
Chapter 1

Introduction to Probability Theory

1.1 The Binomial Asset Pricing Model

The binomial asset pricing model provides a powerful tool to understand arbitrage pricing theory
and probability theory. In this course, we shall use it for both these purposes.

In the binomial asset pricing model, we model stock prices in discrete time, assuming that at each
step, the stock price will change to one of two possible values. Let us begin with an initial positive
stock price S�. There are two positive numbers, d and u, with

� � d � u� (1.1)

such that at the next period, the stock price will be either dS� or uS�. Typically, we take d and u
to satisfy � � d � � � u, so change of the stock price from S� to dS� represents a downward
movement, and change of the stock price from S� to uS� represents an upward movement. It is
common to also have d � �

u
, and this will be the case in many of our examples. However, strictly

speaking, for what we are about to do we need to assume only (1.1) and (1.2) below.

Of course, stock price movements are much more complicated than indicated by the binomial asset
pricing model. We consider this simple model for three reasons. First of all, within this model the
concept of arbitrage pricing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because with a sufficient number of steps, it provides a good, compu-
tationally tractable approximation to continuous-time models. Thirdly, within the binomial model
we can develop the theory of conditional expectations and martingales which lies at the heart of
continuous-time models.

With this third motivation in mind, we develop notation for the binomial model which is a bit
different from that normally found in practice. Let us imagine that we are tossing a coin, and when
we get a “Head,” the stock price moves up, but when we get a “Tail,” the price moves down. We
denote the price at time � by S��H� � uS� if the toss results in head (H), and by S��T � � dS� if it
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Figure 1.1: Binomial tree of stock prices with S� � �, u � ��d � �.

results in tail (T). After the second toss, the price will be one of:

S��HH� � uS��H� � u�S�� S��HT � � dS��H� � duS��

S��TH� � uS��T � � udS�� S��TT � � dS��T � � d�S��

After three tosses, there are eight possible coin sequences, although not all of them result in different
stock prices at time �.

For the moment, let us assume that the third toss is the last one and denote by

	 � fHHH�HHT�HTH�HTT�THH�THT�TTH�TTTg
the set of all possible outcomes of the three tosses. The set 	 of all possible outcomes of a ran-
dom experiment is called the sample space for the experiment, and the elements � of 	 are called
sample points. In this case, each sample point � is a sequence of length three. We denote the k-th
component of � by �k. For example, when � � HTH , we have �� � H , �� � T and �� � H .

The stock price Sk at time k depends on the coin tosses. To emphasize this, we often write Sk���.
Actually, this notation does not quite tell the whole story, for while S � depends on all of �, S�
depends on only the first two components of �, S� depends on only the first component of �, and
S� does not depend on � at all. Sometimes we will use notation such S����� ��� just to record more
explicitly how S� depends on � � ���� ��� ���.

Example 1.1 Set S� � �, u � � and d � �
� . We have then the binomial “tree” of possible stock

prices shown in Fig. 1.1. Each sample point � � ���� ��� ��� represents a path through the tree.
Thus, we can think of the sample space 	 as either the set of all possible outcomes from three coin
tosses or as the set of all possible paths through the tree.

To complete our binomial asset pricing model, we introduce a money market with interest rate r;
$1 invested in the money market becomes 
�� � r� in the next period. We take r to be the interest
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rate for both borrowing and lending. (This is not as ridiculous as it first seems, because in a many
applications of the model, an agent is either borrowing or lending (not both) and knows in advance
which she will be doing; in such an application, she should take r to be the rate of interest for her
activity.) We assume that

d � � � r � u� (1.2)

The model would not make sense if we did not have this condition. For example, if �� r � u, then
the rate of return on the money market is always at least as great as and sometimes greater than the
return on the stock, and no one would invest in the stock. The inequality d � � � r cannot happen
unless either r is negative (which never happens, except maybe once upon a time in Switzerland) or
d � �. In the latter case, the stock does not really go “down” if we get a tail; it just goes up less
than if we had gotten a head. One should borrow money at interest rate r and invest in the stock,
since even in the worst case, the stock price rises at least as fast as the debt used to buy it.

With the stock as the underlying asset, let us consider a European call option with strike price
K � � and expiration time �. This option confers the right to buy the stock at time � for K dollars,
and so is worth S� �K at time � if S� �K is positive and is otherwise worth zero. We denote by

V���� � �S�����K��
�
� maxfS�����K� �g

the value (payoff) of this option at expiration. Of course, V���� actually depends only on ��, and
we can and do sometimes write V����� rather than V����. Our first task is to compute the arbitrage
price of this option at time zero.

Suppose at time zero you sell the call for V� dollars, where V� is still to be determined. You now
have an obligation to pay off �uS� � K�� if �� � H and to pay off �dS� � K�� if �� � T . At
the time you sell the option, you don’t yet know which value �� will take. You hedge your short
position in the option by buying � � shares of stock, where �� is still to be determined. You can use
the proceeds V� of the sale of the option for this purpose, and then borrow if necessary at interest
rate r to complete the purchase. If V� is more than necessary to buy the �� shares of stock, you
invest the residual money at interest rate r. In either case, you will have V����S� dollars invested
in the money market, where this quantity might be negative. You will also own �� shares of stock.

If the stock goes up, the value of your portfolio (excluding the short position in the option) is

��S��H� � �� � r��V����S���

and you need to have V��H�. Thus, you want to choose V� and �� so that

V��H� � ��S��H� � �� � r��V� ���S��� (1.3)

If the stock goes down, the value of your portfolio is

��S��T � � �� � r��V� ���S���

and you need to have V��T �. Thus, you want to choose V� and �� to also have

V��T � � ��S��T � � �� � r��V����S��� (1.4)
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These are two equations in two unknowns, and we solve them below

Subtracting (1.4) from (1.3), we obtain

V��H�� V��T � � ���S��H�� S��T ��� (1.5)

so that

�� �
V��H�� V��T �

S��H�� S��T �
� (1.6)

This is a discrete-time version of the famous “delta-hedging” formula for derivative securities, ac-
cording to which the number of shares of an underlying asset a hedge should hold is the derivative
(in the sense of calculus) of the value of the derivative security with respect to the price of the
underlying asset. This formula is so pervasive the when a practitioner says “delta”, she means the
derivative (in the sense of calculus) just described. Note, however, that my definition of �� is the
number of shares of stock one holds at time zero, and (1.6) is a consequence of this definition, not
the definition of �� itself. Depending on how uncertainty enters the model, there can be cases
in which the number of shares of stock a hedge should hold is not the (calculus) derivative of the
derivative security with respect to the price of the underlying asset.

To complete the solution of (1.3) and (1.4), we substitute (1.6) into either (1.3) or (1.4) and solve
for V�. After some simplification, this leads to the formula

V� �
�

� � r

�
� � r � d

u � d
V��H� �

u� �� � r�

u� d
V��T �

�
� (1.7)

This is the arbitrage price for the European call option with payoff V � at time �. To simplify this
formula, we define

p
�
�

� � r � d

u� d
� q

�
�
u� �� � r�

u� d
� �� p� (1.8)

so that (1.7) becomes

V� �
�

�� r
�pV��H� � qV��T ��� (1.9)

Because we have taken d � u, both p and q are defined,i.e., the denominator in (1.8) is not zero.
Because of (1.2), both p and q are in the interval ��� ��, and because they sum to �, we can regard
them as probabilities of H and T , respectively. They are the risk-neutral probabilites. They ap-
peared when we solved the two equations (1.3) and (1.4), and have nothing to do with the actual
probabilities of getting H or T on the coin tosses. In fact, at this point, they are nothing more than
a convenient tool for writing (1.7) as (1.9).

We now consider a European call which pays off K dollars at time �. At expiration, the payoff of

this option is V�
�
� �S� � K��, where V� and S� depend on �� and ��, the first and second coin

tosses. We want to determine the arbitrage price for this option at time zero. Suppose an agent sells
the option at time zero for V� dollars, where V� is still to be determined. She then buys �� shares
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of stock, investing V� ���S� dollars in the money market to finance this. At time �, the agent has
a portfolio (excluding the short position in the option) valued at

X�
�
� ��S� � �� � r��V� ���S��� (1.10)

Although we do not indicate it in the notation, S � and therefore X� depend on ��, the outcome of
the first coin toss. Thus, there are really two equations implicit in (1.10):

X��H�
�
� ��S��H� � �� � r��V� ���S���

X��T �
�
� ��S��T � � �� � r��V� ���S���

After the first coin toss, the agent has X� dollars and can readjust her hedge. Suppose she decides to
now hold �� shares of stock, where �� is allowed to depend on �� because the agent knows what
value �� has taken. She invests the remainder of her wealth, X� � ��S� in the money market. In
the next period, her wealth will be given by the right-hand side of the following equation, and she
wants it to be V�. Therefore, she wants to have

V� � ��S� � �� � r��X� ���S��� (1.11)

Although we do not indicate it in the notation, S � and V� depend on �� and ��, the outcomes of the
first two coin tosses. Considering all four possible outcomes, we can write (1.11) as four equations:

V��HH� � ���H�S��HH� � �� � r��X��H�����H�S��H���

V��HT � � ���H�S��HT � � �� � r��X��H�����H�S��H���

V��TH� � ���T �S��TH� � �� � r��X��T �����T �S��T ���

V��TT � � ���T �S��TT � � �� � r��X��T �����T �S��T ���

We now have six equations, the two represented by (1.10) and the four represented by (1.11), in the
six unknowns V�, ��, ���H�, ���T �, X��H�, and X��T �.

