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ETH Zürich

June 26, 2002

1This script collects material used in my lecture Econophysics held in SS 2002 at the ”Insitute of The-
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Chapter 4

Pricing and Hedging of Options

4.1 Introduction

In this Chapter we present methods for pricing and hedging options.

Section 2 introduces the basics of option prices. We derive the Black-Scholes option pricing
formula and discuss options sensitivities. We also present some formulas for pricing analytically
American Options and briefly discuss binomial option pricing.

Section 3 is devoted to pricing exotic options. First we consider options with contract variations.
Then we present results for path dependent options and for multiple factors options. Finally we
summarize some pricing formulas for other exotic options.

Section 4 deals with the Heston-Nandi Option Pricing approach. We discuss the analytical
results and show how to solve numerically the results.

Section 5 is concerned with Monte Carlo simulations in the field of options pricing. We introduce
to the Monte Carlo approach, present Monte Carlo estimators of the Greeks, discuss the case
of path-dependent options, and show how variance reduction techniques work. Additionally we
discuss the usage of low discrepancy sequences for random numbers and close the section with
an application to option data from the Sydney Futures Exchange.
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4.2 The Basics of Option Pricing

Introduction

A derivative security is a security whose value depends on the values of other more basic under-
lying variables. In recent years derivative securities have become increasingly important in the
field of finance. Futures and options are now actively traded on many different exchanges, and
outside of exchanges forward contracts swaps, and many different types of options are traded by
financial institutions and their corporate clients in what are termed over-the-counter markets.

This section will give an intuitive introduction to options and wants to introduce into the
numerical approaches of pricing derivatives.

What are Options?

Options are derivatives which imply different types of rights and obligations, expressed as Calls
and Puts. These Calls and Puts are traded according different rules depending on their special
contract specifications. To become more specific we will give short definitions of Calls, Puts,
Premium, European/Asian Options, Traded/OTC Options, Warrants, Plain Vanilla/Exotic Op-
tions, and types of Traders.

Calls: Calls give the buyer the right, but not the obligation, to buy a given quantity of the
underlying asset, at a given price, known as the exercise price or strike price, on or before
a given future date, the maturity date or expiry date.

Puts: Puts give the buyer the right, but not the obligation, to sell a given quantity of the
underlying asset, at a given price on or before a given future date.

Premium: New options are created by one party selling them and thereby undertaking the
obligations embedded in the options contract. Unlike the buyer, the seller known as the
writer has no choice regarding the fulfillment of the obligations under the options contract.
If the buyer wants to exercise his right, the writer must comply. For this asymmetry of
privilege the buyer must pay the writer the option price what is known as the premium.

European / American Options: Options are also classified as European or American. With Eu-
ropean options the right to buy or sell the underlying asset can only be exercised on the
expiry date, but with American options that right can be exercised at any time.
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Traded / OTC Options: Traded options are those options traded on recognized exchanges and
where there is an active secondary market. Options are also sold by private negotation; they
are said to be traded over-the-counter in the so called OTC markets. Traded options are
standardized contracts, traded according to the rules of the particular options exchange.
OTC options, on the other hand, are individually tailored to the needs of the customer.

Warrants: Longer traded options are called warrants, these too can be American or European,
and are generally traded over-the-counter. However, some are listed at stock exchanges
but generally not on the recognized option exchanges.

Plain Vanilla / Exotic Options: The options so far mentioned are also called standard or plain
vanilla options. Options with special properties attached, are named exotic options. One
kind of this class of options are path dependent options; barrier options, look-back options,
binary options, and many other types of options. They can be of European or American
style.

Types of Traders: Traders of derivative securities can be categorized as hedgers, speculators, or
arbitrageurs. Hedgers are interested in reducing a risk that they already face. Whereas
hedgers want to eliminate an exposure to movements in the price of an asset, speculators
wish to take a position in the market. Either they are betting that a price will go up
or they are betting that it will go down. Arbitrageurs are a third important group of
participants in derivative security markets. Arbitrage involves locking in a risk-less profit
by simultaneously entering into transactions in two or more markets.

Buying and Selling Options

To get more familiar of the principles of buying and selling options we will follow the four basic
operations: buying a call, writing a call, buying a put, and writing a put.

Buying a Call: The call buyer pays the option premium of 8 in return for the right to buy the
underlying asset at the exercise price, X, of 100. If at the expiry date of the option the
underlying asset price, S, is above the exercise price, say 120, the buyer will exercise the
option, pay the exercise price, and receive the asset. This may then be sold in the market
at 120 giving an instant profit of 12=(120-100)-8. Alternatively, the option may be sold
prior to expiry to realize a similar profit, because at expiry, its value must be equal to
the difference between the exercise price and the market price of the underlying asset,
otherwise arbitrage profits would be possible. If, on the other hand, the asset price at
expiry is at or below the exercise price, the option will be abandoned by the buyer and
he/she will suffer a loss equal to the option premium.

Writing a Call: The option writer is paid the option premium of 8 as compensation of bearing
the risk if having to deliver the underlying asset in return for being paid the exercise price.
If at the expiry, the asset price is, say 120, i.e. above the exercise price of 100, the writer
will incur a loss because he/she will have to buy the asset at the market price in order
to deliver to the options buyer in exchange for the lower exercise price. In this example
the loss will be (120-100)-8=12. If however, the asset price is below the exercise price at
expiry, say 90, the call option will not be exercised and the writer will make a profit equal
to the option premium.
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� Figure 4.1.1: The two upper graphs show the payoff functions for buying (left) and writing (right) a call. The
two lower graphs show the payoff functions for buying (left) and writing (right) a put. For an explanation we
refer to the text.

Buying a Put: The buyer pays the option premium of 8 for the right to sell (put) the underlying
asset at the exercise price of 100. If at expiry, the asset price is below the exercise price,
say 90, the put will have a value equal to the difference between the two prices, i.e. 100-
90=10, and the option will show a profit of 10-8=2. If however, the asset price is at or
above the exercise price, the put option will be abandoned and the buyer will incur a loss
equal to the option premium.

Writing a Put: The put writer is paid a premium of 8 for bearing the risk of having to take the
underlying asset at the exercise price. If the market price of the asset is below the exercise
price at expiry, the writer will incur a loss because he/she will have to pay the exercise
price, 100, but will only be able to resell the asset at the lower market price, i.e. 90. If
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however, the asset price is above the exercise price at expiry, the buyer will abandon the
put option and the writer will make a profit equal to option premium.

