Chapter 11

General Random Variables

11.1 Law of a Random Variable

Thus far we have considered only random variables whose domain and range are discrete. We now consider a general random variable $X: \Omega \to I\!\!R$ defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Recall that:

- \mathcal{F} is a σ -algebra of subsets of Ω .
- P is a probability measure on \mathcal{F} , i.e., IP(A) is defined for every $A \in \mathcal{F}$.

A function $X: \Omega \to \mathbb{R}$ is a random variable if and only if for every $B \in \mathcal{B}(\mathbb{R})$ (the σ -algebra of Borel subsets of \mathbb{R}), the set

$$\{X \in B\} \stackrel{\triangle}{=} X^{-1}(B) \stackrel{\triangle}{=} \{\omega; X(\omega) \in B\} \in \mathcal{F},$$

i.e., $X: \Omega \to \mathbb{R}$ is a random variable if and only if X^{-1} is a function from $\mathcal{B}(\mathbb{R})$ to $\mathcal{F}(\text{See Fig. }11.1)$

Thus any random variable X induces a measure μ_X on the measurable space $(I\!\!R,\mathcal{B}(I\!\!R))$ defined by

$$\mu_X(B) = \mathbb{P}\left(X^{-1}(B)\right) \quad \forall B \in \mathcal{B}(\mathbb{R}),$$

where the probability on the right is defined since $X^{-1}(B) \in \mathcal{F}$. μ_X is often called the *Law of* X – in Williams' book this is denoted by \mathcal{L}_X .

11.2 Density of a Random Variable

The density of X (if it exists) is a function $f_X : \mathbb{R} \to [0, \infty)$ such that

$$\mu_X(B) = \int_B f_X(x) \ dx \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

Figure 11.1: *Illustrating a real-valued random variable* X.

We then write

$$d\mu_X(x) = f_X(x)dx,$$

where the integral is with respect to the Lebesgue measure on R. f_X is the Radon-Nikodym derivative of μ_X with respect to the Lebesgue measure. Thus X has a density if and only if μ_X is absolutely continuous with respect to Lebesgue measure, which means that whenever $B \in \mathcal{B}(I\!\!R)$ has Lebesgue measure zero, then

$$IP\{X \in B\} = 0.$$

11.3 Expectation

Theorem 3.32 (Expectation of a function of X) Let $h : \mathbb{R} \to \mathbb{R}$ be given. Then

Proof: (Sketch). If $h(x) = \mathbf{1}_B(x)$ for some $B \subset \mathbb{R}$, then these equations are

$$\begin{split} I\!\!E \mathbf{1}_B(X) & \stackrel{\triangle}{=} & P\{X \in B\} \\ & = & \mu_X(B) \\ & = & \int_B f_X(x) \; dx \,, \end{split}$$

which are true by definition. Now use the "standard machine" to get the equations for general h.

Figure 11.2: Two real-valued random variables X, Y.

11.4 Two random variables

Let X, Y be two random variables $\Omega \to \mathbb{R}$ defined on the space $(\Omega, \mathcal{F}, \mathbb{P})$. Then X, Y induce a measure on $\mathcal{B}(\mathbb{R}^2)$ (see Fig. 11.2) called the *joint law of* (X, Y), defined by

$$\mu_{X,Y}(C) \stackrel{\triangle}{=} \mathbb{I}P\{(X,Y) \in C\} \quad \forall C \in \mathcal{B}(\mathbb{I}R^2).$$

The *joint density of* (X, Y) is a function

$$f_{X,Y}: \mathbb{R}^2 \to [0,\infty)$$

that satisfies

$$\mu_{X,Y}(C) = \iint\limits_C f_{X,Y}(x,y) \ dxdy \quad \forall C \in \mathcal{B}(\mathbb{R}^2).$$

 $f_{X,Y}$ is the Radon-Nikodym derivative of $\mu_{X,Y}$ with respect to the Lebesgue measure (area) on \mathbb{R}^2 . We compute the expectation of a function of X,Y in a manner analogous to the univariate case:

$$\mathbb{E}k(X,Y) \stackrel{\triangle}{=} \int_{\Omega} k(X(\omega),Y(\omega)) d\mathbb{P}(\omega)
= \iint_{\mathbb{R}^2} k(x,y) d\mu_{X,Y}(x,y)
= \iint_{\mathbb{R}^2} k(x,y) f_{X,Y}(x,y) dxdy$$

11.5 Marginal Density

Suppose (X,Y) has joint density $f_{X,Y}$. Let $B \subset \mathbb{R}$ be given. Then

$$\begin{array}{rcl} \mu_Y(B) & = & I\!\!P\{Y \in B\} \\ & = & I\!\!P\{(X,Y) \in I\!\!R \times B\} \\ & = & \mu_{X,Y}(I\!\!R \times B) \\ & = & \int_B \int_{I\!\!R} f_{X,Y}(x,y) \; dx dy \\ & = & \int_B f_Y(y) \; dy, \end{array}$$

where

$$f_Y(y) \stackrel{\triangle}{=} \int_{\mathbb{R}} f_{X,Y}(x,y) \ dx.$$

Therefore, $f_Y(y)$ is the (marginal) density for Y.

11.6 Conditional Expectation

Suppose (X,Y) has joint density $f_{X,Y}$. Let $h: \mathbb{R} \to \mathbb{R}$ be given. Recall that $\mathbb{E}[h(X)|Y] \stackrel{\triangle}{=} \mathbb{E}[h(X)|\sigma(Y)]$ depends on ω through Y, i.e., there is a function g(y) (g depending on g) such that

$$I\!\!E[h(X)|Y](\omega) = g(Y(\omega))\,.$$

How do we determine q?

We can characterize g using partial averaging: Recall that $A \in \sigma(Y) \iff A = \{Y \in B\}$ for some $B \in \mathcal{B}(\mathbb{R})$. Then the following are equivalent characterizations of g:

$$\int_{A} g(Y) \ d\mathbb{P} = \int_{A} h(X) \ d\mathbb{P} \quad \forall A \in \sigma(Y), \tag{6.1}$$

$$\int_{\Omega} \mathbf{1}_{B}(Y)g(Y) d\mathbb{P} = \int_{\Omega} \mathbf{1}_{B}(Y)h(X) d\mathbb{P} \quad \forall B \in \mathcal{B}(\mathbb{R}), \tag{6.2}$$

$$\int_{\mathbb{R}} \mathbf{1}_{B}(y)g(y)\mu_{Y}(dy) = \iint_{\mathbb{R}^{2}} \mathbf{1}_{B}(y)h(x) d\mu_{X,Y}(x,y) \quad \forall B \in \mathcal{B}(\mathbb{R}), \tag{6.3}$$

$$\int_{B} g(y)f_{Y}(y) dy = \int_{B} \int_{\mathbb{R}} h(x)f_{X,Y}(x,y) dxdy \quad \forall B \in \mathcal{B}(\mathbb{R}).$$
 (6.4)

11.7 Conditional Density

A function $f_{X|Y}(x|y): \mathbb{R}^2 \to [0,\infty)$ is called a *conditional density* for X given Y provided that for any function $h: \mathbb{R} \to \mathbb{R}$:

$$g(y) = \int_{\mathbb{R}} h(x) f_{X|Y}(x|y) \, dx. \tag{7.1}$$

(Here q is the function satisfying

$$I\!\!E\left[h(X)|Y\right] = g(Y),$$

and g depends on h, but $f_{X|Y}$ does not.)

Theorem 7.33 If (X,Y) has a joint density $f_{X,Y}$, then

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}. (7.2)$$

Proof: Just verify that g defined by (7.1) satisfies (6.4): For $B \in \mathcal{B}(\mathbb{R})$,

$$\int_{B} \underbrace{\int_{\mathbb{R}} h(x) f_{X|Y}(x|y) \ dx}_{g(y)} f_{Y}(y) \ dy = \int_{B} \int_{\mathbb{R}} h(x) f_{X,Y}(x,y) \ dx dy.$$

Notation 11.1 Let q be the function satisfying

$$I\!\!E[h(X)|Y] = g(Y).$$

The function q is often written as

$$g(y) = \mathbb{E}[h(X)|Y = y],$$

and (7.1) becomes

$$I\!\!E[h(X)|Y=y] = \int_{I\!\!R} h(x) f_{X|Y}(x|y) \ dx.$$

In conclusion, to determine $\mathbb{E}[h(X)|Y]$ (a function of ω), first compute

$$g(y) = \int_{\mathcal{B}} h(x) f_{X|Y}(x|y) \ dx,$$

and then replace the dummy variable y by the random variable Y:

$$I\!\!E[h(X)|Y](\omega) = g(Y(\omega)).$$

Example 11.1 (Jointly normal random variables) Given parameters: $\sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1$. Let (X, Y) have the joint density

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{x^2}{\sigma_1^2} - 2\rho \frac{x}{\sigma_1} \frac{y}{\sigma_2} + \frac{y^2}{\sigma_2^2}\right]\right\}.$$

The exponent is

$$\begin{aligned}
&-\frac{1}{2(1-\rho^2)} \left[\frac{x^2}{\sigma_1^2} - 2\rho \frac{x}{\sigma_1} \frac{y}{\sigma_2} + \frac{y^2}{\sigma_2^2} \right] \\
&= -\frac{1}{2(1-\rho^2)} \left[\left(\frac{x}{\sigma_1} - \rho \frac{y}{\sigma_2} \right)^2 + \frac{y^2}{\sigma_2^2} (1-\rho^2) \right] \\
&= -\frac{1}{2(1-\rho^2)} \frac{1}{\sigma_1^2} \left(x - \frac{\rho \sigma_1}{\sigma_2} y \right)^2 - \frac{1}{2} \frac{y^2}{\sigma_2^2}.\end{aligned}$$

We can compute the Marginal density of Y as follows

$$\begin{split} f_Y(y) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2(1-\rho^2)\sigma_1^2}} \left(x - \frac{\rho\sigma_1}{\sigma_2}y\right)^2 \, dx \,. e^{-\frac{1}{2}\frac{y^2}{\sigma_2^2}} \\ &= \frac{1}{2\pi\sigma_2} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} \, du \,. e^{-\frac{1}{2}\frac{y^2}{\sigma_2^2}} \\ &= \text{using the substitution } u = \frac{1}{\sqrt{1-\rho^2}\sigma_1} \left(x - \frac{\rho\sigma_1}{\sigma_2}y\right), \, du = \frac{dx}{\sqrt{1-\rho^2}\sigma_1} \\ &= \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{1}{2}\frac{y^2}{\sigma_2^2}}. \end{split}$$

Thus Y is normal with mean 0 and variance σ_2^2 .

Conditional density. From the expressions

$$\begin{split} f_{X,Y}(x,y) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\frac{1}{\sigma_1^2}\left(x-\frac{\rho\sigma_1}{\sigma_2}y\right)^2} e^{-\frac{1}{2}\frac{y^2}{\sigma_2^2}}, \\ f_{Y}(y) &= \frac{1}{\sqrt{2\pi}\,\sigma_2} e^{-\frac{1}{2}\frac{y^2}{\sigma_2^2}}, \end{split}$$

we have

$$\begin{array}{lcl} f_{X|Y}(x|y) & = & \frac{f_{X,Y}(x,y)}{f_{Y}(y)} \\ \\ & = & \frac{1}{\sqrt{2\pi}\,\sigma_{1}}\frac{1}{\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\frac{1}{\sigma_{1}^{2}}\left(x-\frac{\rho\sigma_{1}}{\sigma_{2}}y\right)^{2}} \end{array}$$

In the x-variable, $f_{X|Y}(x|y)$ is a normal density with mean $\frac{\rho\sigma_1}{\sigma_2}y$ and variance $(1-\rho^2)\sigma_1^2$. Therefore,

$$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx = \frac{\rho \sigma_1}{\sigma_2} y;$$

$$\mathbb{E}\left[\left(X - \frac{\rho\sigma_1}{\sigma_2}y\right)^2 \middle| Y = y\right] \\
= \int_{-\infty}^{\infty} \left(x - \frac{\rho\sigma_1}{\sigma_2}y\right)^2 f_{X|Y}(x|y) \ dx \\
= (1 - \rho^2)\sigma_1^2.$$

From the above two formulas we have the formulas

$$\mathbb{E}[X|Y] = \frac{\rho \sigma_1}{\sigma_2} Y,\tag{7.3}$$

$$\mathbb{E}\left[\left(X - \frac{\rho\sigma_1}{\sigma_2}Y\right)^2 \middle| Y\right] = (1 - \rho^2)\sigma_1^2. \tag{7.4}$$

Taking expectations in (7.3) and (7.4) yields

$$EX = \frac{\rho \sigma_1}{\sigma_2} EY = 0, \tag{7.5}$$

$$\mathbb{E}\left[\left(X - \frac{\rho\sigma_1}{\sigma_2}Y\right)^2\right] = (1 - \rho^2)\sigma_1^2. \tag{7.6}$$

Based on Y, the best estimator of X is $\frac{\rho\sigma_1}{\sigma_2}Y$. This estimator is unbiased (has expected error zero) and the expected square error is $(1-\rho^2)\sigma_1^2$. No other estimator based on Y can have a smaller expected square error (Homework problem 2.1).

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

Let X denote the column vector of random variables $(X_1, X_2, \dots, X_n)^T$, and x the corresponding column vector of values $(x_1, x_2, \dots, x_n)^T$. X has a multivariate normal distribution if and only if the random variables have the joint density

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{\sqrt{\det \mathbf{A}}}{(2\pi)^{\mathbf{n}/2}} \exp\left\{-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})^{\mathbf{T}}.\mathbf{A}.(\mathbf{X} - \boldsymbol{\mu})\right\}.$$

Here,

$$\boldsymbol{\mu} \stackrel{\triangle}{=} (\mu_1, \dots, \mu_n)^T = \mathbb{E} \mathbf{X} \stackrel{\triangle}{=} (\mathbb{E} X_1, \dots, \mathbb{E} X_n)^T,$$

and A is an $n \times n$ nonsingular matrix. A^{-1} is the covariance matrix

$$A^{-1} = \mathbb{E}\left[(\mathbf{X} - \boldsymbol{\mu}) . (\mathbf{X} - \boldsymbol{\mu})^T \right],$$

i.e. the (i,j)th element of A^{-1} is $I\!\!E(X_i - \mu_i)(X_j - \mu_j)$. The random variables in ${\bf X}$ are independent if and only if A^{-1} is diagonal, i.e.,

$$A^{-1} = \operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2),$$

where $\sigma_i^2 = I\!\!E (X_j - \mu_j)^2$ is the variance of X_j .

11.9 Bivariate normal distribution

Take n=2 in the above definitions, and let

$$\rho \stackrel{\triangle}{=} \frac{I\!\!E(X_1 - \mu_1)(X_2 - \mu_2)}{\sigma_1 \sigma_2}.$$

Thus,

$$A^{-1} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix},$$

$$A = \begin{bmatrix} \frac{1}{\sigma_1^2 (1 - \rho^2)} & -\frac{\rho}{\sigma_1 \sigma_2 (1 - \rho^2)} \\ -\frac{\rho}{\sigma_1 \sigma_2 (1 - \rho^2)} & \frac{1}{\sigma_2^2 (1 - \rho^2)} \end{bmatrix},$$

$$\sqrt{\det A} = \frac{1}{\sigma_1 \sigma_2 \sqrt{1 - \rho^2}},$$

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expectations:

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} \right] \right\}.$$

11.10 MGF of jointly normal random variables

Let $\mathbf{u} = (u_1, u_2, \dots, u_n)^T$ denote a column vector with components in \mathbb{R} , and let \mathbf{X} have a multivariate normal distribution with covariance matrix A^{-1} and mean vector $\boldsymbol{\mu}$. Then the moment generating function is given by

$$\begin{split} E e^{\mathbf{u}^T \cdot \mathbf{X}} &= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} e^{\mathbf{u}^T \cdot \mathbf{X}} f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) \ dx_1 \dots dx_n \\ &= \exp\left\{\frac{1}{2} \mathbf{u}^T A^{-1} \mathbf{u} + \mathbf{u}^T \boldsymbol{\mu}\right\}. \end{split}$$

If any n random variables X_1, X_2, \ldots, X_n have this moment generating function, then they are jointly normal, and we can read out the means and covariances. The random variables are jointly normal *and independent* if and only if for any real column vector $\mathbf{u} = (u_1, \ldots, u_n)^T$

$$\mathbb{E}e^{\mathbf{u}^T \cdot \mathbf{X}} \stackrel{\triangle}{=} \mathbb{E}\exp\left\{\sum_{j=1}^n u_j X_j\right\} = \exp\left\{\sum_{j=1}^n \left[\frac{1}{2}\sigma_j^2 u_j^2 + u_j \mu_j\right]\right\}.$$