Chapter 16

M arkov processes and the Kolmogorov
equations

16.1 Stochastic Differential Equations

Consider the stochastic differential equation:
dX(t) =a(t, X(t)) dt + o(t, X (t)) dB(?). (SDE)

Here a(t, 2) and o (¢, z) are given functions, usually assumed to be continuousin (¢, z) and Lips-
chitz continuousin z,i.e., thereisaconstant L such that

la(t,z) — a(t,y)| < Lz —yl, lo(t,z) —a(t,y)| < Llz — y

foralt, z,y.
Let (to, 2) be given. A solution to (SDE) with the initial condition (% ¢, x) isaprocess { X (t) };>+,
satisfying

X(to) =,

X(t):X(to)—|—/a(s,X(s))ds—|—/a(s,X(s))dB(s), £t

to to
The solution process { X () } ;>¢, will be adapted to thefiltration { 7 (¢) } ;>0 generated by the Brow-
nian motion. If you know the path of the Brownian motion up to time ¢, then you can evaluate
X ().
Example 16.1 (Drifted Brownian motion) Let « beaconstantand o = 1, so
dX(t) = a dt + dB(1).
If (to, z) is given and we start with the initial condition

X(to) =,
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then

X(t) =z +a(t—to) + (B(t) — B(ty)), t>to.
To compute the differential w.r.t. ¢, treat ¢, and B(t,) as constants:

dX (1) = a dt + dB(1).

[ |
Example 16.2 (Geometric Brownian motion) Let » and o be constants. Consider
dX() =rX(t) dt +oX(t) dB(1).
Given theinitial condition
X(to) =,
the solutionis
X(t) = zexp {O'(B(t) — B(tg)) + (r — %UZ)(t — to)} )
Again, to compute the differential w.r.t. ¢, treat ¢, and B(ty) as constants:
dX(t) = (r— 30))X(t) dt + 0 X (t) dB(t) + 307X (1) dt
=rX(t) di+aX(t) dB().
[ |

16.2 Markov Property

Let 0 <ty < t; begivenand let .(y) beafunction. Denote by
E"h(X (1))

the expectation of 4(.X (¢1)), given that X (tg) = =. Now let £ € IR be given, and start with initial
condition
X(0)=¢.

We have the Markov property
B (WX ()] = 2o O ),

In other words, if you observe the path of the driving Brownian motion from time O to time ¢, and
based on thisinformation, you want to estimate 4 (X (¢1)), the only relevant information isthe value
of X (¢y). You imagine starting the (SDE) at time ¢, at value X (o), and compute the expected
valueof (X (t1)).
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16.3 Transition density

Denote by
p(to, t1; =, y)

the density (inthe y variable) of X (¢;), conditioned on X (¢) = z. In other words,

Eh(X (t1)) = /Rh(y)p(to, ts o, y) dy.

The Markov property saysthat for 0 < t5 < ¢, and for every &,
ok [h(X(tl))‘}'(to)] _ /Rh(y)p(to,tl; X (to), ) dy.

Example 16.3 (Drifted Brownian motion) Consider the SDE
dX(t) = a dit + dB(1).

Conditioned on X () = =, the random variable X (¢,) is normal with mean = + a(¢; — ty) and variance

(tl —to), i.e.,
1 (y— (Ha(tl—to)))z}
to, t1; z,y) = ——o— — .
plto, t1; 2,y) =) eXp{ STr—
Note that p depends on ¢, and ¢; only through their difference ¢, — ¢;. Thisisaways the case when a(¢, »)
and o (¢, z) don't depend on . [ |

Example 16.4 (Geometric Brownian motion) Recall that the solution to the SDE
dX(t) =rX (@) dt+oX(t) dB(1),
withinitia condition X () = «, is Geometric Brownian motion:
X(t1) = wexp {o(B(t1) — B(to)) + (r — 50°)(t1 —to)} -

The random variable B(t,) — B(t) has density

1 b?
P{B(t;) — B(ty) € db} = —— ——— db,
1B) = Blo) € b= =) eXp{ 2(t1—to)}
and we are making the change of variable
Y = xexp {O'b—l— (r— %0'2)(151 - to)}

or equivalently,
b=

Q| =

[1og% —(r— Lot - to)] .

The derivativeis p J
v oy, or equivalently, b= Y.
db oy
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Therefore,
p(to, 152, y) dy = P {X(t1) € dy}
1 1 2
= ———————exp {—7 logg _ (r - %0’2)(151 —to)} } dy.

oyy/2m(ty — to) 2ty — to)o? x

Using the transition density and a fair amount of calculus, one can compute the expected payoff from a
European call:

EY(X(T) - K)* = /Ooo(y — K)*p(t, T;2,y) dy

1 x
_ r(T=1) z a2
—c xN(U T_t[logK—l—r(T 1)+ Lo¥(T t)D
—KN( ! {1og£+r(T—t)—laz(T—t)D
o T —1t K 2
where
Nin) = — /n g [T g
n)=— e 2 x_—/ e 2 T
V2T J_oo V2m J_y
Therefore,

E%¢ |77 T=(X(T) — K)*

_ 1 X(1) L2
= X(t)N (U — [1 (T =1+ 4o (T_t)D
Ty 1 X(t)
_ r(T—t) _ 1.2 _
e AN(O_\/m [log i +r(T—t) - 50°(T t)])
[ ]
16.4 TheKolmogorov Backward Equation
Consider
dX (t) = a(t, X (t)) dt + o(t, X (t)) dB(t),
and let p(to, t1; 2, y) bethe transition density. Then the Kolmogorov Backward Equationis:
0 0?
———p(to. t1; ©,y) = alto, ) 5—p(to, t1; =,y) + $0°(to, ©) 5—p(to, t1; T, y).
Jto Oz Oz (KBE)

Thevariablesty and z in (K BE') are called the backward variables.

In the case that « and o are functions of = alone, p(to, t1; z,y) dependsont, and ¢; only through
their difference 7 = ¢, — to. We then write p(7; x,y) rather than p(to,t1; z,y), and (K BE)
becomes

8 . _ 8 . 1.2 82 . 1
Ep(ﬂ T,y) = a(ﬂﬁ)a—xp(ﬂ T,y)+ 50 (96)@19(77 z,y). (KBE')
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Example 16.5 (Drifted Brownian motion)

dX (1) = a dt + dB(t)

V2T 2T
0 o 1 (y —x —ar)? }
—p=p, = — ex —
an p or /21 b 2T

_ [_i_i_a(y—x—ar)_i_(y—x—ar)]p.

27 T 272
o y—=x-—ar
axp—px = - P
* (0 y—x—ar +y—x—a7’
axzp—pxx =\ 3z - P - Pr
1 y—x — ar)?
L e,
T T
Therefore,
1 B a(y—x—ar)_i (y —x —ar)?
=pr.
Thisisthe Kolmogorov backward equation. ]

Example 16.6 (Geometric Brownian motion)

dX (1) = rX () dt + o X (1) dB(1).

(i 29) = —— Lo flog L — (r = d0%)7]”

; = — og=—(r—so’)t R
pP\T; Y cyv/2nT exp Y7ol g - 9

It istrue but very tediousto verify that p satisfiesthe KBE

1.2 2
Pr = TEPr + 507 Prg

16.5 Connection between stochastic calculusand KBE

Consider
dX(t) = a(X(t)) dt + o(X(t)) dB(1). (5.1)
Let ~(y) beafunction, and define

v(t, ) = E*h(X(T)),
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where0 < ¢ < T'. Then
vt z) = /h(y) p(T = t; @,y) dy,
—/h(y) p-(T = t; z,y) dy,
ve(t, ) = /h(y) pe(T = t; @,y) dy,
Upe(t, @) = /h(y) Pee(T = t; x,y) dy.
Therefore, the Kolmogorov backward equation implies

vt @) +a(@)v, ( )+ 1Uz(ﬂf)vm(fvﬂf):
/h —tix,y) +a(@)ps(T - t;2,y) + %02($)pxx(T—t;w7y)} dy =0

Let (0,£) beaninitia condition for the SDE (5.1). We simplify notation by writing /&' rather than
B¢,

Theorem 550 Startingat X (0) = &, the processv(t, X (t)) satisfiesthe martingale property:

E [U(t,X(t))‘]:(s)] = v(s, X(s)), 0<s<t<T.

Proof: According to the Markov property,

I (X () |F(0)] = X O (D) = ot X (1),

[t0'sformulaimplies

dv(t, X (1)) = vdt + v,dX + Jv,.dX dX
= vdt + avydt + ovdB + 3 Lo20,,dt.
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In integral form, we have
ot, X (1)) = v(0, X (0))

+ / [, X () + X (@) vl X () £ 303X (1) ity X ()]
+/Ota(X(u))%(u,X(u)) dB(u).

We know that v(t, X (¢)) isamartingale, so theintegral fg [vt + avy + %a%m] du must be zero
for all ¢. Thisimpliesthat the integrand is zero; hence

2

1
Ut + avy + 5070 = 0.

Thus by two different arguments, one based on the Kolmogorov backward equation, and the other
based on Itd’s formula, we have come to the same conclusion.

Theorem 5.51 (Feynman-Kac) Define

o(t,z) = E"R(X(T)), 0<t<T,

where
dX (t) = a(X (1)) dt+ o(X (1)) dB(t).
Then
vty @) + a(z)vg(t, @) + %Uz(x)vm(t, z)=0 (FK)
and
(T, z) = h(z).

The Black-Scholes equation is a special case of thistheorem, as we show in the next section.

Remark 16.1 (Derivation of KBE) We plunked down the Kolmogorov backward equation with-
out any justification. In fact, one can use 1td’sformulato prove the Feynman-Kac Theorem, and use
the Feynman-Kac Theorem to derive the Kolmogorov backward equation.

16.6 Black-Scholes
Consider the SDE
dS(t) =rS(t) dt 4+ oS(t) dB(t).

With initial condition
S(t) =z,

the solutionis

S(u) = wexp{o(Bu) = B#t) + (r— o) (u—1)},  wu>t.
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Define
v(t,z) = " R(S(T))
= IFEh (x exp{U(B(T) — B(t)) + (r — 30°)(T - t)}) ’

where h isafunction to be specified | ater.

Recall the Independence Lemma: If G isao-field, X isG-measurable, and Y isindependent of G,
then

B |n(x.v)|o] = 2(x),
where
v(z) = Eh(z,Y).
With geometric Brownian motion, for 0 < ¢ < 7', we have
S(t) = 8(0)exp{aB1) + (r = Jo?)t,
S(T) = S(0)exp{oB(T) + (r — 1?7}

L) exp {a(B(T) = B(t)) + (r — 3a*)(T = 1)}

independent of F (¢)

We thus have
S(T) = XY,
where
X =5(1)
Y =exp{a(B(T) = B(t) + (r — 3o*)(T = 1)}
Now

FEh(zY) =v(t,z).
The independence lemmaimplies

E |W(S()|F0)] = BBy Fe)

=ov(t, X)
=v(t,S(t)).
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We have shown that
olt, S(1)) = I [h(S(T))‘}'(t)] L 0<t<T.

Note that the random variable 2 (.5(7")) whose conditional expectation is being computed does not
depend on ¢t. Because of this, the tower property impliesthat v (¢, S(¢)),0 < ¢ < T, isamartingale:
For0<s<t<T,

E [v(t,S(t))‘}'(s)] - E [E [h(S(T))‘}'(t)] ‘}'(s)]
—E [h(S(T))‘}'(s)]
= v(s, 9(s)).

Thisisaspecia case of Theorem 5.51.

Because v(t, S(t)) is a martingale, the sum of the d¢ terms in dv(¢, S(¢)) must be 0. By Itd's
formula,

dv(t, S(0) = [vi(t, S(1)) dt + rS(B)va(t, S (1) + S02 5% (1) va(t, S (1)) ] dt
+ aS(t)ve(t, S(t)) dB(t).
Thisleads usto the equation
vty @) 4+ rave(t, @) + 3o%2 v, (t2) =0,  0<t<T, x>0.
Thisisaspecial case of Theorem 5.51 (Feynman-Kac).
Along with the above partial differential equation, we have the terminal condition
o(T,z) = h(x), z > 0.

Furthermore, if S(t) = 0 for somet € [0, 7], then dso S(7') = 0. This gives us the boundary
condition
v(t,0) = h(0), 0<t<T.

Finally, we shall eventually see that the value at time ¢ of a contingent claim paying 2 (S(7)) is
u(t,z) = e " T EHR(S(T))

=" T=Dp(t, 2)

attimet if S(t) = «. Therefore,

(t,2)
velt, ) = —re" Tt 2) + T Dyt 2),
vy(t,z) = e 75)ugg(t, z),
Upe(t, @) = er(T_t)um(t7 )
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Plugging these formulas into the partial differential equation for v and cancelling the e” (7 =) ap-
pearing in every term, we abtain the Black-Scholes partial differential equation:
—ru(t,z) + w(t, 2) + reug(t, @) + So%2 ug, (t, 2) = 0, 0<t<T, z>0.
(BS)
Compare thiswith the earlier derivation of the Black-Scholes PDE in Section 15.6.
In terms of the transition density
(4T 2y = ——— oxpl ot [10 Y (r = Lo?)(T t)] :
C ) = _ d_(p_1 _
PS5y oy 2x (T — 1) P 2(T —t)o? &2 2
for geometric Brownian motion (See Example 16.4), we have the “ stochastic representation”
u(t, 2) = e TV R(S(T)) (SR)

=T /Oo h(y)pt,T; x,y) dy.
0

In the case of acal,
h(y) = (y — K)*

and
u(t,z) =a N (ffx/% [log % +r(T-1t)+ %UQ(T - t)])
— eI N (70\/% [log % +r(T —t)— 1*(T - t)D

Even if 2 (y) is some other function (e.g., 2(y) = (K — y)t, aput), u(¢, =) is till given by and
satisfies the Black-Scholes PDE (BS) derived above.

16.7 Black-Scholeswith price-dependent volatility

dS(t) = rS(t) dt + 5(S(t)) dB(1),
o(t, x) = e " TDELY(S(T) — K)¥.

The Feynman-Kac Theorem now implies that
—ro(t,z) + v(t, @) + ravy (t, @) + 187 (2)vee(t, 2) = 0, 0<t<T, z>0.
v a'so satisfies the terminal condition

o(T,z) = (v — K)T, x>0,



CHAPTER 16. Markov processes and the Kolmogorov equations 187

and the boundary condition
v(t,0)=0, 0<t<T.

An example of such a processisthe following from J.C. Cox, Notes on optionspricing |I: Constant
elagticity of variance diffusions, Working Paper, Stanford University, 1975:

dS(t) = rS(t) dt + oS°(t) dB(t),

where 0 < & < 1. The “volatility” ¢.5°~!(t) decreases with increasing stock price. The corre-
sponding Black-Scholes equationis

—rv 4+ v + ravg + %sz%vm =0, 0<t<T z>0;
v(t,0) =0, 0<t<T
o(T,z) = (z — K)T, x> 0.



