Chapter 19

A two-dimensional market model

Let $B(t) = (B_1(t), B_2(t)), 0 \le t \le T$, be a two-dimensional Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{F}(t), 0 \le t \le T$, be the filtration generated by B.

In what follows, all processes can depend on t and ω , but are adapted to $\mathcal{F}(t)$, $0 \le t \le T$. To simplify notation, we omit the arguments whenever there is no ambiguity.

Stocks:

$$
dS_1 = S_1 \left[\mu_1 \ dt + \sigma_1 \ dB_1 \right],
$$

\n
$$
dS_2 = S_2 \left[\mu_2 \ dt + \rho \sigma_2 \ dB_1 + \sqrt{1 - \rho^2} \ \sigma_2 \ dB_2 \right]
$$

We assume $\sigma_1 > 0$, $\sigma_2 > 0$, $-1 \le \rho \le 1$. Note that

$$
dS_1 \, dS_2 = S_1^2 \sigma_1^2 \, dB_1 \, dB_1 = \sigma_1^2 S_1^2 \, dt,
$$

\n
$$
dS_2 \, dS_2 = S_2^2 \rho^2 \sigma_2^2 \, dB_1 \, dB_1 + S_2^2 (1 - \rho^2) \sigma_2^2 \, dB_2 \, dB_2
$$

\n
$$
= \sigma_2^2 S_2^2 \, dt,
$$

\n
$$
dS_1 \, dS_2 = S_1 \sigma_1 S_2 \rho \sigma_2 \, dB_1 \, dB_1 = \rho \sigma_1 \sigma_2 S_1 S_2 \, dt.
$$

In other words,

- \bullet \Rightarrow n $\frac{dS_1}{S_1}$ has instantaneous variance σ_1^2 ,
- $\frac{dS_2}{S_2}$ has instantaneous variance σ_2^2 ,
- \bullet π and $\frac{dS_1}{S_1}$ and $\frac{dS_2}{S_2}$ have instantaneous covariance $\rho\sigma_1\sigma_2$.

Accumulation factor:

$$
\beta(t) = \exp\left\{ \int_0^t r \ du \right\}.
$$

The market price of risk equations are

$$
\sigma_1 \theta_1 = \mu_1 - r
$$

$$
\rho \sigma_2 \theta_1 + \sqrt{1 - \rho^2} \sigma_2 \theta_2 = \mu_2 - r
$$
 (MPR)

The solution to these equations is

$$
\theta_1 = \frac{\mu_1 - r}{\sigma_1}, \n\theta_2 = \frac{\sigma_1(\mu_2 - r) - \rho \sigma_2(\mu_1 - r)}{\sigma_1 \sigma_2 \sqrt{1 - \rho^2}},
$$

provided $-1 < \rho < 1$.

Suppose $-1 < \rho < 1$. Then (MPR) has a unique solution (θ_1, θ_2) ; we define

$$
Z(t) = \exp\left\{-\int_0^t \theta_1 \, dB_1 - \int_0^t \theta_2 \, dB_2 - \frac{1}{2} \int_0^t (\theta_1^2 + \theta_2^2) \, du\right\},\
$$

$$
\widetilde{P}(A) = \int_A Z(T) \, dP, \qquad \forall A \in \mathcal{F}.
$$

 $\widetilde{I}^{\widetilde{P}}$ is the *unique* risk-neutral measure. Define

$$
\widetilde{B}_1(t) = \int_0^t \theta_1 du + B_1(t),
$$

$$
\widetilde{B}_2(t) = \int_0^t \theta_2 du + B_2(t).
$$

Then

$$
dS_1 = S_1 \left[r \ dt + \sigma_1 \ d\widetilde{B}_1 \right],
$$

\n
$$
dS_2 = S_2 \left[r \ dt + \rho \sigma_2 \ d\widetilde{B}_1 + \sqrt{1 - \rho^2} \sigma_2 d\widetilde{B}_2 \right].
$$

We have changed the mean rates of return of the stock prices, but not the variances and covariances.

19.1 Hedging when $-1 < \rho < 1$

$$
dX = \Delta_1 dS_1 + \Delta_2 dS_2 + r(X - \Delta_1 S_1 - \Delta_2 S_2) dt
$$

\n
$$
d\left(\frac{X}{\beta}\right) = \frac{1}{\beta} (dX - rX dt)
$$

\n
$$
= \frac{1}{\beta} \Delta_1 (dS_1 - rS_1 dt) + \frac{1}{\beta} \Delta_2 (dS_2 - rS_2 dt)
$$

\n
$$
= \frac{1}{\beta} \Delta_1 S_1 \sigma_1 d\tilde{B}_1 + \frac{1}{\beta} \Delta_2 S_2 \left[\rho \sigma_2 d\tilde{B}_1 + \sqrt{1 - \rho^2} \sigma_2 d\tilde{B}_2 \right].
$$

Let V be $\mathcal{F}(T)$ -measurable. Define the $I\!\!P$ -martingale

$$
Y(t) = \widetilde{E}\left[\frac{V}{\beta(T)}\bigg|\mathcal{F}(t)\right], \qquad 0 \le t \le T.
$$

204

The Martingale Representation Corollary implies

$$
Y(t) = Y(0) + \int_0^t \gamma_1 d\widetilde{B}_1 + \int_0^t \gamma_2 d\widetilde{B}_2.
$$

We have

$$
d\left(\frac{X}{\beta}\right) = \left(\frac{1}{\beta}\Delta_1S_1\sigma_1 + \frac{1}{\beta}\Delta_2S_2\rho\sigma_2\right) d\tilde{B}_1
$$

$$
+ \frac{1}{\beta}\Delta_2S_2\sqrt{1-\rho^2}\sigma_2 d\tilde{B}_2,
$$

$$
dY = \gamma_1 d\tilde{B}_1 + \gamma_2 d\tilde{B}_2.
$$

We solve the equations

$$
\frac{1}{\beta}\Delta_1 S_1 \sigma_1 + \frac{1}{\beta}\Delta_2 S_2 \rho \sigma_2 = \gamma_1
$$

$$
\frac{1}{\beta}\Delta_2 S_2 \sqrt{1 - \rho^2} \sigma_2 = \gamma_2
$$

for the hedging portfolio (Δ_1, Δ_2) . With this choice of (Δ_1, Δ_2) and setting

$$
X(0) = Y(0) = \widetilde{E} \frac{V}{\beta(T)},
$$

we have $X(t) = Y(t)$, $0 \le t \le T$, and in particular,

$$
X(T) = V.
$$

Every $\mathcal{F}(T)$ -measurable random variable can be hedged; the market is *complete*.

19.2 Hedging when $\rho = 1$

The case $\rho = -1$ is analogous. Assume that $\rho = 1$. Then

$$
dS_1 = S_1[\mu_1 dt + \sigma_1 dB_1]
$$

$$
dS_2 = S_2[\mu_2 dt + \sigma_2 dB_1]
$$

The stocks are perfectly correlated.

The market price of risk equations are

$$
\sigma_1 \theta_1 = \mu_1 - r
$$

\n
$$
\sigma_2 \theta_1 = \mu_2 - r
$$
 (MPR)

The process θ_2 is free. There are two cases:

Case I: $\frac{\mu_1 - r}{\sigma_1} \neq \frac{\mu_2 - r}{\sigma_2}$. **T** $\frac{2^{-r}}{\sigma_2}$. There is no solution to (MPR), and consequently, there is no risk-neutral measure. This market admits arbitrage. Indeed

$$
d\left(\frac{X}{\beta}\right) = \frac{1}{\beta}\Delta_1(dS_1 - rS_1 dt) + \frac{1}{\beta}\Delta_2(dS_2 - rS_2 dt)
$$

= $\frac{1}{\beta}\Delta_1S_1[(\mu_1 - r) dt + \sigma_1 dB_1] + \frac{1}{\beta}\Delta_2S_2[(\mu_2 - r) dt + \sigma_2 dB_1]$

Suppose $\frac{\mu_1 - r}{\sigma_1} > \frac{\mu_2 - r}{\sigma_2}$. S $\frac{2-r}{\sigma_2}$. Set

$$
\Delta_1 = \frac{1}{\sigma_1 S_1}, \quad \Delta_2 = -\frac{1}{\sigma_2 S_2}.
$$

Then

$$
d\left(\frac{X}{\beta}\right) = \frac{1}{\beta} \left[\frac{\mu_1 - r}{\sigma_1} dt + dB_1 \right] - \frac{1}{\beta} \left[\frac{\mu_2 - r}{\sigma_2} dt + dB_1 \right]
$$

$$
= \frac{1}{\beta} \underbrace{\left[\frac{\mu_1 - r}{\sigma_1} - \frac{\mu_2 - r}{\sigma_2} \right]}_{\text{Positive}} dt
$$

Case II: $\frac{\mu_1 - r}{\sigma_1} = \frac{\mu_2 - r}{\sigma_2}$. T $\frac{2^{-r}}{\sigma_2}$. The market price of risk equations

$$
\sigma_1 \theta_1 = \mu_1 - r
$$

$$
\sigma_2 \theta_1 = \mu_2 - r
$$

have the solution

$$
\theta_1 = \frac{\mu_1 - r}{\sigma_1} = \frac{\mu_2 - r}{\sigma_2},
$$

 θ_2 is free; there are infinitely many risk-neutral measures. Let IP be one of them. **Hedging:**

$$
d\left(\frac{X}{\beta}\right) = \frac{1}{\beta} \Delta_1 S_1 [(\mu_1 - r) dt + \sigma_1 dB_1] + \frac{1}{\beta} \Delta_2 S_2 [(\mu_2 - r) dt + \sigma_2 dB_1]
$$

= $\frac{1}{\beta} \Delta_1 S_1 \sigma_1 [\theta_1 dt + dB_1] + \frac{1}{\beta} \Delta_2 S_2 \sigma_2 [\theta_1 dt + dB_1]$
= $\left(\frac{1}{\beta} \Delta_1 S_1 \sigma_1 + \frac{1}{\beta} \Delta_2 S_2 \sigma_2\right) d\tilde{B}_1.$

Notice that B_2 does not appear.

Let V be an $\mathcal{F}(T)$ -measurable random variable. If V depends on B_2 , then it can probably not be hedged. For example, if

$$
V = h(S_1(T), S_2(T)),
$$

and σ_1 or σ_2 depend on B_2 , then there is trouble.

206

More precisely, we define the $\widetilde{I\!P}$ -martingale

 $I_1 \cup I_2 = I\!\!\!I_1 \cup I_2 = I$ $\lceil -V - \rceil$. \cdots $\Big|\mathcal{F}(t)$ -

We can write

$$
Y(t) = Y(0) + \int_0^t \gamma_1 \, d\tilde{B}_1 + \int_0^t \gamma_2 \, d\tilde{B}_2,
$$

so

$$
dY = \gamma_1 \, d\widetilde{B}_1 + \gamma_2 \, d\widetilde{B}_2.
$$

To get $d\left(\frac{X}{\beta}\right)$ to match dY , we must have

$$
\gamma_2=0.
$$