To solve these equations, and thereby determine the arbitrage price V� at time zero of the option and
the hedging portfolio ��, ���H� and ���T �, we begin with the last two

V��TH� � ���T �S��TH� � �� � r��X��T �����T �S��T ���

V��TT � � ���T �S��TT � � �� � r��X��T �����T �S��T ���

Subtracting one of these from the other and solving for ���T �, we obtain the “delta-hedging for-
mula”

���T � �
V��TH�� V��TT �

S��TH�� S��TT �
� (1.12)

and substituting this into either equation, we can solve for

X��T � �
�

� � r
�pV��TH� � qV��TT ��� (1.13)
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Equation (1.13), gives the value the hedging portfolio should have at time � if the stock goes down
between times � and �. We define this quantity to be the arbitrage value of the option at time � if
�� � T , and we denote it by V��T �. We have just shown that

V��T �
�
�

�

� � r
�pV��TH� � qV��TT ��� (1.14)

The hedger should choose her portfolio so that her wealth X��T � if �� � T agrees with V��T �
defined by (1.14). This formula is analgous to formula (1.9), but postponed by one step. The first
two equations implicit in (1.11) lead in a similar way to the formulas

���H� �
V��HH�� V��HT �

S��HH�� S��HT �
(1.15)

and X��H� � V��H�, where V��H� is the value of the option at time � if �� � H , defined by

V��H�
�
�

�

� � r
�pV��HH� � qV��HT ��� (1.16)

This is again analgous to formula (1.9), postponed by one step. Finally, we plug the valuesX��H� �
V��H� and X��T � � V��T � into the two equations implicit in (1.10). The solution of these equa-
tions for �� and V� is the same as the solution of (1.3) and (1.4), and results again in (1.6) and
(1.9).

The pattern emerging here persists, regardless of the number of periods. If Vk denotes the value at
time k of a derivative security, and this depends on the first k coin tosses ��� � � � � �k, then at time
k � �, after the first k � � tosses ��� � � � � �k�� are known, the portfolio to hedge a short position
should hold �k������ � � � � �k��� shares of stock, where

�k������ � � � � �k��� �
Vk���� � � � � �k��� H�� Vk���� � � � � �k��� T �

Sk���� � � � � �k��� H�� Sk���� � � � � �k��� T �
� (1.17)

and the value at time k � � of the derivative security, when the first k � � coin tosses result in the
outcomes ��� � � � � �k��, is given by

Vk������ � � � � �k��� �
�

� � r
�pVk���� � � � � �k��� H� � qVk���� � � � � �k��� T ��

(1.18)

1.2 Finite Probability Spaces

Let 	 be a set with finitely many elements. An example to keep in mind is

	 � fHHH�HHT�HTH�HTT�THH�THT�TTH�TTTg (2.1)

of all possible outcomes of three coin tosses. Let F be the set of all subsets of 	. Some sets in F
are �, fHHH�HHT�HTH�HTTg, fTTTg, and 	 itself. How many sets are there in F?
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Definition 1.1 A probability measure IP is a function mapping F into ��� �� with the following
properties:

(i) IP �	� � �,

(ii) If A�� A�� � � � is a sequence of disjoint sets in F , then

IP

�
��
k��

Ak

�
�

�X
k��

IP �Ak��

Probability measures have the following interpretation. Let A be a subset of F . Imagine that 	 is
the set of all possible outcomes of some random experiment. There is a certain probability, between
� and �, that when that experiment is performed, the outcome will lie in the set A. We think of
IP �A� as this probability.

Example 1.2 Suppose a coin has probability �
� for H and �

� for T . For the individual elements of
	 in (2.1), define

IPfHHHg �
�
�
�

��
� IPfHHTg �

�
�
�

�� �
�
�

�
�

IPfHTHg �
�
�
�

�� �
�
�

�
� IPfHTTg �

�
�
�

��
�
�

��
�

IPfTHHg �
�
�
�

�� �
�
�

�
� IPfTHTg �

�
�
�

��
�
�

��
�

IPfTTHg �
�
�
�

��
�
�

��
� IPfTTTg �

�
�
�

��
�

For A � F , we define

IP �A� �
X
��A

IPf�g� (2.2)

For example,

IPfHHH�HHT�HTH�HTTg�
�
�

�

	�
� �

�
�

�

	���

�

	
�

�
�

�

	�
�

�

	�
�

�

�
�

which is another way of saying that the probability of H on the first toss is �
� .

As in the above example, it is generally the case that we specify a probability measure on only some
of the subsets of 	 and then use property (ii) of Definition 1.1 to determine IP �A� for the remaining
setsA � F . In the above example, we specified the probability measure only for the sets containing
a single element, and then used Definition 1.1(ii) in the form (2.2) (see Problem 1.4(ii)) to determine
IP for all the other sets in F .

Definition 1.2 Let 	 be a nonempty set. A �-algebra is a collection G of subsets of 	 with the
following three properties:

(i) � � G,



18

(ii) If A � G, then its complement Ac � G,

(iii) If A�� A�� A�� � � � is a sequence of sets in G, then ��k��Ak is also in G.

Here are some important �-algebras of subsets of the set 	 in Example 1.2:

F� �



��	

�
�

F� �



��	� fHHH�HHT�HTH�HTTg� fTHH� THT�TTH�TTTg

�
�

F� �



��	� fHHH�HHTg� fHTH�HTTg� fTHH� THTg� fTTH�TTTg�

and all sets which can be built by taking unions of these

�
�

F� � F � The set of all subsets of 	�

To simplify notation a bit, let us define

AH
�
� fHHH�HHT�HTH�HTTg� fH on the first tossg�

AT
�
� fTHH� THT�TTH� TTTg� fT on the first tossg�

so that
F� � f��	� AH� ATg�

and let us define

AHH
�
� fHHH�HHTg� fHH on the first two tossesg�

AHT
�
� fHTH�HTTg� fHT on the first two tossesg�

ATH
�
� fTHH� THTg� fTH on the first two tossesg�

ATT
�
� fTTH� TTTg� fTT on the first two tossesg�

so that

F� � f��	� AHH� AHT � ATH� ATT �

AH � AT � AHH � ATH � AHH � ATT � AHT � ATH � AHT � ATT �

Ac
HH � A

c
HT � A

c
TH� A

c
TTg�

We interpret �-algebras as a record of information. Suppose the coin is tossed three times, and you
are not told the outcome, but you are told, for every set in F� whether or not the outcome is in that
set. For example, you would be told that the outcome is not in � and is in 	. Moreover, you might
be told that the outcome is not in AH but is in AT . In effect, you have been told that the first toss
was a T , and nothing more. The �-algebra F� is said to contain the “information of the first toss”,
which is usually called the “information up to time �”. Similarly, F� contains the “information of
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the first two tosses,” which is the “information up to time �.” The �-algebra F� � F contains “full
information” about the outcome of all three tosses. The so-called “trivial” �-algebra F� contains no
information. Knowing whether the outcome � of the three tosses is in � (it is not) and whether it is
in 	 (it is) tells you nothing about �

Definition 1.3 Let	 be a nonempty finite set. A filtration is a sequence of �-algebrasF��F��F�� � � � �Fn
such that each �-algebra in the sequence contains all the sets contained by the previous �-algebra.

Definition 1.4 Let 	 be a nonempty finite set and let F be the �-algebra of all subsets of 	. A
random variable is a function mapping 	 into IR.

Example 1.3 Let 	 be given by (2.1) and consider the binomial asset pricing Example 1.1, where
S� � �, u � � and d � �

� . Then S�, S�, S� and S� are all random variables. For example,
S��HHT � � u�S� � ��. The “random variable” S� is really not random, since S���� � � for all
� � 	. Nonetheless, it is a function mapping 	 into IR, and thus technically a random variable,
albeit a degenerate one.