Factors Influencing Option Prices

Clearly at expiry, only two factors influence the value of an option, the exercise price and the
asset price. If the option has time remaining to expiry a number of factors come into play:

The Asset Price and Exercise Price: The higher the asset price S, relative to the exercise price
X, the more valuable a call will be, and the less valuable will be a put. In the case of a
call, where the difference X − S > 0 the option is said to have intrinsic value and to be
in-the-money. For a put to have intrinsic value, i.e. to be in-the-money, the asset price
must be below the exercise price. If, X = S, the options are said to be at-the-money.
In the case of a call, if S < X, the option is said to be out-of-the-money. It will have
no intrinsic value and what value it does have - known as time value or extrinsic value
- is dependent upon the interaction of the other factors influencing the option value. A
put is out-of-the money if S > X, in which case any value it does have will be extrinsic
value. The term time value or extrinsic value is used to describe that part of an option
premium that is not represented by intrinsic value. For example, if an option is priced at
20 with the exercise price at 240 and the security price of 255, the intrinsic value would
be 15=255-240, and the time value would be 5=20-15.

The Time to Maturity: The longer the time to maturity T − t, the greater is the probability
that the asset price S will be substantially different from the exercise price X and, as this
probability has some utility, the higher will be the value of both puts and calls.

The Rate of Interest: The interest rate r influences call options values because, by buying the
option and not the underlying security, the buyer is making a highly geared investment
thereby releasing capital to be invested at the risk free rate. There is an opportunity
saving in buying a call option and not the asset, this saving being higher, the higher the
rate of interest. Therefore, the higher the rate of interest, the higher the value of the call
option. This may also be expressed by saying that the higher the rate of interest the lower
will be the present value of the exercise price and, therefore, the higher will be the value of
the call. However, in the case of a put option, the lower the present value of the exercise
price, the lower will be the value of the option. Thus higher interest rates will result in
lower put option prices.

The Volatility of the Underlying Security: The more volatile the underlying asset price, the more
valuable will be the option. This is because the greater the volatility, the greater the prob-
ability of the asset price changing substantially to be above (for a call) or below (for a
put) the exercise price at expiry. It is true that the asset price may also fall (rise), but, as
the option does not have to exercised, the adverse movement is avoided. Thus the greater
the volatility, the greater the potential gain for the option holder and, both calls and puts
will be more valuable.

To summarize, a call option premium will be higher, the higher the asset price relative to the
exercise price, the higher the volatility, the higher the rate of interest and the longer the time to
maturity. Put option premiums will be higher , the lower the asset price relative to the exercise
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price, the higher the volatility, the lower the rate of interest and the longer the term to maturity.

The Basic Idea Behind Option Pricing

Suppose the current price of an asset is S = 50, and at the end of a period of time, its price must
be either S∗ = 25 or S∗ = 100. A call on asset is available with an exercise price of X = 50,
expiring at the end of the period. It is also possible to borrow and lend at a r = 25% rate of
interest.

The one piece of information left unfurnished is the current value of the call, c. However, if
profitable risk-less arbitrage is not possible, we can deduce from the given information alone
what the value of the call must be!

Example: A Leveraged Hedge

Consider forming the following leveraged hedge:

1. Write (sell) three calls at c each

2. Buy two shares at 50 each

3. Borrow 40 at 25% to be paid back at the end of the period

The return from this hedge for each possible level of the asset price at the expiration date is:

Current Date Expiration Date Expiration Date
X = 50; r = 25% S∗ = 25 S∗ = 100

Write 3 calls 3 c Payoff - -150
Buy 2 shares -100 Deliver 50 200
Borrow 40 Pay Back -50 -50

Total 0 0

Regardless of the outcome, the hedge exactly breaks even on the expiration date. Therefore, to
prevent profitable risk-less arbitrage, the current cash flow from establishing the position must be
zero; that is,

3c− 100 + 40 = 0.

The current value of the call must be c = 20. If the call were not priced at 20, a sure profit would be
possible. In particular if c = 25, the hedge would yield a current amount of 15 and would experience
no further gain or loss in the future. On the other hand, if c = 15, then the same thing could be
accomplished by buying three calls, selling short two shares, and lending 40.

The table above can be interpreted, as demonstrating an appropriately levered position in asset will
replicate the future returns of a call. That is, if we buy assets and borrow against them in the
right proportion, we can in effect, duplicate a pure position in calls. In view of this, it should seem
less surprising that all we needed to determine the exact value of the call was its exercise price,
underlying asset price, range of movement in the underlying asset price, and the rate of interest.
What may seem more incredible is what we do not need to know: Among other things, we do not
need to know the probability that the asset price will rise or fall.

Although this example was quite simple, it showed several essential features of option pricing.
And we will see later that it was not so unrealistic as it seemed.
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4.2.1 Black-Scholes Option Pricing

Wiener Processes - Brownian Motion

Standard models of asset or stock price behavior are expressed in terms of Wiener processes,
also referred to under the name Brownian motion.

The behavior of a variable z, which follows a Wiener process, can be understood by considering
the changes in its value in small intervals of time. Consider a small interval of time ∆t and
define ∆z as the change in z during ∆t. There are two basic properties ∆z must have for z to
be following a Wiener process:

• Property 1: ∆z is related to z by the equation ∆z = ε · (∆t)1/2, where ε is a random
drawing from a standardized normal distribution N(0, 1).

• Property 2: The values of ∆z for any two different short intervals of time ∆t are
independent.

It follows from Property 1 that ∆z itself has a normal distribution with mean ∆z = 0, and
variance of ∆z = ∆t. Additionally, Property 2 implies that z follows a Markov process, i.e.
a stochastic process where only the present value is relevant for predicting the future. The past
history of the variable and the way in which the present has emerged from the past are irrelevant.

Ito’s Lemma

The price of stock options is a function of the underlying stock’s price and time. More generally,
we can say that the price of any derivative security is a function of the stochastic variables
underlying the derivative security and time. Therefore we must acquire some understanding of
the behavior of functions of stochastic variables. An important result in this area is known as
Ito’s Lemma (1951).

Suppose that the value of a variable x follows an Ito process:

dx = a(x, t)dt + b(x, t)dz , (4.1)

where dz is a Wiener process and a and b are functions of x and t. The variable x has a drift
rate of a and a variance rate of b2. Ito’s shows that a function, G of x and t follow the process

dG =
{

∂G

∂x
a +

∂G

∂t
+

1
2

∂2G

∂x2
b2

}
dt +

∂G

∂x
bdz , (4.2)

where the dz is the same Wiener process in both equations above. Thus G also follows an Ito
process. It has a drift rate of

∂G

∂x
a +

∂G

∂t
+

1
2

∂2G

∂x2
b2 (4.3)

and a variance rate of
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∂2G

∂x2
b2 . (4.4)

If we approximate the asset price through the model

dS = uSdt + σSdz (4.5)

with constant values u (mean) and σ (variance), it follows from Ito’s Lemma, that the process
followed by a function, G, of S and t is

dG =
{

∂G

∂x
uS +

∂G

∂t
+

1
2

∂2G

∂x2
σ2S2

}
dt +

∂G

∂x
σSdz . (4.6)

Note, that both G and S are affected by the same underlying source of uncertainty, dz. This
proves to be very important in the derivation of the Black-Scholes results.

Example: Application to the Logarithm of the Asset Price

We now use Ito’s Lemma to derive the process followed by ln S. Define G = ln S. Since ∂G/∂S =
1/S, ∂2G/∂S2 = 1/S2, and ∂G/∂t = 0 it follows that the process followed by G is

dG = (u− 1

2
σ2)dt + σdz . (4.7)

Since u and σ are constant, this equation indicates that G follows a generalized Wiener process.
It has constant drift rate u − σ2/2 and constant variance rate σ2. This means that the change
in G between the current time, t, and some future time, T , is normally distributed with mean
(u − σ2/2)(T − t) and variance σ2(T − t). The value of G at time t is ln S. Its value at time T is
ln ST , where ST is the asset price at time T . Its change during the time interval T − t is therefore
ln ST − ln S; hence

ln ST − ln S = N [(u− σ2/2)(T − t), σ(T − t)1/2 . (4.8)

Derivation of Ito’s Lemma

A completely rigorous proof of Ito’s Lemma is beyond of this course. However, Ito’s Lemma
can be regarded as a natural extension of other, simpler results. Consider a continuous and
differentiable function G of a variable x. If ∆x is a small change in x and ∆G is the resulting
small change in G, it is well known that

∆G ≈ dG

dx
∆x . (4.9)

In other words, ∆G is approximately equal to the rate of change of G with respect to x multiplied
by ∆x. The error involves terms of order ∆x2. If a higher precision is required, a Taylor series
expansion of ∆G can be used.

∆G =
∂G

∂x
∆x +

1
2

∂2G

∂x2
∆x2 +

1
6

∂2G

∂x3
∆x3 + ... . (4.10)

For a continuous and differentiable function G of two variables x and y the result is analogous,
and the Taylor series expansion is
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∆G =
∂G

∂x
∆x +

∂G

∂y
∆y +

1
2

∂2G

∂x2
∆x2 +

1
2

∂2G

∂x∂y
∆x∆y +

1
2

∂2G

∂y2
∆y2 + ... . (4.11)

In the limit as ∆x and ∆y tend to zero the first order yields

dG =
∂G

∂x
dx +

∂G

∂y
dy . (4.12)

A derivative security is a function of a variable that follows a stochastic process. We now extend
the equation above to cover such functions. Suppose that a variable x follows the general Ito
process

dx = a(x, t)dt + b(x, t)dz (4.13)

and that G is some function of x and of time, t. By analogy the the Taylor series expansion we
can write

∆G =
∂G

∂x
∆x +

∂G

∂t
∆t +

1
2

∂2G

∂x2
∆x2 +

1
2

∂2G

∂x∂t
∆x∆t +

1
2

∂2G

∂t2
∆t2 + ... . (4.14)

Discretizing the Ito process

∆x = a(x, t)∆t + b(x, t)ε
√

dz (4.15)

reveals an important difference between the situation in eqn. (4.14) and the situation in eqn.
(4.11). When limiting arguments were used to move from eqn. (4.12) to eqn. (4.12), terms in
∆x2 were ignored because they were second order terms. From eqn. (4.15)

∆x2 = b2ε2∆t + higher order terms in ∆t (4.16)

which shows that the term involving ∆x2 in eqn. (4.14) has a component that is of order ∆t
and cannot be ignored.

The variance of the standardized normal distribution is one. This means that

E[ε2]− E[ε]2 = 1 , (4.17)

where E denotes the expected value. Since E[ε] = 0, it follows that E[ε2] = 1. The expected
value of ε2∆t is therefore ∆t. It can be shown that the variance of z2∆t becomes non-stochastic
and equal to its expected value of ∆t as ∆t tends to zero. It follows that the first term to the
right hand side of eqn. (4.16) becomes non-stochastic and equal to b2dt as ∆t tends to zero.
Taking limits as ∆x and ∆t tends to zero in eqn. (4.14) and using this last result, we therefore
obtain

dG =
∂G

∂x
dx +

∂G

∂t
dt +

1
2

∂2G

∂x2
b2dt . (4.18)
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This is Ito’s Lemma. Substituting for dx from eqn. (4.13) eqn. 4.18 becomes

dG =
{

∂G

∂x
a +

∂G

∂t
+

1
2

∂2G

∂x2
b2

}
dt +

∂G

∂x
bdz . (4.19)

Derivation of Black-Scholes Differnetial Equation

We assume that the asset price S follows the process (4.7). Suppose that f is the price of a
derivative security contingent on S. The variable f must be some function of S and t. From
Ito’s Lemma

df =
{

∂f

∂S
uS +

∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

}
dt +

∂f

∂S
σSdz . (4.20)

It follows that by choosing a portfolio of the asset and the derivative security, the Wiener process
can be eliminated. The appropriate portfolio is: −1 derivative security and +∂f/∂S shares. The
holder of this portfolio is short one derivative security and long an amount of +∂f/∂S shares.
Define V as the value of the portfolio; by definition

V = −f +
∂f

∂S
S . (4.21)

The change in the value dV of the portfolio in time dt is given by

dV = −df +
∂f

∂S
dS . (4.22)

Substituting eqns. (4.5) and (4.20) into eqn. (4.22) yields

dV =
{
−∂f

∂t
− 1

2
∂2f

∂S2
σ2S2

}
dt . (4.23)

Since this equation does not involve dz, the portfolio V must be riskless during time dt. The
portfolio must instantaneously earn the same rate of return as other short term riskfree securities
and using the proceeds to buy the portfolio; if it earned less, they could make a riskless profit
by shorting the portfolio and buying riskfree securities. It follows that

dV = rV dt (4.24)

where r is the riskfree interest rate. Substituting from eqns. (4.21) and (4.23) this becomes

{
∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

}
= r

{
f − ∂f

∂S
S

}
dt (4.25)

so that
∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 = rf . (4.26)
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This eqn. (4.26) is the Black-Scholes differential equation. It has many solutions, corresponding
to all the different derivative securities that can be defined with S as the underlying variable.
The particular derivative security that is obtained when the equation is solved depends on the
boundary conditions that are used. These specify the values of the derivative security at the
boundaries of possible values of S and t. In the case of European call option, the key boundary
condition is

f = max[0, ST −X] . (4.27)

In the case of a European put option, it is

f = max[0, X − ST ] . (4.28)

The Black-Scholes Pricing Formula

Black and Scholes succeeded in solving their differential equation to obtain exact formulas for
the prices of European call and put options. The expected value of a European call option at
maturity in a risk neutral world is

