Chapter 11

General Random Variables

11.1 Law of aRandom Variable

Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random variable X : Q— IR defined on the probability space (2, F, ). Recall
that:

e Fisac-agebraof subsetsof 2.
e Pisaprobability measureon 7, i.e, IP(A) isdefined for every A € F.

A function X : Q— IR isarandom variable if and only if for every B € B(IR) (the o-agebra of
Borel subsets of R), the set

(X eBY2XY(B)2 {w;X(w) € B} € F,

i.e, X : Q—IR isarandom variable if and only if X ~! is a function from B(IR) to F(See Fig.
11.1)

Thus any random variable X induces a measure px on the measurable space (IR, B(IR)) defined

by
px(B) =P (X7Y(B)) VB € B(R),

where the probabiliy on the right is defined since X ~!(B) € F. ux isoften called the Law of X —
in Williams' book thisisdenoted by £ x .

11.2 Density of a Random Variable
The density of X (if it exists) isafunction fx : IR—[0, co) such that
px(B) = [ fx(@) de VB € B(R).
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{Xe B} Q

Figure 11.1: Illustrating a real-valued randomvariable X .

We then write
dux(z) = fx(x)dz,

where the integral is with respect to the Lebesgue measure on R. fx isthe Radon-Nikodym deriva-
tive of ;x with respect to the Lebesgue measure. Thus X has a density if and only if px is
absolutely continuous with respect to Lebesgue measure, which means that whenever B € B(IR)
has L ebesgue measure zero, then

P{X € B} =0.

11.3 Expectation

Theorem 3.32 (Expectation of a function of X') Let % : IR— IR be given. Then
EhX) & /Q (X (@) dIP(w)
h(z) dpx ()

Jr
Jr

h(z) fx(z) dz.

Proof: (Sketch). If h(z) = 1g(z) for some B C IR, then these equationsare

Flp(X) 2 P{X e B}
px (B)

= /fX(x) dz,
B

which are true by definition. Now use the “ standard machine” to get the equations for general h.
[ ]
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Figure 11.2: Two real-valued randomvariables X, Y.

11.4 Tworandom variables

Let X, Y be two random variables Q— IR defined on the space (€2, F,I?’). Then X,Y induce a
measure on B(IRk?) (see Fig. 11.2) caled thejoint law of (X, Y'), defined by

pxy(C) & P{(X,Y) € C} YC € B(IRY).
Thejoint density of (X, Y) isafunction
fxy 1 R*—[0,00)

that satisfies
pxy (C) =/ fxy(z,y) dedy VC € B(IR?).
C

fx.y isthe Radon-Nikodym derivative of 1. x y with respect to the L ebesgue measure (area) on IR?.
We compute the expectation of afunctionof X, ¥ in amanner analogous to the univariate case:

(>

ELXY) & [ KX @)Y (@) dP)

= /kwyduxywy)

- / k2, ) fx.y (2, y) dady
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11.5 Marginal Density

Suppose (X, Y) hasjoint density fx y. Let B C IR be given. Then

py(B) = IP{Y € B}
= JP{(XY)eleB}

where

Y) 2 /B Ixy(z,y) de

Therefore, fy (y) isthe (marginal) density for Y.

11.6 Conditional Expectation

Suppose (X,Y) has joint density fyy. Let i : IR—IR be given. Recall that IE[h(X)[Y] £
IETh(X)|o(Y)] dependson w through Y, i.e., thereisafunction ¢(y) (¢ depending on /) such that

ERX)[Y](w) = g(Y(w)).

How do we determine g?

We can characterize g using partial averaging: Recall that A € o(Y )<= A = {Y € B} for some
B € B(IR). Thenthe following are equivalent characterizations of g¢:

/g(Y) P _/ AP YA€ oY), (6.1)
A

/Q 15(Y)g(Y) dP = / 15(Y)A(X) dIP VB € B(IR), 6.2)
| 1swgtnr(dy) = // 15(y)h(x) duxy(e,y) VB € B(R), (63)
R

/ y) fy(y) dy = / / ) fxy(z,y) dedy VB € B(IR). (6.4
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11.7 Conditional Density

A function fx |y (z]y) : IR?—[0, co) iscalled aconditional density for X' givenY” provided that for
any function i : IR— IR:

9() = [ 1@ Fry Goly) da. 7.

(Here ¢ isthe function satisfying
Eh(X)[Y]=g(Y),

and g dependson A, but fx - doesnot.)

Theorem 7.33 If (X, Y) hasajoint density fx y, then

fxy(z,y)
frly)

Proof: Just verify that ¢ defined by (7.1) satisfies (6.4): For B € B(IR),

|| n@) eyl de sy dy = [ ] h@) fx(e,y) dady.

9(y)

fxy (zly) = (7.2)

Notation 11.1 Let ¢ be the function satisfying
ERX)Y]=g(Y).
The function ¢ is often written as
9(y) = ER(X)]Y = y],
and (7.1) becomes
BRI = 3] = [ () fxy (aly) do

In conclusion, to determine IE[A(.X)|Y] (afunction of w), first compute

9) = [ 1@ Fxy (aly) de
and then replace the dummy variable y by the random variable Y':

ERX)[Y](w) = g(Y(w)).

Example 11.1 (Jointly normal random variables) Given parameters. o1 > 0,02 > 0,—1 < p < 1. Let
(X,Y) have thejoint density

1 1 z? r vy y?
f YT, Y) = 76)(}){—7 [—_2 -2 4+ 4 )
xy (@) 2ro1094/1 — p? 2(1—p?) Lo? p0'1 oy 02
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The exponent is

N S O /AN s
2(1 — p?) o2 o2 202

We can compute the Marginal density of Y as follows

[N

Irly) =

ly
1 o _u? -4
= e~ 7 due 29

2moy

: H 7 _ 1 _ pox _ dz
using the substitution u = V=, (x - y) , du = =y
1 2
- L e
V2T oy
ThusY isnormal with mean 0 and variance o3.
Conditional density. From the expressions
L (e b2
Sy (,y) = e ) il
2ro10a/ 1 — p?
1 iy
[ — 95 ,
Iy (y) NG
we have
Ixy(x,y)
Ixpy(zly) = ————
v (z]y) (o)
2
1 1 g1
_ L1 e )

— ¢
V2m oy /1 — p?
Inthe z-variable, fx|y (z|y) isanormal density with mean 27y and variance (1 — p*)o7. Therefore,

EX]Y =] =/ xfxpy (xly) de = Py,
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From the above two formulas we have the formulas

Blxy] = 22y, (7.3)
a2
- 2
EKXJQﬂ V] = (1-p?el. (7.4)
g2
Taking expectationsin (7.3) and (7.4) yields
Ex =" gy =, (7.5)
a2
o 2
E l(x - p_ly) = (1—p?)ol. (7.6)
a2

Based on Y, the best estimator of X is %Y. This estimator is unbiased (has expected error zero) and the
expected square error is (1 — p*)o. No other estimator based on Y can have a smaller expected square error
(Homework problem 2.1). ]

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

Let X denote the column vector of random variables (X, X5, ..., X,,)7, and x the corresponding
column vector of values (z1, 23, . . . ,xn)T. X has amultivariate normal distributionif and only if
the random variables have the joint density
vdet A 1 T
Ix(%) = g7 O {-1X-wTAX-p}.

Here,

A A
w= (s ) = EX 2 (EXy, ..., EX,)T,

and Aisann x n nonsingular matrix. A~! isthe covariance matrix
AT = B (X - p) (X = )]

i.e. the (7, j)thelement of A=!isIF (X, —u;)(X;— ;). Therandom variablesin X areindependent
if and only if A~! isdiagonal, i.e,
A™Y = diag(o?, 03, ... ,0%),

rUn

where 02 = IF(X; — pu;)* isthe variance of X;.
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11.9 Bivariatenormal distribution

Take n = 2 in the above definitions, and let

o (X — ) (X — pa)
- 0109 '

P

Thus,
Al — [ ot pPo102 ]

2
pPO102 g5

1 _ P
A= _Uf(l—ppz’) Cf1€f21(1—02) :
o102(1—p?) crg(l—p2)
1
vdet A = ————,
o102/ 1 — p?

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expec-
tations:

2mo109 2] 0102 g5

11.10 MGEF of jointly normal random variables

Let u = (uy,uy,...,u,)’ denote a column vector with components in IR, and let X have a
multivariate normal distribution with covariance matrix A ~! and mean vector g. Then the moment
generating function is given by
T 00 0o T
Fev X — /_OO.../_Ooeu ‘XfX17X27”_ 7Xn(acl,avg,... Ty doy .. oday,
= exp {%uTA_lu + uT,u} .
If any n random variables X, X», ..., X, have this moment generating function, then they are

jointly normal, and we can read out the means and covariances. The random variables are jointly
normal and independent if and only if for any real column vector u = (uy, ..., u,)"

T A n n
Ee" X2 IF exp {Z Uij} = exp {Z[%U?u? —I—Uj,u]‘]} .



