Chapter 18

Martingale Representation Theorem

18.1 Martingale Representation Theorem

Theorem 1.56 Let $B(t), 0 \leq t \leq T$, be a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{F}(t), 0 \leq t \leq T$, be the filtration generated by this Brownian motion. Let $X(t), 0 \leq t \leq T$, be a martingale (under \mathbb{P}) relative to this filtration. Then there is an adapted process $\delta(t), 0 \leq t \leq T$, such that

$$X(t) = X(0) + \int_0^t \delta(u) \, dB(u), \quad 0 \leq t \leq T.$$

In particular, the paths of X are continuous.

Remark 18.1 We already know that if $X(t)$ is a process satisfying

$$dX(t) = \delta(t) \, dB(t),$$

then $X(t)$ is a martingale. Now we see that if $X(t)$ is a martingale adapted to the filtration generated by the Brownian motion $B(t)$, i.e, the Brownian motion is the only source of randomness in X, then

$$dX(t) = \delta(t) \, dB(t)$$

for some $\delta(t)$.

18.2 A hedging application

Homework Problem 4.5. In the context of Girsanov’s Theorem, suppose that $\mathcal{F}(t), 0 \leq t \leq T$, is the filtration generated by the Brownian motion B (under \mathbb{P}). Suppose that Y is a \mathbb{P}-martingale. Then there is an adapted process $\gamma(t), 0 \leq t \leq T$, such that

$$Y(t) = Y(0) + \int_0^t \gamma(u) \, dB(u), \quad 0 \leq t \leq T.$$
\[dS(t) = \mu(t)S(t) \, dt + \sigma(t)S(t) \, dB(t), \]
\[\beta(t) = \exp\left\{ \int_0^t r(u) \, du \right\}, \]
\[\theta(t) = \frac{\mu(t) - r(t)}{\sigma(t)}, \]
\[\bar{B}(t) = \int_0^t \theta(u) \, du + B(t), \]
\[Z(t) = \exp\left\{ -\int_0^t \theta(u) \, d\bar{B}(u) - \frac{1}{2} \int_0^t \theta^2(u) \, du \right\}, \]
\[\mathbb{P}(A) = \int_A Z(T) \, d\mathbb{P}, \quad \forall A \in \mathcal{F}. \]

Then
\[d\left(\frac{S(t)}{\beta(t)} \right) = \frac{S(t)}{\beta(t)} \sigma(t) \, d\bar{B}(t). \]

Let \(\Delta(t), 0 \leq t \leq T, \) be a portfolio process. The corresponding wealth process \(X(t) \) satisfies
\[d\left(\frac{X(t)}{\beta(t)} \right) = \Delta(t)\sigma(t) \frac{S(t)}{\beta(t)} \, d\bar{B}(t), \]
i.e.,
\[\frac{X(t)}{\beta(t)} = X(0) + \int_0^t \Delta(u) \sigma(u) \frac{S(u)}{\beta(u)} \, d\bar{B}(u), \quad \forall t \leq T. \]

Let \(V \) be an \(\mathcal{F}(T) \)-measurable random variable, representing the payoff of a contingent claim at time \(T \). We want to choose \(X(0) \) and \(\Delta(t), 0 \leq t \leq T, \) so that
\[X(T) = V. \]

Define the \(\mathbb{P} \)-martingale
\[Y(t) = \mathbb{E} \left[\frac{V}{\beta(T)} \bigg| \mathcal{F}(t) \right], \quad \forall t \leq T. \]

According to Homework Problem 4.5, there is an adapted process \(\gamma(t), 0 \leq t \leq T, \) such that
\[Y(t) = Y(0) + \int_0^t \gamma(u) \, dB(u), \quad \forall t \leq T. \]

Set \(X(0) = Y(0) = \mathbb{E} \left[\frac{V}{\beta(T)} \right] \) and choose \(\Delta(u) \) so that
\[\Delta(u) \sigma(u) \frac{S(u)}{\beta(u)} = \gamma(u), \]
CHAPTER 18. Martingale Representation Theorem

With this choice of $\Delta(u)$, $0 \leq u \leq T$, we have

$$\frac{X(t)}{\beta(t)} = Y(t) = \E \left[\frac{V}{\beta(T)} \right]_{\mathcal{F}(t)}, \quad 0 \leq t \leq T.$$

In particular,

$$\frac{X(T)}{\beta(T)} = \E \left[\frac{V}{\beta(T)} \right]_{\mathcal{F}(T)} = \frac{V}{\beta(T)},$$

so

$$X(T) = V.$$

The Martingale Representation Theorem guarantees the existence of a hedging portfolio, although it does not tell us how to compute it. It also justifies the risk-neutral pricing formula

$$X(t) = \beta(t) \E \left[\frac{V}{\beta(T)} \right]_{\mathcal{F}(t)} = \frac{\beta(t)}{Z(t)} \E \left[\frac{Z(T)}{\beta(T)} V \right]_{\mathcal{F}(t)} = \frac{1}{\zeta(t)} \E \left[\zeta(T) V \right]_{\mathcal{F}(t)}, \quad 0 \leq t \leq T,$$

where

$$\zeta(t) = \frac{Z(t)}{\beta(t)} = \exp \left\{ - \int_0^t \theta(u) \, dB(u) - \int_0^t \left(r(u) + \frac{1}{2} \theta^2(u) \right) \, du \right\}.$$

18.3 d-dimensional Girsanov Theorem

Theorem 3.57 (d-dimensional Girsanov)

- $B(t) = (B_1(t), \ldots, B_d(t)), 0 \leq t \leq T$, a d-dimensional Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$;
- $\mathcal{F}(t), 0 \leq t \leq T$, the accompanying filtration, perhaps larger than the one generated by B;
- $\theta(t) = (\theta_1(t), \ldots, \theta_d(t)), 0 \leq t \leq T$, d-dimensional adapted process.