E[max(0, ST −X)] , (4.29)

where E denotes the expected value. From the European call option price, c is the value of this
discounted at the riskfree rate of interest, that is,

c = e−r(T−t)E[max(0, ST −X)] . (4.30)

Remember, that lnST has the probability distribution

lnST − lnS ∼ N [](u− 1
2
σ2)(T − t), σ(T − t)1/2)] . (4.31)

Evaluating the expectation value E[max(0, ST −X)] is an application of integral calculus, yield-
ing

c = SN(d1)−Xe−r(T−t)N(d2) ,

d1 = ln S/X+(r+σ2/2)(T−t)

σ(T−t)1/2 ,

d2 = ln S/X+(r−σ2/2)(T−t)

σ(T−t)1/2 = d1 − σ(T − t)1/2 ,

(4.32)

and N(x) is the cumulative distribution function for a standardized normal variable. The value
of an European put can be calculated in a similar way; the result is
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p = Xe−r(T−t)N(−d2)− SN(−d1) . (4.33)

The formula can be used as the starting point to price several kinds of options including European
options on a stock with cash dividends, options on stock indexes, options on futures, and currency
options. This will be shown in the following.

Use Case: European Options on a Stock with Cash Dividends

An European option on a stock that pays out one or more cash dividends during the options’s life
time can be priced by the Black-Scholes formula, by replacing S with S minus the present value of
the dividends.

S −D1e
−rt1 −D2e

−rt2 − . . .−Dne−rtn , (tn < T ) ,

where D1 is the dividend payout one, t1 is the time to dividend the payout, and T is the time to
maturity of the option.

Use Case: Options on Stock Indexes

Merton (1973) extended the Black-Scholes model to allow for a dividend yield. The model can be
used to price European call and put options on a stock or stock index paying a known dividend
yield equal to q,

c = Se−qT N(d1)−Xe−rT N(d2) ,

p = Xe−rT N(−d2)− Se−qT N(−d1) ,
(4.34)

where

d1 = ln(S/X)+(r−q+σ2/2)T

σ
√

T
,

d2 = ln(S/X)+(r−q−σ2/2)T

σ
√

T
= d1 − σ

√
T .

(4.35)

Use Case: Options on Futures

The Black (1976) formula can be used to price European options when the underlying security is a
forward or futures contract with initial price F ,

c = Fe−rT N(d1)−Xe−rT N(d2) ,

p = Xe−rT N(−d2)− Fe−qT N(−d1) ,
(4.36)

where

d1 = ln(F/X)+(σ2/2)T

σ
√

T
,

d2 = ln(F/X)−(σ2/2)T

σ
√

T
= d1 − σ

√
T .

(4.37)

Use Case: Currency Options

The Garman and Kohlhagen (1983) modified Black-Scholes model can be used to price European
currency options. The model is equal to the Merton (1973) model presented earlier. The only
difference is that the dividend yield is replaced by the risk-free rate of the foreign currency rf .

c = Se−rf T N(d1)−Xe−rT N(d2) ,

p = Xe−rf T N(−d2)− Se−qT N(−d1) ,
(4.38)

where

d1 =
ln(S/X)+(r−rf +σ2/2)T

σ
√

T
,

d2 =
ln(S/X)+(r−rf−σ2/2)T

σ
√

T
= d1 − σ

√
T .

(4.39)
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The Generalized Black-Scholes Formula

The general version of the Black-Scholes model incorporates the cost-of-carry term b. It can be
used to price European options on stocks, stocks paying a continuous dividend yield, options on
futures, and currency options.

cGBS = Se(b−r)T N(d1)−Xe−rT N(d2) ,

pGBS = Xe−rT N(−d2)− Se(b−r)T N(−d1) ,

(4.40)

where

d1 = ln(S/X)+(b+σ2/2)T

σ
√

T
,

d2 = ln(S/X)+(b−σ2/2)T

σ
√

T
= d1 − σ

√
T .

(4.41)

and b is the cost-of-carry rate of holding the underlying security.

• b = r gives the Black-Scholes (1972) stock option model,

• b = r − q gives the Mertom (1973) stock option model with continous dividend yield q,

• b = 0 gives the Black (1976) futures option model, and

• b = r − rf gives the Garman and Kohlhagen (1983) currency option model.

Now we will use the generalized Black-Scholes formula to evaluate examples for the different use
cases presented above.

Examples: Generalized Black-Scholes Option Prices - xmpGBlackScholes

European Options on a Stock with Cash Dividends

Consider a European call option on a stock that will pay out a dividend of two, three and six months
from now. The current stock price is 100, the strike is 90, the time to maturity on the option is 9
months, the risk free rate is 10% and the volatility is 25%. First calculate the stock price minus the
present value of the value of the cash dividends and then use the Black-Scholes formula to calculate
the call price.The result will be 15.6465.

# European Options on a Stock with Cash Dividends:

S <- 100 - 2*exp(-0.10*0.25) - 2*exp(-0.10*0.50)

r <- 0.10

GBlackScholes("c", S=S, X=90, Time=0.75, r=r, b=r, sigma=0.25)

[1] 15.64651

Options on Stock Indexes

Consider a European put option with 6 months to expiry. The stock index is 100, the strike price is
95, the risk-free interest rate is 10%, the dividend yield is 5% per annum, and the volatility is 25%.
The result for the put price will be 2.4648:
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# Options on Stock Indexes:

r <- 0.10

q <- 0.05

GBlackScholes("p", S=100, X=95, Time=0.5, r=r, b=r-q, sigma=0.20)

[1] 2.46479

Options on Futures

Consider a European Option on the brent blend futures with nine months to expiry. The futures
price USD 19, the risk-free interest rate is 10%, and the volatility is 28%. The result for the call
price will be 1.7011 and the price for the put will be the same:

# Options on Futures:

FuturesPrice <- 19

b <- 0

GBlackScholes("c", S=FuturesPrice, X=19, Time=0.75, r=0.1, b=b, sigma=0.28)

1.70105

GBlackScholes("p", S=FuturesPrice, X=19, Time=0.75, r=0.1, b=b, sigma=0.28)

1.70105

Currency Options

Consider a European call USD put DEM option with six months to expiry. The USD/DEM exchange
rate is 1.56, the strike price is 1.60, the domestic risk-free interest rate in Germany is 6%, the foreign
risk-free interest rate in the United States is 8% per annum, and the volatility is 12%. The result
for the call price will be 0.0291:

# Currency Options:

r <- 0.06

rf <- 0.08

GBlackScholes("c", S=1.56, X=1.60, Time=0.5, r=r, b=r-rf, sigma=0.12)

0.0290993

Our next goal is to investigate the option prices from the Black-Scholes formula as a function of
their parameters. We will do this for the stock option model b = r.

Examples: 2D-Graphs from the Generalized Black-Scholes Option Prices - xmpGBSplots2D

Use the Splus function GBlackScholes to plot the scaled call price c/X

• as a function of S/X, the scaled asset price (note doubling the asset price and strike price
yields the same option values), use as parameter σ2T for a low and a high interest rate r,

• as a function of σ2T , the volatility and Time to maturity (note doubling the volatility and
decreasing the time to maturity by a factor of four yields the same option values), use as
parameter S/X for a low and a high interest rate r.

Here is part of the Splus programming code showing how the first graph in the following figure was
created:

S <- seq(from=0.4, to=1.2, by=0.05)

plot(S, S, ylim=c(0, 0.5), type="n", xlab="S/X", ylab="c/X")

for (Time in seq(from=1/12, to=2, by=1/12)) {

c <- GBlackScholes("c", S=S, X=1, Time=Time, r=0.01, b=0.01, sigma=0.4)

lines (S, c) }
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� Figure 4.2.1: The two upper figures show the value of a call option as a function of the underlying asset price
for several times to maturity ranging from 1 to 24 months. The two lower figures show the value of a call option
as a function of time to maturity for several values of the underlying asset price ranging from 0.40 to 1.20 in steps
of 0.05. Call value and asset prices are measured in units of the strike. The left figures belong to low interest rate
value of 1% the right figures correspond to high interest rate scenario of 10% interest rate.

Examples: 3D-Graphs from the Generalized Black-Scholes Option Prices - xmpGBSplots3D

Use the Splus function GBSOptionPlot3D() to plot the call price c as a function of underlying asset
price S and and time to maturity Time when is interest rat is 10% p.a., and the volatility is 40%.
Here is the Splus command GBSOptionPlot3D:

GBSOptionPlot3D(CallPutFlag="c", S=seq(from=75, to=125, length=40),

X=100, Time=seq(from=1/52, to=1, length=40), r=0.1, b=0.1, sigma=0.4)

Here is the programming code of the GBSOptionPlot3D() function which shows how the plots were
produced with the help of the perspective plot function persp() and the outer product operation
function outer():
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� Figure 4.2.2: The figure shows the call (left) and put (right) price for the generalized Black-Scholes model. The
maturites are plotted up to 1 year for strike prices ranging from 75 to 125.

"GBSOptionPlot3D" <-

function (CallPutFlag, S, X, Time, r, b, sigma) {

"premium3D" <-

function(S, Time, CallPutFlag, X, r, b, sigma) {

GBSOption(CallPutFlag, S, X, Time, r, b, sigma)}

persp(S, Time,

outer(S, Time, FUN=premium3D, CallPutFlag, X, r, b, sigma),

xlab="S", ylab="Time", zlab=CallPutFlag) }

4.2.2 Options Sensitivities

Recall from the Black-Scholes formula that the price of an option depends upon just five variables

• the current asset price,

• the strike price,

• the time to maturity,

• the volatility, and

• the interest rate.

One of these, the strike price, is normally fixed in advance and therefore does not change. That
leaves the remaining four variables. We can now define four quantities, each of which measures
how the value of an option will change when one of the input variables changes while the others
remain the same. The definitions are as follows:
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Delta

Delta means the sensitivity of the option price to the movement in the underlying asset.

∆call =
∂c

∂S
= e(b−r)T N(d1) > 0

∆put =
∂p

∂S
= e(b−r)T [N(d1)− 1] < 0

Delta is undoubtedly the most important measure of option price sensitivity. There are two im-
portant interpretations of Delta. One that follows directly from its definition is that delta is the
slope of the premium / underlying asset price curve. A second interpretation is that Delta is the
hedge ratio that can be used when hedging an option with the underlying asset. Furthermore, the
Delta describes how similar the option behaves to the underlying asset. When Delta is close to
zero, the option will hardly respond to movements in the underlying asset price. On the other hand
when Delta approaches unity, the option moves almost one-for-one with the underlying asset, and
therefore behaves very much like it.

Theta

Theta is the options sensitivity to small change in time to maturity. As time to maturity decreases,
it is normal to express the Theta as minus the partial derivative with respect to time.

Θcall =
∂c

∂T
= −Se(b−r)T n(d1)σ

2
√

(T )
− (b− r)Se(b−r)T N(d1)− rXe−rT N(d2)

Θput =
∂p

∂T
= −Se(b−r)T n(d1)σ

2
√

(T )
+ (b− r)Se(b−r)T N(−d1)− rXe−rT N(−d2)

Thus Theta expresses how the option behaves over time. Long-dated options have more time value
than short-dated ones. Therefore, as an option ages and approaches maturity, the time value will
gradually erode. Theta defines exactly how much time value is lost from day to day, and is a precise
measure of time decay.

Vega

The Vega is the option’s sensitivity to a small movement in the volatility of the underlying asset.
Note, that Vega is equal for call and put options

V egacall,put =
∂c

∂σ
=

∂p

∂σ
= Se(b−r)T n(d1)

√
T > 0

Thus Vega defines the response of an option to volatility. Since higher volatility means higher
uncertainty, and uncertainty manifests itself as the first component of time value, options become
progressively more expensive with higher volatility.

Rho

Rho is the options sensitivity to a small change in the risk-free interest rate. For the call we have

ρcall =
∂c

∂r
= TXe−rT N(d2) > 0 if b 6= 0 ,

ρcall =
∂c

∂r
= −Tc < 0 if b = 0 ,

and for the put we have

ρput =
∂c

∂r
= −TXe−rT N(−d2) < 0 if b 6= 0 ,

ρput =
∂c

∂r
= −Tp < 0 if b = 0 .

Rho is probably the least used measure of sensitivity, perhaps because interest rates are relatively
stable, and there is therefore less need to monitor how the option value will move when interest
rates change.
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All four sensitivity measures so far have one thing in common: they all express how much an
option’s value will change for a unit change in one of the pricing variables. Since they measure
changes in premium, Delta, Theta, Vega, and Rho will all be expressed in the same units as the
option premium. For example, in the case of a call option on the USD priced in DEM, the units
will therefore all be fraction in DEM.

Additionally, among others, there are two other greek letters that users of options often refer to:

Lambda

Lambda or the elasticity of an option is its sensitivity in percent to a percent movement in the
underlying price

Λcall = ∆call
S

c
= e(b−r)T N(d1)

S

c
> 1

Λput = ∆put
S

p
= e(b−r)T [N(d1)− 1]

S

p
< 0

Thus Lambda is similar to Delta. However, instead of expressing changes in absolute terms, Lambda
measures the percentage change in the premium for a percentage change in the underlying asset price.
Lambda becomes thus an expression of the gearing or leverage of an option.

Gamma

Gamma is the Delta’s sensitivity to small movement in the underlying asset price. Gamma is the
same for call and put options.

