Chapter 18

Martingale Representation Theorem

18.1 Martingale Representation Theorem

See Oksendal, 4th ed., Theorem 4.11, p.50.

Theorem 1.56 Let B(t),0 < ¢t < T, beaBrownianmotionon (2, 7, P). Let 7(¢),0 < ¢t < T, be
the filtration generated by this Brownian motion. Let X (¢),0 < ¢ < 7', bea martingale (under IP)
relative to thisfiltration. Then there isan adapted process 6(¢), 0 < ¢ < 7', such that

t
X (t) :X(O)—|—/ 5(u) dB(u), 0<t<T.
0
In particular, the paths of X are continuous.

Remark 18.1 We aready know that if X (¢) isaprocess satisfying
dX (t) = 4(t) dB(t),

then X (¢) isamartingale. Now we seethat if X (¢) isamartingal e adapted to thefiltration generated
by the Brownian motion B(t), i.e, the Brownian motion isthe only source of randomnessin X, then

dX (t) = 6(t) dB(t)

for some §(¢).

18.2 A hedging application

Homework Problem 4.5. In the context of Girsanov’s Theorem, suppsethat 7(¢),0 < t < T is
the filtration generated by the Brownian motion B (under IP). Suppose that Y isa IP-martingale.
Then there is an adapted process~(t), 0 < ¢ < T, such that
t -
Y (1) :Y(O)—I—/ v(w) dB(w), 0<t<T.
0
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Then

SN _ S@) =
d(mg)_ﬁaﬂ@dB@.

Let A(t),0 <t < T, beaportfolio process. The corresponding wealth process X (¢) satisfies

XN _ Ao S0 45
d(ﬁ(t)) = A(t)a(t) 0 dB(t),
i.e.,
X _ VR ()

Let V' be an F(71')-measurable random variable, representing the payoff of a contingent claim at
time7". Wewant to choose X (0) and A(¢),0 <t < T, sothat

X(T)=V.

Define the IP-martingale

—I V
Y (¢t :E[—‘}'t], 0<t<T.
0 =T | 5570
According to Homework Problem 4.5, there is an adapted process ~(¢), 0 < ¢ < 7', such that

wozy@+/waé@, 0<t<T.

Set X(0)=Y(0)=F [%} and choose A (u) so that
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X vy o[
0 _Y(t)_E[ﬁ(T)‘f(t)], 0<t<T
In particular,
XD _ml v -
5 = E [0 =
S0
X(T)=V.

The Martingale Representation Theorem guarantees the existence of a hedging portfolio, although
it does not tell us how to compute it. It aso justifiesthe risk-neutral pricing formula

X(0) = B0 | 575|700
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where

18.3 d-dimensional Girsanov Theorem

Theorem 3.57 (d-dimensional Girsanov) e B(t) = (Bi(t),...,B4(t)),0 <t <T,ad-
dimensional Brownian motionon (€2, 7, P);

e F(t),0 <t <T,theaccompanying filtration, perhapslarger than the one generated by B;
o 9(t) = (01(t),...,04(t)),0 <t <T,d-dimensional adapted process.
For 0 <t < T, define

- 1
Bj(t):/o 0:(u) du+ By(t),  j=1,....d,

20) =exp{ = [ o). aBt) =3 [ o0l duf

PA) = /A Z(T) dIP.
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Then, under P, the process

B(t) = (Bi(t), ..., Ba(t)), 0<t<T,

is a d-dimensional Brownian motion.

18.4 d-dimensional Martingale Representation Theorem

Theorem 458 e B(t) = (Bi(t),...,B4(t)),0 <t < T, ad-dimensional Brownian motion
on (2, 7, F);

o F(t),0 <t < T, thefiltration generated by the Brownian motion B.

If X(¢),0 <t < T, isamartingale (under IP) relativeto F(¢),0 < t < T, then thereisa
d-dimensional adpated process §(t) = (§1(¢), ..., d4(t)), such that

0)—|—/0t5(u).dB(u), 0<t<T.

Corollary 4.59 If we have a d-dimensional adapted processé(t) = (61 (t), ..., 04(t)), thenwecan
define B, 7 and IP asin Girsanov's Theorem. If Y (¢),0 < t < T',isamartingaleunder IP relative
to F(t),0 < t < T, then thereis a d-dimensional adpated process v (¢) = (v1(t),...,v4(t)) such
that

0) —I—/t'y(u).dg(u), 0<t<T.

18.5 Multi-dimensional mar ket model

Let B(t) = (Bi(t),...,Bq4(t)), 0 < t < T, bead-dimensional Brownian motion on some
(Q,F,P), and let F(t ) 0 < t < T, be thefiltration generated by B. Then we can define the
following:

Stocks

dS;(t) = pi(t)S;(t) dt + S;(t ZU” i=1,...,m

Accumulation factor

B(t) = exp {/Otr(u) du}.

Here, 1 (t), o;;(t) and r(t) are adpated processes.
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Discounted stock prices

SO S S
d (ﬂ(t) ) = (H;Ii)ﬁemlj;)) dt + ]Z: i (1) dB; (1)
o d
L2 0w 6,0 + By (1] (5.)
= 4B, (1)

For 5.1 to be satisfied, we need to choose 4, (t), . . . , 64(t), so that
d
Zaij(t)ej(t):,ui(t)—f‘(t), t=1,...,m. (MPR)
7=1

Market price of risk. The market price of risk is an adapted process 6(t) = (6:(¢),...,04(t))
satisfying the system of equations (MPR) above. There are three cases to consider:

Casel: (Unique Solution). For Lebesgue-almost every ¢ and IP-amost every w, (MPR) has a
unique solution (¢). Using #(¢) in the d-dimensional Girsanov Theorem, we define a unique
risk-neutral probability measure IP. Under P, every discounted stock price is a martingale.
Consequently, the discounted wealth process corresponding to any portfolio processisa IP-
martingale, and this implies that the market admits no arbitrage. Finaly, the Martingale
Representation Theorem can be used to show that every contingent claim can be hedged; the
market is said to be complete.

Casell: (Nosolution.) If (MPR) has no solution, then there is no risk-neutral probability measure
and the market admits arbitrage.

Caselll: (Multiplesolutions). If (MPR) has multiple solutions, then there are multiplerisk-neutral
probability measures. The market admits no arbitrage, but there are contingent claims which
cannot be hedged; the market is said to be incomplete.

Theorem 5.60 (Fundamental Theorem of Asset Pricing) Part |. (Harrison and Pliska, Martin-
galesand Stochasticintegral sinthe theory of continuoustrading, Stochastic Proc. and Applications
11 (1981), pp 215-260.):

If a market has a risk-neutral probability measure, then it admits no arbitrage.

Part11. (Harrisonand Pliska, A stochastic calculusmodel of continuoustrading: complete markets,
Stochastic Proc. and Applications 15 (1983), pp 313-316):
The risk-neutral measure isuniqueif and only if every contingent claim can be hedged.