For $0 \leq t \leq T$, define

$$\bar{B}_j(t) = \int_0^t \theta_j(u) \, du + B_j(t), \quad j = 1, \ldots, d,$$

$$Z(t) = \exp \left\{ - \int_0^t \theta(u) \, dB(u) - \frac{1}{2} \int_0^t \|\theta(u)\|^2 \, du \right\},$$

$$\bar{\mathbb{P}}(A) = \int_A Z(T) \, d\mathbb{P}.$$
Then, under \(\tilde{\mathbb{P}} \), the process
\[
\bar{B}(t) = (\bar{B}_1(t),\ldots,\bar{B}_d(t)), \quad 0 \leq t \leq T,
\]
is a \(d \)-dimensional Brownian motion.

18.4 \(d \)-dimensional Martingale Representation Theorem

Theorem 4.58
- \(B(t) = (B_1(t),\ldots,B_d(t)), 0 \leq t \leq T \), a \(d \)-dimensional Brownian motion on \((\Omega, \mathcal{F}, \mathbb{P}) \);
- \(\mathcal{F}(t), 0 \leq t \leq T \), the filtration generated by the Brownian motion \(B \).

If \(X(t), 0 \leq t \leq T \), is a martingale (under \(\mathbb{P}' \)) relative to \(\mathcal{F}(t), 0 \leq t \leq T \), then there is a \(d \)-dimensional adapted process \(\delta(t) = (\delta_1(t),\ldots,\delta_d(t)) \), such that
\[
X(t) = X(0) + \int_0^t \delta(u) \cdot dB(u), \quad 0 \leq t \leq T.
\]

Corollary 4.59
If we have a \(d \)-dimensional adapted process \(\theta(t) = (\theta_1(t),\ldots,\theta_d(t)) \), then we can define \(\bar{B}, Z \) and \(\mathbb{P}' \) as in Girsanov’s Theorem. If \(Y(t), 0 \leq t \leq T \), is a martingale under \(\mathbb{P}' \) relative to \(\mathcal{F}(t), 0 \leq t \leq T \), then there is a \(d \)-dimensional adapted process \(\gamma(t) = (\gamma_1(t),\ldots,\gamma_d(t)) \) such that
\[
Y(t) = Y(0) + \int_0^t \gamma(u) \cdot d \bar{B}(u), \quad 0 \leq t \leq T.
\]

18.5 Multi-dimensional market model

Let \(B(t) = (B_1(t),\ldots,B_d(t)), 0 \leq t \leq T \), be a \(d \)-dimensional Brownian motion on some \((\Omega, \mathcal{F}, \mathbb{P}) \), and let \(\mathcal{F}(t), 0 \leq t \leq T \), be the filtration generated by \(B \). Then we can define the following:

Stocks
\[
dS_i(t) = \mu_i(t)S_i(t) \, dt + S_i(t) \sum_{j=1}^d \sigma_{ij}(t) \, dB_j(t), \quad i = 1,\ldots,m
\]

Accumulation factor
\[
\beta(t) = \exp \left\{ \int_0^t r(u) \, du \right\}.
\]

Here, \(\mu_i(t), \sigma_{ij}(t) \) and \(r(t) \) are adapted processes.
CHAPTER 18. Martingale Representation Theorem

Discounted stock prices

\[
d \frac{S_i(t)}{\beta(t)} = (\mu_i(t) - r(t)) \frac{S_i(t)}{\beta(t)} \, dt + \frac{S_i(t)}{\beta(t)} \sum_{j=1}^{d} \sigma_{ij}(t) \, dB_j(t)
\]

\[
=r \frac{S_i(t)}{\beta(t)} \sum_{j=1}^{d} \sigma_{ij}(t) \left[\theta_j(t) + dB_j(t) \right]
\]

For 5.1 to be satisfied, we need to choose \(\theta_1(t), \ldots, \theta_d(t) \), so that

\[
\sum_{j=1}^{d} \sigma_{ij}(t) \theta_j(t) = \mu_i(t) - r(t), \quad i = 1, \ldots, m.
\]

Market price of risk. The market price of risk is an adapted process \(\theta(t) = (\theta_1(t), \ldots, \theta_d(t)) \) satisfying the system of equations (MPR) above. There are three cases to consider:

Case I: (Unique Solution). For Lebesgue-almost every \(t \) and \(P \)-almost every \(\omega \), (MPR) has a unique solution \(\theta(t) \). Using \(\theta(t) \) in the \(d \)-dimensional Girsanov Theorem, we define a unique risk-neutral probability measure \(\tilde{P} \). Under \(\tilde{P} \), every discounted stock price is a martingale. Consequently, the discounted wealth process corresponding to any portfolio process is a \(\tilde{P} \)-martingale, and this implies that the market admits no arbitrage. Finally, the Martingale Representation Theorem can be used to show that every contingent claim can be hedged; the market is said to be complete.

Case II: (No solution.) If (MPR) has no solution, then there is no risk-neutral probability measure and the market admits arbitrage.

Case III: (Multiple solutions). If (MPR) has multiple solutions, then there are multiple risk-neutral probability measures. The market admits no arbitrage, but there are contingent claims which cannot be hedged; the market is said to be incomplete.

If a market has a risk-neutral probability measure, then it admits no arbitrage.

The risk-neutral measure is unique if and only if every contingent claim can be hedged.