
Chapter 2

Conditional Expectation

Please see Hull’s book (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denotedS�. At each time step, the stock price either goes up by a factor ofu

or down by a factor ofd. It will be useful to visualize tossing a coin at each time step, and say that

� the stock price moves up by a factor ofu if the coin comes out heads (H), and

� down by a factor ofd if it comes out tails (T ).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

� � fHHH�HHT�HTH�HTT� THH�THH� THT� TTH� TTTg�

A typical sequence of� will be denoted�, and�k will denote thekth element in the sequence�.
We writeSk��� to denote the stock price at “time”k (i.e. afterk tosses) under the outcome�. Note
thatSk��� depends only on��� ��� � � � � �k. Thus in the 3-coin-toss example we write for instance,

S����
�
� S����� ��� ���

�
� S������

S����
�
� S����� ��� ���

�
� S����� ����

EachSk is a random variable defined on the set�. More precisely, letF � P���. ThenF is a
�-algebra and���F� is a measurable space. EachSk is anF -measurable function��IR, that is,
S��
k

is a functionB�F whereB is the Borel�-algebra on IR. We will see later thatSk is in fact
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Figure 2.1:A three coin period binomial model.

measurable under a sub-�-algebra ofF . Recall that the Borel�-algebraB is the�-algebra generated
by the open intervals of IR. In this course we will always deal with subsets of IR that belong toB.

For any random variableX defined on a sample space� and anyy � IR, we will use the notation:

fX � yg
�
� f� � ��X��� � yg�

The setsfX � yg� fX � yg� fX � yg� etc, are defined similarly. Similarly for any subsetB of IR,
we define

fX � Bg
�
� f� � ��X��� � Bg�

Assumption 2.1 u � d � �.

2.2 Information

Definition 2.1 (Sets determined by the first k tosses.) We say that a setA � � is determined by
the first k coin tosses if, knowing only the outcome of the firstk tosses, we can decide whether the
outcome ofall tosses is inA. In general we denote the collection of sets determined by the firstk

tosses byFk. It is easy to check thatF k is a�-algebra.

Note that the random variableSk isFk-measurable, for eachk � �� �� � � � � n.

Example 2.1 In the 3 coin-toss example, the collectionF� of sets determined by the first toss consists of:
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1. AH
�
� fHHH�HHT�HTH�HTTg,

2. AT
�

� fTHH� THT� TTH� TTTg,

3. �,

4. �.

The collectionF� of sets determined by the first two tosses consists of:

1. AHH
�

� fHHH�HHTg,

2. AHT
�

� fHTH�HTTg,

3. ATH
�
� fTHH� THTg,

4. ATT
�
� fTTH� TTTg,

5. The complements of the above sets,

6. Any union of the above sets (including the complements),

7. � and�.

Definition 2.2 (Information carried by a random variable.) LetX be a random variable��IR.
We say that a setA � � is determined by the random variable X if, knowing only the valueX���
of the random variable, we can decide whether or not� � A. Another way of saying this is that for
everyy � IR, eitherX���y� � A orX���y� � A � �. The collection of susbets of� determined
byX is a�-algebra, which we call the�-algebra generated byX , and denote by��X�.

If the random variableX takes finitely many different values, then��X� is generated by the collec-
tion of sets

fX���X����j� � �g�

these sets are called theatoms of the�-algebra��X�.

In general, ifX is a random variable��IR, then��X� is given by

��X� � fX���B��B � Bg�

Example 2.2 (Sets determined by S�) The�-algebra generated byS� consists of the following sets:

1. AHH � fHHH�HHTg � f� � ��S���� � u�S�g,

2. ATT � fTTH� TTTg � fS� � d�S�g�

3. AHT �ATH � fS� � udS�g�

4. Complements of the above sets,

5. Any union of the above sets,

6. � � fS���� � �g,

7. � � fS���� � IRg.
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample space�. Let us define

� p � ��� �� is the probability ofH ,

� q
�
� ��� p� is the probability ofT ,

� the coin tosses areindependent, so that, e.g.,IP �HHT � � p�q� etc.

� IP �A�
�
�
P
��A IP ���, 	A � �.

Definition 2.3 (Expectation.)

IEX
�
�
X
���

X���IP ����

If A � � then

IA���
�
�

�
� if � � A

� if � 
� A

and
IE�IAX� �

Z
A

XdIP �
X
��A

X���IP ����

We can think ofIE�IAX� as apartial average of X over the setA.

2.3.1 An example

Let us estimateS�, givenS�. Denote the estimate byIE�S�jS��. From elementary probability,
IE�S�jS�� is a random variableY whose value at� is defined by

Y ��� � IE�S�jS� � y��

wherey � S����. Properties ofIE�S�jS��:

� IE�S�jS�� should depend on�, i.e., it is arandom variable.

� If the value ofS� is known, then the value ofIE�S�jS�� should also be known. In particular,

– If � � HHH or � � HHT , thenS���� � u�S�. If we know thatS���� � u�S�, then
even without knowing�, we know thatS���� � uS�. We define

IE�S�jS���HHH� � IE�S�jS���HHT � � uS��

– If � � TTT or � � TTH , thenS���� � d�S�. If we know thatS���� � d�S�, then
even without knowing�, we know thatS���� � dS�. We define

IE�S�jS���TTT � � IE�S�jS���TTH� � dS��
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– If � � A � fHTH�HTT�THH� THTg, thenS���� � udS�. If we knowS���� �
udS�, then we do not know whetherS� � uS� or S� � dS�. We then take a weighted
average:

IP �A� � p�q 	 pq� 	 p�q 	 pq� � �pq�

Furthermore, Z
A

S�dIP � p�quS� 	 pq�uS� 	 p�qdS� 	 pq�dS�

� pq�u	 d�S�

For� � A we define

IE�S�jS����� �

R
A
S�dIP

IP �A�
� �

�
�u	 d�S��

Then Z
A

IE�S�jS��dIP �
Z
A

S�dIP�

In conclusion, we can write
IE�S�jS����� � g�S������

where

g�x� �

���
��

uS� if x � u�S�
�

�
�u	 d�S� if x � udS�

dS� if x � d�S�

In other words,IE�S�jS�� is randomonly through dependence on S�. We also write

IE�S�jS� � x� � g�x��

whereg is the function defined above.

The random variableIE�S�jS�� has two fundamental properties:

� IE�S�jS�� is��S��-measurable.

� For every setA � ��S��, Z
A

IE�S�jS��dIP �

Z
A

S�dIP�

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let ���F � IP � be a probability space, and letG be a sub-�-algebra ofF . LetX be a random variable
on ���F � IP �. ThenIE�X jG� is defined to be any random variableY that satisfies:

(a) Y isG-measurable,
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(b) For every setA � G, we have the “partial averaging property”

Z
A

Y dIP �
Z
A

XdIP�

Existence. There is always a random variableY satisfying the above properties (provided that
IEjX j ��), i.e., conditional expectations always exist.

Uniqueness. There can be more than one random variableY satisfying the above properties, but if
Y � is another one, thenY � Y � almost surely, i.e.,IPf� � �� Y ��� � Y ����g � ��

Notation 2.1 For random variablesX� Y , it is standard notation to write

IE�X jY �
�
� IE�X j��Y ���

Here are some useful ways to think aboutIE�X jG�:

� A random experiment is performed, i.e., an element� of � is selected. The value of� is
partially but not fully revealed to us, and thus we cannot compute the exact value ofX���.
Based on what we know about�, we compute an estimate ofX���. Because this estimate
depends on the partial information we have about�, it depends on�, i.e., IE
X jY ���� is a
function of�, although the dependence on� is often not shown explicitly.

� If the�-algebraG contains finitely many sets, there will be a “smallest” setA in G containing
�, which is the intersection of all sets inG containing�. The way� is partially revealed to us
is that we are told it is inA, but not told which element ofA it is. We then defineIE
X jY ����
to be the average (with respect toIP ) value ofX over this setA. Thus, for all� in this setA,
IE
X jY ���� will be the same.

2.3.3 Further discussion of Partial Averaging

The partial averaging property is

Z
A

IE�X jG�dIP �
Z
A

XdIP� 	A � G� (3.1)

We can rewrite this as

IE
IA�IE�X jG�� � IE
IA�X �� (3.2)

Note thatIA is aG-measurable random variable. In fact the following holds:

Lemma 3.10 If V is any G-measurable random variable, then provided IEjV�IE�XjG�j ��,

IE
V�IE�XjG�� � IE
V�X �� (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) whenV is a simple
G-measurable random variable, i.e.,V is of the formV �

P
n

k�� ckIAK , where eachAk is inG and
eachck is constant. Next consider the case thatV is a nonnegativeG-measurable random variable,
but is not necessarily simple. Such aV can be written as the limit of an increasing sequence
of simple random variablesVn; we write (3.3) for eachVn and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3) forV . Finally, the generalG-
measurable random variableV can be written as the difference of two nonnegative random-variables
V � V � � V �, and since (3.3) holds forV � andV � it must hold forV as well. Williams calls
this argument the “standard machine” (p. 56).

Based on this lemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For everyG-measurable random-variableV , we have

IE
V�IE�X jG�� � IE
V�X �� (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

(a) IE�IE�X jG�� � IE�X��
Proof: Just takeA in the partial averaging property to be�.

The conditional expectation ofX is thus an unbiased estimator of the random variableX .

(b) If X is G-measurable, then
IE�X jG� � X�

Proof: The partial averaging property holds trivially whenY is replaced byX . And sinceX
isG-measurable,X satisfies the requirement (a) of a conditional expectation as well.

If the information content ofG is sufficient to determineX , then the best estimate ofX based
onG isX itself.

(c) (Linearity)
IE�a�X� 	 a�X�jG� � a�IE�X�jG� 	 a�IE�X�jG��

(d) (Positivity) If X � � almost surely, then

IE�X jG� � ��

Proof: TakeA � f� � �� IE�X jG���� � �g. This set is inG sinceIE�X jG� isG-measurable.
Partial averaging implies

R
A
IE�X jG�dIP �

R
A
XdIP . The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unlessIP �A� � �. Therefore,
IP �A� � �.
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(h) (Jensen’s Inequality) If� � R�R is convex andIEj��X�j��, then

IE���X�jG� � ��IE�X jG���

Recall the usual Jensen’s Inequality:IE��X� � ��IE�X���

(i) (Tower Property) IfH is a sub-�-algebra ofG, then

IE�IE�X jG�jH� � IE�X jH��

H is a sub-�-algebra ofG means thatG contains more information thanH. If we estimateX
based on the information inG, and then estimate the estimator based on the smaller amount
of information inH, then we get the same result as if we had estimatedX directly based on
the information inH.

(j) (Taking out what is known) IfZ is G-measurable, then

IE�ZX jG� � Z�IE�X jG��

When conditioning onG, theG-measurable random variableZ acts like a constant.

Proof: LetZ be aG-measurable random variable. A random variableY is IE�ZX jG� if and
only if

(a) Y is G-measurable;

(b)
R
A
Y dIP �

R
A
ZXdIP� 	A � G.

TakeY � Z�IE�X jG�. ThenY satisfies (a) (a product ofG-measurable random variables is
G-measurable).Y also satisfies property (b), as we can check below:

Z
A

Y dIP � IE�IA�Y �

� IE
IAZIE�X jG��

� IE
IAZ�X � ((b’) with V � IAZ

�
Z
A

ZXdIP�

(k) (Role of Independence) IfH is independent of����X��G�, then

IE�X j��G�H�� � IE�X jG��

In particular, ifX is independent ofH, then

IE�X jH� � IE�X��

If H is independent ofX andG, then nothing is gained by including the information content
of H in the estimation ofX .
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2.3.5 Examples from the Binomial Model

Recall thatF� � f��AH� AT ��g. Notice thatIE�S�jF�� must be constant onAH andAT .

Now sinceIE�S�jF�� must satisfy the partial averaging property,Z
AH

IE�S�jF��dIP �

Z
AH

S�dIP�

Z
AT

IE�S�jF��dIP �

Z
AT

S�dIP�

We compute Z
AH

IE�S�jF��dIP � IP �AH ��IE�S�jF�����

� pIE�S�jF������ 	� � AH �

On the other hand, Z
AH

S�dIP � p�u�S� 	 pqudS��

Therefore,
IE�S�jF����� � pu�S� 	 qudS�� 	� � AH �

We can also write

IE�S�jF����� � pu�S� 	 qudS�

� �pu	 qd�uS�

� �pu	 qd�S����� 	� � AH

Similarly,
IE�S�jF����� � �pu	 qd�S����� 	� � AT �

Thus in both cases we have

IE�S�jF����� � �pu	 qd�S����� 	� � ��

A similar argument one time step later shows that

IE�S�jF����� � �pu	 qd�S�����

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

IE
IE�S�jF��jF�� � IE
�pu	 qd�S�jF��

� �pu	 qd�IE�S�jF�� (linearity)

� �pu	 qd��S��

This final expression isIE�S�jF��.



58

2.4 Martingales

The ingredients are:

� A probability space���F� IP �.

� A sequence of�-algebrasF��F�� � � � �Fn, with the property thatF � � F� � � � � � Fn �
F . Such a sequence of�-algebras is called afiltration.

� A sequence of random variablesM��M�� � � � �Mn. This is called astochastic process.

Conditions for a martingale:

1. EachMk isF k-measurable. If you know the information inFk, then you know the value of
Mk. We say that the processfMkg is adapted to the filtrationfF kg.

2. For eachk, IE�Mk��jFk� � Mk . Martingales tend to go neither up nor down.

A supermartingale tends to godown, i.e. the second conditionabove is replaced byIE�M k��jFk� �
Mk; a submartingale tends to goup, i.e. IE�Mk��jFk� �Mk.

Example 2.3 (Example from the binomial model.) Fork � �� � we already showed that

IE�Sk��jFk� � �pu� qd�Sk�

For k � 	, we setF� � f���g, the “trivial �-algebra”. This�-algebra contains no information, and any
F�-measurable random variable must be constant (nonrandom). Therefore, by definition,IE�S�jF�� is that
constant which satisfies the averaging propertyZ

�
IE�S�jF��dIP �

Z
�
S�dIP�

The right hand side isIES� � �pu� qd�S�, and so we have

IE�S�jF�� � �pu� qd�S��

In conclusion,

� If �pu� qd� � � thenfSk�Fk� k � 	� �� �� 
g is a martingale.

� If �pu� qd� � � thenfSk�Fk� k � 	� �� �� 
g is a submartingale.

� If �pu� qd� � � thenfSk�Fk� k � 	� �� �� 
g is a supermartingale.