Γcall,put =
∂2c

∂S2
=

∂2p

∂S2
=

n(d1)e
(b−r)T

Sσ
√

T
> 0

Note, Gamma is the ’odd-one-out’ because it is the only Greek letter that does not measure the
sensitivity of the option’s premium. Instead Gamma measures how the options Delta changes when
the underlying asset price moves. As Delta is the single most important measure of an option’s
sensitivity, it makes sense to track how Delta is effected by movements in the underlying asset price.
The simplest interpretation for Gamma is that it measures the curvature of the option premium
graphed against the underlying asset price. Recalling that the Delta of an option is the hedge ratio,
the Gamma therefore expresses how much the hedge ratio changes when the underlying asset price
moves. Options with a small Gamma are therefore easy to hedge, because the hedge ratio will not
change much when the underlying asset price fluctuates. Those with a high Gamma cause problems
because it is constantly necessary to readjust the hedge in order to avoid risk.

The Splus library libfOptions implements functions to evaluate the Greeks for the generalized
Black-Scholes model. We will use them in the following to calculate options sensitivities and to
create plots which show the values of Greeks as function of the option parameters. First let us
evaluate the Greeks for the examples given in the texbook of Haug.

Examples: Greeks for the Generalized Black-Scholes Model - xmpGBSGreeks

Delta
Consider a futures option with six months to expiry. The futures price is 105, the strike price is
100, the risk-free interest rate is 10%, and the volatility is 36%. The Delta of the call price will be
0.5946 and the Delta of the put price −0.3566.

> GDelta("c", S=105, X=100, Time=0.5, r=0.1, b=0, sigma=0.36)

[1] 0.59463

> GDelta("p", S=105, X=100, Time=0.5, r=0.1, b=0, sigma=0.36)

[1] -0.35660
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Theta
Consider an European put option on a stock index currently priced at 430. The strike price is 405,
time to expiration is one month, the risk-free interest rate is 7% p.a., the dividend yield is 5% p.a.,
and the volatility is 20% p.a.. The Theta of the put option will be −31.1924.

> GTheta("p", S=430, X=405, Time=1/12, r=0.07, b=0.07-0.05, sigma=0.2)

[1] -31.192350

Vega
Consider a stock option with nine months to expiry. The stock price is 55, the strike price is 60, the
risk-free interest rate is 10% p.a., and the volatility is 30% p.a.. What is the Vega? The result will
be 18.9358.

> GVega("c", S=55, X=60, Time=0.75, r=0.1, b=0.1, sigma=0.3)

[1] 18.93578

Rho
Consider a European call option on a stock currently priced at 72. The strike price is 75, time to
expiration is one year, the risk-free interest rate is 9% p.a., and the volatility is 19% p.a.. The result
for Rho will be 38.7325.

> GRho("c", S=72, X=75, Time=1, r=0.09, b=0.09, sigma=0.19)

[1] 38.73250

Lambda - Elasticity
Calculate the elasticity of a put option with the same parameters as under the Delta example. The
result will be −4.8775.

> GLambda("p", S=105, X=100, Time=0.5, r=0.1, b=0, sigma=0.36)

[1] -4.87751

Gamma
Consider the same stock option as in the example for the Vega. What will be the value of Gamma?
The result for the Gamma will be 0.0278.

> GGamma("c", S=55, X=60, Time=0.75, r=0.10, b=0.10, sigma=0.30)

[1] 0.02782

The Splus functions can also be used to create 2D graphs for the sensitivities; here we display
the sensitivities as function of the scaled asset price S/X, for time different times to maturity.

Examples: Greeks for the Generalized Black-Scholes Model - xmpGBSGreeks2D

As a simple illustration of how the Greeks can be used consider someone holding an at-the-money
currency call on USD put on DEM with the following characterisitics: underlying price 1.7000,
strike price 1.7000, time to maturity 270 days, DEM (domestic) interest rate 6% p.a., USD (foreign)
interest rate 3% p.a., and volatility 10% p.a.. First calculate the option value and the sensitivities
for the mentioned parameters using the Splus function GBScharacteristics

GBScharacteristics(CallPutFlag="c", S=1.7000, X=1.7000,

Time=270/365, r=0.06, b=0.06-0.03, sigma=0.10)

$premium:

[1] 0.07651851467920412

$delta:

[1] 0.6047323623055149

$theta:

[1] -0.06310373321400309

$vega:
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[1] 0.5452297685828492

$rho:

[1] 0.703868918725606

$lambda:

[1] 13.43524531584737

$gamma:

[1] 2.550414783195437

and then plot the sensitivities in the range between 1.4000 and 2.0000 for times to maturity of 1,
30, 90, and 270 days to get an overview about the whole range of prices of the underlying.

S <- seq(from=1.4000, to=2.0000, length=50)

Selection <- c("delta", "theta", "vega", "rho")

ymin <- c( 0.0, -0.6, 0.0, 0.0 )

ymax <- c( 1.0, 0.0, 0.6, 1.2 )

for (i in 1:4){

plot(S, S, ylim=c(ymin[i], ymax[i]), type="n", xlab="S")

for (Days in c(1, 30, 90, 270)) {

c <- GGreeks(Selection[i], CallPutFlag="c", S=S, X=1.7000,

Time=Days/365, r=0.06, b=0.06-0.03, sigma=0.1)

lines (S, c) } }

The result are illustrated in figure 4.2.3.
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� Figure 4.2.3: The figures show the Delta, Theta, Vega and Gamma for four times to maturity, 1 day, 30, 90
and 270 days as a function of the strike price S.
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Suppose after one week the underlying price were to rise to 1.7500 DEM, interest rates were to fall
1%, and volatility were to rise 2%. what effect would this combination have on the price of the
option? Let us analyze the separate impacts, and calculate the combined effect to the option rise.
The result will tell us that the effect for the premium will be to rise by 0.0329:

Characteristics <- GBScharacteristics(CallPutFlag = "c", S = 1.7000,

X = 1.7000, Time = 270/365, r = 0.06, b = 0.06 - 0.03, sigma = 0.10)

Changes <- list(

DueToPrice = (1.7500 - 1.7000) * Characteristics\$delta,

DueToTime = 7/365 * Characteristics\$theta,

DueToVolatility = (0.12 - 0.10) * Characteristics\$vega,

DueToInterest = (0.05 - 0.06) * Characteristics\$rho)

print(Changes)

$DueToPrice:

[1] 0.03023661811527577

$DueToTime:

[1] -0.001210208582186361

$DueToVolatility:

[1] 0.01090459537165698

$DueToInterest:

[1] -0.007038689187256056

TotalChange <- Changes\$DueToPrice + Changes\$DueToTime +

Changes\$DueToVolatility + Changes\$DueToInterest

print(TotalChange)

[1] 0.03289231571749033

OldPremium <- Characteristics\$premium

print(OldPremium)

[1] 0.07651851467920412

This would imply that the premium would be 0.0765 + 0.0329 = 0.1094. In fact if the option is
repriced properly,

NewPremium <- GBlackScholes(CallPutFlag = "c", S = 1.7500, X = 1.7000,

Time = 263/365, r = 0.05, b = 0.05 - 0.03, sigma = 0.12)

print(NewPremium) [1] 0.1105350734930761

RealTotalChange <- NewPremium - OldPremium

print(RealTotalChange)

[1] 0.034016558813872

the premium comes out to 0.1105, an actual increase of 0.0340. This example shows, using the
Greeks makes it possible to perform a quick calculation and to obtain an answer within an accuracy
of about 1 to to 2%. Let us finish with a the remark, that where the Greeks are becoming really
important is in evaluating the impact of market fluctuations on an entire portfolio of options.

Furthermore 3d-plots can easily be created within the Splus environment allowing an even better
visualization of the sensitivities in a three-dimensional asset price / time to maturity graph. This
will be illustrated in the following figures.

Examples: Greeks for the Generalized Black-Scholes Model - xmpGBSGreeks3D

Plot the sensitivities Delta, Theta, Vega, Rho, Lambda and Gamma as a function of the scaled asset
price S/X and the time-scaled volatility σ2T . Use the Splus function GBSGreeksPlot3D.

for ( Selection in c("delta", "theta", "vega", "rho", "lambda", "gamma") )

GBSGreeksPlot3D(Selection, CallPutFlag="c",

S=seq(from=75, to=125, length=25), X=100,

Time=seq(from=1/52, to=1, length=25), r=0.1, b=0.1, sigma=0.40)
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� Figure 4.2.4: The figures show the Delta, Theta, Vega, Rho, Lambda and Gamma for the generalized Black-
Scholes model as function of time to maturity and strike price.
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4.2.3 Analytical Pricing Formulas for American Options

An American Option can be exercised at any time up to its expiration date. This added freedom
complicates the valuation of American options relative to their European counterparts. With
a few exceptions, it is not possible to find an exact formula for the value of American options.
However, closed form approximations are available which are in the finance community quite
popular, because the approximation formulas execute quite quickly on computers.

American Calls on Stocks with Known Dividends

Roll (1977), Geske (19979) and Whaley (1982) have developed a formula for the valuation of an
American call option on a stock paying a single dividend of D, with time to dividend payout t.

C = (S−De−rt)N(b1)+(S−Dw−rt)M(a1,−b1;−
√

t

T
)−Xe−rtM(a2,−b2;−

√
t

T
)−(X−D)e−rtN(b2) ,

where

a1 =
ln[(S −De−rt)/X] + (r + σ2/2)T

σ
√

T
, a2 = a1 − σ

√
T

b1 =
ln[(S −De−rt)/I] + (r + σ2/2)T

σ
√

T
, b2 = b1 − σ

√
T

where M(a, b; ρ) is the cumulative bivariate normal distribution function with upper integral limits
a and b and correlation coefficient ρ. I is the critical ex-dividend stock price I that solves

c(I, X, T − t) = I + D −X ,

where c(I, X, T − t) is the value of the European call with stock price I and time to maturity T − t.
If D ≤ X(1−e−r(T−t)) or I = ∞, it will not be optimal to exercise the option before expiration, and
the price of the American option can be found by using the European Black-Scholes formula where
the stock price is replaced with the stock price minus the present value of the dividend payment
S −Dert

Example: American Calls on Stocks with Known Dividends - xmpAOPskd
Consider an American-style call option on a stock that will pay a dividend of 4 in exactly three
months. The stock price is 80, the strike price is 82, time to maturity is four months, the risk-free
interest rate is 6%, and the volatility is 30%. The result will be 4.3860, whereas the value of a
similar European call would be 3.5107.

> RollGeskeWhaley(S=80, X=82, t1=1/4, T2=1/3, r=0.06, D=4, sigma=0.3)

[1] 4.38603

The Barone-Adesi and Whaley Approximation

The quadratic approximation method by Barone-Adesi and Whaley (1987) can be used to price
American call and put options on an underlying asset with cost-of-carry rate b. When b ≥ r, the
American call value is equal to the European call value. The model is fast and accurate for most
practical input values.

C(S, X, T ) =


cGBS(S, X, T ) + A2(S/S1)

q2 , S < S1

S −X , S ≥ S1

P (S, X, T ) =


pGBS(S, X, T ) + A1(S/S2)

q1 , S > S2

X − S , S ≤ S2

where cGBS and pGBS are the generalized Black-Scholes call and put formula, respectively, and

A1,2 = ∓S2,1

q1,2

{
1− e(b−r)T N [∓d1(S2,1)]

}
,
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d1(S) =
ln(S/X) + (b + σ2/2)T

σ
√

T
,

q1,2 =
−(N − 1)∓

√
(N − 1)2 + 4M/X

2
,

M = 2r/σ2 , N = 2b/σ2 , X = 1− e−rT ,

where S1,2 are the critical commodity prices for the call and put options respectively, that satisfy

S1 −X = c(S1, X, T ) + {1− e(b−r)T N [d1(S1)]}
S1

q2
,

X − S2 = p(S2, X, T ) + {1− e(b−r)T N [−d1(S2)]}
S2

q1
.

Example: American Options, Barone-Adesi and Whaley Approximation - xmpAOPbaw
Evaluate Call and Put prices of American style options using the BAW approximation formula.
Choose r=0.1, b=0, and X=100 with volatilities sigma of 15%, 25%, and 35%, and prices taking on
values S of 90, 100, and 110 for two time periods, Time=0.1 and Time=0.5, respectively. The Splus
function calls from the example script are:

# American Calls:

for ( sigma in c(0.15, 0.25, 0.35) )

for ( S in c(90,100,110) )

print(c(sigma, S, BAWAmericanApprox("c", S, X, Time=0.1, r, b, sigma)))

for ( sigma in c(0.15, 0.25, 0.35) )

for ( S in c(90,100,110) )

print(c(sigma, S, BAWAmericanApprox("c", S, X, Time=0.5, r, b, sigma)))

# American Puts:

for ( sigma in c(0.15, 0.25, 0.35) )

for ( S in c(90,100,110) )

print(c(sigma, S, BAWAmericanApprox("p", S, X, Time=0.1, r, 0, sigma)))

for ( sigma in c(0.15, 0.25, 0.35) )

for ( S in c(90,100,110) )

print(c(sigma, S, BAWAmericanApprox("p", S, X, Time=0.5, r, b, sigma)))

The Bjerksund and Stensland Approximation

The Bjerksund and Stensland (1993) approximation can be used to price American options on stocks,
futures and currencies. The method is analytical and extremely computer efficient. Bjerksund’s
and Stensland’s approximation is based on an exercise strategy corresponding on a flat boundary
I (trigger price). Numerical investigation indicates indicates that this model is somewhat more
accurate for long-term options than the Barone-Adesi and Whaley model presented above.

