Chapter 1

Introduction to Probability Theory

1.1 TheBinomial Asset Pricing Model

The binomial asset pricing model provides a powerful tool to understand arbitrage pricing theory
and probability theory. In this course, we shall useit for both these purposes.

In the binomial asset pricing model, we model stock prices in discrete time, assuming that at each
step, the stock price will change to one of two possible values. Let us begin with an initial positive
stock price Sy. There are two positive numbers, d and «, with

0<d<u, 1.D

such that at the next period, the stock price will be either d.5q or u.Sy. Typicaly, we take d and «
tosatisfy 0 < d < 1 < u, so change of the stock price from .S, to d.S, represents a downward
movement, and change of the stock price from Sy to .5y represents an upward movement. It is
common to also have d = 1, and this will be the case in many of our examples. However, strictly
speaking, for what we are about to do we heed to assume only (1.1) and (1.2) below.

Of course, stock price movements are much more complicated than indicated by the binomial asset
pricing model. We consider this simple model for three reasons. First of all, within this model the
concept of arbitrage pricing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because with a sufficient number of steps, it provides a good, compu-
tationally tractable approximation to continuous-time models. Thirdly, within the binomial model

we can develop the theory of conditional expectations and martingales which lies at the heart of
continuous-time models.

With this third motivation in mind, we develop notation for the binomial model which is a bit
different from that normally found in practice. Let usimagine that we are tossing a coin, and when
we get a “Head,” the stock price moves up, but when we get a“Tail,” the price moves down. We
denotethe priceat time 1 by .S; (H) = u.S, if thetossresultsin head (H), and by S; (7') = dSy if it
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Figure 1.1: Binomial tree of stock priceswith Sy = 4, v = 1/d = 2.

resultsintail (T). After the second toss, the price will be one of:

SQ(HH) = uSl(H) = UQSO7 SQ(HT) = dSl(H) = duS(),

52 (TH) = u51 (T) = udS(), 52 (TT) = dSl (T) = dQSo.

After threetosses, there are eight possi ble coin sequences, although not all of them result in different
stock prices at time 3.

For the moment, let us assume that the third tossis the last one and denote by
Q={HHH,HHT,HTH, HTT,THH,THT,TTH,TTT}

the set of all possible outcomes of the three tosses. The set €2 of all possible outcomes of a ran-
dom experiment is called the sample space for the experiment, and the elements w of 2 are caled
sample points. In this case, each sample point w is a sequence of length three. We denote the &-th
component of w by wy.. For example, whenw = HTH,wehavew; = H,wy =T andws = H.

The stock price Sy, at time k depends on the coin tosses. To emphasize this, we often write S (w).
Actualy, this notation does not quite tell the whole story, for while S 3 depends on al of w, S
depends on only the first two components of w, .S; depends on only the first component of w, and
So doesnot depend onw at all. Sometimeswe will use notation such .Sz (wy , we) just to record more
explicitly how S; dependsonw = (wq, w2, ws).

Example 1.1 Set Sy = 4, w = 2 and d = . We have then the binomial “tree” of possible stock
prices shown in Fig. 1.1. Each sample point w = (w1, ws, ws) represents a path through the tree.
Thus, we can think of the sample space €2 as either the set of all possible outcomes from three coin
tosses or asthe set of all possible paths through the tree.

To complete our binomial asset pricing model, we introduce a money market with interest rate r;
$1 invested in the money market becomes $(1 + r) in the next period. We take r to be the interest
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rate for both borrowing and lending. (Thisis not as ridiculous asit first seems, because in a many
applications of the model, an agent is either borrowing or lending (not both) and knowsin advance
which she will be doing; in such an application, she should take r to be the rate of interest for her
activity.) We assume that

d<1l+4r<u. 1.2

The model would not make senseif we did not have this condition. For example, if 1+ r > u, then
the rate of return on the money market is always at |east as great as and sometimes greater than the
return on the stock, and no one would invest in the stock. The inequality d > 1 + r cannot happen
unlesseither r is negative (which never happens, except maybe once upon atimein Switzerland) or
d > 1. Inthe latter case, the stock does not really go “down” if we get a tail; it just goes up less
than if we had gotten a head. One should borrow money at interest rate » and invest in the stock,
since even in the worst case, the stock pricerises at least as fast as the debt used to buy it.

With the stock as the underlying asset, let us consider a European call option with strike price
K > 0 and expiration time 1. This option confers theright to buy the stock at time 1 for K dollars,
andsoisworth S, — K attime1if S; — K ispositive and is otherwise worth zero. We denote by

Vi(w) = (S1(w) — K)T 2 max{S;(w) - K,0}

the value (payoff) of this option at expiration. Of course, V;(w) actually depends only on w,, and
we can and do sometimes write V; (w ) rather than V3 (w). Our first task isto compute the arbitrage
price of thisoption at time zero.

Suppose at time zero you sell the call for V; dollars, where V; is still to be determined. You now
have an obligation to pay off (uSo — K)* if w; = H andto pay off (dSo — K)T if w; = T. At
the time you sell the option, you don’t yet know which value w; will take. You hedge your short
positionin the option by buying A o shares of stock, where A isstill to be determined. You can use
the proceeds V; of the sale of the option for this purpose, and then borrow if necessary at interest
rate r to complete the purchase. If V; is more than necessary to buy the A, shares of stock, you
invest theresidual money at interest rate r. In either case, youwill have Vi, — Ay.Sy dollarsinvested
in the money market, where this quantity might be negative. You will also own A, shares of stock.

If the stock goes up, the value of your portfolio (excluding the short positionin the option) is
AoSi(H) + (1+7)(Vo — AoSo),
and you need to have V; (H ). Thus, you want to choose V, and A so that
Vi(H) = AoS1(H) + (1+7)(Vo — ApSo). (1.3
If the stock goes down, the value of your portfoliois
AgS1(T) + (14 7r) (Vo — AoSo),
and you need to have V(7). Thus, you want to choose V;; and A to also have

V1 (T) = A()Sl (T) + (1 + T‘) (Vo - Aoso). (14)
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These are two eguationsin two unknowns, and we solve them below
Subtracting (1.4) from (1.3), we obtain

Vi(H) = Vi(T) = Ao(S1(H) — 51(1)), (1.5

S0 that

_W#H) - W)

Bo = Sy(H) = S((T)

(1.6)

Thisis a discrete-time version of the famous “ delta-hedging” formula for derivative securities, ac-
cording to which the number of shares of an underlying asset a hedge should hold is the derivative
(in the sense of calculus) of the value of the derivative security with respect to the price of the
underlying asset. Thisformulais so pervasive the when a practitioner says “delta’, she means the
derivative (in the sense of calculus) just described. Note, however, that my definition of A isthe
number of shares of stock one holds at time zero, and (1.6) is a consequence of this definition, not
the definition of Ay itself. Depending on how uncertainty enters the model, there can be cases
in which the number of shares of stock a hedge should hold is not the (calculus) derivative of the
derivative security with respect to the price of the underlying asset.

To complete the solution of (1.3) and (1.4), we substitute (1.6) into either (1.3) or (1.4) and solve
for V. After some simplification, thisleads to the formula

1 [14+r—-d w—(1+7r)

Vozl—l—r uw—d Vi(H) + uw—d

Vi(T)|. (1.7

Thisis the arbitrage price for the European call option with payoff V', at time 1. To simplify this
formula, we define

alttr—d Lau-(+r) _, o (18)
u—d u—d
so that (1.7) becomes
I N
Vo = Ty [BVi(H) + gVi(T)]. (1.9)

Because we have taken d < u, both p and ¢ are defined,i.e., the denominator in (1.8) is not zero.
Because of (1.2), both p and ¢ are in the interval (0, 1), and because they sum to 1, we can regard
them as probabilities of H and T', respectively. They are the risk-neutral probabilites. They ap-
peared when we solved the two equations (1.3) and (1.4), and have nothing to do with the actual
probabilitiesof getting H or T' on the coin tosses. In fact, at this point, they are nothing more than
a convenient tool for writing (1.7) as (1.9).

We now consider a European call which pays off K dollarsat time 2. At expiration, the payoff of
thisoptionis V5 E (S2 — K)*, where V, and .S, depend on w; and ws, the first and second coin
tosses. We want to determine the arbitrage price for thisoption at time zero. Suppose an agent sells
the option at time zero for V4, dollars, where V4 is till to be determined. She then buys A shares
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of stock, investing Vo — AgSy dollarsin the money market to finance this. At time 1, the agent has
aportfolio (excluding the short position in the option) valued at

X1 é A()Sl + (1 + T‘) (VO - Aoso). (110)

Although we do not indicate it in the notation, .Sy and therefore X; depend on w1, the outcome of
thefirst coin toss. Thus, there are really two equationsimplicitin (1.10):

12

X1(H)
X4(T)

AgSy (H) + (1 + T‘) (VO - A050)7
AoS1(T) + (14 ) (Vo — AoSo).

12

After thefirst coin toss, the agent has X'; dollarsand can readjust her hedge. Suppose she decidesto
now hold A shares of stock, where A isallowed to depend on w; because the agent knows what
value w; hastaken. She investsthe remainder of her wedlth, X; — A5, inthe money market. In
the next period, her wealth will be given by the right-hand side of the following equation, and she
wantsit to be V5. Therefore, she wantsto have

V2 IA152—|—(1—|—T‘)(X1 —Alsl). (111)

Although we do not indicate it in the notation, .S'; and V5 depend on w; and w,, the outcomes of the
first two coin tosses. Considering al four possible outcomes, we can write (1.11) as four equations:

Vo(HH) = A((H)S:(HH)+ (14 r)(Xa(H) — A (H)S1(H)),
Vo (HT) AL(H)S:(HT) + (1 +r)(Xa(H) — A (H)S1(H)),
Vo(TH) A (TYS2(TH) + (14 r) (X1 (T) — A(T)51(T)),
Vo(TT) = A(T)S2(TT) + (14 r)(Xo(T) = AL (T)S1(T)).

We now have six equations, the two represented by (1.10) and the four represented by (1.11), inthe
six unknowns Vo, Ag, Ay (H), Ay(T), Xq(H),and X1 (7).

To solve these equations, and thereby determine the arbitrage price V;, at time zero of the optionand
the hedging portfolio A, Ay (H) and Ay (T’), we begin with the last two

Vo(TH) = A(T)S:(TH) + (1+ r)(Xi(T) — A(T)5:(T)),
Vo(TT) = A(T)So(TT) 4+ (1 4+ r)(Xo(T) = A (T)S1(T)).

Subtracting one of these from the other and solving for A;(7’), we obtain the “ delta-hedging for-
mula’

A(T) = (1.12)

and substituting thisinto either equation, we can solve for

X (T) = H%@VQ(TH) +qVa(TTY]. (1.13)
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Equation (1.13), gives the value the hedging portfolio should have at time 1 if the stock goes down
between times 0 and 1. We define this quantity to be the arbitrage value of the option at time 1 if
wyp = T', and we denoteit by V(7). We have just shown that

.. .
Vi(T) 2 T VAT H) + V(1)) (1.14)
The hedger should choose her portfolio so that her wealth X (7') if wy = T agrees with Vy(T')
defined by (1.14). Thisformulais analgousto formula (1.9), but postponed by one step. The first
two equationsimplicitin (1.11) lead in a similar way to the formulas

Ay(H) = (1.15)
and Xy (H) = Vi(H),where Vi (H) isthevalue of theoptionat time 1 if w; = H, defined by
1
Vi(H) 2 T V2 H) + GV (HT)). (1.16)

Thisisagain analgousto formula(1.9), postponed by one step. Finally, weplugthevalues X', (H ) =
Vi(H) and X;(T) = V4 (T') into the two equationsimplicit in (1.10). The solution of these equa-
tions for Ay and Vj is the same as the solution of (1.3) and (1.4), and results again in (1.6) and
(1.9).

The pattern emerging here persists, regardless of the number of periods. If V;, denotesthe value at

time & of a derivative security, and this depends on the first & coin tosseswy, . . ., wg, then a time
k — 1, after thefirst & — 1 tosseswy, ..., wi_1 are known, the portfolio to hedge a short position
should hold A1 (w1, . . .,wk—1) sharesof stock, where

Vk(wh .. .7Wk_17H) — Vk(wh .. .7Wk_17T)
Sk(wiy . ywp—1, H) = Sp(wr, .., wp—1, 1)

Ak_l(wh .. .7Wk_1) = (117)

and the value at time £ — 1 of the derivative security, when thefirst £ — 1 coin tosses result in the
outcomeswy, . . ., wk_1, isgiven by

1 N N
Vici(wiy ooy wim1) = ——PVi(wr, oy wpm, H) + V(w1 - wimr, 1))

T+r (1.18)
1.2 Finite Probability Spaces
Let 2 be a set with finitely many elements. An example to keep inmindis
Q={HHH,HHT,HTH, HTT,THH,THT,TTH,TTT} (2.1)

of all possible outcomes of three coin tosses. Let F be the set of all subsets of 2. Some setsin 7
ae(), {HHH, HHT,HTH,HTT}, {TTT}, and Q itself. How many sets are therein 7 ?
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Definition 1.1 A probability measure /P is a function mapping F into [0, 1] with the following
properties:

(i) P(Q) =1,

(i) If Ay, A, ... isasequence of digoint setsin F, then
P (U Ak) = P(Ay).
k=1 k=1

Probability measures have the following interpretation. Let A be a subset of 7. Imagine that 2 is
the set of all possible outcomes of some random experiment. There isa certain probability, between
0 and 1, that when that experiment is performed, the outcome will lie in the set A. We think of
IP(A) asthisprobability.

Example 1.2 Suppose a coin has probability 1 for # and 2 for 7. For the individual elements of
2in(2.1), define

P{HHH} = %)3, P{HHTY = (%)2@)
plarmy = (1) (2). pTry = (3 (3)
P{THHEY = (1) (1), P{rHTY = (1) (2)°
P{TTHY = (1) (%)2 P{TTT} = (%)3

For A € F, wedefine
P(A) = > IP{w}. (2.2)

For example,

P{HHH,HHT,HTH,HTT} = (%)3 +2 (%)2 (;) - (%) (;)2 = %

which is another way of saying that the probability of /7 on thefirst tossis 2.

Asinthe above example, it isgenerally the case that we specify a probability measure on only some
of the subsets of €2 and then use property (ii) of Definition 1.1 to determine /P(A) for the remaining
sets A € F. Intheabove example, we specified the probability measure only for the sets containing
asingleelement, and then used Definition 1.1(ii) in theform (2.2) (see Problem 1.4(ii)) to determine
IP for al the other setsin F.

Definition 1.2 Let 2 be a nonempty set. A o-algebrais a collection G of subsets of ©2 with the
following three properties:

(i) 0 eg,
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(i) If A € G, thenitscomplement A € G,
(iii) If Ay, Ay, As, ... isasequenceof setsin G, then U | A, isasoing.

Here are some important o-algebras of subsetsof the set 2 in Example 1.2

Fo = {®79}7

T o= {@7 Q{HHH HHT,HTH,HTT},{THH, THT,TTH, TTT}},
Fy = {(Z), Q{HHH HHTY},{HTH, HTT}, {THH,THT},{TTH,TTT},

and all setswhich can be built by taking unions of these},
F3 = JF = Theset of al subsetsof 2.

To simplify notation a bit, let us define

Ay 2 {HHH,HHT,HTH, HTT} = {H onthefirst toss},
Ar 2 {THH,THT,TTH,TTT} = {T onthefirst toss},

so that
‘7:1 = {®7 Qv AH7 AT}7

and let us define
App 2 {HHH, HHT} = {HH on thefirst two tosses},
Apr 2 {HTH,HTT} = {HT onthefirst two tosses},
Arg 2 {THH,THT} = {TH on thefirst two tosses},
Arr 2 {TTH,TTT} = {TT on thefirst two tosses},

so that

Fo = {0, Apn, Aur, Are, Arr,
A, AT, Arr U At A U Arr, Aar U Are, At U AT,

c c c c
AHH7 AHT7 ATH7 ATT}‘

We interpret o-algebras as arecord of information. Suppose the coin istossed three times, and you
are not told the outcome, but you are told, for every set in 7, whether or not the outcome isin that
set. For example, you would be told that the outcomeisnot in ) and isin 2. Moreover, you might
be told that the outcomeisnot in Az butisin Ar. In effect, you have been told that the first toss
was a T, and nothing more. The o-algebra ; is said to contain the “information of the first toss”,
which is usually called the “information up to time 1”. Similarly, F, contains the “information of
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the first two tosses,” which isthe “information up to time 2.” The o-algebra 73 = F contains “full
information” about the outcome of al three tosses. The so-called “trivial” o-algebra F, containsno
information. Knowing whether the outcome w of the three tossesisin @ (it is not) and whether it is
in € (itis) tellsyou nothing about w

Definition 1.3 Let ©2 beanonempty finiteset. A filtrationisasequence of o-algebras 7y, F1, 7o, . . .

such that each o-algebrain the sequence contains all the sets contained by the previous o-algebra.

Definition 1.4 Let © be a nonempty finite set and let 7 be the o-algebra of all subsets of 2. A
random variable is afunction mapping €2 into IR.

Example 1.3 Let ©2 be given by (2.1) and consider the binomial asset pricing Example 1.1, where
So =4, v =2andd = % Then Sy, S1, Sy and S5 are al random variables. For example,
So(HHT) = u?Sy = 16. The “random variable” Sy isrealy not random, since So(w) = 4 for al
w € €. Nonetheless, it is a function mapping €2 into IR, and thus technically a random variable,

albeit a degenerate one.