A random variable maps 	 into IR, and we can look at the preimage under the random variable of
sets in IR. Consider, for example, the random variable S� of Example 1.1. We have

S��HHH� � S��HHT � � ���

S��HTH� � S��HTT � � S��THH� � S��THT � � ��

S��TTH� � S��TTT � � ��

Let us consider the interval ��� ���. The preimage under S� of this interval is defined to be

f� � 	�S���� � ��� ���g� f� � 	� � � S� � ��g � Ac
TT �

The complete list of subsets of 	 we can get as preimages of sets in IR is:

��	� AHH� AHT �ATH � ATT �

and sets which can be built by taking unions of these. This collection of sets is a �-algebra, called
the �-algebra generated by the random variable S�, and is denoted by ��S��. The information
content of this �-algebra is exactly the information learned by observing S�. More specifically,
suppose the coin is tossed three times and you do not know the outcome �, but someone is willing
to tell you, for each set in ��S��, whether � is in the set. You might be told, for example, that � is
not in AHH , is in AHT �ATH , and is not in ATT . Then you know that in the first two tosses, there
was a head and a tail, and you know nothing more. This information is the same you would have
gotten by being told that the value of S���� is �.

Note that F� defined earlier contains all the sets which are in ��S��, and even more. This means
that the information in the first two tosses is greater than the information in S�. In particular, if you
see the first two tosses, you can distinguishAHT from ATH , but you cannot make this distinction
from knowing the value of S� alone.
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Definition 1.5 Let 	 be a nonemtpy finite set and let F be the �-algebra of all subsets of 	. Let X
be a random variable on �	�F�. The �-algebra ��X� generated by X is defined to be the collection
of all sets of the form f� � 	�X��� � Ag, where A is a subset of IR. Let G be a sub-�-algebra of
F . We say that X is G-measurable if every set in ��X� is also in G.

Note: We normally write simply fX � Ag rather than f� � 	�X��� � Ag.

Definition 1.6 Let 	 be a nonempty, finite set, let F be the �-algebra of all subsets of 	, let IP be
a probabilty measure on �	�F�, and let X be a random variable on 	. Given any set A � IR, we
define the induced measure of A to be

LX�A�
�
� IPfX � Ag�

In other words, the induced measure of a set A tells us the probability that X takes a value in A. In
the case of S� above with the probability measure of Example 1.2, some sets in IR and their induced
measures are:

LS���� � IP ��� � ��

LS��IR� � IP �	� � ��

LS� ����� � IP �	� � ��

LS� ��� �� � IPfS� � �g � IP �ATT � �

�
�

�

	�
�

In fact, the induced measure of S� places a mass of size
�
�
�

��
� �

� at the number ��, a mass of size

	
� at the number �, and a mass of size

�
�
�

��
� 	

� at the number �. A common way to record this

information is to give the cumulative distribution function F S��x� of S�, defined by

FS��x�
�
� IP �S� � x� �

��
�

�� if x � ��
	
� � if � � x � ��


� � if � � x � ���
�� if �� � x�

(2.3)

By the distribution of a random variable X , we mean any of the several ways of characterizing
LX . If X is discrete, as in the case of S� above, we can either tell where the masses are and how
large they are, or tell what the cumulative distribution function is. (Later we will consider random
variables X which have densities, in which case the induced measure of a set A � IR is the integral
of the density over the set A.)

Important Note. In order to work through the concept of a risk-neutral measure, we set up the
definitions to make a clear distinction between random variables and their distributions.

A random variable is a mapping from 	 to IR, nothing more. It has an existence quite apart from
discussion of probabilities. For example, in the discussion above, S��TTH� � S��TTT � � �,
regardless of whether the probability for H is �

� or �
� .
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The distribution of a random variable is a measure LX on IR, i.e., a way of assigning probabilities
to sets in IR. It depends on the random variableX and the probability measure IP we use in 	. If we
set the probability of H to be �

� , thenLS� assigns mass �
� to the number ��. If we set the probability

of H to be �
� , then LS� assigns mass �

	 to the number ��. The distribution of S� has changed, but
the random variable has not. It is still defined by

S��HHH� � S��HHT � � ���

S��HTH� � S��HTT � � S��THH� � S��THT � � ��

S��TTH� � S��TTT � � ��

Thus, a random variable can have more than one distribution (a “market” or “objective” distribution,
and a “risk-neutral” distribution).

In a similar vein, two different random variables can have the same distribution. Suppose in the
binomial model of Example 1.1, the probability of H and the probability of T is �

� . Consider a
European call with strike price �� expiring at time �. The payoff of the call at time � is the random
variable �S� � ����, which takes the value � if � � HHH or � � HHT , and takes the value � in
every other case. The probability the payoff is � is �

	 , and the probability it is zero is �
	 . Consider also

a European put with strike price � expiring at time �. The payoff of the put at time � is ��� S��
�,

which takes the value � if � � TTH or � � TTT . Like the payoff of the call, the payoff of the
put is � with probability �

	 and � with probability �
	 . The payoffs of the call and the put are different

random variables having the same distribution.

Definition 1.7 Let 	 be a nonempty, finite set, let F be the �-algebra of all subsets of 	, let IP be
a probabilty measure on �	�F�, and let X be a random variable on 	. The expected value of X is
defined to be

IEX
�
�
X
���

X���IPf�g� (2.4)

Notice that the expected value in (2.4) is defined to be a sum over the sample space 	. Since 	 is a
finite set, X can take only finitely many values, which we label x�� � � � � xn. We can partition 	 into
the subsets fX� � x�g� � � � � fXn � xng, and then rewrite (2.4) as

IEX
�
�

X
���

X���IPf�g

�
nX

k��

X
��fXk�xkg

X���IPf�g

�
nX

k��

xk
X

��fXk�xkg

IPf�g

�
nX

k��

xkIPfXk � xkg

�
nX

k��

xkLXfxkg�
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Thus, although the expected value is defined as a sum over the sample space 	, we can also write it
as a sum over IR.

To make the above set of equations absolutely clear, we consider S� with the distribution given by
(2.3). The definition of IES� is

IES� � S��HHH�IPfHHHg� S��HHT �IPfHHTg
�S��HTH�IPfHTHg� S��HTT �IPfHTTg
�S��THH�IPfTHHg� S��THT �IPfTHTg
�S��TTH�IPfTTHg� S��TTT �IPfTTTg

� �� 	 IP �AHH� � � 	 IP �AHT �ATH� � � 	 IP �ATT �

� �� 	 IPfS� � ��g� � 	 IPfS� � �g� � 	 IPfS� � �g
� �� 	 LS�f��g� � 	 LS�f�g� � 	 LS�f�g
� �� 	 �

�
� � 	 �

�
� � 	 �

�

�
��

�
�

Definition 1.8 Let 	 be a nonempty, finite set, let F be the �-algebra of all subsets of 	, let IP be a
probabilty measure on �	�F�, and let X be a random variable on 	. The variance of X is defined
to be the expected value of �X � IEX��, i.e.,

Var�X�
�
�
X
���

�X���� IEX��IPf�g� (2.5)

One again, we can rewrite (2.5) as a sum over IR rather than over 	. Indeed, if X takes the values
x�� � � � � xn, then

Var�X� �
nX

k��

�xk � IEX��IPfX � xkg �
nX

k��

�xk � IEX��LX�xk��

1.3 Lebesgue Measure and the Lebesgue Integral

In this section, we consider the set of real numbers IR, which is uncountably infinite. We define the
Lebesgue measure of intervals in IR to be their length. This definition and the properties of measure
determine the Lebesgue measure of many, but not all, subsets of IR. The collection of subsets of
IR we consider, and for which Lebesgue measure is defined, is the collection of Borel sets defined
below.

We use Lebesgue measure to construct the Lebesgue integral, a generalization of the Riemann
integral. We need this integral because, unlike the Riemann integral, it can be defined on abstract
spaces, such as the space of infinite sequences of coin tosses or the space of paths of Brownian
motion. This section concerns the Lebesgue integral on the space IR only; the generalization to
other spaces will be given later.
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Definition 1.9 The Borel �-algebra, denoted B�IR�, is the smallest �-algebra containing all open
intervals in IR. The sets in B�IR� are called Borel sets.

Every set which can be written down and just about every set imaginable is inB�IR�. The following
discussion of this fact uses the �-algebra properties developed in Problem 1.3.

By definition, every open interval �a� b� is in B�IR�, where a and b are real numbers. Since B�IR� is
a �-algebra, every union of open intervals is also in B�IR�. For example, for every real number a,
the open half-line

�a��� �
��
n��

�a� a� n�

is a Borel set, as is

���� a� �
��
n��

�a� n� a��

For real numbers a and b, the union

���� a� � �b���

is Borel. Since B�IR� is a �-algebra, every complement of a Borel set is Borel, so B�IR� contains

�a� b� �
�
���� a� � �b���

�c
�

This shows that every closed interval is Borel. In addition, the closed half-lines

�a��� �
��
n��

�a� a� n�

and

���� a� �
��
n��

�a� n� a�

are Borel. Half-open and half-closed intervals are also Borel, since they can be written as intersec-
tions of open half-lines and closed half-lines. For example,

�a� b� � ���� b�
 �a����

Every set which contains only one real number is Borel. Indeed, if a is a real number, then

fag �
��
n��

�
a� �

n
� a�

�

n

	
�

This means that every set containing finitely many real numbers is Borel; if A � fa�� a�� � � � � ang,
then

A �
n�

k��

fakg�



24

In fact, every set containing countably infinitely many numbers is Borel; if A � fa�� a�� � � �g, then

A �
n�

k��

fakg�

This means that the set of rational numbers is Borel, as is its complement, the set of irrational
numbers.

There are, however, sets which are not Borel. We have just seen that any non-Borel set must have
uncountably many points.

Example 1.4 (The Cantor set.) This example gives a hint of how complicated a Borel set can be.
We use it later when we discuss the sample space for an infinite sequence of coin tosses.

Consider the unit interval ��� ��, and remove the middle half, i.e., remove the open interval

A�
�
�

�
�

�
�
�

�

	
�

The remaining set

C� �

�
��

�

�

�
�
�
�

�
� �

�
has two pieces. From each of these pieces, remove the middle half, i.e., remove the open set

A�
�
�

�
�

��
�
�

��

	��
��

��
�
��

��

	
�

The remaining set

C� �

�
��

�

��

���
�

��
�
�

�

���
�

�
�
��

��

���
��

��
� �

�
�

has four pieces. Continue this process, so at stage k, the set Ck has �k pieces, and each piece has
length �

	k
. The Cantor set

C
�
�

��
k��

Ck

is defined to be the set of points not removed at any stage of this nonterminating process.

Note that the length of A�, the first set removed, is �
� . The “length” of A�, the second set removed,

is �

 � �


 � �
	 . The “length” of the next set removed is � 	 �

�� � �

 , and in general, the length of the

k-th set removed is ��k . Thus, the total length removed is
�X
k��

�

�k
� ��

and so the Cantor set, the set of points not removed, has zero “length.”

Despite the fact that the Cantor set has no “length,” there are lots of points in this set. In particular,
none of the endpoints of the pieces of the sets C�� C�� � � � is ever removed. Thus, the points

��
�

�
�
�

�
� ��

�

��
�
�

��
�
��

��
�
��

��
�
�

��
� � � �

are all in C. This is a countably infinite set of points. We shall see eventually that the Cantor set
has uncountably many points. �
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Definition 1.10 Let B�IR� be the �-algebra of Borel subsets of IR. A measure on �IR�B�IR�� is a
function � mapping B into ����� with the following properties:

(i) ���� � �,

(ii) If A�� A�� � � � is a sequence of disjoint sets in B�IR�, then

�

�
��
k��

Ak

�
�

�X
k��

��Ak��

Lebesgue measure is defined to be the measure on �IR�B�IR�� which assigns the measure of each
interval to be its length. Following Williams’s book, we denote Lebesgue measure by ��.

A measure has all the properties of a probability measure given in Problem 1.4, except that the total
measure of the space is not necessarily � (in fact, ���IR� ��), one no longer has the equation

��Ac� � �� ��A�

in Problem 1.4(iii), and property (v) in Problem 1.4 needs to be modified to say:

(v) If A�� A�� � � � is a sequence of sets in B�IR� with A� � A� � 	 	 	 and ��A�� ��, then

�

�
��
k��

Ak

�
� lim

n��
��An��

To see that the additional requirment ��A�� �� is needed in (v), consider

A� � ������ A� � ������ A� � ������ � � � �

Then 
�k��Ak � �, so ���
�k��Ak� � �, but limn�� ���An� ��.

We specify that the Lebesgue measure of each interval is its length, and that determines the Lebesgue
measure of all other Borel sets. For example, the Lebesgue measure of the Cantor set in Example
1.4 must be zero, because of the “length” computation given at the end of that example.

The Lebesgue measure of a set containing only one point must be zero. In fact, since

fag �
�
a� �

n
� a�

�

n

	

for every positive integer n, we must have

� � ��fag � ��

�
a � �

n
� a�

�

n

	
�

�

n
�

Letting n�, we obtain
��fag � ��
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The Lebesgue measure of a set containing countably many points must also be zero. Indeed, if
A � fa�� a�� � � �g, then

���A� �
�X
k��

��fakg �
�X
k��

� � ��

The Lebesgue measure of a set containing uncountably many points can be either zero, positive and
finite, or infinite. We may not compute the Lebesgue measure of an uncountable set by adding up
the Lebesgue measure of its individual members, because there is no way to add up uncountably
many numbers. The integral was invented to get around this problem.

In order to think about Lebesgue integrals, we must first consider the functions to be integrated.

Definition 1.11 Let f be a function from IR to IR. We say that f is Borel-measurable if the set
fx � IR� f�x� � Ag is in B�IR� whenever A � B�IR�. In the language of Section 2, we want the
�-algebra generated by f to be contained in B�IR�.

Definition 3.4 is purely technical and has nothing to do with keeping track of information. It is
difficult to conceive of a function which is not Borel-measurable, and we shall pretend such func-
tions don’t exist. Hencefore, “function mapping IR to IR” will mean “Borel-measurable function
mapping IR to IR” and “subset of IR” will mean “Borel subset of IR”.

Definition 1.12 An indicator function g from IR to IR is a function which takes only the values �
and �. We call

A
�
� fx � IR� g�x� � �g

the set indicated by g. We define the Lebesgue integral of g to beZ
IR

g d��
�
� ���A��

A simple function h from IR to IR is a linear combination of indicators, i.e., a function of the form

h�x� �
nX

k��

ckgk�x��

where each gk is of the form

gk�x� �



�� if x � Ak �
�� if x �� Ak �

and each ck is a real number. We define the Lebesgue integral of h to beZ
R

h d��
�
�

nX
k��

ck

Z
IR

gkd�� �
nX

k��

ck���Ak��

Let f be a nonnegative function defined on IR, possibly taking the value � at some points. We
define the Lebesgue integral of f to beZ

IR

f d��
�
� sup

�Z
IR

h d��� h is simple and h�x� � f�x� for every x � IR

�
�
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It is possible that this integral is infinite. If it is finite, we say that f is integrable.

Finally, let f be a function defined on IR, possibly taking the value � at some points and the value
�� at other points. We define the positive and negative parts of f to be

f��x�
�
� maxff�x�� �g� f��x� �

� maxf�f�x�� �g�
respectively, and we define the Lebesgue integral of f to beZ

IR
f d��

�
�

Z
IR
f� d�� � �

Z
IR
f� d���

provided the right-hand side is not of the form ���. If both
R
IR f

� d�� and
R
IR f

� d�� are finite
(or equivalently,

R
IR jf j d�� ��, since jf j � f� � f�), we say that f is integrable.

Let f be a function defined on IR, possibly taking the value � at some points and the value �� at
other points. Let A be a subset of IR. We defineZ

A

f d��
�
�
Z
IR

lIAf d���

where

lIA�x�
�
�



�� if x � A�
�� if x �� A�

is the indicator function of A.

The Lebesgue integral just defined is related to the Riemann integral in one very important way: if
the Riemann integral

R b
a f�x�dx is defined, then the Lebesgue integral

R
�a�b f d�� agrees with the

Riemann integral. The Lebesgue integral has two important advantages over the Riemann integral.
The first is that the Lebesgue integral is defined for more functions, as we show in the following
examples.

Example 1.5 LetQ be the set of rational numbers in ��� ��, and consider f �
� lIQ. Being a countable

set, Q has Lebesgue measure zero, and so the Lebesgue integral of f over ��� �� isZ
����

f d�� � ��

To compute the Riemann integral
R �
� f�x�dx, we choose partition points � � x� � x� � 	 	 	 �

xn � � and divide the interval ��� �� into subintervals �x�� x��� �x�� x��� � � � � �xn��� xn�. In each
subinterval �xk��� xk� there is a rational point qk , where f�qk� � �, and there is also an irrational
point rk, where f�rk� � �. We approximate the Riemann integral from above by the upper sum

nX
k��

f�qk��xk � xk��� �
nX

k��

� 	 �xk � xk��� � ��

and we also approximate it from below by the lower sum

nX
k��

f�rk��xk � xk��� �
nX

k��

� 	 �xk � xk��� � ��
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No matter how fine we take the partition of ��� ��, the upper sum is always � and the lower sum is
always �. Since these two do not converge to a common value as the partition becomes finer, the
Riemann integral is not defined. �

Example 1.6 Consider the function

f�x�
�
�



�� if x � ��
�� if x �� ��

This is not a simple function because simple function cannot take the value �. Every simple
function which lies between � and f is of the form

h�x�
�
�



y� if x � ��
�� if x �� ��

for some y � �����, and thus has Lebesgue integralZ
IR

h d�� � y��f�g � ��

It follows thatZ
IR

f d�� � sup

�Z
IR

h d��� h is simple and h�x� � f�x� for every x � IR

�
� ��

Now consider the Riemann integral
R�
�� f�x� dx, which for this function f is the same as the

Riemann integral
R �
�� f�x� dx. When we partition ���� �� into subintervals, one of these will contain

the point �, and when we compute the upper approximating sum for
R �
�� f�x� dx, this point will

contribute� times the length of the subinterval containing it. Thus the upper approximating sum is
�. On the other hand, the lower approximating sum is �, and again the Riemann integral does not
exist. �

The Lebesgue integral has all linearity and comparison properties one would expect of an integral.
In particular, for any two functions f and g and any real constant c,Z

IR

�f � g� d�� �
Z
IR

f d�� �
Z
IR

g d���Z
IR

cf d�� � c

Z
IR

f d���

and whenever f�x� � g�x� for all x � IR, we haveZ
IR

f d�� �
Z
IR

gd d���

Finally, if A and B are disjoint sets, thenZ
A�B

f d�� �
Z
A

f d�� �
Z
B

f d���
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There are three convergence theorems satisfied by the Lebesgue integral. In each of these the sit-
uation is that there is a sequence of functions fn� n � �� �� � � � converging pointwise to a limiting
function f . Pointwise convergence just means that

lim
n��

fn�x� � f�x� for every x � IR�

There are no such theorems for the Riemann integral, because the Riemann integral of the limit-
ing function f is too often not defined. Before we state the theorems, we given two examples of
pointwise convergence which arise in probability theory.

Example 1.7 Consider a sequence of normal densities, each with variance � and the n-th having
mean n:

fn�x�
�
�

�p
�	

e�
�x�n��

� �

These converge pointwise to the function

f�x� � � for every x � IR�

We have
R
IR fnd�� � � for every n, so limn��

R
IR fnd�� � �, but

R
IR f d�� � �. �

Example 1.8 Consider a sequence of normal densities, each with mean � and the n-th having vari-
ance �

n
:

fn�x�
�
�

r
n

�	
e�

x
�

�n �

These converge pointwise to the function

f�x�
�
�



�� if x � ��
�� if x �� ��

We have again
R
IR fnd�� � � for every n, so limn��

R
IR fnd�� � �, but

R
IR f d�� � �. The

function f is not the Dirac delta; the Lebesgue integral of this function was already seen in Example
1.6 to be zero. �

Theorem 3.1 (Fatou’s Lemma) Let fn� n � �� �� � � � be a sequence of nonnegative functions con-
verging pointwise to a function f . ThenZ

IR

f d�� � lim inf
n��

Z
IR

fn d���

If limn��
R
IR fn d�� is defined, then Fatou’s Lemma has the simpler conclusionZ

IR

f d�� � lim
n��

Z
IR

fn d���

This is the case in Examples 1.7 and 1.8, where

lim
n��

Z
IR

fn d�� � ��
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while
R
IR f d�� � �. We could modify either Example 1.7 or 1.8 by setting gn � fn if n is even,

but gn � �fn if n is odd. Now
R
IR gn d�� � � if n is even, but

R
IR gn d�� � � if n is odd. The

sequence fRIR gn d��g�n�� has two cluster points, � and �. By definition, the smaller one, �, is
lim infn��

R
IR gn d�� and the larger one, �, is lim supn��

R
IR gn d��. Fatou’s Lemma guarantees

that even the smaller cluster point will be greater than or equal to the integral of the limiting function.

The key assumption in Fatou’s Lemma is that all the functions take only nonnegative values. Fatou’s
Lemma does not assume much but it is is not very satisfying because it does not conclude thatZ

IR

f d�� � lim
n��

Z
IR

fn d���

There are two sets of assumptions which permit this stronger conclusion.

Theorem 3.2 (Monotone Convergence Theorem) Let fn� n � �� �� � � � be a sequence of functions
converging pointwise to a function f . Assume that

� � f��x� � f��x� � f��x� � 	 	 	 for every x � IR�

Then Z
IR

f d�� � lim
n��

Z
IR

fn d���

where both sides are allowed to be �.

Theorem 3.3 (Dominated Convergence Theorem) Let fn� n � �� �� � � � be a sequence of functions,
which may take either positive or negative values, converging pointwise to a function f . Assume
that there is a nonnegative integrable function g (i.e.,

R
IR g d�� ��) such that

jfn�x�j � g�x� for every x � IR for every n�

Then Z
IR

f d�� � lim
n��

Z
IR

fn d���

and both sides will be finite.

1.4 General Probability Spaces

Definition 1.13 A probability space �	�F � IP � consists of three objects:

(i) 	, a nonempty set, called the sample space, which contains all possible outcomes of some
random experiment;

(ii) F , a �-algebra of subsets of 	;

(iii) IP , a probability measure on �	�F�, i.e., a function which assigns to each set A � F a number
IP �A� � ��� ��, which represents the probability that the outcome of the random experiment
lies in the set A.
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Remark 1.1 We recall from Homework Problem 1.4 that a probability measure IP has the following
properties:

(a) IP ��� � �.

(b) (Countable additivity) If A�� A�� � � � is a sequence of disjoint sets in F , then

IP

�
��
k��

Ak

�
�

�X
k��

IP �Ak��

(c) (Finite additivity) If n is a positive integer and A�� � � � � An are disjoint sets in F , then

IP �A� � 	 	 	 �An� � IP �A�� � 	 	 	� IP �An��

(d) If A and B are sets in F and A � B, then

IP �B� � IP �A� � IP �B nA��
In particular,

IP �B� � IP �A��

(d) (Continuity from below.) If A�� A�� � � � is a sequence of sets in F with A� � A� � 	 	 	 , then

IP

�
��
k��

Ak

�
� lim

n��
IP �An��

(d) (Continuity from above.) If A�� A�� � � � is a sequence of sets in F with A� � A� � 	 	 	 , then

IP

�
��
k��

Ak

�
� lim

n��
IP �An��

We have already seen some examples of finite probability spaces. We repeat these and give some
examples of infinite probability spaces as well.

Example 1.9 Finite coin toss space.
Toss a coin n times, so that 	 is the set of all sequences of H and T which have n components.
We will use this space quite a bit, and so give it a name: 	n. Let F be the collection of all subsets
of 	n. Suppose the probability of H on each toss is p, a number between zero and one. Then the

probability of T is q �
� �� p. For each � � ���� ��� � � � � �n� in 	n, we define

IPf�g �
� pNumber of H in � 	 qNumber of T in ��

For each A � F , we define

IP �A�
�
�
X
��A

IPf�g� (4.1)

We can define IP �A� this way because A has only finitely many elements, and so only finitely many
terms appear in the sum on the right-hand side of (4.1). �
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Example 1.10 Infinite coin toss space.
Toss a coin repeatedly without stopping, so that 	 is the set of all nonterminating sequences of H
and T . We call this space 	�. This is an uncountably infinite space, and we need to exercise some
care in the construction of the �-algebra we will use here.

For each positive integer n, we define Fn to be the �-algebra determined by the first n tosses. For
example, F� contains four basic sets,

AHH
�
� f� � ���� ��� ��� � � ����� � H��� � Hg
� The set of all sequences which begin with HH�

AHT
�
� f� � ���� ��� ��� � � ����� � H��� � Tg
� The set of all sequences which begin with HT�

ATH
�
� f� � ���� ��� ��� � � ����� � T� �� � Hg
� The set of all sequences which begin with TH�

ATT
�
� f� � ���� ��� ��� � � ����� � T� �� � Tg
� The set of all sequences which begin with TT�

Because F� is a �-algebra, we must also put into it the sets �, 	, and all unions of the four basic
sets.

In the �-algebra F , we put every set in every �-algebra Fn, where n ranges over the positive
integers. We also put in every other set which is required to make F be a �-algebra. For example,
the set containing the single sequence

fHHHHH 	 	 	g � fH on every tossg
is not in any of the Fn �-algebras, because it depends on all the components of the sequence and
not just the first n components. However, for each positive integer n, the set

fH on the first n tossesg
is in Fn and hence in F . Therefore,

fH on every tossg �
��
n��

fH on the first n tossesg

is also in F .

We next construct the probability measure IP on �	��F� which corresponds to probability p �
��� �� for H and probability q � � � p for T . Let A � F be given. If there is a positive integer n
such that A � Fn, then the description of A depends on only the first n tosses, and it is clear how to
define IP �A�. For example, supposeA � AHH �ATH , where these sets were defined earlier. Then
A is in F�. We set IP �AHH� � p� and IP �ATH� � qp, and then we have

IP �A� � IP �AHH � ATH� � p� � qp � �p� q�p � p�

In other words, the probability of a H on the second toss is p.
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Let us now consider a set A � F for which there is no positive integer n such that A � F . Such
is the case for the set fH on every tossg. To determine the probability of these sets, we write them
in terms of sets which are in Fn for positive integers n, and then use the properties of probability
measures listed in Remark 1.1. For example,

fH on the first tossg � fH on the first two tossesg
� fH on the first three tossesg
� 	 	 	 �

and
��
n��

fH on the first n tossesg � fH on every tossg�

According to Remark 1.1(d) (continuity from above),

IPfH on every tossg � lim
n��

IPfH on the first n tossesg � lim
n��

pn�

If p � �, then IPfH on every tossg � �; otherwise, IPfH on every tossg � �.

A similar argument shows that if � � p � � so that � � q � �, then every set in 	� which contains
only one element (nonterminating sequence of H and T ) has probability zero, and hence very set
which contains countably many elements also has probabiliy zero. We are in a case very similar to
Lebesgue measure: every point has measure zero, but sets can have positive measure. Of course,
the only sets which can have positive probabilty in 	� are those which contain uncountably many
elements.

In the infinite coin toss space, we define a sequence of random variables Y�� Y�� � � � by

Yk���
�
�



� if �k � H�

� if �k � T�

and we also define the random variable

X��� �
nX

k��

Yk���

�k
�

Since each Yk is either zero or one,X takes values in the interval ��� ��. Indeed, X�TTTT 	 	 	 � � �,
X�HHHH 	 	 	 � � � and the other values of X lie in between. We define a “dyadic rational
number” to be a number of the form m

�k
, where k and m are integers. For example, �

	 is a dyadic
rational. Every dyadic rational in (0,1) corresponds to two sequences � � 	�. For example,

X�HHTTTTT 	 	 	 � � X�HTHHHHH 	 	 	 � � �

�
�

The numbers in (0,1) which are not dyadic rationals correspond to a single � � 	�; these numbers
have a unique binary expansion.
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Whenever we place a probability measure IP on �	�F�, we have a corresponding induced measure
LX on ��� ��. For example, if we set p � q � �

� in the construction of this example, then we have

LX
�
��

�

�

�
� IPfFirst toss is Tg � �

�
�

LX
�
�

�
� �

�
� IPfFirst toss is Hg � �

�
�

LX
�
��

�

�

�
� IPfFirst two tosses are TTg � �

�
�

LX
�
�

�
�
�

�

�
� IPfFirst two tosses are THg � �

�
�

LX
�
�

�
�
�

�

�
� IPfFirst two tosses are HTg � �

�
�

LX
�
�

�
� �

�
� IPfFirst two tosses are HHg � �

�
�

Continuing this process, we can verify that for any positive integers k and m satisfying

� � m� �

�k
�

m

�k
� ��

we have

LX
�
m� �

�k
�
m

�k

�
�

�

�k
�

In other words, the LX -measure of all intervals in ��� �� whose endpoints are dyadic rationals is the
same as the Lebesgue measure of these intervals. The only way this can be is for LX to be Lebesgue
measure.

It is interesing to consider what LX would look like if we take a value of p other than �
� when we

construct the probability measure IP on 	.

We conclude this example with another look at the Cantor set of Example 3.2. Let 	pairs be the
subset of 	 in which every even-numbered toss is the same as the odd-numbered toss immediately
preceding it. For example, HHTTTTHH is the beginning of a sequence in 	pairs, but HT is not.
Consider now the set of real numbers

C�
�
� fX����� � 	pairsg�

The numbers between ��	 �
�
�� can be written as X���, but the sequence � must begin with either

TH or HT . Therefore, none of these numbers is in C�. Similarly, the numbers between � �
�� �

�
���

can be written as X���, but the sequence � must begin with TTTH or TTHT , so none of these
numbers is in C �. Continuing this process, we see thatC � will not contain any of the numbers which
were removed in the construction of the Cantor set C in Example 3.2. In other words, C � � C.
With a bit more work, one can convince onself that in fact C � � C, i.e., by requiring consecutive
coin tosses to be paired, we are removing exactly those points in ��� �� which were removed in the
Cantor set construction of Example 3.2. �
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In addition to tossing a coin, another common random experiment is to pick a number, perhaps
using a random number generator. Here are some probability spaces which correspond to different
ways of picking a number at random.

Example 1.11
Suppose we choose a number from IR in such a way that we are sure to get either �, � or ��.
Furthermore, we construct the experiment so that the probability of getting � is 	

� , the probability of
getting � is 	

� and the probability of getting �� is �
� . We describe this random experiment by taking

	 to be IR, F to be B�IR�, and setting up the probability measure so that

IPf�g �
�

�
� IPf�g � �

�
� IPf��g �

�

�
�

This determines IP �A� for every set A � B�IR�. For example, the probability of the interval ��� ��
is 


� , because this interval contains the numbers � and �, but not the number ��.

The probability measure described in this example is LS� , the measure induced by the stock price
S�, when the initial stock price S� � � and the probability ofH is �

� . This distributionwas discussed
immediately following Definition 2.8. �

Example 1.12 Uniform distribution on ��� ��.
Let 	 � ��� �� and let F � B���� ���, the collection of all Borel subsets containined in ��� ��. For
each Borel setA � ��� ��, we define IP �A� � ���A� to be the Lebesgue measure of the set. Because
����� �� � �, this gives us a probability measure.

This probability space corresponds to the random experiment of choosing a number from ��� �� so
that every number is “equally likely” to be chosen. Since there are infinitely mean numbers in ��� ��,
this requires that every number have probabilty zero of being chosen. Nonetheless, we can speak of
the probability that the number chosen lies in a particular set, and if the set has uncountably many
points, then this probability can be positive. �

I know of no way to design a physical experiment which corresponds to choosing a number at
random from ��� �� so that each number is equally likely to be chosen, just as I know of no way to
toss a coin infinitely many times. Nonetheless, both Examples 1.10 and 1.12 provide probability
spaces which are often useful approximations to reality.

Example 1.13 Standard normal distribution.
Define the standard normal density


�x�
�
�

�p
�	

e
�
x�

� �

Let 	 � IR, F � B�IR� and for every Borel set A � IR, define

IP �A�
�
�
Z
A


d��� (4.2)
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If A in (4.2) is an interval �a� b�, then we can write (4.2) as the less mysterious Riemann integral:

IP �a� b�
�
�

Z b

a

�p
�	

e
�
x�

� dx�

This corresponds to choosing a point at random on the real line, and every single point has probabil-
ity zero of being chosen, but if a set A is given, then the probability the point is in that set is given
by (4.2). �

The construction of the integral in a general probability space follows the same steps as the con-
struction of Lebesgue integral. We repeat this construction below.

Definition 1.14 Let �	�F � IP � be a probability space, and letX be a random variable on this space,
i.e., a mapping from 	 to IR, possibly also taking the values ��.

� If X is an indicator, i.e,

X��� � lIA��� �



� if � � A�

� if � � Ac�

for some set A � F , we define Z
�
X dIP

�
� IP �A��

� If X is a simple function, i.e,

X��� �
nX

k��

cklIAk����

where each ck is a real number and each Ak is a set in F , we defineZ
�
X dIP

�
�

nX
k��

ck

Z
�
lIAk dIP �

nX
k��

ckIP �Ak��

� If X is nonnegative but otherwise general, we defineZ
�
X dIP

�
� sup

�Z
�
Y dIP � Y is simple and Y ��� � X��� for every � � 	

�
�

In fact, we can always construct a sequence of simple functions Yn� n � �� �� � � � such that

� � Y���� � Y���� � Y���� � � � � for every � � 	�

and Y ��� � limn�� Yn��� for every � � 	. With this sequence, we can defineZ
�
X dIP

�
� lim

n��

Z
�
Yn dIP�
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� If X is integrable, i.e, Z
�
X� dIP ���

Z
�
X� dIP ���

where
X����

�
� maxfX���� �g� X����

�
� maxf�X���� �g�

then we define Z
�
X dIP

�
�
Z
�
X� dIP � �

Z
�
X� dIP�

If A is a set in F and X is a random variable, we defineZ
A
X dIP

�
�

Z
�
lIA 	X dIP�

The expectation of a random variable X is defined to be

IEX
�
�
Z
�
X dIP�

The above integral has all the linearity and comparison properties one would expect. In particular,
if X and Y are random variables and c is a real constant, thenZ

�
�X � Y � dIP �

Z
�
X dIP �

Z
�
Y dIP�Z

�
cX dIP � c

Z
�
X dP�

If X��� � Y ��� for every � � 	, thenZ
�
X dIP �

Z
�
Y dIP�

In fact, we don’t need to have X��� � Y ��� for every � � 	 in order to reach this conclusion; it is
enough if the set of � for which X��� � Y ��� has probability one. When a condition holds with
probability one, we say it holds almost surely. Finally, if A and B are disjoint subsets of 	 and X
is a random variable, then Z

A�B
X dIP �

Z
A

X dIP �

Z
B

X dIP�

We restate the Lebesgue integral convergence theorem in this more general context. We acknowl-
edge in these statements that conditions don’t need to hold for every �; almost surely is enough.

Theorem 4.4 (Fatou’s Lemma) Let Xn� n � �� �� � � � be a sequence of almost surely nonnegative
random variables converging almost surely to a random variable X . ThenZ

�
X dIP � lim inf

n��

Z
�
Xn dIP�

or equivalently,
IEX � lim inf

n��
IEXn�
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Theorem 4.5 (Monotone Convergence Theorem) Let Xn� n � �� �� � � � be a sequence of random
variables converging almost surely to a random variable X . Assume that

� � X� � X� � X� � 	 	 	 almost surely�

Then Z
�
X dIP � lim

n��

Z
�
XndIP�

or equivalently,
IEX � lim

n��
IEXn�

Theorem 4.6 (Dominated Convergence Theorem) Let Xn� n � �� �� � � � be a sequence of random
variables, converging almost surely to a random variable X . Assume that there exists a random
variable Y such that

jXnj � Y almost surely for every n�

Then Z
�
X dIP � lim

n��

Z
�
Xn dIP�

or equivalently,
IEX � lim

n��
IEXn�

In Example 1.13, we constructed a probability measure on �IR�B�IR�� by integrating the standard
normal density. In fact, whenever
 is a nonnegative function defined onR satisfying

R
IR
d�� � �,

we call 
 a density and we can define an associated probability measure by

IP �A�
�
�
Z
A


d�� for every A � B�IR�� (4.3)

We shall often have a situation in which two measure are related by an equation like (4.3). In fact,
the market measure and the risk-neutral measures in financial markets are related this way. We say
that 
 in (4.3) is the Radon-Nikodym derivative of dIP with respect to ��, and we write


 �
dIP

d��
� (4.4)

The probability measure IP weights different parts of the real line according to the density 
. Now
suppose f is a function on �R�B�IR�� IP �. Definition 1.14 gives us a value for the abstract integralZ

IR

f dIP�

We can also evaluate Z
IR

f
 d���

which is an integral with respec to Lebesgue measure over the real line. We want to show thatZ
IR

f dIP �
Z
IR

f
 d��� (4.5)
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an equation which is suggested by the notation introduced in (4.4) (substitute dIP
d��

for 
 in (4.5) and
“cancel” the d��). We include a proof of this because it allows us to illustrate the concept of the
standard machine explained in Williams’s book in Section 5.12, page 5.

The standard machine argument proceeds in four steps.

Step 1. Assume that f is an indicator function, i.e., f�x� � lIA�x� for some Borel set A � IR. In
that case, (4.5) becomes

IP �A� �

Z
A


d���

This is true because it is the definition of IP �A�.

Step 2. Now that we know that (4.5) holds when f is an indicator function, assume that f is a
simple function, i.e., a linear combination of indicator functions. In other words,

f�x� �
nX

k��

ckhk�x��

where each ck is a real number and each hk is an indicator function. ThenZ
IR

f dIP �

Z
IR

�
nX

k��

ckhk

�
dIP

�
nX

k��

ck

Z
IR
hk dIP

�
nX

k��

ck

Z
IR
hk
d��

�

Z
IR

�
nX

k��

ckhk

�

d��

�

Z
IR

f
 d���

Step 3. Now that we know that (4.5) holds when f is a simple function, we consider a general
nonnegative function f . We can always construct a sequence of nonnegative simple functions
fn� n � �� �� � � � such that

� � f��x� � f��x� � f��x� � � � � for every x � IR�

and f�x� � limn�� fn�x� for every x � IR. We have already proved thatZ
IR

fn dIP �
Z
IR

fn
d�� for every n�

We let n� and use the Monotone Convergence Theorem on both sides of this equality to
get Z

IR

f dIP �
Z
IR

f
 d���



40

Step 4. In the last step, we consider an integrable function f , which can take both positive and
negative values. By integrable, we mean thatZ

IR

f� dIP ���

Z
IR

f� dIP ���

¿From Step 3, we have Z
IR

f� dIP �

Z
IR

f�
d���Z
IR

f� dIP �

Z
IR

f�
d���

Subtracting these two equations, we obtain the desired result:Z
IR

f dIP �
Z
IR

f� dIP �
Z
IR

f� dIP

�
Z
IR

f�
d�� �
Z
IR

f�
d��

�
Z
R

f
 d���

1.5 Independence

In this section, we define and discuss the notion of independence in a general probability space
�	�F � IP �, although most of the examples we give will be for coin toss space.

1.5.1 Independence of sets

Definition 1.15 We say that two sets A � F and B � F are independent if

IP �A 
 B� � IP �A�IP �B��

Suppose a random experiment is conducted, and � is the outcome. The probability that � � A is
IP �A�. Suppose you are not told �, but you are told that � � B. Conditional on this information,
the probability that � � A is

IP �AjB�
�
�
IP �A 
B�

IP �B�
�

The sets A and B are independent if and only if this conditional probability is the uncondidtional
probability IP �A�, i.e., knowing that � � B does not change the probability you assign to A. This
discussion is symmetric with respect to A and B; if A and B are independent and you know that
� � A, the conditional probability you assign to B is still the unconditional probability IP �B�.

Whether two sets are independent depends on the probability measure IP . For example, suppose we
toss a coin twice, with probability p for H and probability q � �� p for T on each toss. To avoid
trivialities, we assume that � � p � �. Then

IPfHHg � p�� IPfHTg � IPfTHg � pq� IPfTTg � q�� (5.1)
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Let A � fHH�HTg and B � fHT� THg. In words, A is the set “H on the first toss” and B is the
set “one H and one T .” Then A 
 B � fHTg. We compute

IP �A� � p� � pq � p�

IP �B� � �pq�

IP �A�IP �B� � �p�q�

IP �A 
B� � pq�

These sets are independent if and only if �p�q � pq, which is the case if and only if p � �
� .

If p � �
� , then IP �B�, the probability of one head and one tail, is �

� . If you are told that the coin
tosses resulted in a head on the first toss, the probability of B, which is now the probability of a T
on the second toss, is still �

� .

Suppose however that p � ����. By far the most likely outcome of the two coin tosses is TT , and
the probability of one head and one tail is quite small; in fact, IP �B� � ������. However, if you
are told that the first toss resulted in H , it becomes very likely that the two tosses result in one head
and one tail. In fact, conditioned on getting a H on the first toss, the probability of one H and one
T is the probability of a T on the second toss, which is ����.

1.5.2 Independence of �-algebras

Definition 1.16 Let G andH be sub-�-algebras ofF . We say that G andH are independent if every
set in G is independent of every set inH, i.e,

IP �A 
 B� � IP �A�IP �B� for every A � H� B � G�

Example 1.14 Toss a coin twice, and let IP be given by (5.1). Let G � F� be the �-algebra
determined by the first toss: G contains the sets

��	� fHH�HTg� fTH�TTg�

Let H be the �-albegra determined by the second toss: H contains the sets

��	� fHH�THg� fHT�TTg�

These two �-algebras are independent. For example, if we choose the set fHH�HTg from G and
the set fHH� THg from H, then we have

IPfHH�HTgIPfHH� THg� �p� � pq��p� � pq� � p��

IP
�
fHH�HTg
 fHH� THg

�
� IPfHHg � p��

No matter which set we choose in G and which set we choose inH, we will find that the product of
the probabilties is the probability of the intersection.
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Example 1.14 illustrates the general principle that when the probability for a sequence of tosses is
defined to be the product of the probabilities for the individual tosses of the sequence, then every
set depending on a particular toss will be independent of every set depending on a different toss.
We say that the different tosses are independent when we construct probabilities this way. It is also
possible to construct probabilities such that the different tosses are not independent, as shown by
the following example.

Example 1.15 Define IP for the individual elements of 	 � fHH�HT�TH�TTg to be

IPfHHg � �

�
� IPfHTg � �

�
� IPfTHg � �

�
� IPfTTg �

�

�
�

and for every set A � 	, define IP �A� to be the sum of the probabilities of the elements in A. Then
IP �	� � �, so IP is a probability measure. Note that the sets fH on first tossg � fHH�HTg and
fH on second tossg � fHH� THg have probabilities IPfHH�HTg � �

� and IPfHH� THg �
	
� , so the product of the probabilities is 	

�� . On the other hand, the intersection of fHH�HTg
and fHH� THg contains the single element fHHg, which has probability �

� . These sets are not
independent.

1.5.3 Independence of random variables

Definition 1.17 We say that two random variables X and Y are independent if the �-algebras they
generate ��X� and ��Y � are independent.

In the probability space of three independent coin tosses, the price S� of the stock at time � is
independent of S�

S�
. This is because S� depends on only the first two coin tosses, whereas S�

S�
is

either u or d, depending on whether the third coin toss is H or T .

Definition 1.17 says that for independent random variables X and Y , every set defined in terms of
X is independent of every set defined in terms of Y . In the case of S� and S�

S�
just considered, for ex-

ample, the sets fS� � udS�g � fHTH�HTTg and
n
S�
S�

� u
o
� fHHH�HTH� THH�TTHg

are indepedent sets.

Suppose X and Y are independent random variables. We defined earlier the measure induced by X
on IR to be

LX�A�
�
� IPfX � Ag� A � IR�

Similarly, the measure induced by Y is

LY �B�
�
� IPfY � Bg� B � IR�

Now the pair �X� Y � takes values in the plane IR�, and we can define the measure induced by the
pair

LX�Y �C� � IPf�X� Y � � Cg� C � IR��

The set C in this last equation is a subset of the plane IR�. In particular, C could be a “rectangle”,
i.e, a set of the form A� B, where A � IR and B � IR. In this case,

f�X� Y � � A�Bg � fX � Ag 
 fY � Bg�
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and X and Y are independent if and only if

LX�Y �A� B� � IP
�
fX � Ag 
 fY � Bg

�
� IPfX � AgIPfY � Bg (5.2)

� LX�A�LY �B��

In other words, for independent random variablesX and Y , the joint distribution represented by the
measure LX�Y factors into the product of the marginal distributions represented by the measures
LX and LY .

A joint density for �X� Y � is a nonnegative function fX�Y �x� y� such that

LX�Y �A�B� �
Z
A

Z
B

fX�Y �x� y� dx dy�

Not every pair of random variables �X� Y � has a joint density, but if a pair does, then the random
variables X and Y have marginal densities defined by

fX�x� �

Z �

��
fX�Y �x� �� d�� fY �y�

Z �

��
fX�Y ��� y� d��

These have the properties

LX�A� �
Z
A

fX�x� dx� A � IR�

LY �B� �

Z
B

fY �y� dy� B � IR�

Suppose X and Y have a joint density. Then X and Y are independent variables if and only if
the joint density is the product of the marginal densities. This follows from the fact that (5.2) is
equivalent to independence of X and Y . Take A � ���� x� and B � ���� y�, write (5.1) in terms
of densities, and differentiate with respect to both x and y.

Theorem 5.7 Suppose X and Y are independent random variables. Let g and h be functions from
IR to IR. Then g�X� and h�Y � are also independent random variables.

PROOF: Let us denote W � g�X� and Z � h�Y �. We must consider sets in ��W � and ��Z�. But
a typical set in ��W � is of the form

f��W ��� � Ag � f� � g�X���� � Ag�
which is defined in terms of the random variable X . Therefore, this set is in ��X�. (In general,
we have that every set in ��W � is also in ��X�, which means that X contains at least as much
information as W . In fact, X can contain strictly more information thanW , which means that ��X�
will contain all the sets in ��W � and others besides; this is the case, for example, if W � X �.)

In the same way that we just argued that every set in ��W � is also in ��X�, we can show that
every set in ��Z� is also in ��Y �. Since every set in ��X� is independent of every set in ��Y �, we
conclude that every set in ��W � is independent of every set in ��Z�. �
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Definition 1.18 Let X�� X�� � � � be a sequence of random variables. We say that these random
variables are independent if for every sequence of sets A� � ��X��� A� � ��X��� � � � and for every
positive integer n,

IP �A� 
 A� 
 	 	 	An� � IP �A��IP �A�� 	 	 	IP �An��

1.5.4 Correlation and independence

Theorem 5.8 If two random variablesX and Y are independent, and if g and h are functions from
IR to IR, then

IE�g�X�h�Y �� � IEg�X� 	 IEh�Y ��

provided all the expectations are defined.

PROOF: Let g�x� � lIA�x� and h�y� � lIB�y� be indicator functions. Then the equation we are
trying to prove becomes

IP
�
fX � Ag 
 fY � Bg

�
� IPfX � AgIPfY � Bg�

which is true because X and Y are independent. Now use the standard machine to get the result for
general functions g and h. �
The variance of a random variable X is defined to be

Var�X�
�
� IE�X � IEX ���

The covariance of two random variables X and Y is defined to be

Cov�X� Y �
�
� IE

h
�X � IEX��Y � IEY �

i
� IE�XY �� IEX 	 IEY�

According to Theorem 5.8, for independent random variables, the covariance is zero. If X and Y
both have positive variances, we define their correlation coefficient

�X� Y �
�
�

Cov�X� Y �p
Var�X�Var�Y �

�

For independent random variables, the correlation coefficient is zero.

Unfortunately, two random variables can have zero correlation and still not be independent. Con-
sider the following example.

Example 1.16 Let X be a standard normal random variable, let Z be independent of X and have
the distribution IPfZ � �g � IPfZ � ��g � �. Define Y � XZ. We show that Y is also a
standard normal random variable, X and Y are uncorrelated, but X and Y are not independent.

The last claim is easy to see. If X and Y were independent, so would be X � and Y �, but in fact,
X� � Y � almost surely.
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We next check that Y is standard normal. For y � IR, we have

IPfY � yg � IPfY � y and Z � �g� IPfY � y and Z � ��g
� IPfX � y and Z � �g� IPf�X � y and Z � ��g
� IPfX � ygIPfZ � �g� IPf�X � ygIPfZ � ��g
�

�

�
IPfX � yg� �

�
IPf�X � yg�

Since X is standard normal, IPfX � yg � IPfX � �yg, and we have IPfY � yg � IPfX � yg,
which shows that Y is also standard normal.

Being standard normal, both X and Y have expected value zero. Therefore,

Cov�X� Y � � IE�XY � � IE�X�Z� � IEX� 	 IEZ � � 	 � � ��

Where in IR� does the measure LX�Y put its mass, i.e., what is the distribution of �X� Y �?

We conclude this section with the observation that for independent random variables, the variance
of their sum is the sum of their variances. Indeed, if X and Y are independent and Z � X � Y ,
then

Var�Z� �
� IE

h
�Z � IEZ��

i
� IE

�
X � Y � IEX � IEY ��

i
� IE

h
�X � IEX�� � ��X � IEX��Y � IEY � � �Y � IEY ��

i
� Var�X� � �IE�X � IEX �IE�Y � IEY � � Var�Y �

� Var�X� � Var�Y ��

This argument extends to any finite number of random variables. If we are given independent
random variables X�� X�� � � � � Xn, then

Var�X� �X� � 	 	 	�Xn� � Var�X�� � Var�X�� � 	 	 	� Var�Xn�� (5.3)

1.5.5 Independence and conditional expectation.

We now return to property (k) for conditional expectations, presented in the lecture dated October
19, 1995. The property as stated there is taken from Williams’s book, page 88; we shall need only
the second assertion of the property:

(k) If a random variable X is independent of a �-algebra H, then

IE�X jH� � IEX�

The point of this statement is that if X is independent of H, then the best estimate of X based on
the information in H is IEX , the same as the best estimate of X based on no information.
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To show this equality, we observe first that IEX is H-measurable, since it is not random. We must
also check the partial averaging propertyZ

A

IEX dIP �
Z
A

X dIP for every A � H�

If X is an indicator of some set B, which by assumption must be independent ofH, then the partial
averaging equation we must check isZ

A
IP �B� dIP �

Z
A
lIB dIP�

The left-hand side of this equation is IP �A�IP �B�, and the right hand side isZ
�
lIAlIB dIP �

Z
�
lIA�B dIP � IP �A 
B��

The partial averaging equation holds because A and B are independent. The partial averaging
equation for general X independent of H follows by the standard machine.

1.5.6 Law of Large Numbers

There are two fundamental theorems about sequences of independent random variables. Here is the
first one.

Theorem 5.9 (Law of Large Numbers) Let X�� X�� � � � be a sequence of independent, identically
distributed random variables, each with expected value � and variance � �. Define the sequence of
averages

Yn
�
�
X� �X� � 	 	 	�Xn

n
� n � �� �� � � � �

Then Yn converges to � almost surely as n�.

We are not going to give the proof of this theorem, but here is an argument which makes it plausible.
We will use this argument later when developing stochastic calculus. The argument proceeds in two
steps. We first check that IEYn � � for every n. We next check that Var�Yn�  � as n  �. In
other words, the random variables Yn are increasingly tightly distributed around � as n�.

For the first step, we simply compute

IEYn �
�

n
�IEX� � IEX� � 	 	 	� IEXn� �

�

n
��� �� 	 	 	� ��� �z �

n times

� ��

For the second step, we first recall from (5.3) that the variance of the sum of independent random
variables is the sum of their variances. Therefore,

Var�Yn� �
nX

k��

Var
�
Xk

n

	
�

nX
k��

��

n�
�
��

n
�

As n�, we have Var�Yn� �.
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1.5.7 Central Limit Theorem

The Law of Large Numbers is a bit boring because the limit is nonrandom. This is because the
denominator in the definition of Yn is so large that the variance of Yn converges to zero. If we want
to prevent this, we should divide by

p
n rather than n. In particular, if we again have a sequence of

independent, identically distributed random variables, each with expected value � and variance ��,
but now we set

Zn
�
�

�X� � �� � �X� � �� � 	 	 	� �Xn � ��p
n

�

then each Zn has expected value zero and

Var�Zn� �
nX

k��

Var
�
Xk � �p

n

	
�

nX
k��

��

n
� ���

As n  �, the distributions of all the random variables Zn have the same degree of tightness, as
measured by their variance, around their expected value �. The Central Limit Theorem asserts that
as n�, the distribution of Zn approaches that of a normal random variable with mean (expected
value) zero and variance ��. In other words, for every set A � IR,

lim
n��

IPfZn � Ag �
�

�
p
�	

Z
A
e
� x

�

��� dx�


