Chapter 14

The Itô Integral

The following chapters deal with Stochastic Differential Equations in Finance. References:

- 1. B. Oksendal, Stochastic Differential Equations, Springer-Verlag, 1995
- 2. J. Hull, Options, Futures and other Derivative Securities, Prentice Hall, 1993.

14.1 Brownian Motion

(See Fig. 13.3.) $(\Omega, \mathcal{F}, \mathbb{P})$ is given, always in the background, even when not explicitly mentioned. **Brownian motion**, $B(t, \omega) : [0, \infty) \times \Omega \rightarrow I\!\!R$, has the following properties:

- 1. B(0) = 0; Technically, $I\!\!P\{\omega; B(0,\omega) = 0\} = 1$,
- 2. B(t) is a continuous function of t,
- 3. If $0 = t_0 \leq t_1 \leq \ldots \leq t_n$, then the increments

$$B(t_1) - B(t_0), \ldots, B(t_n) - B(t_{n-1})$$

are independent, normal, and

$$\mathbb{E}[B(t_{k+1}) - B(t_k)] = 0,$$

$$\mathbb{E}[B(t_{k+1}) - B(t_k)]^2 = t_{k+1} - t_k.$$

14.2 First Variation

Quadratic variation is a measure of volatility. First we will consider *first variation*, FV(f), of a function f(t).

Figure 14.1: *Example function* f(t).

For the function pictured in Fig. 14.1, the first variation over the interval [0, T] is given by:

$$FV_{[0,T]}(f) = [f(t_1) - f(0)] - [f(t_2) - f(t_1)] + [f(T) - f(t_2)]$$
$$= \int_0^{t_1} f'(t) dt + \int_{t_1}^{t_2} (-f'(t)) dt + \int_{t_2}^T f'(t) dt.$$
$$= \int_0^T |f'(t)| dt.$$

Thus, first variation measures the total amount of up and down motion of the path. The general definition of first variation is as follows:

Definition 14.1 (First Variation) Let $\Pi = \{t_0, t_1, \dots, t_n\}$ be a *partition* of [0, T], i.e.,

$$0 = t_0 \leq t_1 \leq \ldots \leq t_n = T.$$

The mesh of the partition is defined to be

$$||\Pi|| = \max_{k=0,\dots,n-1} (t_{k+1} - t_k).$$

We then define

$$FV_{[0,T]}(f) = \lim_{\||\Pi\|| \to 0} \sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_k)|.$$

Suppose f is differentiable. Then the Mean Value Theorem implies that in each subinterval $[t_k, t_{k+1}]$, there is a point t_k^* such that

$$f(t_{k+1}) - f(t_k) = f'(t_k^*)(t_{k+1} - t_k).$$

Then

$$\sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_k)| = \sum_{k=0}^{n-1} |f'(t_k^*)| (t_{k+1} - t_k),$$

and

$$FV_{[0,T]}(f) = \lim_{||\Pi|| \to 0} \sum_{k=0}^{n-1} |f'(t_k^*)|(t_{k+1} - t_k)$$
$$= \int_0^T |f'(t)| dt.$$

14.3 Quadratic Variation

Definition 14.2 (Quadratic Variation) The *quadratic variation* of a function f on an interval [0, T] is

$$\langle f \rangle(T) = \lim_{\|\Pi\| \to 0} \sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_k)|^2.$$

Remark 14.1 (Quadratic Variation of Differentiable Functions) If f is differentiable, then $\langle f \rangle(T) = 0$, because

$$\sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_k)|^2 = \sum_{k=0}^{n-1} |f'(t_k^*)|^2 (t_{k+1} - t_k)^2$$
$$\leq ||\Pi|| \cdot \sum_{k=0}^{n-1} |f'(t_k^*)|^2 (t_{k+1} - t_k)$$

and

$$\langle f \rangle(T) \leq \lim_{\||\Pi\|| \to 0} ||\Pi|| \cdot \lim_{\|\Pi\|| \to 0} \sum_{k=0}^{n-1} |f'(t_k^*)|^2 (t_{k+1} - t_k)$$

=
$$\lim_{\|\Pi\|| \to 0} ||\Pi|| \int_0^T |f'(t)|^2 dt$$

=
$$0.$$

Theorem 3.44

$$\langle B \rangle(T) = T,$$

or more precisely,

$$I\!\!P\{\omega\in\Omega;\langle B(.,\omega)\rangle(T)=T\}=1$$

In particular, the paths of Brownian motion are not differentiable.

Proof: (Outline) Let $\Pi = \{t_0, t_1, \dots, t_n\}$ be a partition of [0, T]. To simplify notation, set $D_k = B(t_{k+1}) - B(t_k)$. Define the *sample quadratic variation*

$$Q_{\Pi} = \sum_{k=0}^{n-1} D_k^2.$$

Then

$$Q_{\Pi} - T = \sum_{k=0}^{n-1} [D_k^2 - (t_{k+1} - t_k)].$$

We want to show that

$$\lim_{||\Pi|| \to 0} (Q_{\Pi} - T) = 0.$$

Consider an individual summand

$$D_k^2 - (t_{k+1} - t_k) = [B(t_{k+1}) - B(t_k)]^2 - (t_{k+1} - t_k).$$

This has expectation 0, so

$$I\!\!E(Q_{\Pi} - T) = I\!\!E \sum_{k=0}^{n-1} [D_k^2 - (t_{k+1} - t_k)] = 0.$$

For $j \neq k$, the terms

$$D_j^2 - (t_{j+1} - t_j)$$
 and $D_k^2 - (t_{k+1} - t_k)$

are independent, so

$$\operatorname{var}(Q_{\Pi} - T) = \sum_{k=0}^{n-1} \operatorname{var}[D_{k}^{2} - (t_{k+1} - t_{k})]$$

$$= \sum_{k=0}^{n-1} \mathbb{E}[D_{k}^{4} - 2(t_{k+1} - t_{k})D_{k}^{2} + (t_{k+1} - t_{k})^{2}]$$

$$= \sum_{k=0}^{n-1}[3(t_{k+1} - t_{k})^{2} - 2(t_{k+1} - t_{k})^{2} + (t_{k+1} - t_{k})^{2}]$$
(if X is normal with mean 0 and variance σ^{2} , then $\mathbb{E}(X^{4}) = 3\sigma^{4}$)
$$= 2\sum_{k=0}^{n-1}(t_{k+1} - t_{k})^{2}$$

$$\leq 2||\Pi|| \sum_{k=0}^{n-1}(t_{k+1} - t_{k})$$

$$= 2||\Pi|| T.$$

Thus we have

$$\mathbb{I}\!\!E(Q_{\Pi} - T) = 0,$$

$$\operatorname{var}(Q_{\Pi} - T) \leq 2||\Pi||.T.$$

As $||\Pi|| \rightarrow 0$, $\operatorname{var}(Q_{\Pi} - T) \rightarrow 0$, so

$$\lim_{||\Pi|| \to 0} (Q_{\Pi} - T) = 0.$$

Remark 14.2 (Differential Representation) We know that

$$I\!E[(B(t_{k+1}) - B(t_k))^2 - (t_{k+1} - t_k)] = 0.$$

We showed above that

$$\operatorname{var}[(B(t_{k+1}) - B(t_k))^2 - (t_{k+1} - t_k)] = 2(t_{k+1} - t_k)^2.$$

When $(t_{k+1} - t_k)$ is small, $(t_{k+1} - t_k)^2$ is very small, and we have the approximate equation

$$(B(t_{k+1}) - B(t_k))^2 \simeq t_{k+1} - t_k,$$

which we can write informally as

$$dB(t) \ dB(t) = dt.$$

14.4 Quadratic Variation as Absolute Volatility

On any time interval $[T_1, T_2]$, we can sample the Brownian motion at times

$$T_1 = t_0 \le t_1 \le \ldots \le t_n = T_2$$

and compute the squared sample absolute volatility

$$\frac{1}{T_2 - T_1} \sum_{k=0}^{n-1} (B(t_{k+1}) - B(t_k))^2.$$

This is approximately equal to

$$\frac{1}{T_2 - T_1} [\langle B \rangle (T_2) - \langle B \rangle (T_1)] = \frac{T_2 - T_1}{T_2 - T_1} = 1.$$

As we increase the number of sample points, this approximation becomes exact. In other words, Brownian motion has *absolute volatility 1*.

Furthermore, consider the equation

$$\langle B \rangle(T) = T = \int_{0}^{T} 1 \, dt, \qquad \forall T \ge 0.$$

This says that quadratic variation for Brownian motion accumulates at rate 1 *at all times along almost every path*.

14.5 Construction of the Itô Integral

The **integrator** is Brownian motion $B(t), t \ge 0$, with associated filtration $\mathcal{F}(t), t \ge 0$, and the following properties:

- 1. $s \leq t \Longrightarrow$ every set in $\mathcal{F}(s)$ is also in $\mathcal{F}(t)$,
- 2. B(t) is $\mathcal{F}(t)$ -measurable, $\forall t$,
- 3. For $t \le t_1 \le \ldots \le t_n$, the increments $B(t_1) B(t), B(t_2) B(t_1), \ldots, B(t_n) B(t_{n-1})$ are independent of $\mathcal{F}(t)$.

The **integrand** is $\delta(t), t \ge 0$, where

- 1. $\delta(t)$ is $\mathcal{F}(t)$ -measurable $\forall t$ (i.e., δ is adapted)
- 2. δ is square-integrable:

$$I\!\!E \int_{0}^{T} \delta^{2}(t) \, dt < \infty, \qquad \forall T$$

We want to define the Itô Integral:

$$I(t) = \int_0^t \delta(u) \ dB(u), \qquad t \ge 0.$$

Remark 14.3 (Integral w.r.t. a differentiable function) If f(t) is a differentiable function, then we can define

$$\int_{0}^{t} \delta(u) \, df(u) = \int_{0}^{t} \delta(u) f'(u) \, du$$

This won't work when the integrator is Brownian motion, because the paths of Brownian motion are not differentiable.

14.6 Itô integral of an elementary integrand

Let $\Pi = \{t_0, t_1, ..., t_n\}$ be a partition of [0, T], i.e.,

$$0 = t_0 \le t_1 \le \ldots \le t_n = T.$$

Assume that $\delta(t)$ is constant on each subinterval $[t_k, t_{k+1}]$ (see Fig. 14.2). We call such a δ an *elementary process*.

The functions B(t) and $\delta(t_k)$ can be interpreted as follows:

• Think of B(t) as the price per unit share of an asset at time t.

158

Figure 14.2: An elementary function δ .

- Think of t_0, t_1, \ldots, t_n as the *trading dates* for the asset.
- Think of $\delta(t_k)$ as the number of shares of the asset acquired at trading date t_k and held until trading date t_{k+1} .

Then the Itô integral I(t) can be interpreted as the gain from trading at time t; this gain is given by:

$$I(t) = \begin{cases} \delta(t_0)[B(t) - \underbrace{B(t_0)}_{=B(0)=0}], & 0 \le t \le t_1 \\ \\ \delta(t_0)[B(t_1) - B(t_0)] + \delta(t_1)[B(t) - B(t_1)], & t_1 \le t \le t_2 \\ \\ \delta(t_0)[B(t_1) - B(t_0)] + \delta(t_1)[B(t_2) - B(t_1)] + \delta(t_2)[B(t) - B(t_2)], & t_2 \le t \le t_3 \end{cases}$$

In general, if $t_k \leq t \leq t_{k+1}$,

$$I(t) = \sum_{j=0}^{k-1} \delta(t_j) [B(t_{j+1}) - B(t_j)] + \delta(t_k) [B(t) - B(t_k)].$$

14.7 Properties of the Itô integral of an elementary process

Adaptedness For each t, I(t) is $\mathcal{F}(t)$ -measurable.

Linearity If

$$I(t) = \int_0^t \delta(u) \ dB(u), \qquad J(t) = \int_0^t \gamma(u) \ dB(u)$$

then

$$I(t) \pm J(t) = \int_0^t (\delta(u) \pm \gamma(u)) \ dB(u)$$

Figure 14.3: Showing s and t in different partitions.

and

$$cI(t) = \int_0^t c\delta(u) dB(u).$$

Martingale I(t) is a martingale.

We prove the martingale property for the elementary process case.

Theorem 7.45 (Martingale Property)

$$I(t) = \sum_{j=0}^{k-1} \delta(t_j) [B(t_{j+1}) - B(t_j)] + \delta(t_k) [B(t) - B(t_k)], \qquad t_k \le t \le t_{k+1}$$

is a martingale.

Proof: Let $0 \le s \le t$ be given. We treat the more difficult case that s and t are in different subintervals, i.e., there are partition points t_{ℓ} and t_k such that $s \in [t_{\ell}, t_{\ell+1}]$ and $t \in [t_k, t_{k+1}]$ (See Fig. 14.3).

Write

$$I(t) = \sum_{j=0}^{\ell-1} \delta(t_j) [B(t_{j+1}) - B(t_j)] + \delta(t_\ell) [B(t_{\ell+1}) - B(t_\ell)] + \sum_{j=\ell+1}^{k-1} \delta(t_j) [B(t_{j+1}) - B(t_j)] + \delta(t_k) [B(t) - B(t_k)]$$

We compute conditional expectations:

$$I\!\!E \left[\sum_{j=0}^{\ell-1} \delta(t_j) (B(t_{j+1}) - B(t_j)) \middle| \mathcal{F}(s) \right] = \sum_{j=0}^{\ell-1} \delta(t_j) (B(t_{j+1}) - B(t_j)).$$
$$I\!\!E \left[\delta(t_\ell) (B(t_{\ell+1}) - B(t_\ell)) \middle| \mathcal{F}(s) \right] = \delta(t_\ell) (I\!\!E [B(t_{\ell+1})|\mathcal{F}(s)] - B(t_\ell))$$
$$= \delta(t_\ell) [B(s) - B(t_\ell)]$$

160

These first two terms add up to I(s). We show that the third and fourth terms are zero.

$$\mathbb{E}\left[\sum_{j=\ell+1}^{k-1} \delta(t_j) (B(t_{j+1}) - B(t_j)) \middle| \mathcal{F}(s)\right] = \sum_{j=\ell+1}^{k-1} \mathbb{E}\left[\mathbb{E}\left[\delta(t_j) (B(t_{j+1}) - B(t_j)) \middle| \mathcal{F}(t_j)\right] \middle| \mathcal{F}(s)\right]$$
$$= \sum_{j=\ell+1}^{k-1} \mathbb{E}\left[\delta(t_j) \underbrace{(\mathbb{E}[B(t_{j+1})|\mathcal{F}(t_j)] - B(t_j))}_{=0} \middle| \mathcal{F}(s)\right]$$
$$\mathbb{E}\left[\delta(t_k) (B(t) - B(t_k)) \middle| \mathcal{F}(s)\right] = \mathbb{E}\left[\delta(t_k) \underbrace{(\mathbb{E}[B(t)|\mathcal{F}(t_k)] - B(t_k))}_{=0} \middle| \mathcal{F}(s)\right]$$

Theorem 7.46 (Itô Isometry)

$$I\!\!E I^2(t) = I\!\!E \int_0^t \delta^2(u) \ du.$$

Proof: To simplify notation, assume $t = t_k$, so

$$I(t) = \sum_{j=0}^{k} \delta(t_j) \underbrace{[B(t_{j+1}) - B(t_j)]}_{D_j}$$

Each \boldsymbol{D}_j has expectation 0, and different \boldsymbol{D}_j are independent.

$$I^{2}(t) = \left(\sum_{j=0}^{k} \delta(t_{j}) D_{j}\right)^{2}$$
$$= \sum_{j=0}^{k} \delta^{2}(t_{j}) D_{j}^{2} + 2 \sum_{i < j} \delta(t_{i}) \delta(t_{j}) D_{i} D_{j}.$$

Since the cross terms have expectation zero,

$$\begin{split} I\!\!E I^2(t) &= \sum_{j=0}^k I\!\!E [\delta^2(t_j) D_j^2] \\ &= \sum_{j=0}^k I\!\!E \left[\delta^2(t_j) I\!\!E \left[(B(t_{j+1}) - B(t_j))^2 \middle| \mathcal{F}(t_j) \right] \right] \\ &= \sum_{j=0}^k I\!\!E \delta^2(t_j) (t_{j+1} - t_j) \\ &= I\!\!E \sum_{j=0}^k \int_{t_j}^{t_{j+1}} \delta^2(u) \ du \\ &= I\!\!E \int_0^t \delta^2(u) \ du \end{split}$$

Figure 14.4: Approximating a general process by an elementary process δ_4 , over [0, T].

14.8 Itô integral of a general integrand

Fix T > 0. Let δ be a process (not necessarily an elementary process) such that

- $\delta(t)$ is $\mathcal{F}(t)$ -measurable, $\forall t \in [0, T]$,
- $I\!\!E \int_0^T \delta^2(t) dt < \infty$.

Theorem 8.47 There is a sequence of elementary processes $\{\delta_n\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} I\!\!E \int_0^T |\delta_n(t) - \delta(t)|^2 dt = 0.$$

Proof: Fig. 14.4 shows the main idea.

In the last section we have defined

$$I_n(T) = \int_0^T \delta_n(t) \ dB(t)$$

for every n. We now define

$$\int_0^T \delta(t) \ dB(t) = \lim_{n \to \infty} \int_0^T \delta_n(t) \ dB(t).$$

The only difficulty with this approach is that we need to make sure the above limit exists. Suppose n and m are large positive integers. Then

$$\operatorname{var}(I_{n}(T) - I_{m}(T)) = I\!\!E \left(\int_{0}^{T} [\delta_{n}(t) - \delta_{m}(t)] \, dB(t) \right)^{2}$$

(Itô Isometry:) = $I\!\!E \int_{0}^{T} [\delta_{n}(t) - \delta_{m}(t)]^{2} \, dt$
= $I\!\!E \int_{0}^{T} [|\delta_{n}(t) - \delta(t)| + |\delta(t) - \delta_{m}(t)|]^{2} \, dt$
 $((a + b)^{2} \leq 2a^{2} + 2b^{2} :) \leq 2I\!\!E \int_{0}^{T} |\delta_{n}(t) - \delta(t)|^{2} \, dt + 2I\!\!E \int_{0}^{T} |\delta_{m}(t) - \delta(t)|^{2} \, dt,$

which is small. This guarantees that the sequence $\{I_n(T)\}_{n=1}^{\infty}$ has a limit.

14.9 Properties of the (general) Itô integral

$$I(t) = \int_0^t \delta(u) \ dB(u)$$

Here δ is any adapted, square-integrable process.

Adaptedness. For each t, I(t) is $\mathcal{F}(t)$ -measurable.

Linearity. If

$$I(t) = \int_0^t \delta(u) \ dB(u), \qquad J(t) = \int_0^t \gamma(u) \ dB(u)$$

then

$$I(t) \pm J(t) = \int_0^t (\delta(u) \pm \gamma(u)) \ dB(u)$$

and

$$cI(t) = \int_0^t c\delta(u) dB(u).$$

Martingale. I(t) is a martingale.

Continuity. I(t) is a continuous function of the upper limit of integration t.

Itô Isometry. $I\!\!E I^2(t) = I\!\!E \int_0^t \delta^2(u) \ du$.

Example 14.1 () Consider the Itô integral

$$\int_0^T B(u) \ dB(u) \,.$$

We approximate the integrand as shown in Fig. 14.5

Figure 14.5: Approximating the integrand B(u) with δ_4 , over [0, T].

$$\delta_n(u) = \begin{cases} B(0) = 0 & \text{if } 0 \le u < T/n; \\ B(T/n) & \text{if } T/n \le u < 2T/n; \\ \dots & \\ B\left(\frac{(n-1)T}{T}\right) & \text{if } \frac{(n-1)T}{n} \le u < T. \end{cases}$$

By definition,

$$\int_0^T B(u) \ dB(u) = \lim_{n \to \infty} \sum_{k=0}^{n-1} B\left(\frac{kT}{n}\right) \left[B\left(\frac{(k+1)T}{n}\right) - B\left(\frac{kT}{n}\right) \right].$$

To simplify notation, we denote

$$B_k \stackrel{\Delta}{=} B\left(\frac{kT}{n}\right),$$

so

$$\int_{0}^{T} B(u) \ dB(u) = \lim_{n \to \infty} \sum_{k=0}^{n-1} B_{k} (B_{k+1} - B_{k}).$$

We compute

$$\begin{split} \frac{1}{2} \sum_{k=0}^{n-1} (B_{k+1} - B_k)^2 &= \frac{1}{2} \sum_{k=0}^{n-1} B_{k+1}^2 - \sum_{k=0}^{n-1} B_k B_{k+1} + \frac{1}{2} \sum_{k=0}^{n-1} B_k^2 \\ &= \frac{1}{2} B_n^2 + \frac{1}{2} \sum_{j=0}^{n-1} B_j^2 - \sum_{k=0}^{n-1} B_k B_{k+1} + \frac{1}{2} \sum_{k=0}^{n-1} B_k^2 \\ &= \frac{1}{2} B_n^2 + \sum_{k=0}^{n-1} B_k^2 - \sum_{k=0}^{n-1} B_k B_{k+1} \\ &= \frac{1}{2} B_n^2 - \sum_{k=0}^{n-1} B_k (B_{k+1} - B_k). \end{split}$$

Therefore,

$$\sum_{k=0}^{n-1} B_k (B_{k+1} - B_k) = \frac{1}{2} B_n^2 - \frac{1}{2} \sum_{k=0}^{n-1} (B_{k+1} - B_k)^2,$$

or equivalently

$$\sum_{k=0}^{n-1} B\left(\frac{kT}{n}\right) \left[B\left(\frac{(k+1)T}{n}\right) - B\left(\frac{kT}{n}\right) \right] = \frac{1}{2}B^2\left(T\right) - \frac{1}{2}\sum_{k=0}^{n-1} \left[B\left(\frac{(k+1)T}{n}\right)\left(\frac{k}{T}\right) \right]^2.$$

Let $n \rightarrow \infty$ and use the definition of quadratic variation to get

$$\int_0^T B(u) \ dB(u) = \frac{1}{2}B^2(T) - \frac{1}{2}T.$$

Remark 14.4 (Reason for the $\frac{1}{2}T$ **term**) If f is differentiable with f(0) = 0, then

$$\int_{0}^{T} f(u) df(u) = \int_{0}^{T} f(u) f'(u) du$$
$$= \frac{1}{2} f^{2}(u) \Big|_{0}^{T}$$
$$= \frac{1}{2} f^{2}(T).$$

In contrast, for Brownian motion, we have

$$\int_0^T B(u) dB(u) = \frac{1}{2}B^2(T) - \frac{1}{2}T.$$

The extra term $\frac{1}{2}T$ comes from the nonzero quadratic variation of Brownian motion. It has to be there, because

$$I\!\!E \int_0^T B(u) \ dB(u) = 0 \qquad \text{(Itô integral is a martingale)}$$

but

$$I\!E\frac{1}{2}B^2(T) = \frac{1}{2}T.$$

14.10 Quadratic variation of an Itô integral

Theorem 10.48 (Quadratic variation of Itô integral) Let

$$I(t) = \int_0^t \delta(u) \ dB(u).$$

Then

$$\langle I \rangle(t) = \int_0^t \delta^2(u) \ du.$$

This holds even if δ is not an elementary process. The quadratic variation formula says that at each time u, the *instantaneous absolute volatility* of I is $\delta^2(u)$. This is the absolute volatility of the Brownian motion scaled by the size of the position (i.e. $\delta(t)$) in the Brownian motion. Informally, we can write the quadratic variation formula in differential form as follows:

$$dI(t) \ dI(t) = \delta^2(t) \ dt.$$

Compare this with

$$dB(t) \ dB(t) = dt$$

Proof: (For an elementary process δ). Let $\Pi = \{t_0, t_1, \ldots, t_n\}$ be the partition for δ , i.e., $\delta(t) = \delta(t_k)$ for $t_k \leq t \leq t_{k+1}$. To simplify notation, assume $t = t_n$. We have

$$\langle I \rangle(t) = \sum_{k=0}^{n-1} \left[\langle I \rangle(t_{k+1}) - \langle I \rangle(t_k) \right].$$

Let us compute $\langle I \rangle (t_{k+1}) - \langle I \rangle (t_k)$. Let $\Xi = \{s_0, s_1, \dots, s_m\}$ be a partition

$$t_k = s_0 \le s_1 \le \ldots \le s_m = t_{k+1}.$$

Then

$$I(s_{j+1}) - I(s_j) = \int_{s_j}^{s_{j+1}} \delta(t_k) \, dB(u)$$

= $\delta(t_k) \left[B(s_{j+1}) - B(s_j) \right]$

,

so

$$\langle I \rangle(t_{k+1}) - \langle I \rangle(t_k) = \sum_{j=0}^{m-1} \left[I(s_{j+1}) - I(s_j) \right]^2$$

= $\delta^2(t_k) \sum_{j=0}^{m-1} \left[B(s_{j+1}) - B(s_j) \right]^2$
 $||\Xi|| \to 0$ $\delta^2(t_k)(t_{k+1} - t_k).$

It follows that

$$\langle I \rangle(t) = \sum_{k=0}^{n-1} \delta^2(t_k) (t_{k+1} - t_k)$$
$$= \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} \delta^2(u) \, du$$
$$\underbrace{||\Pi|| \rightarrow 0} \int_0^t \delta^2(u) \, du.$$