
Chapter 13

Brownian Motion

13.1 Symmetric Random Walk

Toss a fair coin infinitely many times. Define

Xj��� �

�
� if �j � H�

�� if �j � T�

Set

M� � �

Mk �
kX

j��

Xj � k � ��

13.2 The Law of Large Numbers

We will use the method of moment generating functions to derive the Law of Large Numbers:

Theorem 2.38 (Law of Large Numbers:)

�

k
Mk�� almost surely, as k���
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Proof:

�k�u� � IE exp

�
u

k
Mk

�

� IE exp

���
kX

j��

u

k
Xj

��	 (Def. of Mk �)

�
kY

j��

IE exp

�
u

k
Xj

�
(Independence of the Xj’s)

�


�
�e

u
k � �

�e
�u

k

�k
�

which implies,

log�k�u� � k log


�
�e

u
k � �

�e
�u

k

�
Let x � �

k . Then

lim
k��

log �k�u� � lim
x��

log


�
�e

ux � �
�e
�ux

�
x

� lim
x��

u
� e

ux � u
�e
�ux

�
�e

ux � �
�e
�ux (L’Hôpital’s Rule)

� ��

Therefore,

lim
k��

�k�u� � e� � ��

which is the m.g.f. for the constant 0.

13.3 Central Limit Theorem

We use the method of moment generating functions to prove the Central Limit Theorem.

Theorem 3.39 (Central Limit Theorem)

�p
k
Mk� Standard normal, as k���

Proof:

�k�u� � IE exp

�
up
k
Mk

�
�


�
�e

up
k � �

�e
� up

k

�k
�
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so that,

log�k�u� � k log


�
�e

up
k � �

�e
� up

k

�
�

Let x � �p
k

. Then

lim
k��

log�k�u� � lim
x��

log


�
�e

ux � �
�e
�ux

�
x�

� lim
x��

u
�e

ux � u
�e
�ux

�x


�
�e

ux � �
�e
�ux

� (L’Hôpital’s Rule)

� lim
x��

�
�
�e

ux � �
�e
�ux � limx��

u
�e

ux � u
� e
�ux

�x

� lim
x��

u
�e

ux � u
� e
�ux

�x

� lim
x��

u�

� e
ux � u�

� e
�ux

�
(L’Hôpital’s Rule)

� �
�u

��

Therefore,

lim
k��

�k�u� � e
�
�u

�

�

which is the m.g.f. for a standard normal random variable.

13.4 Brownian Motion as a Limit of Random Walks

Let n be a positive integer. If t � � is of the form k
n , then set

B�n��t� �
�p
n
Mtn �

�p
n
Mk�

If t � � is not of the form k
n , then define B�n��t� by linear interpolation (See Fig. 13.1).

Here are some properties of B������t�:
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k/n (k+1)/n
Figure 13.1: Linear Interpolation to define B �n��t�.

Properties of B�������� �

B�������� �
�

��

���X
j��

Xj (Approximately normal)

IEB�������� �
�

��

���X
j��

IEXj � ��

var�B��������� �
�

���

���X
j��

var�Xj� � �

Properties of B�������� �

B�������� �
�

��

���X
j��

Xj (Approximately normal)

IEB�������� � ��

var�B��������� � ��

Also note that:

� B�������� and B���������B�������� are independent.

� B������t� is a continuous function of t.

To get Brownian motion, let n�� in B�n��t�� t � �.

13.5 Brownian Motion

(Please refer to Oksendal, Chapter 2.)
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t

(Ω,F,P)

ω

B(t) = B(t,ω)

Figure 13.2: Continuous-time Brownian Motion.

A random variable B�t� (see Fig. 13.2) is called a Brownian Motion if it satisfies the following
properties:

1. B��� � �,

2. B�t� is a continuous function of t;

3. B has independent, normally distributed increments: If

� � t� � t� � t� � � � � � tn

and

Y� � B�t���B�t��� Y� � B�t���B�t��� � � � Yn � B�tn��B�tn����

then

� Y�� Y�� � � � � Yn are independent,
� IEYj � � �j�
� var�Yj� � tj � tj�� �j�

13.6 Covariance of Brownian Motion

Let � � s � t be given. Then B�s� and B�t� � B�s� are independent, so B�s� and B�t� �
�B�t�� B�s�� �B�s� are jointly normal. Moreover,

IEB�s� � �� var�B�s�� � s�

IEB�t� � �� var�B�t�� � t�

IEB�s�B�t� � IEB�s�	�B�t��B�s�� �B�s�


� IEB�s��B�t�� B�s��� z �
�

� IEB��s�� z �
s

� s�
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Thus for any s � �, t � � (not necessarily s � t), we have

IEB�s�B�t� � s � t�

13.7 Finite-Dimensional Distributions of Brownian Motion

Let
� � t� � t� � � � � � tn

be given. Then
�B�t��� B�t��� � � � � B�tn��

is jointly normal with covariance matrix

C �

�����
IEB��t�� IEB�t��B�t�� � � � IEB�t��B�tn�

IEB�t��B�t�� IEB��t�� � � � IEB�t��B�tn�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

IEB�tn�B�t�� IEB�tn�B�t�� � � � IEB��tn�

�����

�

�����
t� t� � � � t�
t� t� � � � t�
� � � � � � � � � � � � � � �

t� t� � � � tn

�����

13.8 Filtration generated by a Brownian Motion

fF�t�gt��
Required properties:

� For each t, B�t� is F�t�-measurable,

� For each t and for t � t� � t� � 	 	 	� tn, the Brownian motion increments

B�t���B�t�� B�t���B�t��� � � � � B�tn��B�tn���

are independent of F�t�.

Here is one way to construct F�t�. First fix t. Let s 
 	�� t
 and C 
 B�IR� be given. Put the set

fB�s� 
 Cg � f� � B�s� �� 
 Cg
in F�t�. Do this for all possible numbers s 
 	�� t
 and C 
 B�IR�. Then put in every other set
required by the �-algebra properties.

This F�t� contains exactly the information learned by observing the Brownian motion upto time t.
fF�t�gt�� is called the filtration generated by the Brownian motion.
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13.9 Martingale Property

Theorem 9.40 Brownian motion is a martingale.

Proof: Let � � s � t be given. Then

IE	B�t�jF�s�
 � IE	�B�t�� B�s�� �B�s�jF�s�


� IE	B�t�� B�s�
 � B�s�

� B�s��

Theorem 9.41 Let � 
 IR be given. Then

Z�t� � exp
n
��B�t� � �

��
�t
o

is a martingale.

Proof: Let � � s � t be given. Then

IE	Z�t�jF�s�
 � IE

�
expf���B�t� �B�s� �B�s��� �

��
���t� s� � s�g

����F�s�

�
� IE

�
Z�s� expf���B�t� � B�s��� �

��
��t � s�g

����F�s�

�
� Z�s�IE

h
expf���B�t� � B�s��� �

��
��t� s�g

i
� Z�s� exp

n
�
������ var�B�t�� B�s��� �

��
��t� s�

o
� Z�s��

13.10 The Limit of a Binomial Model

Consider the n’th Binomial model with the following parameters:

� un � � � �p
n
� “Up” factor. (� � �).

� dn � �� �p
n
� “Down” factor.

� r � �.

� �pn � ��dn
un�dn � ��

p
n

���
p
n
� �

� .

� �qn � �
� .



146

Let 	k�H� denote the number of H in the first k tosses, and let 	k�T � denote the number of T in the
first k tosses. Then

	k�H� � 	k�T � � k�

	k�H�� 	k�T � � Mk�

which implies,

	k�H� � �
��k �Mk�

	k�T � �
�
��k �Mk��

In the n’th model, take n steps per unit time. Set S�n�
� � �. Let t � k

n for some k, and let

S�n��t� �

�
� �

�p
n

��
� �nt�Mnt� �

�� �p
n

��
� �nt�Mnt�

�

Under fIP , the price process S�n� is a martingale.

Theorem 10.42 As n��, the distribution of S �n��t� converges to the distribution of

expf�B�t� � �
��

�tg�
where B is a Brownian motion. Note that the correction � �

��
�t is necessary in order to have a

martingale.

Proof: Recall that from the Taylor series we have

log�� � x� � x � �
�x

� � O�x���

so

logS�n��t� � �
��nt �Mnt� log�� �

�p
n
� � �

��nt �Mnt� log��� �p
n
�

� nt

�
�
� log�� �

�p
n
� � �

� log���
�p
n
�

�
�Mnt

�
�
� log�� �

�p
n
�� �

� log���
�p
n
�

�

� nt

�
�
�

�p
n
� �

�

��

n
� �

�

�p
n
� �

�

��

n
�O�n�����

�

�Mnt

�
�
�

�p
n
� �

�

��

n
� �

�

�p
n
�

�

�

��

n
�O�n�����

�

� ��
��

�t� O�n�
�
� �

� �

�
�p
n
Mnt

�
� z �

�Bt

�

�
�

n
Mnt

�
� z �
��

O�n�
�
� �

As n��, the distribution of logS �n��t� approaches the distribution of �B�t� � �
��

�t.
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B(t) = B(t,ω)

tω
x

(Ω, F,  P )x

Figure 13.3: Continuous-time Brownian Motion, starting at x �� �.

13.11 Starting at Points Other Than 0

(The remaining sections in this chapter were taught Dec 7.)

For a Brownian motion B�t� that starts at 0, we have:

IP �B��� � �� � ��

For a Brownian motion B�t� that starts at x, denote the corresponding probability measure by IP x

(See Fig. 13.3), and for such a Brownian motion we have:

IPx�B��� � x� � ��

Note that:

� If x �� �, then IPx puts all its probability on a completely different set from IP.

� The distribution of B�t� under IP x is the same as the distribution of x�B�t� under IP.

13.12 Markov Property for Brownian Motion

We prove that

Theorem 12.43 Brownian motion has the Markov property.

Proof:

Let s � �� t � � be given (See Fig. 13.4).

IE

�
h�B�s � t��

����F�s�

�
� IE

����h�B�s� t��B�s�� z �
Independent of F�s�

� B�s�� z �
F�s�-measurable

�

����F�s�

����
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s s+t

restart

B(s)

Figure 13.4: Markov Property of Brownian Motion.

Use the Independence Lemma. Define

g�x� � IE 	h�B�s� t� �B�s� � x �


� IE

����h� x� B�t�� z �
same distribution as B�s� t��B�s�

�

����
� IExh�B�t���

Then

IE

�
h �B�s � t� �

����F�s�

�
� g�B�s��

� EB�s�h�B�t���

In fact Brownian motion has the strong Markov property.

Example 13.1 (Strong Markov Property) See Fig. 13.5. Fix x � � and define

� � minft � �� B�t� � xg �

Then we have:

IE

�
h�B�� � t� �

����F�� �� � g�B�� �� � IExh�B�t���
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τ + t

restart

τ

x

Figure 13.5: Strong Markov Property of Brownian Motion.

13.13 Transition Density

Let p�t� x� y� be the probability that the Brownian motion changes value from x to y in time t, and
let 
 be defined as in the previous section.

p�t� x� y� �
�p
��t

e�
�y�x��

�t

g�x� � IExh�B�t�� �

�Z
��

h�y�p�t� x� y� dy�

IE

�
h�B�s� t��

����F�s�

�
� g�B�s�� �

�Z
��

h�y�p�t� B�s�� y� dy�

IE

�
h�B�
 � t��

����F�
�

�
�

�Z
��

h�y�p�t� x� y� dy�

13.14 First Passage Time

Fix x � �. Define

 � min ft � � B�t� � xg �

Fix � � �. Then

exp
n
�B�t � 
�� �

��
��t � 
�

o
is a martingale, and

IE exp
n
�B�t � 
�� �

��
��t � 
�

o
� ��
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We have

lim
t�� exp

n
��

��
��t � 
�

o
�

���e�
�
� �

�� if 
 ���

� if 
 � ��
(14.1)

� � expf�B�t � 
�� �
��

��t � 
�g � e�x�

Let t�� in (14.1), using the Bounded Convergence Theorem, to get

IE
h
expf�x� �

��
�
g�f���g

i
� ��

Let ��� to get IE�f���g � �, so

IPf
 ��g � ��

IE expf��
��

�
g � e��x� (14.2)

Let � � �
��

�. We have the m.g.f.:

IEe��� � e�x
p
��� � � �� (14.3)

Differentiation of (14.3) w.r.t. � yields

�IE �

e���

�
� � xp

��
e�x

p
���

Letting ���, we obtain

IE
 � �� (14.4)

Conclusion. Brownian motion reaches level x with probability 1. The expected time to reach level
x is infinite.

We use the Reflection Principle below (see Fig. 13.6).

IPf
 � t� B�t� � xg � IPfB�t� � xg
IPf
 � tg � IPf
 � t� B�t� � xg� IPf
 � t� B�t� � xg

� IPfB�t� � xg� IPfB�t� � xg
� �IPfB�t� � xg

�
�p
��t

�Z
x

e�
y�

�t dy
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τ

x

shadow path

Brownian motion

t

Figure 13.6: Reflection Principle in Brownian Motion.

Using the substitution z � yp
t
� dz � dyp

t
we get

IPf
 � tg �
�p
��

�Z
xp
t

e�
z�

� dz�

Density:

f� �t� �


t
IPf
 � tg �

xp
��t�

e�
x�

�t �

which follows from the fact that if

F �t� �

bZ
a�t�

g�z� dz�

then
F

t
� �a

t
g�a�t���

Laplace transform formula:

IEe��� �

�Z
�

e��tf� �t�dt � e�x
p
���


