Chapter 13

Brownian Motion

13.1 Symmetric Random Walk

Toss a fair coin infinitely many times. Define

$$X_j(\omega) = \begin{cases} 1 & \text{if } \omega_j = H, \\ -1 & \text{if } \omega_j = T. \end{cases}$$

Set

$$M_0 = 0$$

$$M_k = \sum_{j=1}^k X_j, \qquad k \ge 1.$$

13.2 The Law of Large Numbers

We will use the method of moment generating functions to derive the Law of Large Numbers:

Theorem 2.38 (Law of Large Numbers:)

$$\frac{1}{k}M_k{\to}0 \quad \textit{almost surely, as} \quad k{\to}\infty.$$

Proof:

$$\varphi_k(u) = \mathbb{E} \exp\left\{\frac{u}{k}M_k\right\}$$

$$= \mathbb{E} \exp\left\{\sum_{j=1}^k \frac{u}{k}X_j\right\} \qquad \text{(Def. of } M_k.\text{)}$$

$$= \prod_{j=1}^k \mathbb{E} \exp\left\{\frac{u}{k}X_j\right\} \qquad \text{(Independence of the } X_j\text{'s)}$$

$$= \left(\frac{1}{2}e^{\frac{u}{k}} + \frac{1}{2}e^{-\frac{u}{k}}\right)^k,$$

which implies,

$$\log \varphi_k(u) = k \log \left(\frac{1}{2} e^{\frac{u}{k}} + \frac{1}{2} e^{-\frac{u}{k}} \right)$$

Let $x = \frac{1}{k}$. Then

$$\lim_{k \to \infty} \log \varphi_k(u) = \lim_{x \to 0} \frac{\log \left(\frac{1}{2}e^{ux} + \frac{1}{2}e^{-ux}\right)}{x}$$

$$= \lim_{x \to 0} \frac{\frac{u}{2}e^{ux} - \frac{u}{2}e^{-ux}}{\frac{1}{2}e^{ux} + \frac{1}{2}e^{-ux}}$$

$$= 0.$$
(L'Hôpital's Rule)

Therefore,

$$\lim_{k \to \infty} \varphi_k(u) = e^0 = 1,$$

which is the m.g.f. for the constant 0.

13.3 Central Limit Theorem

We use the method of moment generating functions to prove the Central Limit Theorem.

Theorem 3.39 (Central Limit Theorem)

$$\frac{1}{\sqrt{k}}M_k \rightarrow$$
 Standard normal, as $k \rightarrow \infty$.

Proof:

$$\varphi_k(u) = I\!\!E \exp\left\{\frac{u}{\sqrt{k}} M_k\right\}$$
$$= \left(\frac{1}{2} e^{\frac{u}{\sqrt{k}}} + \frac{1}{2} e^{-\frac{u}{\sqrt{k}}}\right)^k,$$

so that,

$$\log \varphi_k(u) = k \log \left(\frac{1}{2} e^{\frac{u}{\sqrt{k}}} + \frac{1}{2} e^{-\frac{u}{\sqrt{k}}} \right).$$

Let $x = \frac{1}{\sqrt{k}}$. Then

$$\lim_{k \to \infty} \log \varphi_k(u) = \lim_{x \to 0} \frac{\log \left(\frac{1}{2}e^{ux} + \frac{1}{2}e^{-ux}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{u}{2}e^{ux} - \frac{u}{2}e^{-ux}}{2x \left(\frac{1}{2}e^{ux} + \frac{1}{2}e^{-ux}\right)} \qquad \text{(L'Hôpital's Rule)}$$

$$= \lim_{x \to 0} \frac{1}{\frac{1}{2}e^{ux} + \frac{1}{2}e^{-ux}} \cdot \lim_{x \to 0} \frac{\frac{u}{2}e^{ux} - \frac{u}{2}e^{-ux}}{2x}$$

$$= \lim_{x \to 0} \frac{\frac{u}{2}e^{ux} - \frac{u}{2}e^{-ux}}{2x}$$

$$= \lim_{x \to 0} \frac{\frac{u^2}{2}e^{ux} - \frac{u^2}{2}e^{-ux}}{2}$$

$$= \lim_{x \to 0} \frac{\frac{u^2}{2}e^{ux} - \frac{u^2}{2}e^{-ux}}{2}$$

$$= \frac{1}{2}u^2. \qquad \text{(L'Hôpital's Rule)}$$

Therefore,

$$\lim_{k \to \infty} \varphi_k(u) = e^{\frac{1}{2}u^2},$$

which is the m.g.f. for a standard normal random variable.

13.4 Brownian Motion as a Limit of Random Walks

Let n be a positive integer. If $t \ge 0$ is of the form $\frac{k}{n}$, then set

$$B^{(n)}(t) = \frac{1}{\sqrt{n}} M_{tn} = \frac{1}{\sqrt{n}} M_k.$$

If $t \ge 0$ is not of the form $\frac{k}{n}$, then define $B^{(n)}(t)$ by linear interpolation (See Fig. 13.1). Here are some properties of $B^{(100)}(t)$:

Figure 13.1: *Linear Interpolation to define* $B^{(n)}(t)$.

Properties of
$$B^{(100)}(1)$$
:
$$B^{(100)}(1) = \frac{1}{10} \sum_{j=1}^{100} X_j \qquad \text{(Approximately normal)}$$

$$EB^{(100)}(1) = \frac{1}{10} \sum_{j=1}^{100} EX_j = 0.$$

$$\text{var}(B^{(100)}(1)) = \frac{1}{100} \sum_{j=1}^{100} \text{var}(X_j) = 1$$
 Properties of $B^{(100)}(2)$:
$$B^{(100)}(2) = \frac{1}{10} \sum_{j=1}^{200} X_j \qquad \text{(Approximately normal)}$$

$$EB^{(100)}(2) = 0.$$

$$\text{var}(B^{(100)}(2)) = 2.$$

Also note that:

- $B^{(100)}(1)$ and $B^{(100)}(2) B^{(100)}(1)$ are independent.
- $B^{(100)}(t)$ is a continuous function of t.

To get Brownian motion, let $n \to \infty$ in $B^{(n)}(t)$, $t \ge 0$.

13.5 Brownian Motion

(Please refer to Oksendal, Chapter 2.)

Figure 13.2: Continuous-time Brownian Motion.

A random variable B(t) (see Fig. 13.2) is called a Brownian Motion if it satisfies the following properties:

- 1. B(0) = 0,
- 2. B(t) is a continuous function of t;
- 3. B has independent, normally distributed increments: If

$$0 = t_0 < t_1 < t_2 < \ldots < t_n$$

and

$$Y_1 = B(t_1) - B(t_0), \quad Y_2 = B(t_2) - B(t_1), \quad \dots \quad Y_n = B(t_n) - B(t_{n-1}),$$

then

- Y_1, Y_2, \ldots, Y_n are independent,
- $\mathbb{E}Y_i = 0 \quad \forall j$,
- $\operatorname{var}(Y_i) = t_i t_{i-1} \quad \forall j$

13.6 Covariance of Brownian Motion

Let $0 \le s \le t$ be given. Then B(s) and B(t) - B(s) are independent, so B(s) and B(t) = (B(t) - B(s)) + B(s) are jointly normal. Moreover,

$$\begin{split} EB(s) &= 0, & \operatorname{var}(B(s)) = s, \\ EB(t) &= 0, & \operatorname{var}(B(t)) = t, \\ EB(s)B(t) &= EB(s)[(B(t) - B(s)) + B(s)] \\ &= \underbrace{EB(s)(B(t) - B(s))}_{0} + \underbrace{EB^{2}(s)}_{s} \\ &= s. \end{split}$$

Thus for any $s \ge 0$, $t \ge 0$ (not necessarily $s \le t$), we have

$$I\!\!EB(s)B(t) = s \wedge t.$$

13.7 Finite-Dimensional Distributions of Brownian Motion

Let

$$0 < t_1 < t_2 < \ldots < t_n$$

be given. Then

$$(B(t_1), B(t_2), \ldots, B(t_n))$$

is jointly normal with covariance matrix

$$C = \begin{bmatrix} EB^{2}(t_{1}) & EB(t_{1})B(t_{2}) & \dots & EB(t_{1})B(t_{n}) \\ EB(t_{2})B(t_{1}) & EB^{2}(t_{2}) & \dots & EB(t_{2})B(t_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ EB(t_{n})B(t_{1}) & EB(t_{n})B(t_{2}) & \dots & EB^{2}(t_{n}) \end{bmatrix}$$

$$= \begin{bmatrix} t_{1} & t_{1} & \dots & t_{1} \\ t_{1} & t_{2} & \dots & t_{2} \\ \vdots & \vdots & \vdots & \vdots \\ t_{1} & t_{2} & \dots & t_{n} \end{bmatrix}$$

13.8 Filtration generated by a Brownian Motion

$$\{\mathcal{F}(t)\}_{t>0}$$

Required properties:

- For each t, B(t) is $\mathcal{F}(t)$ -measurable,
- For each t and for $t < t_1 < t_2 < \cdots < t_n$, the Brownian motion increments

$$B(t_1) - B(t), \quad B(t_2) - B(t_1), \quad \dots, \quad B(t_n) - B(t_{n-1})$$

are independent of $\mathcal{F}(t)$.

Here is one way to construct $\mathcal{F}(t)$. First fix t. Let $s \in [0, t]$ and $C \in \mathcal{B}(\mathbb{R})$ be given. Put the set

$$\{B(s) \in C\} = \{\omega : B(s, \omega) \in C\}$$

in $\mathcal{F}(t)$. Do this for all possible numbers $s \in [0,t]$ and $C \in \mathcal{B}(\mathbb{R})$. Then put in every other set required by the σ -algebra properties.

This $\mathcal{F}(t)$ contains exactly the information learned by observing the Brownian motion upto time t. $\{\mathcal{F}(t)\}_{t\geq 0}$ is called the *filtration generated by the Brownian motion*.

13.9 Martingale Property

Theorem 9.40 Brownian motion is a martingale.

Proof: Let $0 \le s \le t$ be given. Then

$$\mathbb{E}[B(t)|\mathcal{F}(s)] = \mathbb{E}[(B(t) - B(s)) + B(s)|\mathcal{F}(s)]$$
$$= \mathbb{E}[B(t) - B(s)] + B(s)$$
$$= B(s).$$

Theorem 9.41 *Let* $\theta \in \mathbb{R}$ *be given. Then*

$$Z(t) = \exp\left\{-\theta B(t) - \frac{1}{2}\theta^2 t\right\}$$

is a martingale.

Proof: Let $0 \le s \le t$ be given. Then

$$\mathbb{E}[Z(t)|\mathcal{F}(s)] = \mathbb{E}\left[\exp\{-\theta(B(t) - B(s) + B(s)) - \frac{1}{2}\theta^{2}((t-s) + s)\}\Big|\mathcal{F}(s)\right]
= \mathbb{E}\left[Z(s)\exp\{-\theta(B(t) - B(s)) - \frac{1}{2}\theta^{2}(t-s)\}\Big|\mathcal{F}(s)\right]
= Z(s)\mathbb{E}\left[\exp\{-\theta(B(t) - B(s)) - \frac{1}{2}\theta^{2}(t-s)\}\right]
= Z(s)\exp\left\{\frac{1}{2}(-\theta)^{2}\operatorname{var}(B(t) - B(s)) - \frac{1}{2}\theta^{2}(t-s)\right\}
= Z(s).$$

13.10 The Limit of a Binomial Model

Consider the n'th Binomial model with the following parameters:

•
$$u_n = 1 + \frac{\sigma}{\sqrt{n}}$$
. "Up" factor. $(\sigma > 0)$.

•
$$d_n = 1 - \frac{\sigma}{\sqrt{n}}$$
. "Down" factor.

•
$$r = 0$$
.

•
$$\tilde{p}_n = \frac{1-d_n}{u_n-d_n} = \frac{\sigma/\sqrt{n}}{2\sigma/\sqrt{n}} = \frac{1}{2}$$
.

$$\bullet \ \tilde{q}_n = \frac{1}{2}.$$

Let $\sharp_k(H)$ denote the number of H in the first k tosses, and let $\sharp_k(T)$ denote the number of T in the first k tosses. Then

$$\sharp_k(H) + \sharp_k(T) = k,$$

$$\sharp_k(H) - \sharp_k(T) = M_k,$$

which implies,

$$\sharp_k(H) = \frac{1}{2}(k + M_k)$$

 $\sharp_k(T) = \frac{1}{2}(k - M_k).$

In the n'th model, take n steps per unit time. Set $S_0^{(n)} = 1$. Let $t = \frac{k}{n}$ for some k, and let

$$S^{(n)}(t) = \left(1 + \frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}(nt + M_{nt})} \left(1 - \frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}(nt - M_{nt})}.$$

Under $\widetilde{I\!\!P}$, the price process $S^{(n)}$ is a martingale.

Theorem 10.42 As $n \to \infty$, the distribution of $S^{(n)}(t)$ converges to the distribution of

$$\exp\{\sigma B(t) - \frac{1}{2}\sigma^2 t\},\,$$

where B is a Brownian motion. Note that the correction $-\frac{1}{2}\sigma^2 t$ is necessary in order to have a martingale.

Proof: Recall that from the Taylor series we have

$$\log(1+x) = x - \frac{1}{2}x^2 + O(x^3),$$

so

$$\log S^{(n)}(t) = \frac{1}{2}(nt + M_{nt})\log(1 + \frac{\sigma}{\sqrt{n}}) + \frac{1}{2}(nt - M_{nt})\log(1 - \frac{\sigma}{\sqrt{n}})$$

$$= nt\left(\frac{1}{2}\log(1 + \frac{\sigma}{\sqrt{n}}) + \frac{1}{2}\log(1 - \frac{\sigma}{\sqrt{n}})\right)$$

$$+ M_{nt}\left(\frac{1}{2}\log(1 + \frac{\sigma}{\sqrt{n}}) - \frac{1}{2}\log(1 - \frac{\sigma}{\sqrt{n}})\right)$$

$$= nt\left(\frac{1}{2}\frac{\sigma}{\sqrt{n}} - \frac{1}{4}\frac{\sigma^2}{n} - \frac{1}{2}\frac{\sigma}{\sqrt{n}} - \frac{1}{4}\frac{\sigma^2}{n} + O(n^{-3/2})\right)$$

$$+ M_{nt}\left(\frac{1}{2}\frac{\sigma}{\sqrt{n}} - \frac{1}{4}\frac{\sigma^2}{n} + \frac{1}{2}\frac{\sigma}{\sqrt{n}} + \frac{1}{4}\frac{\sigma^2}{n} + O(n^{-3/2})\right)$$

$$= -\frac{1}{2}\sigma^2t + O(n^{-\frac{1}{2}})$$

$$+ \sigma\left(\frac{1}{\sqrt{n}}M_{nt}\right) + \left(\frac{1}{n}M_{nt}\right)O(n^{-\frac{1}{2}})$$

$$\to B_t$$

As $n \to \infty$, the distribution of $\log S^{(n)}(t)$ approaches the distribution of $\sigma B(t) - \frac{1}{2}\sigma^2 t$.

Figure 13.3: *Continuous-time Brownian Motion, starting at* $x \neq 0$.

13.11 Starting at Points Other Than 0

(The remaining sections in this chapter were taught Dec 7.)

For a Brownian motion B(t) that starts at 0, we have:

$$IP(B(0) = 0) = 1.$$

For a Brownian motion B(t) that starts at x, denote the corresponding probability measure by IP^x (See Fig. 13.3), and for such a Brownian motion we have:

$$IP^x(B(0) = x) = 1.$$

Note that:

- If $x \neq 0$, then IP^x puts all its probability on a completely different set from P.
- The distribution of B(t) under $I\!\!P^x$ is the same as the distribution of x+B(t) under P.

13.12 Markov Property for Brownian Motion

We prove that

Theorem 12.43 *Brownian motion has the Markov property.*

Proof:

Let $s \ge 0$, $t \ge 0$ be given (See Fig. 13.4).

$$\mathbb{E}\left[h(B(s+t))\bigg|\mathcal{F}(s)\right] = \mathbb{E}\left[h(\underbrace{B(s+t) - B(s)}_{\text{Independent of }\mathcal{F}(s)} + \underbrace{B(s)}_{\mathcal{F}(s)\text{-measurable}})\bigg|\mathcal{F}(s)\right]$$

Figure 13.4: Markov Property of Brownian Motion.

Use the Independence Lemma. Define

$$\begin{split} g(x) &= I\!\!E \left[h \big(\, B(s+t) - B(s) \, + x \, \big) \right] \\ &= I\!\!E \left[h \big(\, x + \underbrace{B(t)}_{\text{same distribution as } B(s+t) \, - \, B(s)} \big) \right] \\ &= I\!\!E^x h \big(B(t) \big). \end{split}$$

Then

$$\mathbb{E}\left[h\left(B(s+t)\right)\middle|\mathcal{F}(s)\right] = g(B(s))$$
$$= E^{B(s)}h(B(t)).$$

In fact Brownian motion has the strong Markov property.

Example 13.1 (Strong Markov Property) See Fig. 13.5. Fix x > 0 and define

$$\tau = \min \{ t \ge 0; \quad B(t) = x \} .$$

Then we have:

$$\mathbb{E}\left[h(\,B(\tau+t)\,)\bigg|\mathcal{F}(\tau)\right]=g(B(\tau))\,=\,\mathbb{E}^xh(B(t))\,.$$

Figure 13.5: Strong Markov Property of Brownian Motion.

13.13 Transition Density

Let p(t, x, y) be the probability that the Brownian motion changes value from x to y in time t, and let τ be defined as in the previous section.

$$\begin{split} p(t,x,y) &= \frac{1}{\sqrt{2\pi t}} e^{-\frac{(y-x)^2}{2t}} \\ g(x) &= I\!\!E^x h(B(t)) = \int\limits_{-\infty}^{\infty} h(y) p(t,x,y) \; dy. \\ I\!\!E\left[h(B(s+t)) \left| \mathcal{F}(s) \right] &= g(B(s)) = \int\limits_{-\infty}^{\infty} h(y) p(t,B(s),y) \; dy. \\ I\!\!E\left[h(B(\tau+t)) \left| \mathcal{F}(\tau) \right] &= \int\limits_{-\infty}^{\infty} h(y) p(t,x,y) \; dy. \end{split}$$

13.14 First Passage Time

Fix x > 0. Define

$$\tau = \min \{ t \ge 0; \quad B(t) = x \}.$$

Fix $\theta > 0$. Then

$$\exp\left\{\theta B(t\wedge\tau) - \frac{1}{2}\theta^2(t\wedge\tau)\right\}$$

is a martingale, and

$$I\!\!E \exp\left\{\theta B(t\wedge\tau) - \tfrac{1}{2}\theta^2(t\wedge\tau)\right\} = 1.$$

We have

$$\lim_{t \to \infty} \exp\left\{-\frac{1}{2}\theta^{2}(t \wedge \tau)\right\} = \begin{cases} e^{-\frac{1}{2}\theta^{2}\tau} & \text{if } \tau < \infty, \\ 0 & \text{if } \tau = \infty, \end{cases}$$

$$0 \le \exp\left\{\theta B(t \wedge \tau) - \frac{1}{2}\theta^{2}(t \wedge \tau)\right\} \le e^{\theta x}.$$
(14.1)

Let $t \rightarrow \infty$ in (14.1), using the Bounded Convergence Theorem, to get

$$\mathbb{E}\left[\exp\{\theta x - \frac{1}{2}\theta^2 \tau\} \mathbf{1}_{\{\tau < \infty\}}\right] = 1.$$

Let $\theta \downarrow 0$ to get $IE \mathbf{1}_{\{\tau < \infty\}} = 1$, so

$$\mathbb{P}\{\tau < \infty\} = 1,$$

$$\mathbb{E}\exp\{-\frac{1}{2}\theta^2\tau\} = e^{-\theta x}.$$
(14.2)

Let $\alpha = \frac{1}{2}\theta^2$. We have the m.g.f.:

$$\mathbb{E}e^{-\alpha\tau} = e^{-x\sqrt{2\alpha}}, \qquad \alpha > 0. \tag{14.3}$$

Differentiation of (14.3) w.r.t. α yields

$$-\mathbb{E}\left[\tau e^{-\alpha\tau}\right] = -\frac{x}{\sqrt{2\alpha}}e^{-x\sqrt{2\alpha}}.$$

Letting $\alpha \downarrow 0$, we obtain

$$E\tau = \infty. \tag{14.4}$$

Conclusion. Brownian motion reaches level x with probability 1. The expected time to reach level x is infinite.

We use the Reflection Principle below (see Fig. 13.6).

$$\begin{split} I\!\!P\{\tau \leq t, \quad B(t) < x\} &= I\!\!P\{B(t) > x\} \\ I\!\!P\{\tau \leq t\} &= I\!\!P\{\tau \leq t, B(t) < x\} + I\!\!P\{\tau \leq t, B(t) > x\} \\ &= I\!\!P\{B(t) > x\} + I\!\!P\{B(t) > x\} \\ &= 2I\!\!P\{B(t) > x\} \\ &= \frac{2}{\sqrt{2\pi t}} \int\limits_{x}^{\infty} e^{-\frac{y^2}{2t}} dy \end{split}$$

Figure 13.6: Reflection Principle in Brownian Motion.

Using the substitution $z=\frac{y}{\sqrt{t}},\quad dz=\frac{dy}{\sqrt{t}}$ we get

$$\mathbb{P}\{\tau \le t\} = \frac{2}{\sqrt{2\pi}} \int_{\frac{x}{\sqrt{t}}}^{\infty} e^{-\frac{z^2}{2}} dz.$$

Density:

$$f_{\tau}(t) = \frac{\partial}{\partial t} \mathbb{I} P\{\tau \le t\} = \frac{x}{\sqrt{2\pi t^3}} e^{-\frac{x^2}{2t}},$$

which follows from the fact that if

$$F(t) = \int_{a(t)}^{b} g(z) dz,$$

then

$$\frac{\partial F}{\partial t} = -\frac{\partial a}{\partial t}g(a(t)).$$

Laplace transform formula:

$$I\!\!E e^{-\alpha \tau} = \int_{0}^{\infty} e^{-\alpha t} f_{\tau}(t) dt = e^{-x\sqrt{2\alpha}}.$$