Chapter 12

Semi-Continuous Models

12.1 Discrete-time Brownian Motion

Let $\{Y_j\}_{j=1}^n$ be a collection of independent, standard normal random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$, where P is the *market measure*. As before we denote the column vector $(Y_1, \ldots, Y_n)^T$ by Y. We therefore have for any real column vector $\mathbf{u} = (u_1, \ldots, u_n)^T$,

$$I\!\!E e^{\mathbf{u}^T \mathbf{Y}} = I\!\!E \exp\left\{\sum_{j=1}^n u_j Y_j\right\} = \exp\left\{\sum_{j=1}^n \frac{1}{2}u_j^2\right\}.$$

Define the discrete-time Brownian motion (See Fig. 12.1):

$$B_0 = 0,$$

 $B_k = \sum_{j=1}^k Y_j, \ k = 1, \dots, n$

If we know Y_1, Y_2, \ldots, Y_k , then we know B_1, B_2, \ldots, B_k . Conversely, if we know B_1, B_2, \ldots, B_k , then we know $Y_1 = B_1, Y_2 = B_2 - B_1, \ldots, Y_k = B_k - B_{k-1}$. Define the filtration

$$\mathcal{F}_0 = \{\phi, \Omega\},$$

$$\mathcal{F}_k = \sigma(Y_1, Y_2, \dots, Y_k) = \sigma(B_1, B_2, \dots, B_k), \ k = 1, \dots, n.$$

Theorem 1.34 $\{B_k\}_{k=0}^n$ is a martingale (under P).

Proof:

$$\mathbb{I\!E} [B_{k+1}|\mathcal{F}_k] = \mathbb{I\!E} [Y_{k+1} + B_k|\mathcal{F}_k]$$

= $\mathbb{I\!E} Y_{k+1} + B_k$
= $B_k.$

Figure 12.1: Discrete-time Brownian motion.

Theorem 1.35 $\{B_k\}_{k=0}^n$ is a Markov process.

Proof: Note that

$$\mathbb{E}[h(B_{k+1})|\mathcal{F}_k] = \mathbb{E}[h(Y_{k+1} + B_k)|\mathcal{F}_k]$$

Use the Independence Lemma. Define

$$g(b) = I\!\!E h(Y_{k+1} + b) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(y+b) e^{-\frac{1}{2}y^2} dy.$$

Then

$$I\!\!E[h(Y_{k+1}+B_k)|\mathcal{F}_k] = g(B_k),$$

which is a function of B_k alone.

12.2 The Stock Price Process

Given parameters:

- $\mu \in \mathbb{R}$, the mean rate of return.
- $\sigma > 0$, the *volatility*.
- $S_0 > 0$, the initial stock price.

The *stock price process* is then given by

$$S_k = S_0 \exp\left\{\sigma B_k + (\mu - \frac{1}{2}\sigma^2)k\right\}, \ k = 0, \dots, n.$$

Note that

$$S_{k+1} = S_k \exp\left\{\sigma Y_{k+1} + (\mu - \frac{1}{2}\sigma^2)\right\},$$

$$\begin{split} I\!\!E[S_{k+1}|\mathcal{F}_k] &= S_k I\!\!E[e^{\sigma Y_{k+1}}|\mathcal{F}_k].e^{\mu - \frac{1}{2}\sigma^2} \\ &= S_k e^{\frac{1}{2}\sigma^2} e^{\mu - \frac{1}{2}\sigma^2} \\ &= e^{\mu} S_k. \end{split}$$

Thus

$$\mu = \log \frac{I\!\!E[S_{k+1}|\mathcal{F}_k]}{S_k} = \log I\!\!E\left[\frac{S_{k+1}}{S_k}\middle|\mathcal{F}_k\right],$$

and

$$\operatorname{var}\left(\log\frac{S_{k+1}}{S_k}\right) = \operatorname{var}\left(\sigma Y_{k+1} + \left(\mu - \frac{1}{2}\sigma^2\right)\right) = \sigma^2.$$

12.3 Remainder of the Market

The other processes in the market are defined as follows.

Money market process:

$$M_k = e^{rk}, \ k = 0, 1, \dots, n.$$

Portfolio process:

•
$$\Delta_0, \Delta_1, \ldots, \Delta_{n-1}$$

• Each Δ_k is \mathcal{F}_k -measurable.

Wealth process:

- X_0 given, nonrandom.
- •

$$X_{k+1} = \Delta_k S_{k+1} + e^r (X_k - \Delta_k S_k)$$

= $\Delta_k (S_{k+1} - e^r S_k) + e^r X_k$

• Each X_k is \mathcal{F}_k -measurable.

Discounted wealth process:

$$\frac{X_{k+1}}{M_{k+1}} = \Delta_k \left(\frac{S_{k+1}}{M_{k+1}} - \frac{S_k}{M_k} \right) + \frac{X_k}{M_k}.$$

12.4 Risk-Neutral Measure

Definition 12.1 Let \widetilde{IP} be a probability measure on (Ω, \mathcal{F}) , equivalent to the market measure P. If $\left\{\frac{S_k}{M_k}\right\}_{k=0}^n$ is a martingale under \widetilde{IP} , we say that \widetilde{IP} is a *risk-neutral measure*.

Theorem 4.36 If $\widetilde{\mathbb{P}}$ is a risk-neutral measure, then every discounted wealth process $\left\{\frac{X_k}{M_k}\right\}_{k=0}^n$ is a martingale under $\widetilde{\mathbb{P}}$, regardless of the portfolio process used to generate it.

Proof:

$$\widetilde{I\!\!E} \left[\frac{X_{k+1}}{M_{k+1}} \middle| \mathcal{F}_k \right] = \widetilde{I\!\!E} \left[\Delta_k \left(\frac{S_{k+1}}{M_{k+1}} - \frac{S_k}{M_k} \right) + \frac{X_k}{M_k} \middle| \mathcal{F}_k \right] \\ = \Delta_k \left(\widetilde{I\!\!E} \left[\frac{S_{k+1}}{M_{k+1}} \middle| \mathcal{F}_k \right] - \frac{S_k}{M_k} \right) + \frac{X_k}{M_k} \\ = \frac{X_k}{M_k}.$$

12.5 Risk-Neutral Pricing

Let V_n be the payoff at time n, and say it is \mathcal{F}_n -measurable. Note that V_n may be path-dependent. Hedging a short position:

- Sell the simple European derivative security V_n .
- Receive X_0 at time 0.
- Construct a portfolio process $\Delta_0, \ldots, \Delta_{n-1}$ which starts with X_0 and ends with $X_n = V_n$.
- If there is a risk-neutral measure \widetilde{IP} , then

$$X_0 = \widetilde{I\!\!E} \frac{X_n}{M_n} = \widetilde{I\!\!E} \frac{V_n}{M_n}.$$

Remark 12.1 Hedging in this "semi-continuous" model is usually not possible because there are not enough trading dates. This difficulty will disappear when we go to the fully continuous model.

12.6 Arbitrage

Definition 12.2 An *arbitrage* is a portfolio which starts with $X_0 = 0$ and ends with X_n satisfying

$$I\!P(X_n \ge 0) = 1, I\!P(X_n > 0) > 0.$$

(P here is the market measure).

Theorem 6.37 (Fundamental Theorem of Asset Pricing: Easy part) If there is a risk-neutral measure, then there is no arbitrage.

Proof: Let \widetilde{IP} be a risk-neutral measure, let $X_0 = 0$, and let X_n be the final wealth corresponding to any portfolio process. Since $\left\{\frac{X_k}{M_k}\right\}_{k=0}^n$ is a martingale under \widetilde{IP} ,

$$\widetilde{E}\frac{X_n}{M_n} = \widetilde{E}\frac{X_0}{M_0} = 0.$$
(6.1)

Suppose $I\!\!P(X_n \ge 0) = 1$. We have

$$I\!\!P(X_n \ge 0) = 1 \Longrightarrow I\!\!P(X_n < 0) = 0 \Longrightarrow \overline{I\!\!P}(X_n < 0) = 0 \Longrightarrow \overline{I\!\!P}(X_n \ge 0) = 1.$$
(6.2)

(6.1) and (6.2) imply $\widetilde{I\!\!P}(X_n=0)=1$. We have

$$\widetilde{I\!\!P}(X_n=0)=1\Longrightarrow \widetilde{I\!\!P}(X_n>0)=0\Longrightarrow I\!\!P(X_n>0)=0.$$

This is not an arbitrage.

12.7 Stalking the Risk-Neutral Measure

Recall that

• Y_1, Y_2, \ldots, Y_n are independent, standard normal random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

•
$$S_k = S_0 \exp\left\{\sigma B_k + (\mu - \frac{1}{2}\sigma^2)k\right\}$$

٠

$$S_{k+1} = S_0 \exp\left\{\sigma(B_k + Y_{k+1}) + (\mu - \frac{1}{2}\sigma^2)(k+1)\right\}$$

= $S_k \exp\left\{\sigma Y_{k+1} + (\mu - \frac{1}{2}\sigma^2)\right\}.$

Therefore,

$$\frac{S_{k+1}}{M_{k+1}} = \frac{S_k}{M_k} \cdot \exp\left\{\sigma Y_{k+1} + (\mu - r - \frac{1}{2}\sigma^2)\right\},\,$$

$$\begin{split} E\left[\frac{S_{k+1}}{M_{k+1}}\middle|\mathcal{F}_k\right] &= \frac{S_k}{M_k}. E\left[\exp\left\{\sigma Y_{k+1}\right\}\middle|\mathcal{F}_k\right]. \exp\left\{\mu - r - \frac{1}{2}\sigma^2\right\} \\ &= \frac{S_k}{M_k}. \exp\left\{\frac{1}{2}\sigma^2\right\}. \exp\left\{\mu - r - \frac{1}{2}\sigma^2\right\} \\ &= e^{\mu - r}. \frac{S_k}{M_k}. \end{split}$$

If $\mu = r$, the market measure is risk neutral. If $\mu \neq r$, we must seek further.

$$\frac{S_{k+1}}{M_{k+1}} = \frac{S_k}{M_k} \cdot \exp\left\{\sigma Y_{k+1} + \left(\mu - r - \frac{1}{2}\sigma^2\right)\right\}$$
$$= \frac{S_k}{M_k} \cdot \exp\left\{\sigma (Y_{k+1} + \frac{\mu - r}{\sigma}) - \frac{1}{2}\sigma^2\right\}$$
$$= \frac{S_k}{M_k} \cdot \exp\left\{\sigma \tilde{Y}_{k+1} - \frac{1}{2}\sigma^2\right\},$$

where

$$\tilde{Y}_{k+1} = Y_{k+1} + \frac{\mu - r}{\sigma}.$$

The quantity $\frac{\mu-r}{\sigma}$ is denoted θ and is called the *market price of risk*.

We want a probability measure \widetilde{IP} under which $\tilde{Y}_1, \ldots, \tilde{Y}_n$ are independent, standard normal random variables. Then we would have

$$\begin{split} \widetilde{I\!\!E} \left[\frac{S_{k+1}}{M_{k+1}} \middle| \mathcal{F}_k \right] &= \frac{S_k}{M_k} \cdot \widetilde{I\!\!E} \left[\exp\{\sigma \widetilde{Y}_{k+1}\} \middle| \mathcal{F}_k \right] \cdot \exp\{-\frac{1}{2}\sigma^2\} \\ &= \frac{S_k}{M_k} \cdot \exp\{\frac{1}{2}\sigma^2\} \cdot \exp\{-\frac{1}{2}\sigma^2\} \\ &= \frac{S_k}{M_k} \cdot \end{split}$$

Cameron-Martin-Girsanov's Idea: Define the random variable

$$Z = \exp\left[\sum_{j=1}^{n} (-\theta Y_j - \frac{1}{2}\theta^2)\right].$$

Properties of Z:

- $Z \ge 0$.
- •

$$I\!EZ = I\!E \exp\left\{\sum_{j=1}^{n} (-\theta Y_j)\right\} \cdot \exp\left\{-\frac{n}{2}\theta^2\right\}$$
$$= \exp\left\{\frac{n}{2}\theta^2\right\} \cdot \exp\left\{-\frac{n}{2}\theta^2\right\} = 1.$$

Define

$$\widetilde{IP}(A) = \int_{A} Z \, dI\!P \quad \forall A \in \mathcal{F}.$$

Then $\widetilde{I\!\!P}(A)\geq 0$ for all $A\in \mathcal{F}$ and

$$\widetilde{I\!\!P}(\Omega) = I\!\!E Z = 1.$$

In other words, $\widetilde{I\!\!P}$ is a probability measure.

We show that \widetilde{IP} is a risk-neutral measure. For this, it suffices to show that

$$\tilde{Y}_1 = Y_1 + \theta, \ldots, \tilde{Y}_n = Y_n + \theta$$

are independent, standard normal under \widetilde{IP} .

Verification:

• Y_1, Y_2, \ldots, Y_n : Independent, standard normal under P, and

$$I\!\!E \exp\left[\sum_{j=1}^n u_j Y_j\right] = \exp\left[\sum_{j=1}^n \frac{1}{2} u_j^2\right].$$

- $\tilde{Y} = Y_1 + \theta, \ldots, \tilde{Y}_n = Y_n + \theta.$
- Z > 0 almost surely.
- $Z = \exp\left[\sum_{j=1}^{n} (-\theta Y_j \frac{1}{2}\theta^2)\right],$

$$\widetilde{I\!\!P}(A) = \int_A Z \ dI\!\!P \quad \forall A \in \mathcal{F},$$

 $\widetilde{I\!\!E} X = I\!\!E(XZ)$ for every random variable X.

• Compute the moment generating function of $(\tilde{Y}_1, \ldots, \tilde{Y}_n)$ under $\widetilde{I\!\!P}$:

$$\widetilde{E} \exp\left[\sum_{j=1}^{n} u_j \widetilde{Y}_j\right] = E \exp\left[\sum_{j=1}^{n} u_j (Y_j + \theta) + \sum_{j=1}^{n} (-\theta Y_j - \frac{1}{2}\theta^2)\right]$$
$$= E \exp\left[\sum_{j=1}^{n} (u_j - \theta) Y_j\right] \cdot \exp\left[\sum_{j=1}^{n} (u_j \theta - \frac{1}{2}\theta^2)\right]$$
$$= \exp\left[\sum_{j=1}^{n} \frac{1}{2} (u_j - \theta)^2\right] \cdot \exp\left[\sum_{j=1}^{n} (u_j \theta - \frac{1}{2}\theta^2)\right]$$
$$= \exp\left[\sum_{j=1}^{n} \left((\frac{1}{2}u_j^2 - u_j \theta + \frac{1}{2}\theta^2) + (u_j \theta - \frac{1}{2}\theta^2) \right)\right]$$
$$= \exp\left[\sum_{j=1}^{n} \frac{1}{2}u_j^2\right].$$

12.8 Pricing a European Call

Stock price at time n is

$$S_{n} = S_{0} \exp \left\{ \sigma B_{n} + (\mu - \frac{1}{2}\sigma^{2})n \right\}$$

= $S_{0} \exp \left\{ \sigma \sum_{j=1}^{n} Y_{j} + (\mu - \frac{1}{2}\sigma^{2})n \right\}$
= $S_{0} \exp \left\{ \sigma \sum_{j=1}^{n} (Y_{j} + \frac{\mu - r}{\sigma}) - (\mu - r)n + (\mu - \frac{1}{2}\sigma^{2})n \right\}$
= $S_{0} \exp \left\{ \sigma \sum_{j=1}^{n} \tilde{Y}_{j} + (r - \frac{1}{2}\sigma^{2})n \right\}.$

Payoff at time n is $(S_n - K)^+$. Price at time zero is

$$\widetilde{I\!\!E} \frac{(S_n - K)^+}{M_n} = \widetilde{I\!\!E} \left[e^{-rn} \left(S_0 \exp\left\{ \sigma \sum_{j=1}^n \tilde{Y}_j + (r - \frac{1}{2}\sigma^2)n \right\} - K \right)^+ \right] \\ = \int_{-\infty}^\infty e^{-rn} \left(S_0 \exp\left\{ \sigma b + (r - \frac{1}{2}\sigma^2)n \right\} - K \right)^+ \cdot \frac{1}{\sqrt{2\pi n}} e^{-\frac{b^2}{2n^2}} db \\ \text{ since } \sum_{j=1}^n \tilde{Y}_j \text{ is normal with mean 0, variance } n, \text{ under } \widetilde{I\!\!P}.$$

This is the *Black-Scholes* price. It does not depend on μ .

138