
Chapter 11

General Random Variables

11.1 Law of a Random Variable

Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random variable X � ��IR defined on the probability space ���F�P�. Recall
that:

� F is a �-algebra of subsets of �.

� IP is a probability measure on F , i.e., IP �A� is defined for every A � F .

A function X � ��IR is a random variable if and only if for every B � B�IR� (the �-algebra of
Borel subsets of IR), the set

fX � Bg �� X���B�
�
� f��X��� � Bg � F �

i.e., X � ��IR is a random variable if and only if X�� is a function from B�IR� to F(See Fig.
11.1)

Thus any random variable X induces a measure �X on the measurable space �IR�B�IR�� defined
by

�X�B� � IP
�
X���B�

�
�B � B�IR��

where the probabiliy on the right is defined since X���B� � F . �X is often called the Law of X –
in Williams’ book this is denoted by LX .

11.2 Density of a Random Variable

The density of X (if it exists) is a function fX � IR������ such that

�X�B� �
Z
B
fX�x� dx �B � B�IR��
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Figure 11.1: Illustrating a real-valued random variable X .

We then write
d�X�x� � fX�x�dx�

where the integral is with respect to the Lebesgue measure on IR. fX is the Radon-Nikodym deriva-
tive of �X with respect to the Lebesgue measure. Thus X has a density if and only if �X is
absolutely continuous with respect to Lebesgue measure, which means that whenever B � B�IR�
has Lebesgue measure zero, then

IPfX � Bg � ��

11.3 Expectation

Theorem 3.32 (Expectation of a function of X) Let h � IR�IR be given. Then

IEh�X�
�
�

Z
�
h�X���� dIP ���

�
Z
IR
h�x� d�X�x�

�
Z
IR
h�x�fX�x� dx�

Proof: (Sketch). If h�x� � �B�x� for some B � IR, then these equations are

IE�B�X�
�
� PfX � Bg
� �X�B�

�

Z
B
fX�x� dx�

which are true by definition. Now use the “standard machine” to get the equations for general h.
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Figure 11.2: Two real-valued random variables X� Y .

11.4 Two random variables

Let X� Y be two random variables ��IR defined on the space ���F�P�. Then X� Y induce a
measure on B�IR�� (see Fig. 11.2) called the joint law of �X� Y �, defined by

�X�Y �C�
�
� IPf�X� Y � � Cg �C � B�IR���

The joint density of �X� Y � is a function

fX�Y � IR�������

that satisfies

�X�Y �C� �
ZZ
C

fX�Y �x� y� dxdy �C � B�IR���

fX�Y is the Radon-Nikodym derivative of �X�Y with respect to the Lebesgue measure (area) on IR�.

We compute the expectation of a function of X� Y in a manner analogous to the univariate case:

IEk�X� Y �
�
�

Z
�
k�X���� Y ���� dIP ���

�

ZZ
IR�

k�x� y� d�X�Y �x� y�

�

ZZ
IR�

k�x� y�fX�Y �x� y� dxdy
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11.5 Marginal Density

Suppose �X� Y � has joint density fX�Y . Let B � IR be given. Then

�Y �B� � IPfY � Bg
� IPf�X� Y � � IR� Bg
� �X�Y �IR� B�

�

Z
B

Z
IR
fX�Y �x� y� dxdy

�

Z
B
fY �y� dy�

where

fY �y�
�
�
Z
IR
fX�Y �x� y� dx�

Therefore, fY �y� is the (marginal) density for Y .

11.6 Conditional Expectation

Suppose �X� Y � has joint density fX�Y . Let h � IR�IR be given. Recall that IE�h�X�jY 	
�
�

IE�h�X�j��Y �	 depends on � through Y , i.e., there is a function g�y� (g depending on h) such that

IE�h�X�jY 	��� � g�Y �����

How do we determine g?

We can characterize g using partial averaging: Recall that A � ��Y ��	A � fY � Bg for some
B � B�IR�. Then the following are equivalent characterizations of g:

Z
A
g�Y � dIP �

Z
A
h�X� dIP �A � ��Y �� (6.1)

Z
�
�B�Y �g�Y � dIP �

Z
�
�B�Y �h�X� dIP �B � B�IR�� (6.2)

Z
IR
�B�y�g�y��Y �dy� �

ZZ
IR�

�B�y�h�x� d�X�Y �x� y� �B � B�IR�� (6.3)

Z
B
g�y�fY �y� dy �

Z
B

Z
IR
h�x�fX�Y �x� y� dxdy �B � B�IR�� (6.4)
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11.7 Conditional Density

A function fXjY �xjy� � IR������� is called a conditional density for X given Y provided that for
any function h � IR�IR:

g�y� �
Z
IR
h�x�fXjY �xjy� dx� (7.1)

(Here g is the function satisfying
IE �h�X�jY 	 � g�Y ��

and g depends on h, but fXjY does not.)

Theorem 7.33 If �X� Y � has a joint density fX�Y , then

fXjY �xjy� �
fX�Y �x� y�

fY �y�
� (7.2)

Proof: Just verify that g defined by (7.1) satisfies (6.4): For B � B�IR��Z
B

Z
IR
h�x�fXjY �xjy� dx� �z �

g�y�

fY �y� dy �
Z
B

Z
IR
h�x�fX�Y �x� y� dxdy�

Notation 11.1 Let g be the function satisfying

IE�h�X�jY 	 � g�Y ��

The function g is often written as

g�y� � IE�h�X�jY � y	�

and (7.1) becomes

IE�h�X�jY � y	 �

Z
IR
h�x�fXjY �xjy� dx�

In conclusion, to determine IE�h�X�jY 	 (a function of �), first compute

g�y� �
Z
IR
h�x�fXjY �xjy� dx�

and then replace the dummy variable y by the random variable Y :

IE�h�X�jY 	��� � g�Y �����

Example 11.1 (Jointly normal random variables) Given parameters: �� � �� �� � ���� � � � �. Let
�X�Y � have the joint density

fX�Y �x� y� �
�

������
p

�� ��
exp

�
� �

���� ���

�
x�

��
�

� ��
x

��

y

��
�

y�

��
�

�	
�
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The exponent is
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� � �
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�
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�

�
x� ���

��
y

��

� �
�

y�

��
�

�

We can compute the Marginal density of Y as follows

fY �y� �
�

������
p

�� ��

Z �

��

e
� �

����������

�
x� ���

��
y
��

dx�e
��

�
y�

���

�
�

����

Z �

��

e�
u�

� du�e
��

�
y�

���

using the substitutionu � �p
������

�
x� ���

��
y
�

, du � dxp
������

�
�p

�� ��
e
��

�
y
�

��� �

Thus Y is normal with mean 0 and variance ���.

Conditional density. From the expressions

fX�Y �x� y� �
�

������
p

�� ��
e
� �

�������
�

��
�

�
x�

���
��

y
��
e
��

�
y�

��� �

fY �y� �
�p

�� ��
e
��

�
y�

��� �

we have

fXjY �xjy� �
fX�Y �x� y�

fY �y�

�
�p

�� ��

�p
�� ��

e
� �

�������
�
��

�

�
x� ���

��
y
��
�

In the x-variable, fXjY �xjy� is a normal density with mean ���
��

y and variance ��� �����
�. Therefore,

IE�XjY � y	 �

Z �

��

xfXjY �xjy� dx �
���

��
y


IE


�
X � ���

��
y

�� ����Y � y



�

Z �

��

�
x� ���

��
y

��

fXjY �xjy� dx

� �� � �����
��
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From the above two formulas we have the formulas

IE�XjY 	 �
���

��
Y� (7.3)

IE


�
X � ���

��
Y

�� ����Y

� ��� �����

�� (7.4)

Taking expectations in (7.3) and (7.4) yields

IEX �
���

��
IEY � �� (7.5)

IE


�
X � ���

��
Y

��

� ��� �����

�� (7.6)

Based on Y , the best estimator of X is ���
��

Y . This estimator is unbiased (has expected error zero) and the
expected square error is ��� �����

�. No other estimator based on Y can have a smaller expected square error
(Homework problem 2.1).

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

Let X denote the column vector of random variables �X�� X�� � � � � Xn�
T , and x the corresponding

column vector of values �x�� x�� � � � � xn�T . X has a multivariate normal distribution if and only if
the random variables have the joint density

fX�x� �

p
detA

����n��
exp

n

�

��X
 ��T�A��X
 ��
o
�

Here,

�
�
� ���� � � � � �n�

T � IEX
�
� �IEX�� � � � � IEXn�

T �

and A is an n � n nonsingular matrix. A�� is the covariance matrix

A�� � IE
h
�X
 ����X
 ��T

i
�

i.e. the �i� j�th element of A�� is IE�Xi
�i��Xj
�j�. The random variables inX are independent
if and only if A�� is diagonal, i.e.,

A�� � diag����� �
�
�� � � � � �

�
n��

where ��j � IE�Xj 
 �j�� is the variance of Xj .
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11.9 Bivariate normal distribution

Take n � 
 in the above definitions, and let

�
�
�

IE�X� 
 ����X� 
 ���

����
�

Thus,

A�� �



��� �����

����� ���


�

A �

�
� �

��
�
������


 �
����������


 �
����������

�
��
�
������

�
� �

p
detA �

�

����
p
�
 ��

�

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expec-
tations:

fX��X�
�x�� x�� �

�


�����
p
�
 ��

exp

�

 �


��
 ���



�x� 
 ���

�

���

 
��x�
 ����x� 
 ���

����
�

�x� 
 ���
�

���

�
�

11.10 MGF of jointly normal random variables

Let u � �u�� u�� � � � � un�
T denote a column vector with components in IR, and let X have a

multivariate normal distribution with covariance matrix A�� and mean vector �. Then the moment
generating function is given by

IEeu
T �X �

Z �

��
� � �

Z �

��
eu

T �XfX�� X�� � � � � Xn
�x�� x�� � � � � xn� dx� � � � dxn

� exp
n
�
�u

TA��u� u
T
�

o
�

If any n random variables X�� X�� � � � � Xn have this moment generating function, then they are
jointly normal, and we can read out the means and covariances. The random variables are jointly
normal and independent if and only if for any real column vector u � �u�� � � � � un�T

IEeu
T �X �

� IE exp

��
�

nX
j��

ujXj

��
� � exp

��
�

nX
j��

����
�
ju

�
j � uj�j 	

��
� �


