Chapter 15

It 0’'s Formula

15.1 Itd’s formula for one Brownian motion

We want a rule to “differentiate” expressions of the fofit¥3(¢)), where f(z) is a differentiable
function. If B(t) were also differentiable, then the ordinahain rulewould give

d 4 !
o/ (BO) = F(B)B(1),

which could be written in differential notation as

However,B(t) is not differentiable, and in particular has nonzero quadratic variation, so the correct
formula has an extra term, namely,

df (B(t)) = f(B(t)) dB(t) + 3f"(B(t)) dt
dB(t) dB(t)

This isltd’sformulain differential form. Integrating this, we obtaitt®’s formulain integral form:

1B0) - fBO) = [ 7B dBe + 1 [ 1(B) du.
f(0)

Remark 15.1 (Differential vs. Integral Forms) The mathematically meaningful form obfs for-
mula is 1©’s formula in integral form:

1B0) = 1BO) = [ 7B dBe + 1 [ 1(B) du.
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This is because we have solid definitions for both integrals appearing on the right-hand side. The
first,

[ 7B s

is anltd integral, defined in the previous chapter. The second,

[ ) an

is aRiemann integral, the type used in freshman calculus.

For paper and pencil computations, the more convenient forno'sfriife isItd’s formulain differ-
ential form:

df (B(t)) = f'(B(t)) dB(t) + 3.f"(B(1)) dt.

There is an intuitive meaning but no solid definition for the tetff{$3(t) ), d B(t) anddt appearing
in this formula. This formula becomes mathematically respectable only after we integrate it.

15.2 Derivation of 1td’s formula
Considerf(z) = 127, sothat
f@)y=2z, f'(z)=1.

Letzy, 21+1 be numbers. Taylor’s formula implies

f@ep) = f(xr) = @rpr — 20) f1(20) + 5 (@rgr — 20)2f" ().

In this case, Taylor’s formula to second ordeeiact becausef is aquadratic function.

In the general case, the above equation is only approximate, and the error is of the drdey 6f
z1)2. The total error will have limit zero in the last step of the following argument.

Fix T > 0 and letll = {¢g,t,...,t,} be a partition of0, 7']. Using Taylor’s formula, we write:

FB(D) = F(B(0)
= 4BY(1) - §B2(0)

S U (Bllas)) - F(BU)
k=0
" Bltags) = B (B + 13 [Bltwss) = B 1(B(t)

= Y Bt [Bltir) - B+ Y [Bltes) — Bl
k=0
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We let||I1||—0 to obtain

T ! T
:/0 F(B(w)) dB(u)—l—%/O F(B(u)) du.

This is Itd’s formula in integral form for the special case

15.3 Geometric Brownian motion

Definition 15.1 (Geometric Brownian Motion) Geometric Brownian motion is

S(t) = S(0)exp {UB(t) + (,u — %02) t} ,

wherey ando > 0 are constant.

Define
f(t,z) = S(0) exp{aw 1 (u - 502) t} :
SO
S(t) = f(t, B(t)).
Then

fo=(n-10%)f, fo=0f, frr=0.
According to 16’s formula,

dS(t) = df (t, B(t))

dt

=(p—3c*)fdt+ofdB+ic’fdt
= pS(t)dt + oS (t) dB(t)

Thus,Geometric Brownian motion in differential formis
dS(t) = pS(t)dt + oS(t) dB(t),

andGeometric Brownian motionin integral formis

S(t) = S(O)—I—/Ot,uS(u) du—l—/OtUS(u) dB(u).
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15.4 Quadratic variation of geometric Brownian motion
In the integral form of Geometric Brownian motion,

t t
S(t) = 5(0) —I—/ S (u) du—l—/ oS (u) dB(u),
0 0
the Riemann integral
t
Ft) = / 15 () du
0
is differentiable with7”’ (t) = 1.5 (¢). This term has zero quadratic variation. Theitifegral
t
G(t) = / 05 (u) dB(u)
0
is not differentiable. It has quadratic variation
t
(G)(1) = / 0252 (u) du.
0
Thus the quadratic variation ¢f is given by the quadratic variation 6f. In differential notation,

we write
dS(t) dS(t) = (uS(t)dt + o S(1)dB(t))* = o2S%(t) dt

15.5 Volatility of Geometric Brownian motion

Fix0 < Ty < Ty. Letll = {tg,...,t,} be a partition of 7', T5]. Thesquared absolute sample
volatility of S on [T, T3] is

1>
1 = 5 1
St — S(t ~ /0252 u) du
o B0 S0 = g T [ %500
1
~ o2 5*(Ty)

As T, | Ty, the above approximation becomes exact. In other wordsnstentaneous relative
volatility of S is o2. This is usually called simply theolatility of S.

15.6 First derivation of the Black-Scholes formula

Wealth of an investor. An investor begins with nonrandom initial wealfh, and at each time,
holdsA(¢) shares of stock. Stock is modelled by a geometric Brownian motion:

dS(t) = uS(t)dt + oS(t)dB(t).
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A(t) can be random, but must be adapted. The investor finances his investing by borrowing or
lending at interest rate.

Let X (¢) denote the wealth of the investor at timelrhen
dX (t) = A®)dS(t) +r[X(t) — A(t)S(t)]dt
=A@ [SO)dt + oS (t)dB(t)] 4+ r [X(t) — A(t)S(t)]dt
=rX()dt + A@)S({t) (u—r) dt + A@)S(t)odB(t).
N——’
Risk premium
Value of an option. Consider an European option which pgys (7)) attimeT'. Letv(¢, z) denote
the value of this option at timeif the stock price isS(¢) = z. In other words, the value of the
option at each time € [0, T is
v(t, S(1)).
The differential of this value is
dv(t, S(t)) = vidt + v,dS + Fv,.dS dS
= vpdt + v, [uS dt + 0S dB] + %vmazsz dt
= {vt + pSv, + 50252%4 dt + o Sv,dB

A hedging portfolio starts with some initial wealfti, and invests so that the wealt(¢) at each
time tracksv(t, S(¢)). We saw above that

dX(t)=[rX +A(p—r)S] dt + cSAdB.

To ensure thaX (t) = v(t, S(t)) for all ¢, we equate coefficients in their differentials. Equating the
d B coefficients, we obtain tha-hedging rule:

Al) = va(t, S(1).
Equating thelt coefficients, we obtain:
v + pSvy + %aQS%m =rX+A(p—r)S.
But we have sef = v,,, and we are seeking to causeto agree withy. Making these substitutions,
we obtain
v + pSv,y + %O‘QSQUMU =rv+ vy (p—r)S,
(wherev = v(t, S(t)) andS = S(t)) which simplifies to
vy + rSv, + %aQS%m = ru.
In conclusion, we should let be the solution to thBlack-Scholes partial differential equation
vi(t, @) + rave(t, @) + 0% 0., (¢, @) = ro(t, 2)
satisfying the terminal condition
v(T,z) = g(z).
If an investor starts witl', = v(0,.5(0)) and uses the hedg®(t) = v, (¢, S(t)), then he will have
X (t) =w(t,S(t)) forall ¢, and in particularX (1) = ¢(S(T)).
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15.7 Mean and variance of the Cox-Ingersoll-Ross process

The Cox-Ingersoll-Rossmodel for interest rates is

dr(t) = a(b — er(t))dt + o\ /r(t) dB(D),

whereaq, b, ¢, o andr(0) are positive constants. In integral form, this equation is

r(t):r(O)—l—a/(b—cr du—l—a/ FdB

We apply I6’s formula to computer?(¢). This isdf(r(t)), wheref(z) = 2%. We obtain
rA(t ) = df (r(t))
F'(r () dr(t) + 5" (r(t)) dr(t) dr(?)
= 2r(t) |a(b - er(t)) di + 0\/r(t) dB(t)] n [a(b —er(t)) dt + oy/r (1) dB(t)]
= 2abr(t) dt — 2acr?(t) dt + 2073 (t) dB(t) + o2r(t) dt
= (2ab+ 0)r(t) dt — 2acr®(t) dt + 20v3 (t) dB(t)

The mean ofr(t). The integral form of the CIR equation is

r(t):r(O)—l—a/(b—cr du—l—a/ FdB

Taking expectations and remembering that the expectation obamtétjral is zero, we obtain

Er(t) = r(0) + a/ot(b — cEr(u) du.

Differentiation yields

d
%Er( )=a(b—clEr(t)) = ab— aclEr(t),

which implies that

d act _ act d :|_ act
7 {e Er(t)} = [acEr( )+ thr(t) = e"“ab.

Integration yields
t b
“Er(t) — r(0) = ab/ e du = = (" — 1).
0 C

We solve foriEr(t):
FEr(t) = é—|— et (r(O) - é) .

C C

If r(0) = 2, theniEr(t) = £ for everyt. If r(0) # 2, thenr(t) exhibitsmean reversion:

lim FEr(t) = é
t—roo

c
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Variance of r(¢). The integral form of the equation derived earlier foF (¢) is
F2(1) = #2(0) + (2ab + 0?) /Otr(u) du — 2ac/0t r2(u) du + 20 /Otr%(u) dB(u).
Taking expectations, we obtain
Er2(t) = r2(0) + (2ab + 0?) /0 "B (u) du — 2ac /0 "B () du,

Differentiation yields
%ErQ(t) = (2ab+ o?)IEr(t) — 2aclEr(t),
which implies that
d 2act 2 _ 2act [ 2 d 2 :|
e Er-(t)=ce 2aclEr*(t) + thr (t)
= 2" (2ab 4 o) IEr ().

Using the formula already derived fdf'r(¢) and integrating the last equation, after considerable

algebra we obtain

bo? b2 b\ [a* 20\ ..
B = g+ o+ (0= ) (_ § ?) o

C ac

2 2 2
+ (T‘(O) _ é) U_e—Qact + U_ (; _ T‘(O)) e—2act‘

C ac ac

varr(t) = IEr?(t) — (IEr(t))?
b02 b 0-2 —act 0-2 b —2act
= 5.7 + (r(O) — E) e + g <% — r(O)) e .

15.8 Multidimensional Brownian Motion

Definition 15.2 (d-dimensional Brownian Motion) A d-dimensional Brownian Mation is a pro-
cess

B(t) = (By(t),...,By(t))
with the following properties:
e EachBy(t) is a one-dimensional Brownian motion;
e If ¢ # j, then the processds (¢) and B, (¢) are independent.

Associated with a-dimensional Brownian motion, we have a filtrati@f (¢) } such that

e For each, the random vectoB(t) is F(t)-measurable;
e Foreach <i¢; <...<t,, the vector increments
B(t1) — B(t),...,B(ts) — B(tn—1)
are independent of (¢).
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15.9 Cross-variations of Brownian motions

Because each compondsitis a one-dimensional Brownian motion, we have the informal equation
dB; (t) dB; (t) = dt.
However, we have:

Theorem 9.491f: #£ j,
dB; (t) dB]‘ (t) =0

Proof: Letll = {to,...,t,} be a partition 0of0, 7"]. For: # j, define thesample cross variation
of B; andB; on|[0, T'] to be

n—1

Crni= ) [Biltis1) — Bi(te)] [Bj(tr1) — Bj(te)]-
k=0

The increments appearing on the right-hand side of the above equation are all independent of one
another and all have mean zero. Therefore,

FECh=0.
We computevar(Cyy). First note that
Ch = nz_: [Bi(tk-l—l) - Bz’(tk)] [Bj (tet1) — Bj(tr)
k=0
+2 Z i(tep1) = Bi(to)][Bj(tegr) — Bj(te)] - [Bi(trer) — Bitr)] [Bj(trtr) — Bj(t)]
<k

All the increments appearing in the sum of cross terms are independent of one another and have
mean zero. Therefore,

var(Crr) = EC’%

=IF Z i(te1) — Bi(tp)]” [Bj(trar) — B (te)]? -

But [B;(try1) — Bi(tr)]* and[B;(trs1) — B;(tx)]* are independent of one another, and each has
expectationtx+1 — t). ItfoIIows that

n—1 n—1
var(Cr) = ) (trpr = t1)* <Y (e — ) = |17
k=0 k=0

As ||11||—0, we havevar(Ci)—0, soCt; converges to the constaiitC; = 0. [
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15.10 Multi-dimensional Itd formula

To keep the notation as simple as possible, we write théolthula fortwo processes driven by a
two-dimensional Brownian motion. The formula generalizeartp number of processes driven by
a Brownian motion ofiny number (not necessarily the same number) of dimensions.

Let X andY be processes of the form

-I-/ du—l—/ S11(u) dBy(u -I-/ 12(u) dBy(u),
-I-/ du—l—/ 621 (u) dBy (u -I-/ S22 (u) dBy(u).

Such processes, consisting of a nonrandom initial condition, plus a Riemann integral, plus one or
more |6 integrals, are callesemimartingales. The integrands:(u), 3(u), andd;;(u) can be any
adapted processes. The adaptedness of the integrands guarant&eartat are also adapted. In
differential notation, we write

dX = o dt + 511 dB1 + 512 dB27
dY = ﬁ dt + 521 dB1 + 522 dB2

Given these two semimartingalésandY’, the quadratic and cross variations are:

dX dX = (Oé dt + 511 dB1 + 512 dB2)27
=63, dBy dB, +261,6y2 dB; dBy +5%,dB, dB,
N—— N—— N——
dt 0 dt
= (0f) + 81y)* dt,
dY dY = (B dt + 691 dBy + 899 dBy)?
= (03, +83,)* dt,
(Oé dt + 511 dB1 + 512 dBQ)(ﬁ dt + 521 dB1 + 522 dBQ)
= (611021 + 012022) dt
Let (¢, 2, y) be a function of three variables, and fé{¢) andY (¢) be semimartingales. Then we
have the correspondingolformula:
df(t,z,y) = fidt + fodX + fydY + L[fon dX dX +2f,, dX dY + f,, dY dY].

In integral form, withX andY” as decribed earlier and with all the variables filled in, this equation
iS

dX dY =

Jt, X (1), Y(t) - f(0,X(0),Y(0))
t
= /0 [fi+ afe + Bfy + 2071 4 672) fow + (811021 4 812022) foy + 3 (631 + 632) ] du

t t
+ [ Busotons) diy + [ Bkt onf,] db,
wheref = f(u, X (u),Y(u), fori,j € {1,2},6;; = é;;(u), andB; = B;(u).



