Chapter 14

The 1t0 Integral

The following chapters deal with Stochastic Differential Equationsin Finance. References:

1. B. Oksendal, Stochastic Differential Equations, Springer-Verlag,1995
2. J. Hull, Options, Futures and other Derivative Securities, Prentice Hall, 1993.

14.1 Brownian Motion

(SeeFig. 13.3)) (92, F,P) isgiven, alwaysin the background, even when not explicitly mentioned.
Brownian motion, B(t,w) : [0, 00) x 2— IR, has the following properties:

1. B(0) = 0; Technicaly, IP{w; B(0,w) =0} =1,
2. B(t) isacontinuousfunction of ¢,

0=t <t <...<t,,thentheincrements
B(t1) — B(to), ..., B(ty,) — B(tn-1)

are independent,normal, and

14.2 First Variation

Quadratic variation is a measure of volatility. First we will consider first variation, F'V'(f), of a
function f(¢).
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f(t)

Figure 14.1: Example function f(¢).

For the function pictured in Fig. 14.1, thefirst variation over theinterval [0, 7'] is given by:

FVior(f) = [f(tr) = F(0)] = [f(t2) — F(t)]+ [F(T) — f(t2)]

to T
= [rwyde+ [=rwya+ [ 1o

Thus, first variation measures the total amount of up and down motion of the path.
The general definition of first variationis asfollows:

Definition 14.1 (First Variation) Let Il = {¢o,¢1,...,t,} beapartitionof [0,77,i.e,
O=to<t; <...<t,=T.
The mesh of the partitionis defined to be

II|| = t —tr).
| T1]] kzéf.l.?fé_l(’““ k)

We then define B
FVor)(f) = lim Y| f(tepr) — f(te)]-

=0 =

Suppose f isdifferentiable. Thenthe Mean Value Theorem impliesthat in each subinterval [¢x, tx+1],
thereisapoint ¢; such that

flteyr) = f(tr) = f1{5) (trr — ti).-
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Then . .
Do thgr) = FER) = D01 @) (trgr — tr),
k=0 k=0

and

n—1

Foa(f) = fim, 52 170010 = 0

T
= [17/ @) .

14.3 Quadratic Variation

Definition 14.2 (Quadratic Variation) Thequadraticvariationof afunction f onaninterval [0, 7]
is

n—1

(M) = lim Zlf (tre1) = F(tR) [

[ —0 ;=

Remark 14.1 (Quadratic Variation of Differentiable Functions) If f isdifferentiable, then (f)(T') =
0, because

n—1
Do f (k) - Z |F )P (thgr — tr)?
k=0
< [T} Z | )P (tegr — ti)
and

(HT) < lim |[H]]. lim Z|f ) P (trgr — tr)

[T —0 [T —0 =

= lim H/ "(6))? dt

||H||_mll | [ 1f ()]
0

=0.

Theorem 3.44

or more precisely,
P{w e Q; (B(.L,w)(T)=T} = 1.

In particular, the paths of Brownian motion are not differentiable.
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Proof: (Outline) Let IT = {t¢,ty,...,t,} beapartitionof [0, T]. To simplify notation, set D =
B(tg+1) — B(t). Define the sample quadratic variation

n—1
Qu=>_ Dj.
k=0
Then )
Qu —T =Y [D}f - (thp1 — ta)].
k=0
We want to show that

I Ty = 0.
(@ = 1)

Consider an individua summand

D = (tesr — t) = [B(tes1) — Bto)]) = (g — i)
This has expectation 0, so

n—1

EQu-T)=1IEY_[Dji- (taq1 — t)] = 0.

k=0
For j # k, theterms
D? = (tjy1 —t;) and  Dj — (tpyr — tg)
are independent, so

n—1

var(Qm — T) = Y var[Df = (tp41 — ty)]
k=0

n—1

=Y E[D} = 2(tppr — te) DF + (trgr — t)°]
k=0

= Z (tepr — 1) = 2(ther — tr)* + (trgr — t)?]
(|f X isnormal with mean 0 and variance o2, then IF(X*) = 30*)
n—1
=2 (tep1 — t)?
k=0
n—1

<2|T]| D (b — te)
k=0

— 9||1m)| 7.

Thuswe have

E@Qn-T)=0,
var(Qm — 1) < 2||I1]].T.
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As||lI||=0, var(Qn — 17)—0, o

e (@n = 1) =10

Remark 14.2 (Differential Representation) We know that
E[(B(ty+1) = B(tk))? = (ther — tr)] = 0.
We showed above that
var[(B(ty+1) — B(tr))? = (ther — tr)] = 2(thsr — t)™.
When (tgy1 — t1) issmall, (tg41 — t1)? isvery small, and we have the approximate equation
(B(tet1) — B(te))? =~ tegr — t,

which we can writeinformally as
dB(t) dB(t) = dt.

14.4 Quadratic Variation as Absolute Volatility

On any timeinterval [T, T3], we can sample the Brownian motion at times
T'=to<t1 <...<t, =15

and compute the squared sample absol ute vol atility

1 n—1

Ty 2 (Bl) = Bl

Thisis approximately equal to

! 1, -1
T [(BY(Ty) — (B)(T1)] = =1

As we increase the number of sample points, this approximation becomes exact. In other words,
Brownian motion has absolute volatility 1.

Furthermore, consider the equation
T
(B)(T) = T:/l dt, YT >0.
0

This says that quadratic variation for Brownian motion accumulates at rate 1 at all times along
almost every path.
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14.5 Construction of the I Integral

The integrator is Brownian motion B(t),t > 0, with associated filtration F(¢),¢ > 0, and the
following properties:

1. s <t= every setin F(s) isasoin F(t),
2. B(t) isF(t)-measurable, Vt,

3. Fort <t; <...<t,, theincrements B(ty) — B(t), B(ty) — B(t1),...,B(t,) — B(t,-1)
areindependent of F(¢).

Theintegrand isé(t),t > 0, where

1. 6(¢) isF(t)-messurable Vt (i.e., ¢ isadapted)

2. ¢ issguare-integrable:
T

E/cs?(t) dt < oo,  VT.
0

We want to definethe It 6 Integral:
t
I(t):/ 5(u) dB(u), > 0.
0

Remark 14.3 (Integral w.r.t. a differentiable function) If f(¢) is a differentiable function, then
we can define

] 5) df() = [ 5 '(w) .

This won’'t work when the integrator is Brownian motion, because the paths of Brownian motion
are not differentiable.

14.6 It0 integral of an elementary integrand

Let 1T = {¢to,ty,...,t,} beapartitionof [0, T1],i.e,
0=to<t; <...<t,=T.

Assume that §(¢) is constant on each subinterval [¢x, tx+1] (See Fig. 14.2). We call such aé an
elementary process.

Thefunctions B(t) and §(¢) can be interpreted as follows:

e Think of B(t) asthe price per unit share of an asset at time¢.
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5(t)=35
A3y
6(t):6(t0) O
e O
-ty 1 t2 t3  Y=T
3(t) = 3(t,)

Figure 14.2: An elementary function 4.

e Think of ¢y, %4, ... ,t, asthetrading datesfor the asset.

e Think of §(¢x) asthe number of shares of the asset acquired at trading date ¢ ;. and held until
trading date ¢ .

Thenthe It integral /() can beinterpreted as the gain fromtrading at time¢; thisgain is given by:

0<t<t
——
=B(0)=0

14.7 Properties of the ID integral of an elementary process

AdaptednessFor each ¢, I(t) is F(t)-measurable.

Linearity If

then
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Figure 14.3: Showing s and ¢ in different partitions.

and

£
CI(t) = / c5(u)dB(u).
0
Martingale I(t) isamartingale.

We prove the martingal e property for the elementary process case.

Theorem 7.45 (Martingale Property)
I(t) =) 8(t)[B(tjs1) = Bt)] + 8()[B(t) = B(tx)],  th <t <tenr

isa martingale.

Proof: Let0 < s < t be given. We treat the more difficult case that s and ¢ are in different
subintervals, i.e., there are partition points¢, and t;, suchthat s € [ty,ty1q] andt € [tx, try1] (See
Fig. 14.3).

Write
-1
I(t) = Z&@)[B(tm) = B(t;)] + 6(te)[Blteya) — B(to)]
k—1
+ D St)[B(ti4) = Bt)] + 3(tx)[B(t) — B(ty)]
j=t+1

We compute conditional expectations:

-1

=3 8(t))(B(tj41) — B(t))).

=0

{—1
I [Z 5(t5) (Bt 41) - B(tj))‘f(s)

I |5t (Bltes) = B(e0)|F(s)] = b00) (ELB(tesn) |F(5)) - Bleo)
= 8(t0)[B() - B(t0)
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These first two terms add up to /(s). We show that the third and fourth terms are zero.

[Z S(t;)(B(tiy1) — B(t;))|F

7=0l+1

k—1 -
= 3 BB [5)(B) - B)

j=0+1

)| |70

k—1 [
= Y I |(t;) (B[B(t;1)|F(1)] - B(t;))

j=t+1

F(s)

=0

o(ty) (IEIB@)|F ()] = B(tr))

=0

F(s)

B [5(0)(B() - B(t)

f(s)] =F

Theorem 7.46 (16 Isometry)
EF*t) =F / &% (u
Proof: To simplify notation, assumet = ¢, SO

Z 5(t;)[B(tj1) — B(;)]

D;

Each D; has expectation 0, and different D; are independent.

:Zk:(s ( DQ—I—QZ(S )DZD]

7=0 1<J

Since the cross terms have expectation zero,

IET?(t) ZE [6%(2;
JkO
=§Ekwwk%m B2 ()|
k
= ZE52(tj)(tj+1 —t;)
[N
= EZ_: / 52(u) du

[
rD\N
>,

[\]
&
="
<
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Figure 14.4: Approximating a general process by an elementary process 4 4, over [0, 7'].

14.8 It0 integral of a general integrand
Fix T" > 0. Let § be aprocess (not necessarily an elementary process) such that

e 4(t) isF(t)-measurable, Vt € [0, 11,
o IE [T 8%(t) dt < oo.

Theorem 8.47 Thereis a sequence of elementary processes {4,, } >~ , such that
. T 2
nh_r}nooE/O 16,(1) — 6(1)]? dt = 0.

Proof: Fig. 14.4 showsthe main idea.

In the last section we have defined

for every n. We now define
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The only difficulty with this approach is that we need to make sure the above limit exists. Suppose
n and m are large positive integers. Then

T

var(Ly(T) — I, (T)) = IE ( /0 [6,(1) — 6, (¢)] dB(t))
T
(10 I sometry?) = I /0 [6.(t) — 6,.(1)]2 dt
= [ 113u00) = 501 4 150~ 5,01 P i
T T
(a+D)? < 2%+ 207 3) < QE/O 16.(1) — (1) di + QE/O 16,0 (1) — 5(¢)| dt,

whichissmall. This guarantees that the sequence {/,,(7") }52; hasalimit.

14.9 Properties of the (general) 16 integral

Here ¢ is any adapted, square-integrable process.

Adaptedness. For each ¢, I (t) is F(t)-measurable.

Linearity. If
I(t):/&(u) dB(u),  J(0) :/'y(u) dB(u)
then .
10+ (1) = [ (6u) &5 ()) dB(w
and

Martingale. [(t) isamartingale.
Continuity. 7(¢) isacontinuousfunction of the upper limit of integration¢.
Itd Isometry. IE1%(t) = IE f; 6*(u) du.

Example 14.1 () Consider the It0 integral

/OT B(u) dB(u).

We approximate the integrand as shown in Fig. 14.5
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Figure 14.5: Approximating the integrand B (u) with 4, over [0, T'].

B(0)=0 if 0<u<T/n;
B(T/n) if T/n<wu<2T/n;

B (M) it @=UT <y o
By definition,

/OT B(u) dB(u) = 13100!;3 (’%T) [B (@) B (’%T)] .

To simplify notation, we denote

kT
nen()
n
SO
T n—1
/ B(u) dB(u) = lim ZBk (Bry1 — By).
0
Wecompute

1 n—1 n—1
N (Brg1 — Be)?=1%> Bl — > BiBepi+3 Y BP
0 k=0 k=0

n—1
=iB.+%> Bj- ZBkBk+1+ ZBk
j=0

B
1l
o
B
1l

=3B, - ZBk(BkH — By).
k=0
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Therefore,
n—1 n—1
> Bi(Brg1 — Be) = $B2 — 3> (Brg1 — By)?,
k=0 k=0
or equivaently
n—1 n—1 2
kT (k+1)T 3 ETN] e o (k+1)T k
Yo (5 [ (5) - ()] = e - 2 s (555) ()]

Let n—oo and use the definition of quadratic variation to get

/OT B(u) dB(u) = $B*(T) — iT.

Remark 14.4 (Reason for thel 7" term) If f isdifferentiablewith f(0) = 0, then

[ s ast = [ ) du

In contrast, for Brownian motion, we have

T
/0 B(u)dB(u) = LBX(T) — LT.

The extraterm 17" comes from the nonzero quadratic variation of Brownian motion. It hasto be
there, because

T
E / B(u) dB(u) =0  (Itdintegral isamartingale)
0

but

ip.

FiB*(T)=1

14.10 Quadratic variation of an Ito integral
Theorem 10.48 (Quadratic variation of It integral) Let

() = /Ot(sw) dB(u).

Then
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Thisholdseven if § isnot an elementary process. The quadratic variation formula saysthat at each
time u, the instantaneous absolute volatility of 7 is §2(u). This is the absolute volatility of the
Brownian motion scaled by the size of the position (i.e. 4(¢)) in the Brownian motion. Informally,
we can write the quadratic variation formulain differential form as follows:

dI(t) dI(t) = §*(t) dt.
Compare thiswith
dB(t) dB(t) = dt.
Proof: (For an elementary processé). Let Il = {to,t1,...,t,} bethepartitionfor 4, i.e, §(t) =
d(tx) for t, <t < tr41. To Simplify notation, assume ¢ = ¢,,. We have

n—1

(D) =Y LD (tker) = (D) ()]

k=0
Let uscompute (1) (tx+1) — (I)(tx). Let = = {so, 51, ..., s} beapartition
p =80 <81 <o <8y =g

Then

It follows that

n—1

(1) = 3 () (e — 1)
k=0

5 (u) du

n—

k=0 th

t
I1TT||—0 / 52(u) du.
% 0



