��T

S���
Z �m

�b
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�
� �

�T

�
x� rT

�
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�
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�
�p
��T

S����

�mp
T
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p
T

� ��
p
T
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�bp
T
� r

p
T
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p
T

�
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�

�
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�
N

�
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p
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�
� �

p
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�
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p
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�
� �

p
T

�
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�

Putting all four integrals together, we have
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� �
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� �
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� �

p
T

�

��
�
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	b �

�

�
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K

S���
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�

�
log

L

S���
�



CHAPTER 20. Pricing Exotic Options 215
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Figure 20.4: Initial and boundary conditions.

If we let L�� we obtain the classical Black-Scholes formula

v��� S���� � S���
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�
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� �
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�
��N

�
	bp
T
� r

p
T

�
�
�
p
T

�

��

� S���N

�
�

�
p
T
log

S���

K
�
r
p
T

�
�
�
p
T

�

�
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� �
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If we replace T by T � t and replace S��� by x in the formula for v��� S����, we obtain a formula
for v�t� x�, the value of the option at the time t if S�t� � x. We have actually derived the formula
under the assumption x � K � L, but a similar albeit longer formula can also be derived for
K � x � L. We consider the function

v�t� x� � IEt�x
h
e�r�T�t��S�T ��K���fS��T ��Lg

i
� � � t � T� � � x � L�

This function satisfies the terminal condition

v�T� x� � �x�K��� � � x � L

and the boundary conditions

v�t� �� � �� � � t � T�

v�t� L� � �� � � t � T�

We show that v satisfies the Black-Scholes equation

�rv � vt � rxvx �
�
��

�x�vxx� � � t � T� � � x � L�
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Let S��� � � be given and define the stopping time


 � minft � �
 S�t� � Lg�

Theorem 2.61 The process

e�r�t���v�t � 
� S�t� 
��� � � t � T�

is a martingale.

Proof: First note that
S��T � � L	
 
 � T�

Let � � � be given, and choose t � ��� T �. If 
��� � t, then

IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�� ��� � ��

But when 
��� � t, we have

v�t � 
���� S�t� 
���� ��� � v�t � 
���� L� � ��

so we may write

IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�� ��� � e�r�t������v �t � 
���� S�t� 
���� ��� �

On the other hand, if 
��� � t, then the Markov property implies

IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�� ���
� IEt�S�t���

h
e�rT �S�T ��K���fS��T ��Lg

i
� e�rtv�t� S�t� ���

� e�r�t������v �t � 
� S�t� 
���� ��� �
In both cases, we have

e�r�t���v�t � 
� S�t� 
�� � IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�� �
Suppose � � u � t � T . Then

IE

�
e�r�t���v�t � 
� S�t� 
��

����F�u��
� IE

�
IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�� ����F�u��
� IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�u��
� e�r�u���v �u � 
� S�u� 
�� �
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For � � t � T , we compute the differential

d
�
e�rtv�t� S�t��

�
� e�rt��rv � vt � rSvx �

�
��

�S�vxx� dt� e�rt�Svx dB�

Integrate from � to t � 
 :

e�r�t���v �t � 
� S�t� 
�� � v��� S����

�
Z t��

�
e�ru��rv � vt � rSvx �

�
��

�S�vxx� du

�

Z t��

�
e�ru�Svx dB�� �z �

A stopped martingale is still a martingale

Because e�r�t���v �t � 
� S�t� 
�� is also a martingale, the Riemann integralZ t��

�
e�ru��rv � vt � rSvx �

�
��

�S�vxx� du

is a martingale. Therefore,

�rv�u� S�u��� vt�u� S�u��� rS�u�vx�u� S�u���
�
��

�S��u�vxx�u� S�u�� � �� � � u � t� 
�

The PDE
�rv � vt � rxvx �

�
��

�x�vxx � �� � � t � T� � � x � L�

then follows.

The Hedge
d
�
e�rtv�t� S�t��

�
� e�rt�S�t�vx�t� S�t�� dB�t�� � � t � 
�

Let X�t� be the wealth process corresponding to some portfolio �t�. Then

d�e�rtX�t�� � e�rt�t��S�t� dB�t��

We should take
X��� � v��� S����

and
�t� � vx�t� S�t��� � � t � T � 
�

Then

X�T � 
� � v�T � 
� S�T � 
��

�

�
v�T� S�T �� � �S�T ��K�� if 
 � T

v�
� L� � � if 
 � T .
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Figure 20.5: Practial issue.

20.3 A practical issue

For t � T but t near T , v�t� x� has the form shown in the bottom part of Fig. 20.5.

In particular, the hedging portfolio
�t� � vx�t� S�t��

can become very negative near the knockout boundary. The hedger is in an unstable situation. He
should take a large short position in the stock. If the stock does not cross the barrier L, he covers
this short position with funds from the money market, pays off the option, and is left with zero. If
the stock moves across the barrier, he is now in a region of �t� � vx�t� S�t�� near zero. He should
cover his short position with the money market. This is more expensive than before, because the
stock price has risen, and consequently he is left with no money. However, the option has “knocked
out”, so no money is needed to pay it off.

Because a large short position is being taken, a small error in hedging can create a significant effect.
Here is a possible resolution.

Rather than using the boundary condition

v�t� L� � �� � � t � T�

solve the PDE with the boundary condition

v�t� L� � �Lvx�t� L� � �� � � t � T�

where � is a “tolerance parameter”, say �%. At the boundary, Lvx�t� L� is the dollar size of the
short position. The new boundary condition guarantees:

1. Lvx�t� L� remains bounded;

2. The value of the portfolio is always sufficient to cover a hedging error of � times the dollar
size of the short position.