A random variable maps €2 into IR, and we can look at the preimage under the random variable of
setsin IR. Consider, for example, the random variable S; of Example 1.1. We have

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy (THT) = 4,
So(TTH) = Sy(TTT) = 1.

Let us consider the interval [4, 27]. The preimage under .S, of thisinterval is defined to be
{w € Qi Sylw) € [4,27]) = {w € V4 < Sy < 27} = Afy.
The complete list of subsets of €2 we can get as preimages of setsin IR is:
0,9, Agn, AuT U Arh, AT,

and sets which can be built by taking unions of these. This collection of setsis a o-algebra, called
the o-algebra generated by the random variable S, and is denoted by o(.S;). The information
content of this o-algebra is exactly the information learned by observing .S;. More specifically,
suppose the coin is tossed three times and you do not know the outcome w, but someone iswilling
to tell you, for each set in o(.S3), whether w isin the set. You might be told, for example, that w is
notin Az, isin Agr U Argr, andisnotin Arr. Thenyou know that in the first two tosses, there
was a head and a tail, and you know nothing more. Thisinformation is the same you would have
gotten by being told that the value of S (w) is4.

Note that F; defined earlier contains all the sets which are in o (.55), and even more. This means
that theinformation in the first two tossesis greater than the informationin S,. In particular, if you
see the first two tosses, you can distinguish A 77 from Az, but you cannot make this distinction
from knowing the value of S, alone.
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Definition 1.5 Let €2 be a nonemtpy finite set and let 7 be the o-algebra of all subsetsof 2. Let X
bearandom variableon (€2, 7). The o-algebra o (X ) generated by X isdefined to be the collection
of all setsof theform {w € Q; X (w) € A}, where A isasubset of IR. Let G be a sub-o-algebra of
F. Wesay that X isG-measurableif every setino(X) isalsoing.

Note: We normally write simply { X € A} rather than {w € Q; X (w) € A}.

Definition 1.6 Let 2 be anonempty, finite set, let 7 be the o-algebra of all subsets of €2, let IP be
a probabilty measure on (€2, F), and let X be arandom variable on 2. Givenany set A C IR, we
define the induced measure of A to be

Lx(A) 2 P{X € A}.

In other words, the induced measure of aset A tells usthe probability that X takesavaluein A. In
the case of .S, above with the probability measure of Example 1.2, some setsin /R and their induced
measures are:

£6,[0,3] = P{S, = 1} = P(Agr) = (;)2

2
In fact, the induced measure of Sy places amass of size (%) = L at the number 16, amass of size

-9
2
2 at the number 4, and a mass of size (%) = £ at the number 1. A common way to record this

information is to give the cumulative distribution function /s, (z) of .S;, defined by

[

Fs,(z) = IP(S; <) =

if x <1,
if 1 <a<4,

if4 <z < 16, (2:3)

— OOk O

if 16 < z.

By the distribution of a random variable X, we mean any of the several ways of characterizing
Lx. If X isdiscrete, asin the case of S, above, we can either tell where the masses are and how
large they are, or tell what the cumulative distribution function is. (Later we will consider random
variables X which have densities, in which case the induced measure of aset A C IR istheintegral
of the density over theset A.)

Important Note. In order to work through the concept of a risk-neutral measure, we set up the
definitionsto make a clear distinction between random variables and their distributions.

A random variable is a mapping from €2 to /R, nothing more. It has an existence quite apart from
discussion of probabilities. For example, in the discussion above, S, (1TTH) = So(TTT) = 1,
regardless of whether the probability for H is  or 1.
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The distribution of arandom variableisameasure £ x on IR, i.e., away of assigning probabilities
tosetsin IR. It dependson the random variable X and the probability measure IP weusein 2. If we
set the probability of H to be % then L5, assignsmass % to the number 16. If we set the probability
of H tobe % then L, assigns mass i to the number 16. The distribution of .5, has changed, but
the random variable has not. It is still defined by

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy (THT) = 4,
So(TTH) = Sy(TTT) = 1.

Thus, arandom variable can have more than one distribution (a“ market” or “ objective” distribution,
and a“risk-neutral” distribution).

In a similar vein, two different random variables can have the same distribution. Suppose in the
binomia model of Example 1.1, the probability of A and the probability of T is % Consider a
European call with strike price 14 expiring at time 2. The payoff of the call at time 2 isthe random
variable (Sz — 14)T, which takesthevalue2 if w = HH H orw = H HT, and takesthevalue 0 in
every other case. Theprobability the payoff is2 is 1, and the probability itiszerois 2. Consider also
a European put with strike price 3 expiring at time 2. The payoff of the put at time 2 is (3 — S2) T,
which takesthevalue 2 if w = TTH or w = TTT. Likethe payoff of the call, the payoff of the
put is 2 with probability  and 0 with probability 2. The payoffs of the call and the put are different
random variables having the same distribution.

Definition 1.7 Let 2 be a nonempty, finite set, let F be the o-algebra of all subsets of €2, let IP be
aprobabilty measure on (€2, F), and let X be arandom variable on 2. The expected value of X is
defined to be

EX2Y X(w)P{w). (2.4)
wEeN

Notice that the expected valuein (2.4) is defined to be a sum over the sample space 2. Since2 isa
finite set, X can take only finitely many values, whichwelabdl z1, ..., z,,. We can partition €2 into
thesubsets { X'y = =1 },...,{X, = z, }, and then rewrite (2.4) as
EX 2 Y X(w)P{w)
wefl

= Zn: Z X (w)IP{w}

k=1 wE{Xk:l’k}

= Zn:xk Z P{w}

k=1 WE{Xk:xk}

= Z eplP{ Xy = 21}
k=1

= Z eplx{xr}.
k=1
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Thus, although the expected value is defined as a sum over the sample space €2, we can also write it
asasumover IR.

To make the above set of equations absolutely clear, we consider .S, with the distribution given by
(2.3). The definition of IF/.5; is

IESy; = So(HHH)IP{HHH}+ So(HHT)IP{HHT}
+So(HTHYIP{HTH} + So(HTT)IP{HTT}
+So(THH)YIP{THH} + So(THT)IP{THT}
+So(TTHYIP{TTH} 4 Sy (TTT)IP{TTT}

= 16 -P(Agg)+4 - P(Agr U Arm) + 1- IP(A7T)
= 16-IP{Sy =16} +4-IP{So =4} +1-IP{Sy =1}
= 16-Lg,{16}+4- Lo, {4} +1-Ls, {1}

= 16 1+4 4+4 4
- 9 9 9
48
= 5

Definition 1.8 Let ©2 be anonempty, finite set, let 7 bethe o-algebraof all subsetsof €2, let IP bea
probabilty measure on (€2, ), and let X be arandom variable on €2. The variance of X is defined
to be the expected value of (X — IFX)?,i.e
Var(X) 2 3 (X (w) - EX)*P{w). (2.5)
wEeN

One again, we can rewrite (2.5) as asum over IR rather than over 2. Indeed, if X takesthe values
Z1,..., Ty, then

= (vp — EX)P{X = a3} = (wr — EX) Ly (1),
k=1 k=1

1.3 Lebesgue Measureand the L ebesgue I ntegral

In this section, we consider the set of real numbers IR, which isuncountably infinite. We define the
Lebesgue measure of intervalsin IR to be their length. Thisdefinition and the properties of measure
determine the L ebesgue measure of many, but not all, subsets of IR. The collection of subsets of
IR we consider, and for which Lebesgue measure is defined, is the collection of Borel sets defined
below.

We use Lebesgue measure to construct the Lebesgue integral, a generalization of the Riemann
integral. We need thisintegral because, unlike the Riemann integral, it can be defined on abstract
gpaces, such as the space of infinite sequences of coin tosses or the space of paths of Brownian
motion. This section concerns the Lebesgue integral on the space IR only; the generalization to
other spaces will be given later.
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Definition 1.9 The Borel o-algebra, denoted 5(IR), is the smallest o-algebra containing all open
intervalsin IR. Thesetsin B(IR) are called Borel sets.

Every set which can be written down and just about every set imaginableisin B(IR). Thefollowing
discussion of thisfact uses the o-algebra properties developed in Problem 1.3.

By definition, every openinterval (a, b) isin B(IR), where a and b are real numbers. Since B(IR) is
ac-agebra, every union of open intervalsisalso in B(IR). For example, for every real number «,
the open half-line

(a,a+ n)

(av OO) =

(G

Il
—

n

isaBorel set, asis

(G

(—o0,a) = (a —n,a).

n=1

For real numbers a and &, the union
(=00, a) U (b, 00)

isBorel. Since B(IR) isa c-agebra, every complement of a Borel setisBorel, so B(IR) contains

[, 6] = ((=00,a) U (b)) .

This showsthat every closed interval isBorel. In addition, the closed half-lines

[a,00) = G[a,a—l—n]

n=1

and

o0

(—o0,a] = U [a —n,a]

n=1
are Borel. Half-open and half-closed intervals are also Borel, since they can be written as intersec-
tions of open half-lines and closed half-lines. For example,

(a,b] = (—o0,b] N (a,0).

Every set which containsonly one real number isBorel. Indeed, if « isarea number, then
Py 1 1
{a} _nol (a— g,a—l— ;) .

This means that every set containing finitely many real numbersisBorel; if A = {ay,as,...,a,},
then

A= O {ar}.
k=1
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In fact, every set containing countably infinitely many numbersisBorel; if A = {ay,as,...}, then

A= O {ar}.

k=1
This means that the set of rational numbers is Borel, as is its complement, the set of irrational
numbers.

There are, however, sets which are not Borel. We have just seen that any non-Borel set must have
uncountably many points.

Example 1.4 (The Cantor set.) This example gives a hint of how complicated a Borel set can be.
We use it later when we discuss the sample space for an infinite sequence of coin tosses.

Consider the unit interval [0, 1], and remove the middle half, i.e., remove the open interval

AléG,%).
41

1 3
e oo e
has two pieces. Fromeach of these pieces, remove the middle half, i.e., remove the open set
A1l 3 13 15
Ay = | —, — i
? (16’ 16) U (16’ 16)
1 31 3 13 15
i = o5 U 553U 535 Ul
has four pieces. Continue this process, so at stage k, the set C';, has 2% pieces, and each piece has
length . The Cantor set

The remaining set

The remaining set

c2 Ny
k=1

is defined to be the set of points not removed at any stage of this nonterminating process.
Note that the length of A, the first set removed, is % The “length” of A, the second set removed,
ist + & = . The“length” of the next set removed is4 - &> = 1, and in general, the length of the
k-th set removed is 2. Thus, the total length removed is

IE

k=1 Qk 7
and so the Cantor set, the set of points not removed, has zero “ length”

Despitethe fact that the Cantor set hasno “ length,” there are lotsof pointsinthis set. In particular,
none of the endpoints of the pieces of the setsC'y, C, . . . isever removed. Thus, the points

13 1 3 1315 1
0 1, —, —, = = —

are all in C'. Thisisa countably infinite set of points. We shall see eventually that the Cantor set
has uncountably many points. o
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Definition 1.10 Let B(/R) bethe o-algebra of Borel subsetsof IR. A measureon (IR, B(IR)) isa
function ¢ mapping 5 into [0, oo] with the following properties:

(i) u(®) =0,
(i) If Ay, Ay, ... isasequence of digoint setsin B(IR), then

I (U Ak) = n(Ap).
k=1 k=1
Lebesgue measure is defined to be the measure on (IR, B(IR)) which assigns the measure of each

interval to beitslength. Following Williams' s book, we denote L ebesgue measure by 4i¢.

A measure has all the properties of a probability measure given in Problem 1.4, except that the total
measure of the space is not necessarily 1 (in fact, 1o (/R) = o), one no longer has the equation

p(AD) = 1 = u(A)
in Problem 1.4(iii), and property (v) in Problem 1.4 needs to be modified to say:
(v) If A1, Aq, ... isasequenceof setsin B(IR) with A1 O A3 D --- and u(A;1) < oo, then
0 (ﬁ Ak) = lim p(4y).
k=1
To see that the additional requirment ;.(A;) < oo isneeded in (v), consider
Ay =[1,00), A2 = [2,00), A3 = [3,0), . ...

Then N2, Ar = 0, 0 po (N5, Ag) = 0, but lim,, o, po(4,) = oo.

We specify that the L ebesgue measure of each interval isitslength, and that determinesthe L ebesgue
measure of all other Borel sets. For example, the Lebesgue measure of the Cantor set in Example
1.4 must be zero, because of the “length” computation given at the end of that example.

The Lebesgue measure of a set containing only one point must be zero. In fact, since
1 1
C i _
oy € (o= poa+ )
for every positiveinteger n, we must have
1 1 2
0 < po{a} < po (a— —7a—l-—) =—.
n n n

Letting n — oo, we obtain
pofay = 0.
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The Lebesgue measure of a set containing countably many points must also be zero. Indeed, if
A= {al, ag, .. .}, then

po(A) = i pofar} = i 0=0.
k=1 k=1

The L ebesgue measure of a set containing uncountably many points can be either zero, positiveand
finite, or infinite. We may not compute the L ebesgue measure of an uncountable set by adding up
the Lebesgue measure of its individual members, because there is no way to add up uncountably
many numbers. Theintegral wasinvented to get around this problem.

In order to think about L ebesgue integrals, we must first consider the functionsto be integrated.

Definition 1.11 Let f be afunction from IR to IR. We say that f is Borel-measurable if the set
{z € IR; f(z) € A} isin B(IR) whenever A € B(IR). In the language of Section 2, we want the
o-algebragenerated by f to be contained in B(IR).

Definition 3.4 is purely technical and has nothing to do with keeping track of information. It is
difficult to conceive of a function which is not Borel-measurable, and we shall pretend such func-
tions don't exist. Hencefore, “function mapping IR to /R” will mean “Borel-measurable function
mapping IR to IR” and “subset of IR” will mean “Borel subset of IR”.

Definition 1.12 Anindicator function ¢ from IR to IR is a function which takes only the values 0
and 1. We call
AZ{ze Rig(r) =1}

the set indicated by g. We define the Lebesgue integral of ¢ to be
/ gdiio = o A).
R
A simplefunction & from IR to IR isalinear combination of indicators, i.e., a function of the form
h(z) = Z ckgr(x),
k=1
where each gy, is of theform
(x)_ 1, ifz e Ag,
IKEI=N 0, ifx ¢ Ay,
and each ¢, isarea number. We define the Lebesgue integral of & to be

/ h dpo 2 Z Ck/ grdpo = Z cro(Ar)-
R k=1 R k=1

Let f be a nonnegative function defined on IR, possibly taking the value oo a some points. We
define the Lebesgue integral of f to be

/ fdupo 2 sup{/ hdpo; hissimpleand h(z) < f(x) for every z € B}.
R R
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It is possiblethat thisintegral isinfinite. If it isfinite, we say that f isintegrable.

Finally, let f be afunction defined on IR, possibly taking the value oo at some pointsand the value
—oo at other points. We define the positive and negative partsof f to be

FH(z) & max{f(z),0}, f~(x) 2 max{—f(x),0},
respectively, and we define the Lebesgue integral of f to be

| Fduo2 [ 1t dpo == [ 5 do

provided the right-hand sideis not of the form oo — co. If both [, fT du and [, £~ duo are finite
(or equivalently, [ | f| duo < oo, since|f| = fT + f~), wesay that f isintegrable.

Let f beafunction defined on IR, possibly taking the value oo at some pointsand the value —oco at
other points. Let A be a subset of IR. We define

/Nmé/hﬂm
A R

IA(x)é{ 1, ifz e A,

where

0, ifad A,

istheindicator function of A.

The Lebesgue integral just defined isrelated to the Riemann integral in one very important way: if
the Riemann integral fab f(z)dx is defined, then the Lebesgue integral f[mb] f duo agrees with the
Riemann integral. The Lebesgueintegral has two important advantages over the Riemann integral.
Thefirst is that the Lebesgue integral is defined for more functions, as we show in the following
examples.

Example 1.5 Let () bethe set of rational numbersin [0, 1], and consider f = I4. Being acountable
set, () has Lebesgue measure zero, and so the Lebesgue integral of f over [0, 1]is

| =0,

[0.1]

To compute the Riemann integral fol f(z)dx, we choose partition points0 = z¢ < z1 < -++ <
z, = 1 and divide the interval [0, 1] into subintervals [z ¢, z1], [z1, 2], ..., [®n—1,2,]. INn each

subinterval [z;_1, 2] thereisarationa point g, where f(g;) = 1, and thereis also an irrational
point r, where f(r) = 0. We approximate the Riemann integral from above by the upper sum

n

> flar)(er — wpmy) =

=1

M=

1 (a2 — 2p—1) =1,

o
o
Il

—

and we a so approximate it from below by the lower sum

NE
=

fr)(@e —2p—1) = ) 0 (zx — 2p—1) = 0.

o
Il
—
o
Il
—
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No matter how fine we take the partition of [0, 1], the upper sum is aways 1 and the lower sum is
aways 0. Since these two do not converge to a common value as the partition becomes finer, the
Riemann integral is not defined. o

Example 1.6 Consider the function

A | oo, ifx=0,
f(x):{ 0, ifa0.

This is not a simple function because simple function cannot take the value co. Every simple
function which lies between 0 and f is of the form

Ay, ifz=0,
h(x)—{ 0, ifz#£0,

for somey € [0, o), and thus has L ebesgue integral
/ hdpo = ypo{0} = 0.
R
It follows that

/ fdug = sup{/ hdpo; hissmpleand h(z) < f(z) forevery z € B} =0.
R R

Now consider the Riemann integral [~ f(x) d«, which for this function f is the same as the
Riemannintegral f_ll f(z) dz. Whenwe partition[—1, 1] into subintervals, one of thesewill contain

the point 0, and when we compute the upper approximating sum for f_ll f(z) dz, this point will
contribute oo times the length of the subinterval containingit. Thusthe upper approximating sumis
oo. On the other hand, the lower approximating sum is 0, and again the Riemann integral does not
exist. o

The Lebesgueintegral has al linearity and comparison properties one would expect of an integral.
In particular, for any two functions f and ¢ and any real constant c,

/R(f-l-g) dpio /deuo + /Bgaluo7
[ efdu = e[ ru

and whenever f(z) < g(z) for al z € IR, we have

[ fduo< [ gdduo.
R R
Finaly, if A and B are digoint sets, then

| sam= [ rduot [ fdu.
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There are three convergence theorems satisfied by the Lebesgue integral. In each of these the sit-
uation is that there is a sequence of functions f,,, » = 1,2, ... converging pointwise to a limiting
function f. Pointwise convergence just means that

1i_>m fo(z) = f(z) for every z € IR.
There are no such theorems for the Riemann integral, because the Riemann integral of the limit-
ing function f istoo often not defined. Before we state the theorems, we given two examples of
pointwise convergence which arise in probability theory.

Example 1.7 Consider a sequence of normal densities, each with variance 1 and the n-th having

mean n:
1 2—n)>

A _
fule) = N

These converge pointwiseto the function
f(z) =0forevery z € IR.
We have [, foduo = 1 forevery n, s0lim, oo [ fadpo =1, but [ fdpe = 0. o

Example 1.8 Consider a sequence of normal densities, each with mean 0 and the n-th having vari-
ance 1:

2

fulz) = 5. €

These converge pointwiseto the function
A ) oo, ifz=0,
f(x)_{(x if 2 £ 0.

We have again [, f.duo = 1 for every n, solim, o [ fudpo = 1, but [ fdpo = 0. The
function f isnot the Dirac delta; the Lebesgueintegral of thisfunction wasalready seenin Example
1.6 to be zero. o

Theorem 3.1 (Fatou'sLemma) Let f,,,» = 1,2, ... be a sequence of honnegative functions con-
verging pointwiseto a function f. Then

/ fdug < lim inf/ fndio.
R n— 0o R

If lim,— o0 [ fn dito is defined, then Fatou's Lemma has the simpler conclusion

/fduoé lim / Jn dpo.
R n—00 R

Thisisthe casein Examples 1.7 and 1.8, where

Jim [ fudio =1,
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while [}, f dpo = 0. We could modify either Example 1.7 or 1.8 by setting ¢,, = f, if n is even,
but g, = 2f, if nisodd. Now [}, g, duo = 1if n iseven, but [, g, dpo = 2 if n isodd. The
sequence { [, g- dpo}. ., has two cluster points, 1 and 2. By definition, the smaller one, 1, is
liminf, e [ 9n dpio and the larger one, 2, islim sup,,_, .. [ g» dpo. Fatou's Lemma guarantees
that even the smaller cluster point will be greater than or equal to theintegral of thelimiting function.

Thekey assumptionin Fatou'sLemmaisthat all the functionstake only nonnegative values. Fatou's
Lemma does not assume much but it isis not very satisfying because it does not conclude that

[ fduwo =t [ . dp.
R n— 0o R
There are two sets of assumptionswhich permit this stronger conclusion.

Theorem 3.2 (Monotone Convergence Theorem) Let f,,n = 1,2, ... be a sequence of functions
converging pointwise to a function f. Assume that

0< fi(z) < falz) < f3(z) < --- forevery z € IR.

Then
[ fduo =t [ dpo
R n—00 R

where both sides are allowed to be oc.

Theorem 3.3 (Dominated Convergence Theorem) Let f,,, n = 1,2, ... bea sequence of functions,
which may take either positive or negative values, converging pointwise to a function f. Assume
that there is a nonnegative integrablefunction g (i.e., [ g duo < o) such that

| frn(2)| < g(z) for every 2 € IR for every n.

Then
[ fduo =t [ dpo
R n—00 R

and both sideswill be finite,

1.4 General Probability Spaces

Definition 1.13 A probability space (2, F, IP) consistsof three objects:

(i) €2, a nonempty set, called the sample space, which contains all possible outcomes of some
random experiment;

(ii) F,ac-algebraof subsetsof €;

(iii) IP, aprobability measureon (2, ), i.e., afunction which assignsto each set A € F anumber
IP(A) € [0, 1], which represents the probability that the outcome of the random experiment
liesinthe set A.
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Remark 1.1 Werecall from Homework Problem 1.4 that a probability measure IP hasthefollowing
properties:

(@ P(0) =0.
(b) (Countable additivity) If Ay, As, ... isasequence of digoint setsin F, then

r(Ua) =3 rew,
k=1 k=1

(c) (Finite additivity) If n isapositiveinteger and A4, ..., A,, are digoint setsin F, then
P(AU---UA,) =P(A)+ -+ P(A,).

(d) If Aand B are setsin 7 and A C B, then
P(B) =IP(A)+ IP(B\ A).

In particular,
P(B) > IP(A).

(d) (Continuity from below.) If Ay, Ao, ... isasequenceof setsin F with A; C A, -+, then

P (fj Ak) = lim PP(A,).

k=1

IN

(d) (Continuity from above.) If Ay, Ao, ... isaseguence of setsin F with Ay O A, D - - -, then

P (ﬁ Ak) = lim PP(A,).

k=1

We have already seen some examples of finite probability spaces. We repeat these and give some
examples of infinite probability spaces aswell.

Example 1.9 Finite coin toss space.

Toss a coin n times, so that €2 is the set of all sequences of H and T" which have » components.
We will use this space quite a bit, and so giveit aname: €2,,. Let F be the collection of all subsets
of €2,,. Suppose the probability of H on each tossis p, a number between zero and one. Then the

probability of T"isq 21— p. Foreschw = (wy,ws, ..., w,) INQ,, wedefine

A umber o now umber o now
P{w} a pN b I H . (]N b T ]
For each A € F, we define
A
P(A) 2 3 Pw). (4.1)

weA

We can define IP(A) thisway because A has only finitely many elements, and so only finitely many
terms appear in the sum on the right-hand side of (4.1). o
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Example 1.10 Infinite coin toss space.

Toss a coin repeatedly without stopping, so that €2 is the set of all nonterminating sequences of H
and 7. We call this space 2.,. Thisisan uncountably infinite space, and we need to exercise some
care in the construction of the o-algebrawe will use here.

For each positive integer n, we define F,, to be the o-algebra determined by the first n tosses. For
example, 7, contains four basic sets,

AHH é {w:(WI7w27w37...);w1:H7w2:H}

= Theset of all sequenceswhich beginwith H H,
AHT é {w:((,Ul7w27w37...);w1:H7w2:T}

= Theset of all sequenceswhich beginwith HT,
ATH é {w:((,Ul7w27w37...);w1:T7w2:H}

= Theset of all sequenceswhich beginwith T H,
ATT é {w:((,Ul7w27w37...);w1:T7w2:T}

The set of all sequences which beginwith 77"
Because F; is a o-algebra, we must also put into it the sets (), €2, and all unions of the four basic
sets.

In the o-algebra 7, we put every set in every o-algebra F,,, where n ranges over the positive
integers. We aso put in every other set which is required to make 7 be a o-algebra. For example,
the set containing the single sequence

{HHHHH ---} ={H onevery toss}

isnot in any of the F,, o-algebras, because it depends on all the components of the sequence and
not just the first n components. However, for each positiveinteger », the set

{H onthefirst n tosses}

isin F, and hencein F. Therefore,

{H onevery toss} = ﬂ {H onthefirst n tosses}

n=1
isalsoin F.

We next construct the probability measure IP on (2., F) which corresponds to probability p €
[0, 1] for H and probability ¢ = 1 — p for T'. Let A € F begiven. If thereis a positive integer n
suchthat A € F,,, thenthe description of A dependson only thefirst » tosses, and itisclear how to
define IP(A). For example, suppose A = A U Arp, where these setswere defined earlier. Then
Alisin Fy. Weset IP(Ap ) = p? and IP(Ary) = gp, and then we have

P(A) :P(AHHUATH) :p2—|—qp: (p—|— q)p:p‘

In other words, the probability of a H on the second tossis p.



