
Chapter 16

Markov processes and the Kolmogorov
equations

16.1 Stochastic Differential Equations

Consider the stochastic differential equation:

dX�t� � a�t� X�t�� dt� ��t� X�t�� dB�t�� (SDE)

Here a�t� x� and ��t� x� are given functions, usually assumed to be continuous in �t� x� and Lips-
chitz continuous in x,i.e., there is a constant L such that

ja�t� x�� a�t� y�j � Ljx� yj� j��t� x�� ��t� y�j � Ljx� yj
for all t� x� y.

Let �t�� x� be given. A solution to (SDE) with the initial condition �t �� x� is a process fX�t�gt�t�
satisfying

X�t�� � x�

X�t� � X�t�� �

tZ
t�

a�s�X�s�� ds�

tZ
t�

��s�X�s�� dB�s�� t � t�

The solution process fX�t�gt�t� will be adapted to the filtration fF�t�gt�� generated by the Brow-
nian motion. If you know the path of the Brownian motion up to time t, then you can evaluate
X�t�.

Example 16.1 (Drifted Brownian motion) Let a be a constant and � � �, so

dX�t� � a dt� dB�t��

If �t�� x� is given and we start with the initial condition

X�t�� � x�
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then

X�t� � x� a�t� t�� � �B�t� �B�t���� t � t��

To compute the differential w.r.t. t, treat t� and B�t�� as constants:

dX�t� � a dt� dB�t��

Example 16.2 (Geometric Brownian motion) Let r and � be constants. Consider

dX�t� � rX�t� dt� �X�t� dB�t��

Given the initial condition

X�t�� � x�

the solution is

X�t� � x exp
�
��B�t� �B�t��� � �r � �

��
���t� t��

�
�

Again, to compute the differential w.r.t. t, treat t� and B�t�� as constants:

dX�t� � �r � �
��

��X�t� dt� �X�t� dB�t� � �
��

�X�t� dt

� rX�t� dt� �X�t� dB�t��

16.2 Markov Property

Let � � t� � t� be given and let h�y� be a function. Denote by

IEt��xh�X�t���

the expectation of h�X�t���, given that X�t�� � x. Now let � � IR be given, and start with initial
condition

X��� � ��

We have the Markov property

IE���
�
h�X�t���

����F�t��

�
� IEt��X�t��h�X�t����

In other words, if you observe the path of the driving Brownian motion from time 0 to time t�, and
based on this information, you want to estimate h�X�t���, the only relevant information is the value
of X�t��. You imagine starting the �SDE� at time t� at value X�t��, and compute the expected
value of h�X�t���.
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16.3 Transition density

Denote by
p�t�� t�� x� y�

the density (in the y variable) of X�t��, conditioned on X�t�� � x. In other words,

IEt��xh�X�t��� �

Z
IR
h�y�p�t�� t�� x� y� dy�

The Markov property says that for � � t� � t� and for every �,

IE���
�
h�X�t���

����F�t��

�
�
Z
IR
h�y�p�t�� t�� X�t��� y� dy�

Example 16.3 (Drifted Brownian motion) Consider the SDE

dX�t� � a dt� dB�t��

Conditioned on X�t�� � x, the random variable X�t�� is normal with mean x � a�t� � t�� and variance
�t� � t��, i.e.,

p�t�� t�� x� y� �
�p

���t� � t��
exp

�
� �y � �x� a�t� � t�����

��t� � t��

�
�

Note that p depends on t� and t� only through their difference t� � t�. This is always the case when a�t� x�
and ��t� x� don’t depend on t.

Example 16.4 (Geometric Brownian motion) Recall that the solution to the SDE

dX�t� � rX�t� dt� �X�t� dB�t��

with initial condition X�t�� � x, is Geometric Brownian motion:

X�t�� � x exp
�
��B�t��� B�t��� � �r � �

��
���t� � t��

�
�

The random variable B�t�� �B�t�� has density

IP fB�t�� �B�t�� � dbg � �p
���t� � t��

exp

�
� b�

��t� � t��

�
db�

and we are making the change of variable

y � x exp
�
�b� �r � �

��
���t� � t��

�
or equivalently,

b �
�

�

h
log

y

x
� �r � �

��
���t� � t��

i
�

The derivative is
dy

db
� �y� or equivalently, db �

dy

�y
�
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Therefore,

p�t�� t��x� y� dy � IP fX�t�� � dyg

�
�

�y
p

���t� � t��
exp

�
� �

��t� � t����

h
log

y

x
� �r � �

��
���t� � t��

i��
dy�

Using the transition density and a fair amount of calculus, one can compute the expected payoff from a
European call:

IEt�x�X�T � �K�� �

Z
�

�

�y �K��p�t� T �x� y� dy

� er�T�t�xN

�
�

�
p
T � t

h
log

x

K
� r�T � t� � �

��
��T � t�

i	

�KN

�
�

�
p
T � t

h
log

x

K
� r�T � t�� �

��
��T � t�

i	

where

N ��� �
�p
��

Z �

��

e�
�
�x

�

dx �
�p
��

Z
�

��

e�
�
�x

�

dx�

Therefore,

IE���

�
e�r�T�t��X�T � �K��

����F�t�

�
� e�r�T�t�IEt�X�t��X�T � �K��

� X�t�N

�
�

�
p
T � t

�
log

X�t�

K
� r�T � t� � �

��
��T � t�

�	

� e�r�T�t�K N

�
�

�
p
T � t

�
log

X�t�

K
� r�T � t� � �

��
��T � t�

�	

16.4 The Kolmogorov Backward Equation

Consider
dX�t� � a�t� X�t�� dt� ��t� X�t�� dB�t��

and let p�t�� t�� x� y� be the transition density. Then the Kolmogorov Backward Equation is:

� �

�t�
p�t�� t�� x� y� � a�t�� x�

�

�x
p�t�� t�� x� y� �

�
��

��t�� x�
��

�x�
p�t�� t�� x� y��

(KBE)

The variables t� and x in �KBE� are called the backward variables.

In the case that a and � are functions of x alone, p�t�� t�� x� y� depends on t� and t� only through
their difference � � t� � t�. We then write p�� � x� y� rather than p�t�� t�� x� y�, and �KBE�
becomes

�

��
p�� � x� y� � a�x�

�

�x
p�� � x� y� � �

��
��x�

��

�x�
p�� � x� y�� (KBE’)
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Example 16.5 (Drifted Brownian motion)

dX�t� � a dt� dB�t�

p�� � x� y� �
�p
���

exp

�
� �y � �x� a� ���

��

�
�

�

��
p � p� �

�
�

��

�p
���

	
exp

�
� �y � x� a� ��

��

�

�
�

�

��

�y � x� a� ��

��

	
�p
���

exp

�
� �y � x� a� ��

��

�

�

�
� �

��
�

a�y � x� a� �

�
�

�y � x� a� �

���

�
p�

�

�x
p � px �

y � x� a�

�
p�

��

�x�
p � pxx �

�
�

�x

y � x� a�

�

	
p�

y � x� a�

�
px

� ��

�
p�

�y � x� a� ��

��
p�

Therefore,

apx � �
�pxx �

�
a�y � x� a� �

�
� �

��
�

�y � x� a� ��

���

�
p

� p� �

This is the Kolmogorov backward equation.

Example 16.6 (Geometric Brownian motion)

dX�t� � rX�t� dt� �X�t� dB�t��

p�� � x� y� �
�

�y
p
���

exp

�
� �

����

h
log

y

x
� �r � �

��
���

i��
�

It is true but very tedious to verify that p satisfies the KBE

p� � rxpx � �
��

�x�pxx�

16.5 Connection between stochastic calculus and KBE

Consider

dX�t� � a�X�t�� dt� ��X�t�� dB�t�� (5.1)

Let h�y� be a function, and define

v�t� x� � IEt�xh�X�T ���
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where � � t � T . Then

v�t� x� �
Z
h�y� p�T � t� x� y� dy�

vt�t� x� � �
Z
h�y� p� �T � t� x� y� dy�

vx�t� x� �
Z
h�y� px�T � t� x� y� dy�

vxx�t� x� �
Z
h�y� pxx�T � t� x� y� dy�

Therefore, the Kolmogorov backward equation implies

vt�t� x� � a�x�vx�t� x� �
�
��

��x�vxx�t� x� �Z
h�y�

h
�p� �T � t� x� y� � a�x�px�T � t� x� y� � �

��
��x�pxx�T � t� x� y�

i
dy � �

Let ��� �� be an initial condition for the SDE (5.1). We simplify notation by writing IE rather than
IE���.

Theorem 5.50 Starting at X��� � �, the process v�t� X�t�� satisfies the martingale property:

IE

�
v�t� X�t��

����F�s�

�
� v�s�X�s��� � � s � t � T�

Proof: According to the Markov property,

IE

�
h�X�T ��

����F�t�

�
� IEt�X�t�h�X�T �� � v�t� X�t���

so

IE �v�t� X�t��jF�s�� � IE

�
IE

�
h�X�T ��

����F�t�

� ����F�s�

�

� IE

�
h�X�T ��

����F�s�

�
� IEs�X�s�h�X�T �� (Markov property)

� v�s�X�s���

Itô’s formula implies

dv�t� X�t�� � vtdt� vxdX � �
�vxxdX dX

� vtdt� avxdt� �vxdB � �
��

�vxxdt�
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In integral form, we have

v�t� X�t�� � v��� X����

�

Z t

�

h
vt�u�X�u��� a�X�u��vx�u�X�u�� � �

��
��X�u��vxx�u�X�u��

i
du

�

Z t

�
��X�u��vx�u�X�u�� dB�u��

We know that v�t� X�t�� is a martingale, so the integral
R t
�

h
vt � avx � �

��
�vxx

i
du must be zero

for all t. This implies that the integrand is zero; hence

vt � avx � �
��

�vxx � ��

Thus by two different arguments, one based on the Kolmogorov backward equation, and the other
based on Itô’s formula, we have come to the same conclusion.

Theorem 5.51 (Feynman-Kac) Define

v�t� x� � IEt�xh�X�T ��� � � t � T�

where
dX�t� � a�X�t�� dt� ��X�t�� dB�t��

Then

vt�t� x� � a�x�vx�t� x� �
�
��

��x�vxx�t� x� � � (FK)

and
v�T� x� � h�x��

The Black-Scholes equation is a special case of this theorem, as we show in the next section.

Remark 16.1 (Derivation of KBE) We plunked down the Kolmogorov backward equation with-
out any justification. In fact, one can use Itô’s formula to prove the Feynman-Kac Theorem, and use
the Feynman-Kac Theorem to derive the Kolmogorov backward equation.

16.6 Black-Scholes

Consider the SDE
dS�t� � rS�t� dt� �S�t� dB�t��

With initial condition
S�t� � x�

the solution is

S�u� � x exp
n
��B�u��B�t�� � �r � �

��
���u� t�

o
� u � t�
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Define

v�t� x� � IEt�xh�S�T ��

� IEh


x exp

n
��B�T �� B�t�� � �r � �

��
���T � t�

o�
�

where h is a function to be specified later.

Recall the Independence Lemma: If G is a �-field, X is G-measurable, and Y is independent of G,
then

IE

�
h�X� Y �

����G
�
� ��X��

where

��x� � IEh�x� Y ��

With geometric Brownian motion, for � � t � T , we have

S�t� � S��� exp
n
�B�t� � �r � �

��
��t

o
�

S�T � � S��� exp
n
�B�T � � �r� �

��
��T

o
� S�t��z�
F�t�-measurable

exp
n
��B�T �� B�t�� � �r� �

��
���T � t�

o
� z �

independent of F�t�

We thus have

S�T � � XY�

where

X � S�t�

Y � exp
n
��B�T ��B�t�� � �r � �

��
���T � t�

o
�

Now

IEh�xY � � v�t� x��

The independence lemma implies

IE

�
h�S�T ��

����F�t�

�
� IE �h�XY �jF�t��

� v�t� X�

� v�t� S�t���
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We have shown that

v�t� S�t�� � IE

�
h�S�T ��

����F�t�

�
� � � t � T�

Note that the random variable h�S�T �� whose conditional expectation is being computed does not
depend on t. Because of this, the tower property implies that v�t� S�t��� �� t � T , is a martingale:
For � � s � t � T ,

IE

�
v�t� S�t��

����F�s�

�
� IE

�
IE

�
h�S�T ��

����F�t�

� ����F�s�

�

� IE

�
h�S�T ��

����F�s�

�
� v�s� S�s���

This is a special case of Theorem 5.51.

Because v�t� S�t�� is a martingale, the sum of the dt terms in dv�t� S�t�� must be 0. By Itô’s
formula,

dv�t� S�t�� �
h
vt�t� S�t�� dt� rS�t�vx�t� S�t�� �

�
��

�S��t�vxx�t� S�t��
i
dt

� �S�t�vx�t� S�t�� dB�t��

This leads us to the equation

vt�t� x� � rxvx�t� x� �
�
��

�x�vxx�t� x� � �� � � t � T� x � ��

This is a special case of Theorem 5.51 (Feynman-Kac).

Along with the above partial differential equation, we have the terminal condition

v�T� x� � h�x�� x � ��

Furthermore, if S�t� � � for some t � ��� T �, then also S�T � � �. This gives us the boundary
condition

v�t� �� � h���� � � t � T�

Finally, we shall eventually see that the value at time t of a contingent claim paying h�S�T �� is

u�t� x� � e�r�T�t�IEt�xh�S�T ��

� e�r�T�t�v�t� x�

at time t if S�t� � x. Therefore,

v�t� x� � er�T�t�u�t� x��

vt�t� x� � �rer�T�t�u�t� x� � er�T�t�ut�t� x��

vx�t� x� � er�T�t�ux�t� x��

vxx�t� x� � er�T�t�uxx�t� x��
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Plugging these formulas into the partial differential equation for v and cancelling the er�T�t� ap-
pearing in every term, we obtain the Black-Scholes partial differential equation:

�ru�t� x� � ut�t� x� � rxux�t� x� �
�
��

�x�uxx�t� x� � �� � � t � T� x � ��
(BS)

Compare this with the earlier derivation of the Black-Scholes PDE in Section 15.6.

In terms of the transition density

p�t� T � x� y� �
	

�y
p

	�T � t�

exp

�
� 	


�T � t���

�
log

y

x
� �r � �

��
���T � t�

���

for geometric Brownian motion (See Example 16.4), we have the “stochastic representation”

u�t� x� � e�r�T�t�IEt�xh�S�T �� (SR)

� e�r�T�t�
Z �
�

h�y�p�t� T � x� y� dy�

In the case of a call,
h�y� � �y �K��

and

u�t� x� � x N

�
	

�
p
T � t

�
log

x

K
� r�T � t� � �

��
��T � t�

�	

� e�r�T�t�K N

�
	

�
p
T � t

�
log

x

K
� r�T � t�� �

��
��T � t�

�	

Even if h�y� is some other function (e.g., h�y� � �K � y��, a put), u�t� x� is still given by and
satisfies the Black-Scholes PDE (BS) derived above.

16.7 Black-Scholes with price-dependent volatility

dS�t� � rS�t� dt� 
�S�t�� dB�t��

v�t� x� � e�r�T�t�IEt�x�S�T ��K���

The Feynman-Kac Theorem now implies that

�rv�t� x� � vt�t� x� � rxvx�t� x� �
�
�


��x�vxx�t� x� � �� � � t � T� x � ��

v also satisfies the terminal condition

v�T� x� � �x�K��� x � ��
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and the boundary condition
v�t� �� � �� � � t � T�

An example of such a process is the following from J.C. Cox, Notes on options pricing I: Constant
elasticity of variance diffusions, Working Paper, Stanford University, 1975:

dS�t� � rS�t� dt� �S��t� dB�t��

where � � � � 	. The “volatility” �S����t� decreases with increasing stock price. The corre-
sponding Black-Scholes equation is

�rv � vt � rxvx � �
��

�x��vxx � �� � � t � T x � ��

v�t� �� � �� � � t � T

v�T� x� � �x�K��� x � ��


