Chapter 2

Conditional Expectation

Please see Hull's book (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denoted. At each time step, the stock price either goes up by a factor of
or down by a factor ofl. It will be useful to visualize tossing a coin at each time step, and say that

o the stock price moves up by a factor:off the coin comes out head#/(), and

e down by a factor ofl if it comes out tails ).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

Q={HHH,HHT,HTH,HTT,THH,THH, THT, TTH, TTT}.

A typical sequence d? will be denotedv, andw;, will denote thekth element in the sequence
We write S, (w) to denote the stock price at “timé”(i.e. afterk tosses) under the outcorme Note
thatSy (w) depends only ow, ws, ... ,w;. Thusin the 3-coin-toss example we write for instance,

S1(w) £ Sy (w1, waws) £ 81 (wr),

A
Sa(w) £ Sy(wr,wa,ws) £ Sawr, ws).

EachsS; is arandom variable defined on the s&®. More precisely, letF = P(2). ThenF is a
o-algebra and(?, F) is a measurable space. Eaghis anF-measurable functioft— IR, that is,
Sk‘1 is a function5—F wherep is the Borelo-algebra orR. We will see later that, is in fact
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- b~ S(HHH) = @ 5,
o

S, (HH) =u s,
W =H = SHHD = Pd S
S = ug, s3HTH) =P d S
0T S (THH) = Pd S
“= S (HT) = ud §
S (TH) = ud §
T
- / SHT=d’u S
2
%(n = d% S(THN=d"u S
i S3(TTH) = d°u S
w=T =

Figure 2.1:A three coin period binomial model.

measurable under a subalgebra ofF. Recall that the Boret-algebras is thes-algebra generated
by the open intervals dR! In this course we will always deal with subset$ofiat belong tds.

For any random variabl& defined on a sample spa@eand anyy € IR, we will use the notation:

(X <y} S {weX(w) <y}

Thesetd X < y},{X >y}, {X = y}, etc, are defined similarly. Similarly for any subggbf IR,
we define A
{XeB}={weX(w) € B}

Assumption 2.1 u > d > 0.

2.2 Information

Definition 2.1 (Sets determined by thefirst £ tosses) We say that a set C € is determined by
thefirst £ coin tossesif, knowing only the outcome of the firét tosses, we can decide whether the
outcome ofall tosses is im. In general we denote the collection of sets determined by thefirst
tosses byF ;.. Itis easy to check thak . is ac-algebra.

Note that the random variablg, is 7;-measurable, for eadh=1,2,...,n.

Example2.1 Inthe 3 coin-toss example, the collectign of sets determined by the first toss consists of:
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1. Ay £ {HHH, HHT,HTH, HTT},
2. Ar 2 {THH, THT, TTH,TTT},
3. 9,

4. Q.

The collectionF - of sets determined by the first two tosses consists of:

Apg S {HHH HATY,
Apr 2 {HTH, HTT),
Arg 2 {THH, THTY,

Ay 2 {TTH, TTT},

. The complements of the above sets,

. Any union of the above sets (including the complements),
. ¢ andQ.

Noopr w N
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Definition 2.2 (Information carried by arandom variable) Let X be arandom variable— IR.
We say that a set C (2 is determined by the random variable X if, knowing only the valueX (w)

of the random variable, we can decide whether ornat A. Another way of saying this is that for
everyy € IR, eitherX~1(y) Cc A or X~!(y) N A = ¢. The collection of susbets 6f determined

by X is ac-algebra, which we call the-algebra generated by, and denote by (.X).

If the random variable&X takes finitely many different values, the.X') is generated by the collec-

tion of sets
{XTHX (W)|w € Q)

these sets are called thtoms of thes-algebras (X).
In general, ifX is a random variabl@— IR, theno (X) is given by

o(X)={X"YB);B € B}.

Example 2.2 (Sets determined by S;) Theo-algebra generated I# consists of the following sets:

Appg ={HHH HHT} = {w € Q; S5(w) = u*Sp},
App = {TTH, TTT} = {Ss = d*Sy},

Apgp UApg = {S2 = udSp},

Complements of the above sets,

. Any union of the above sets,

. ¢ ={5(w) € ¢},

. =A{5(w) € R}.

NooswN e
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample spa€k Let us define

e p € (0,1)is the probability ofH,
o ¢ 2 (1 - p)is the probability ofr",
e the coin tosses ai@dependent, so that, e.g.JP(H HT) = p?q, etc.
o P(A) 2 Y,y P(w), VA C Q.
Definition 2.3 (Expectation.)

EX2 Y X(w)Pw).

we
If A C Qthen
Al ifweA
IA(“’)—{ 0 ifwgA
and

E(I4X) = /AXdP = > X(wPw).
WEeA

We can think off” (1 4.X') as apartial average of X over the setd.

23.1 Anexample

Let us estimate5;, given S;. Denote the estimate b§’'(S1|S2). From elementary probability,
IE(51]52) is arandom variabl® whose value ab is defined by

Y (w) = E(51]52 = y),
wherey = S;(w). Properties of'(S1].52):
e [F(S1]52) should depend om, i.e., itis arandomvariable.
e If the value ofS; is known, then the value df/(5;|.S2) should also be known. In particular,

- Ifw=HHHorw= HHT,thenS;(w) = u%Sy. If we know thatS, (w) = u%Sy, then
even without knowing,, we know thatS; (w) = uSy. We define

—Ifw=TTTorw=TTH,thenSy(w) = d*Sy. If we know thatS;(w) = d%S, then
even without knowing,, we know thatS; (w) = d.5o. We define

E(S1]S2)(TTT) = IE(S1|S)(TTH) = dS.
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—fwe A={HTH HIT,THH,THT}, thenS;(w) = udSp. If we know S, (w) =
ud.Sy, then we do not know whethé; = u.Sy or .Sy = dSy. We then take a weighted
average:

P(A) = p*q + pg* + p*q + pg* = 2pq.

Furthermore,

/A SidlP = pzquSO + pq2u50 + pzquO + pq2d50

= pq(u+d)So
Forw € A we define
[, S1dIP
E(5:1]5)(w) = f}pT) = 3(u+ d)S.

Then
/175(51|52)d1P:/ SydIP.
A A

In conclusion, we can write
IE(51]52) (w) = g(Sa2(w)),

where
uSg if 2 =425
g(z) =% F(u+d)So if 2 = udSo
dSO if v = d250

In other words JF/(51].S2) is randomonly through dependence on S;. We also write
E(51|52 = ) = g(x),

wherey is the function defined above.
The random variablé’'(.S;|.S2) has two fundamental properties:

e [F(51]52) iso(S2)-measurable.

e Forevery setd € o(Sz),
/175(51|52)d1P = /SldP.
A A

2.3.2 Définition of Conditional Expectation

Please see Williams, p.83.

Let (Q2, F, IP) be a probability space, and @be a subs-algebra ofF. Let X be a random variable
on (2, F, IP). ThenlE(X|G) is defined to be any random variabethat satisfies:

(@) Y isG-measurable,
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(b) For every setd € G, we have the “partial averaging property”

/ VP = / XdP.
A A

Existence. There is always a random variabte satisfying the above properties (provided that
IF|X| < o), i.e., conditional expectations always exist.

Uniqueness. There can be more than one random variableatisfying the above properties, but if
Y’ is another one, theri = Y’ almost surely, i.eP{w € ;Y (w) = Y'(w)} = 1.

Notation 2.1 For random variableX, Y, itis standard notation to write
A
FE(X|Y) = E(X|o(Y)).
Here are some useful ways to think abdut.X |G):

e A random experiment is performed, i.e., an elemerdf €2 is selected. The value of is
partially but not fully revealed to us, and thus we cannot compute the exact vaKié.Qf
Based on what we know abowt we compute an estimate &f (w). Because this estimate
depends on the partial information we have ahouit depends on, i.e., IF[X|Y](w) is a
function ofw, although the dependence ©ris often not shown explicitly.

o Ifthe o-algebrag contains finitely many sets, there will be a “smallest” 4éh G containing
w, which is the intersection of all sets¢hcontainingv. The wayw is partially revealed to us
is that we are told it is i, but not told which element of it is. We then defind’[ X |Y](w)
to be the average (with respectift) value of X over this setd. Thus, for alkv in this setA,
E1X|Y](w) will be the same.

2.3.3 Further discussion of Partial Averaging
The partial averaging property is
/AE(X|Q)dP: /AXdJP,VA €q. (3.1)
We can rewrite this as
E[I4.E(X|G)] = E[14.X]. (3.2)
Note that/ 4 is aG-measurable random variable. In fact the following holds:

Lemma3.10 If V' isany G-measurable randomvariable, then provided IF|V.IE (X |G)| < oo,

E[V.E(X|9)] = E[V.X). (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) Whisrasimple
G-measurable random variable, i.¥.js of the formV =5"7_, ¢x14, , where eachd;, isin G and
eache; is constant. Next consider the case that a nonnegativé-measurable random variable,
but is not necessarily simple. SuchVacan be written as the limit of an increasing sequence
of simple random variableg,,; we write (3.3) for each/, and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3} forFinally, the generaf-
measurable random varialifecan be written as the difference of two nonnegative random-variables
V = V*+ — V~, and since (3.3) holds fdr+ andV ~ it must hold forV" as well. Williams calls

this argument the “standard machine” (p. 56). [

Based on this lemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For everyG-measurable random-varialle we have

E[V.E(X|G)] = E[V.X]. (3.4)

2.3.4 Propertiesof Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

@ E(E(X]9) = E(X).
Proof: Just takel in the partial averaging property to be

The conditional expectation of is thus an unbiased estimator of the random variahle
(b) If X is G-measurable, then
F(X|G6) = X.
Proof: The partial averaging property holds trivially wheris replaced byX'. And sinceX
is G-measurableX satisfies the requirement (a) of a conditional expectation as well.
If the information content of; is sufficient to determin&’, then the best estimate &f based
ong is X itself.

(©) (Linearity)
(a1 X1+ a2 X2|G) = a2 (X41|G) + a2l (X4|G).

(d) (Positivity) If X > 0 almost surely, then
FE(X|G) > 0.
Proof: Taked = {w € Q; IF(X|G)(w) < 0}. Thissetising sincell/(X |G) isG-measurable.
Partial averaging implieg, /(X |G)dIP = [, XdIP. The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, url&s$) = 0. Therefore,
P(A) =0.
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(h) (Jensen’s Inequality) kb : R— R is convex andE|¢(X)| < oo, then
E(¢(X)IG) > o(IB(X|G)).
Recall the usual Jensen’s Inequalifys (X ) > 6(I2(X)).
(i) (Tower Property) If}{ is a subs-algebra ofG, then
E(E(X|G)|H) = E(X[H).

H is a sube-algebra ofG means tha@ contains more information thak. If we estimateX
based on the information i, and then estimate the estimator based on the smaller amount
of information in7, then we get the same result as if we had estimatetirectly based on

the information inf{.

(1) (Taking outwhat is known) I is G-measurable, then
F(ZX|6) = Z.FE(X|G).

When conditioning o/, theG-measurable random variabteacts like a constant.

Proof: LetZ be aG-measurable random variable. A random variables (7 X |G) if and
only if

(a) Y isG-measurable;

TakeY = Z.IF(X|G). ThenY satisfies (a) (a product ¢gi-measurable random variables is
G-measurable)Y also satisfies property (b), as we can check below:

/YdJP — E(LY)
A

= E[4ZE(X|G)]
= E[I4Z.X] (D)WithV = I47

= / ZXdIP.
A

(k) (Role of Independence) # is independent of (o (X ), G), then
E(X|o(G,H)) = E(X|9).
In particular, if X' is independent of{, then
F(X|H) = E(X).

If # is independent oK andg, then nothing is gained by including the information content
of # in the estimation ofX.
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2.3.5 Examplesfrom the Binomial M odel

Recall thatF, = {¢, Ay, Ar, Q}. Notice thatl’(Sz|F1) must be constant oAy and A7,
Now sincell) (52| F1) must satisfy the partial averaging property,

/ IE(Sz|Fq)dIP = SodIP,
AH AH

/ (S| Fq)dIP = Sod IP.

AT AT
We compute

/A E(Sy|F1)dIP = P(Ag).JE (S| Fy)(w)
H
= plE(S:|F1)(w),Vw € Ag.
On the other hand,
SodIP = p*u*Sy + pqudSo.

Apg

Therefore,

E(S:|F1)(w) = pu?Sy + qudSy, Yw € Ap.
We can also write
E(So|F1)(w) = pu*So+ qudSo

(pu + qd)uSy
= (pu+qd)Si(w),Vw € Ag

Similarly,
E(Sz:|F1)(w) = (pu+ qd)S1(w),Vw € Ar.

Thus in both cases we have
E(S2| F1)(w) = (pu+ qd)S1(w), Yw € Q.
A similar argument one time step later shows that
(55 F2) (@) = (pu + qd) Sz (w).

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

EE(Ss|F2)|F1] = El(pu+ qd)S2|Fs]
= (pu+ qd)IE (5| F1) (linearity)
= (pu+ qd)*S;.

This final expression ig' (53| F1).
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24 Martingales

The ingredients are:

e A probability space?, F, IP).

e A sequence of-algebrasry, Fq,...,F,, with the property that, C 7y C ... C F,, C
F. Such a sequence efalgebras is called filtration.

e A sequence of random variablé%), My, ..., M,. Thisis called atochastic process.
Conditions for a martingale:

1. EachMy is Fr-measurable. If you know the information #., then you know the value of
M. We say that the proce$d/;, } is adapted to the filtration{ 7 }.

2. Foreachk, IF(My41|Fi) = M. Martingales tend to go neither up nor down.

A supermartingaletends to galown, i.e. the second condition above is replaced®iyM 11| Fr) <
My}; asubmartingaletends to gaup, i.e. I (My41|Fr) > M.

Example 2.3 (Examplefrom the binomial model.) Fork = 1,2 we already showed that
E(S}H_l |~7:k) = (pu + qd)Sk

Fork = 0, we setF, = {¢,}, the “trivial c-algebra”. Thiss-algebra contains no information, and any
Fy-measurable random variable must be constant (honrandom). Therefore, by defliitiohF,) is that
constant which satisfies the averaging property

/E(Sl|}"o)dﬂ3:/ S1diP.
Q Q

The right hand side i#5, = (pu + ¢d) Sy, and so we have
FE(S1|Fo) = (pu+ qd)So.
In conclusion,

o If (pu+ qd) = 1then{Sy, Fr; k =0,1,2,3} is a martingale.
o If (pu+ qd) > 1then{Sy, Fr; k =0,1,2,3}is a submartingale.
o If (pu+ qd) < 1then{Sy, Fr; k =0,1,2,3}is a supermartingale.