CHAPTER 1. Introduction to Probability Theory 33

Let usnow consider aset A € F for which there is no positive integer » suchthat A € F. Such
isthe case for the set { H on every toss}. To determine the probability of these sets, we write them
in terms of setswhich are in F,, for positive integers n, and then use the properties of probability
measures listed in Remark 1.1. For example,

{H onthefirst toss} {H on thefirst two tosses}

{H onthefirst three tosses}

(UANIGANI,

)

and

() {H onthefirst n tosses} = {H on every toss}.

n=1

According to Remark 1.1(d) (continuity from above),
IP{H on every toss} = li_>m IP{H onthefirst n tosses} = nh—r>noo .

If p=1, then IP{ H onevery toss} = 1; otherwise, IP{H on every toss} = 0.

A similar argument showsthat if 0 < p < 1 sothat0 < ¢ < 1, then every setin ., which contains
only one element (nonterminating sequence of H and T') has probability zero, and hence very set
which contains countably many elements also has probabiliy zero. We are in a case very similar to
Lebesgue measure: every point has measure zero, but sets can have positive measure. Of course,
the only sets which can have positive probabilty in €2 ., are those which contain uncountably many
elements.

In the infinite coin toss space, we define a sequence of random variables Yy, s, . .. by

Af 1 ifw,=H,
}Mw_{OiM%:ﬂ

and we a so define the random variable

4w@:§5%§f
k=1

Since each Y}, iseither zero or one, X takesvaluesintheinterval [0, 1]. Indeed, X (7777 ---) = 0,
X(HHHH---) = 1 and the other values of X lie in between. We define a “dyadic rational
number” to be a number of the form 7, where k& and m are integers. For example, % isadyadic
rational. Every dyadic rationa in (0,1) correspondsto two sequencesw € €2, . For example,

3
X(HHTTTTT---) = X(HTHHHHH---) = 7.

The numbersin (0,1) which are not dyadic rationals correspond to asinglew € €2..; these numbers
have a unique binary expansion.
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Whenever we place a probability measure /P on (€2, F), we have a corresponding induced measure
Lx on [0, 1]. For example, if we set p = ¢ = 1 in the construction of thisexample, then we have

[ 1] . . 1
Lx 0,5 :P{Flrstt053|sT}:57
1 . _ 1
Lx |5,1| = P{Firsttossis H} = ,
_— | )
Lx 071 :P{Flrst'[WotossasareTT}:17
11 , )
Lx 175] = IP{Firsttwotossesare TH } = T
:1 3 . 1
Lx 3'2 :P{Flrst'[\Notoss&sareHT}:17
3 | X
Lx Z’l :P{FlrsttwotossasareHH}:Z.

Continuing this process, we can verify that for any positive integers k& and m satisfying

m—1 m
we have
m—-—1 m 1
ox [T g =

In other words, the £ x -measure of al intervalsin [0, 1] whose endpointsare dyadic rationalsisthe
same as the L ebesgue measure of theseintervals. The only way thiscan beisfor £ x to be Lebesgue
measure.

It isinteresing to consider what £ x would look like if we take a value of p other than % when we
construct the probability measure IP on 2.

We conclude this example with another look at the Cantor set of Example 3.2. Let Q,,;.5 be the
subset of © in which every even-numbered tossis the same as the odd-numbered toss immediately
preceding it. For example, H HTTT'T H H isthe beginning of a sequencein §2,,,;,5, but HT isnot.
Consider now the set of real numbers

C/ é {X(w),w € Qpairs}-
The numbers between (1, 1) can be written as X (w), but the sequence w must begin with either
TH or HT. Therefore, none of these numbersisin C’. Similarly, the numbers between (75, =)
can be written as X (w), but the sequence w must begin with 7"I"T'H or TT'HT, so none of these
numbersisin C". Continuing thisprocess, we seethat C” will not contain any of the numbers which
were removed in the construction of the Cantor set C' in Example 3.2. In other words, ¢’ C C.
With a bit more work, one can convince onself that in fact C’ = (), i.e., by requiring consecutive
coin tosses to be paired, we are removing exactly those pointsin [0, 1] which were removed in the
Cantor set construction of Example 3.2. o
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In addition to tossing a coin, another common random experiment is to pick a number, perhaps
using a random number generator. Here are some probability spaces which correspond to different
ways of picking a number at random.

Example 1.11
Suppose we choose a number from IR in such a way that we are sure to get either 1, 4 or 16.
Furthermore, we construct the experiment so that the probability of getting 1 is g the probability of
getting 4 is g and the probability of getting 16 is % We describe this random experiment by taking
Qtobe IR, F tobe B(IR), and setting up the probability measure so that
4 4 1
P{1} ==, IP{4} = =, IP{16} = —.

{1} = 5, P{a} = 5, P{16} =
Thisdetermines IP(A) for every set A € B(IR). For example, the probability of the interval (0, 5]
is £, because thisinterval containsthe numbers 1 and 4, but not the number 16.

The probability measure described in this example is £ 5, , the measure induced by the stock price
Ss, whentheinitial stock price Sy = 4 and the probability of H is % Thisdistributionwas discussed
immediately following Definition 2.8. o

Example 1.12 Uniform distributionon [0, 1].

Let 2 = [0,1] and let 7 = B(][0, 1]), the collection of all Borel subsets containinedin [0, 1]. For
each Borel set A C [0, 1], wedefine IP(A) = uo(A) to bethe Lebesgue measure of the set. Because
tol0, 1] = 1, thisgives us a probability measure.

This probability space corresponds to the random experiment of choosing a number from [0, 1] so
that every number is“equally likely” to be chosen. Sincethere are infinitely mean numbersin [0, 1],
thisreguires that every number have probabilty zero of being chosen. Nonethel ess, we can speak of
the probability that the number chosen liesin a particular set, and if the set has uncountably many
points, then this probability can be positive. o

I know of no way to design a physical experiment which corresponds to choosing a number at
random from [0, 1] so that each number is equally likely to be chosen, just as | know of no way to
toss a coin infinitely many times. Nonetheless, both Examples 1.10 and 1.12 provide probability
spaces which are often useful approximationsto reality.

Example 1.13 Standard normal distribution.
Define the standard normal density

$2

a 1 -7

LetQ = IR, 7 = B(IR) and for every Borel set A C IR, define

P2 [ g du. 42)
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If Ain(4.2)isaninterval [a, b], then we can write (4.2) as the less mysterious Riemann integral:

$2

b 1 —
P[a,b]é/ \/ﬂe 2 dx.

This correspondsto choosing a point at random on thereal line, and every single point has probabil-
ity zero of being chosen, but if aset A is given, then the probability the point isin that set is given
by (4.2). 3

The construction of the integral in a general probability space follows the same steps as the con-
struction of Lebesgueintegral. We repeat this construction bel ow.

Definition 1.14 Let (22, F, IP) be aprobability space, and let X be arandom variable on this space,
i.e., amapping from €2 to IR, possibly also taking the values .

e If X isanindicator,i.e,

1 ifw e A,
0 ifwe A°,

for someset A ¢ F, wedefine
/ X dP 2 P(A).
Q

e If X isasimplefunction,i.e,
X(w) = chlAk(w),
k=1

where each ¢, isarea number and each A isasetin F, we define
/ XdP 2y ck/ Ly, dIP =" e, IP(Ay).
Q k=1 Q k=1
¢ If X isnonnegative but otherwise general, we define
/XdP
Q
2 sup {/ Y dIP;Y issmpleand Y (w) < X (w) for every w € Q} .
Q

In fact, we can always construct a sequence of simple functionsY,,, n = 1, 2, ... such that
0< Yl(W) < YQ(W) < Yg(W) < ... for every w € Q,

and Y (w) = lim,, Y, (w) for every w € Q. With this sequence, we can define

/depé lim /YndP.
Q Q

n—0oo
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e If X isintegrable, i.e,
/X+d1P<oo, /X—dJP<oo,
Q Q

where
X+ (w) 2 max{X(w),0}, X (w)2 max{—X(w),0},

/depé/xwfp——/x—dp
Q Q Q

If AisasetinF and X isarandom variable, we define

/depé/u-xcup.
A Q

then we define

The expectation of arandom variable X is defined to be

jEXé/XdJP.
Q

The above integral has all the linearity and comparison properties one would expect. In particular,
if X andY arerandom variablesand cisareal constant, then

/(X+Y)d1P — /XdP+/Yd1P,
Q Q Q

/CXdP = c/XdP7
Q Q

If X(w) <Y(w) forevery w € Q, then

/XdPg/YdP.
Q Q

Infact, we don’t need to have X (w) < Y (w) for every w € 2 in order to reach this conclusion; itis
enough if the set of w for which X (w) < Y (w) has probability one. When a condition holds with
probability one, we say it holds almost surely. Finaly, if A and B are digoint subsets of €2 and X
isarandom variable, then

/ XdP:/XdP+/XdP.
AUB A B

We restate the L ebesgue integral convergence theorem in this more general context. We acknowl-
edge in these statements that conditionsdon’t need to hold for every w; amost surely is enough.

Theorem 4.4 (Fatou'sLemma) Let X,,,n = 1,2, ... be a sequence of almost surely honnegative
random variables converging almost surely to a randomvariable X'. Then

/ X dP < liminf [ X, dPP,
Q n— 0o Q
or equivalently,

FEX <liminf IFX,,.

n—0oo
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Theorem 4.5 (Monotone Convergence Theorem) Let X,,, n = 1,2, ... be a sequence of random
variables converging almost surely to a randomvariable X. Assumethat

0< Xy <Xy < X3<--- amost surely.

Then
/XdP: lim /XndP,
Q n—0oo Q

X = lim IPX,,.
n—00

or equivalently,

Theorem 4.6 (Dominated Convergence Theorem) Let X,,,n = 1,2, ... be a sequence of random
variables, converging almost surely to a random variable X. Assume that there exists a random
variableY" such that

| X| <Y almost surely for every n.

Then
/XdP: lim /XndP,
Q Q

n—0oo

or equivalently,
FEFX = Ilm FX,.

n—0oo

In Example 1.13, we constructed a probability measure on (IR, B(IR)) by integrating the standard
normal density. Infact, whenever ¢ isanonnegative function defined on R satisfying [, ¢ dpo = 1,
we call ¢ adensity and we can define an associated probability measure by

Pa) 2 /A o du for every A € B(IR). 4.3)

We shall often have a situation in which two measure are related by an equation like (4.3). In fact,
the market measure and the risk-neutral measures in financial markets are related thisway. We say
that ¢ in (4.3) is the Radon-Nikodym derivative of d P with respect to 1o, and we write

diP

= T (4.4)

¥

The probability measure IP weights different parts of thereal line according to the density . Now
suppose f isafunctionon (R, B(IR), IP). Definition 1.14 gives us a value for the abstract integral

/B FdP,

/ f@dﬂm
R

whichis anintegral with respec to Lebesgue measure over the real line. We want to show that

We can also evaluate

| rap= [ redu. (45)



CHAPTER 1. Introduction to Probability Theory 39

an equation which is suggested by the notation introduced in (4.4) (substitute d’P for ¢ in(4.5) and
“cancel” the dyp). We include a proof of this because it alows us to |IIustrate the concept of the
standard machine explained in Williams's book in Section 5.12, page 5.

The standard machine argument proceeds in four steps.

Step 1. Assumethat f isanindicator function, i.e., f(z) = [4(z) for some Borel set A C IR. In
that case, (4.5) becomes
/ @ dpo.

Thisistrue becauseit isthe definition of IP(A).

Step 2. Now that we know that (4.5) holds when f is an indicator function, assume that f is a
simple function, i.e., alinear combination of indicator functions. In other words,

= Zn: crhi ()
k=1

where each ¢, isarea number and each 7, isan indicator function. Then

frae = [ [San] ar

k=1

= ch/ hi dIP
= Zi: /Bhwduo
[

k=1

e dpo

= /B fedpo.

Step 3. Now that we know that (4.5) holds when f is a simple function, we consider a general
nonnegativefunction f. We can always construct a sequence of nonnegative simple functions
fn,m=1,2 ... suchthat

0< f1($) < f2($) < f3($) < ... for every x € IR,
and f(z) = lim,—« f.(2) for every = € IR. We have already proved that

/fndP:/ Fro dug for every n.
R R

Welet n — oo and use the Monotone Convergence Theorem on both sides of this equality to

get
| rap= [ redu.
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Step 4. In the last step, we consider an integrable function f, which can take both positive and
negative values. By integrable, we mean that

/f+d1P<oo, /f—dJP<oo.
R R

¢From Step 3, we have

[orrar = [ rrodu,
[rmar = [ redu.

Subtracting these two equations, we obtain the desired resuilt:

= [ o
= /Rf+soduo—/Rf‘@duo
= /Rf@d,uo-

1.5 Independence

In this section, we define and discuss the notion of independence in a general probability space
(Q, F, IP), dthough most of the examples we give will be for coin toss space.

15.1 Independence of sets

Definition 1.15 We say that twosets A € F and B € F areindependent if
P(An B) = IP(A)IP(B).

Suppose a random experiment is conducted, and w is the outcome. The probability that w € A is
IP(A). Suppose you are not told w, but you are told that w € B. Conditional on thisinformation,
the probability that w € A is

A P(A N B)

P(A|B) = P

The sets A and B are independent if and only if this conditional probability is the uncondidtional
probability /°(A), i.e., knowing that w € B does not change the probability you assignto A. This
discussion is symmetric with respect to A and B; if A and B are independent and you know that
w € A, the conditional probability you assignto B is still the unconditional probability IP(B).

Whether two sets are independent depends on the probability measure IP. For example, supposewe
toss a coin twice, with probability p for H and probability ¢ = 1 — p for T' on each toss. To avoid
trivialities, we assumethat 0 < p < 1. Then

P{HHY} = p*, P{HT} = P{TH} = pq, P{TT} = ¢". (5.0)
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LeeA={HH HT}and B={HT,TH}.Inwords, Aistheset”H onthefirsttoss’ and B isthe
set“one H andoneT’” Then AN B = {HT}. We compute

A) = p® +pg = p,
B) = 2pq,
A)IP(B) = 2p*q,
AN B) = pq.

TRIN

(
(
(
(

These sets are independent if and only if 2p2¢ = pq, whichisthe caseif and only if p = %

Ifp = % then IP(B), the probability of one head and one tail, is % If you are told that the coin
tosses resulted in a head on the first toss, the probability of B, which isnow the probability of a7
on the second toss, isstill 1.

Suppose however that p = 0.01. By far the most likely outcome of the two coin tossesis 7T, and
the probability of one head and one tail is quite small; in fact, IP(B) = 0.0198. However, if you
aretold that thefirst tossresulted in H, it becomes very likely that the two tosses result in one head
and onetail. In fact, conditioned on gettinga H on the first toss, the probability of one H and one
T isthe probability of a7 on the second toss, which is0.99.

1.5.2 Independence of o-algebras

Definition 1.16 Let G and H besub-o-algebrasof F. We say that G and 7 areindependent if every
setin G isindependent of every setin?, i.e,

P(ANnB) = IP(A)IP(B) forevery A € H, B€gG.

Example 1.14 Toss a coin twice, and let IP be given by (5.1). Let G = F; be the o-agebra
determined by the first toss: G containsthe sets

0,Q,{HH,HTY,{TH,TT}.
Let # bethe o-albegra determined by the second toss: 7 contains the sets
0,Q,{HH,THY,{HT,TT}.

These two o-algebras are independent. For example, if we choosethe set { H H, HT'} from G and
theset { H H,T H } from H, then we have

P{HH,HTYIP{HH,TH} = (p* + pg) (p* + pg) = p,
P({HH HT}n{HH,TH}) = P{HH} = .

No matter which set we choose in G and which set we choose in 7, we will find that the product of
the probabiltiesis the probability of theintersection.
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Example 1.14 illustrates the general principle that when the probability for a sequence of tossesis
defined to be the product of the probabilities for the individual tosses of the sequence, then every
set depending on a particular toss will be independent of every set depending on a different toss.
We say that the different tosses are independent when we construct probabilitiesthisway. Itisaso
possible to construct probabilities such that the different tosses are not independent, as shown by
the following example.

Example 1.15 Define IP for theindividual elementsof 2 = {HH HT,TH, TT}tobe

P} = g, PLAT) = JP{TH} =2 PTT) = L
andfor every set A C (2, define P( ) to bethe sum of the pI’ObabllltIeSOf the elementsin A. Then
IP(Q) = 1, so IP is aprobability measure. Note that the sets { H onfirsttoss} = {HH, H1'} and
{H onsecondtoss} = {HH,TH?} have probabilities P{HH,HT} = 1 and P{HH,TH} =
2, so the product of the probabilities is 5=. On the other hand, the intersection of {H H, HT}
and {H H, TH} contains the single element {H H }, which has probability . These sets are not
independent.

1.5.3 Independence of random variables

Definition 1.17 We say that two random variables X and Y are independent if the o-algebrasthey
generate o (.X') and o (V') are independent.

In the probability space of three independent coin tosses, the price S, of the stock at time 2 is
independent of i This is because S, depends on only the first two coin tosses, whereas i is
either « or d, dependl ng on whether the third cointossis H or T.

Definition 1.17 says that for independent random variables X and Y, every set defined in terms of
X isindependent of every set defined intermsof Y. Inthecase of S; and g—z just considered, for ex-

ample, the sets { S, = udSo} = {HTH, HTT} and {53 = u} = {HHH,HTH,THH,TTH}
are indepedent sets.

Suppose X and Y are independent random variables. We defined earlier the measure induced by X
on IR to be
Lx(A) 2 P{X € A}, AC R.

Similarly, the measure induced by Y is
Ly(B)2 P{Y € B}, BC RR.
Now the pair (X, Y") takes valuesin the plane I??, and we can define the measure induced by the
pair
Lxy(C)=P{(X,Y)e(C}, CC R

The set C' in thislast equation is a subset of the plane IR 2. In particular, C' could be a “rectangle”
i.e, asetof theform A x B,where A C IR and B C IR. Inthiscase,

{((X,Y) e Ax B} = {X € AAn{Y € B},
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and X and Y are independent if and only if

Lxy(AxB) = P({XeAn{yeB})
= IP{X € AAP{Y € B} (5.2)
= Lx(A)Ly(B).
In other words, for independent random variables X and Y, the joint distribution represented by the

measure Lx y factors into the product of the marginal distributions represented by the measures
L X and ,Cy.

A joint density for (X, Y) isanonnegative function fx y (x, y) such that

Lxy(AxB)= /A/BfX,Y(%y) da dy.

Not every pair of random variables (X, Y') has a joint density, but if a pair does, then the random
variables X and Y have marginal densities defined by

x@= [ peremdn fe) [ for€)de

These have the properties
Lx(A) = /fX(ac)dac, ACHR,
A

Ly(B) = /ny(y)dy, BCR.

Suppose X and Y have a joint density. Then X and Y are independent variables if and only if
the joint density is the product of the marginal densities. This follows from the fact that (5.2) is
equivalent toindependenceof X andY . Take A = (—o0, z] and B = (—o0, y], write (5.1) interms
of densities, and differentiate with respect to both = and .

Theorem 5.7 Suppose X and Y are independent random variables. Let ¢ and £ be functionsfrom
IR to IR. Then ¢(X') and h(Y') are also independent random variables.

PROOF: Let usdenote W = ¢(X) and Z = h(Y'). We must consider setsin o (W) and o (7). But
atypical setin (W) isof theform

{wiW(w) e A} = {w:g(X(v)) € A},

which is defined in terms of the random variable X. Therefore, thisset isin o(.X). (In general,
we have that every set in o(W) isaso in o(X), which means that X contains at least as much
informationas W. Infact, X can contain strictly moreinformation than 17/, which meansthat o (X')
will contain al the setsin o (1) and others besides; thisisthe case, for example, if W = X 2))

In the same way that we just argued that every set in o (W) is aso in o(X), we can show that
every setino(Z) isdsoina(Y). Since every setin o (X ) isindependent of every setino(Y'), we
conclude that every set in o (W) isindependent of every setino(Z). o
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Definition 1.18 Let Xy, X5, ... be a sequence of random variables. We say that these random
variables are independent if for every sequence of sets A; € o(X4), A2 € 0(X3), ... andfor every
positiveinteger n,

P(A1nAyNn---A,) = IP(A)IP(Ay) - - - IP(A,).

1.5.4 Correation and independence

Theorem 5.8 If two randomvariables X and Y are independent, and if ¢ and / are functionsfrom
IR to IR, then
Elg(X)h(Y)] = Eg(X)- ERY),

provided all the expectations are defined.

PROOF: Let g(z) = I[4(x) and h(y) = Ir(y) beindicator functions. Then the equation we are
trying to prove becomes

P({X € A} {Y € B}) = IP{X € A}P{Y € B},

which istrue because X and Y areindependent. Now use the standard machine to get the result for
general functions g and h. o

The variance of arandom variable X isdefined to be
Var(X) 2 E[X — EX]%.
The covariance of two random variables X and Y isdefined to be
Cov(X,Y) £ I[(X - EX)(Y - EY)]
= [E[XY]- EX - EY.

According to Theorem 5.8, for independent random variables, the covariance is zero. If X and Y
both have positive variances, we define their correlation coefficient

A Cov(X,Y)
- NVa(X)Va(y)

p(X,Y)

For independent random variables, the correlation coefficient is zero.

Unfortunately, two random variables can have zero correlation and still not be independent. Con-
sider the following example.

Example 1.16 Let X be a standard normal random variable, let Z be independent of X and have
the distribution IP{”Z = 1} = IP{Z = —1} = 0. DefineY = XZ. We show that Y isaso a
standard normal random variable, X and Y are uncorrelated, but X and Y are not independent.

The last claim is easy to see. If X and Y were independent, so would be X 2 and Y2, but in fact,
X? = Y?dmost surely.
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We next check that Y is standard normal. For y € IR, we have

P{Y <y} = P{Yy <yandZ=1}+P{Y <yandZ = —1}
= P{X<yadZ=1}+P{-X <yandZ= -1}
= P{X <ypP{Z =1} + P{-X < y}iP{Z = -1}

1 1
= PIX <yi+oPi-X <yl

Since X isstandard normal, IP{X <y} = IP{X < —y},andwehave IP{Y <y} = IP{X <y},
which showsthat Y isalso standard normal.

Being standard normal, both X and Y have expected value zero. Therefore,
Cov(X,Y)=E[XY]=E[X*Z]=EX* FZ=1-0=0.
Wherein IR? doesthe measure £y y putitsmass, i.e., what isthe distribution of (X, Y)?

We conclude this section with the observation that for independent random variables, the variance
of their sum is the sum of their variances. Indeed, if X and Y areindependentand 7 = X + Y,
then

12

Var(Z) E[(Z - E2)]

= E(X—|—Y EX - EY)?]

= JE[ )2+ 2X = EX)(Y = EY) + (Y — BY)?]
= Var(X)+ QE[X — EX]E[Y - EY] + Var(Y)

= Var(X)+ Va(Y).

This argument extends to any finite number of random variables. If we are given independent
random variables X1, X5, ..., X, then

Var(Xy + Xo + -+ -+ X)) = Var(X;) 4+ Var(X3) + - - - + Var(X,,). (5.9

15,5 Independence and conditional expectation.

We now return to property (k) for conditional expectations, presented in the lecture dated October
19, 1995. The property as stated there is taken from Williams's book, page 88; we shall need only
the second assertion of the property:

(k) If arandom variable X isindependent of a o-algebra #, then

E[X|H] =

The point of this statement isthat if X isindependent of #, then the best estimate of X based on
theinformationin # is I X , the same as the best estimate of X based on no information.
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To show this equality, we observe first that I X is 7{-measurable, sinceit is not random. We must
also check the partial averaging property

/EXdP:/XdeoreveryAe%.
A A

If X isan indicator of some set B, which by assumption must be independent of 7, then the partial
averaging eguation we must check is

/AP(B) dP:/AIB 4P,

Theleft-hand side of thisequationis IP(A) IP(B), and the right hand sideis

/IAIBdP:/IAanP:P(AﬂB).
Q Q

The partial averaging eguation holds because A and B are independent. The partial averaging
equation for general X independent of 7 follows by the standard machine.

156 Law of LargeNumbers

There are two fundamental theorems about sequences of independent random variables. Here isthe
first one.

Theorem 5.9 (Law of Large Numbers) Let X, X, ... beasequence of independent, identically
distributed random variables, each with expected value 1 and variance o 2. Define the sequence of

averages

y, At Xe b X o
n

ThenY,, convergesto p almost surely asn — oo.

We are not going to give the proof of thistheorem, but here isan argument which makesit plausible.
We will use thisargument later when devel oping stochastic calculus. The argument proceedsin two
steps. We first check that IE'Y,, = p for every n. We next check that Var(Y,,) — 0 asn — 0. In
other words, the random variables Y, are increasingly tightly distributed around i as n — oc.

For the first step, we simply compute

1 1
BY, = ~[EXi+ EXo+ -+ EXo] = —[utp+--+pl=p

n

»n times

For the second step, we first recall from (5.3) that the variance of the sum of independent random
variablesisthe sum of their variances. Therefore,
2

n X& "o o
Var(Y,) = > Var (—) =3 =

n

Asn — oo, wehave Var(Y,,) — 0.
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1.5.7 Central Limit Theorem

The Law of Large Numbers is a bit boring because the limit is nonrandom. This is because the
denominator in the definition of Y, isso large that the variance of Y,, convergesto zero. If we want
to prevent this, we should divide by \/n rather than n. In particular, if we again have a sequence of
independent, identically distributed random variables, each with expected value 1 and variance o2,

but now we set
A K-+ Xo—p) -+ (Xn—p)

\/ﬁ 9

Zn

then each 7,, has expected value zero and

Var(7,) = kZ:Var (X’i/%“) = Zn: %2 = o2,

k=1

Asn — oo, the distributions of al the random variables /7,, have the same degree of tightness, as
measured by their variance, around their expected value 0. The Central Limit Theorem asserts that
asn — oo, thedistribution of 7,, approachesthat of a normal random variable with mean (expected
value) zero and variance . In other words, for every set A C IR,

1 _ 2%
e 202dzx.

lim P{Z, € A} =
n—00 o\2m JA