C = αSβ −αφ(S, T, β, I, I) + φ(S, T, 1, I, I)− φ(S, T, 1, X, I)−Xφ(S, T, 0, I, I) + Xφ(S, T, 0, X, I) ,

where

α = (I −X)I−β ; β =

(
1

2
− b

σ2

)
+

√(
1

2
− b

σ2

)2

+ 2
r

σ2
.

The function φ(S, T, γ, H, I) is given by

φ(S, T, γ, H, I) = eλSγ

[
N(d)−

(
I

S

)κ

N

(
d− 2 ln(I/S)

σ
√

T

)]

λ =

[
−r + γb +

1

2
γ(γ − 1)σ2

]
T ,

d =
ln(S/H) + [b + (γ − 1

2
)σ2)]T

σ
√

T
,

κ =
2b

σ2
+ (2γ − 1) ,
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and the trigger price is defined as

I = B0 + (B∞ −B0)(1− eh(t)) ,

h(T ) = −(bT + 2σ
√

T )
β0

β∞ − β0
,

B∞ =
β

β − 1
X , B0 = max[X,

r

r − b
X] .

If S ≥ I, it is optimal to exercise the option immediately, and the value must be equal to the intrinsic
value S − X. On the other hand, if b ≥ r, it will never be optimal to exercise the American call
option before expiration, and the value can be found using the generalized Black-Scholes formula.
The value of the American put is given by the Bjerksund and Stensland put-call transformation

P (S, X, T, r, b, σ) = C(X, S, T, r − b,−b, σ) .

which holds in general when calculating American option prices.

Example: Americon Options, Bjerksund and Stensland Approximation - xmpAOPbsa
Consider an American-style call option with nine months to expiry. The stock price is 42, the strike
price is 40, the risk free rate is 4% p.a., the dividend yield is 8% p.a., the volatility is 35% p.a.

> BSAmericanApprox("c", S=60, X=40, Time=0.75, r=0.04, b=0.04-0.08, sigma=0.35)

$Premium:

[1] 20

$TriggerPrice:

[1] 57.59945

4.2.4 Binomial Option Pricing

Beside the derivation of the Black-Scholes formula as presented in the previous sections, another
approach to option valuation has become a very important tool for explaining the principles
of both European and American options and also for deriving numerical solutions to option
problems in practice. This is the binomial model developed by Cox, Ross and Rubnstein (1979).
We will now show how this model works.

Cox-Ross-Rubinstein Binomial Tree

Consider the evaluation of an option on a non-dividend paying stock. we start by dividing the
options life time into a large number of small time intervals of length ∆t. We assume that in
each time interval the stock price moves from its initial value of S to one of two new values,
up to Su or down Sd. The probability of the up move is assumed to be p and for the down
move to be 1−p. We apply the risk neutral valuation principle and assume that(i) the expected
return from all traded securities is the risk-free interest rate, and (ii) that future cash flows can
be valued by discounting their expected values at the risk free interest rate.

The parameters p, u, and d must give correct values for the mean and variance of stock price
changes during a time interval ∆t. The risk neutral valuation principle now requires that the
expected return from a stock is the risk-free interest rate r. Hence the expected value of the
stock price at the end of a time interval δt is Ser∆t, where S is the stock price at the beginning
of the time interval. Then it follows that

Ser∆t = pSu + (1− p)Sd . (4.42)
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The variance of the change of the stock price in a small time interval ∆t is S2σ2∆t from which
it follows that

S2σ2∆t = pS2u2 + (1− p)S2d2 − S2[pu + (1− p)d]2 . (4.43)

These two equation together wit the condition u = 1
d which is usually used imposes three

conditions on p, u, and d which imply

p = er∆t−d
u−d ,

u = eσ
√

∆t ,

d = e−σ
√

∆t ,

(4.44)

provided that ∆t is small.

Now let us consider the complete tree of stock prices for the binomial model. At time zero, the
stock price S is known. At time ∆t, there are two possible stock prices, Su and Sd; at time 2∆t
there are three possible stock prices, Su2, S, and Sd2. In general at time i∆t, i + 1 stock prices
have to be considered. These are

Sujdi−j , j = 0, . . . , i . (4.45)

Then options are evaluated by starting at the end of the tree at time T and working backward.
The value of the option is known at time T ; for a call max(ST −X, 0) and for a put max(X −
ST , 0), where ST is the stock price at time T . According to the risk-neutral valuation principle
the value at each node at time T − ∆t can be calculated as the expected value at time T
discounted at rate r for a time period ∆t. Similarly, The value at each node at time T − 2∆t
can be calculated as the expected value at time T − ∆t discounted for a time period ∆t with
rate r, and so on. Note, that if the option is American, it is necessary to check at each node
to see whether early exercise is preferable to holding the option for a further time period ∆t.
Eventually, by working back through all the nodes, the value of the option at time zero is
obtained.

Example: Binomial Model, the Idea Behind

Consider a 5 month American put option on a non-dividend paying stock when the stock price is
50, the risk-free interest rate is 10% p.a. and the volatility is 40% p.a.. Suppose that we divide
the lifetime of the option into five intervals of length one month for the purposes of constructing a
binomial tree. Then ∆t = 0.0833, u = 1.1224, d = 0.8909, p = 0.5076. The figure shows the tree.

... ...

The stock price at the j-th node (j = 0, 1, . . . , i) at time i∆t is calculated as Sujdi−j . For example
the stock price at node labeled A (i = 4, j = 1) is thus 39.69. The option prices at the final nodes
are calculated as max(X−ST , 0). For example the option price at node G is 50−35.36 = 14.64. The
option prices on the penultimate nodes are calculated from the option prices at the final nodes. First,
we assume no exercise of the option at the nodes. This means that the option price is calculated
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as the present value of the expected option price in time ∆t. For example, at node E the option
price is calculated as (0.5076 · 0+0.4924 · 5.45)e−0.10·0.0833 = 2.66 while at node A it is calculated as
(0.5076 · 5.45+ 0.4924 · 14.64)e−0.10·0.0833 = 9.90. We then check to see if early exercise is preferable
to waiting. At node E, early exercise would give a value for the option of zero, since both the stock
price and strike price are 50. Clearly it is best to wait. The correct value for the option at node E
is therefore 2.66. At node A it is a different story. If the option is exercised it is worth 50.00− 39.69
or 10.31. This is more than 9.90. If node A is reached, the option should therefore be exercised and
the correct value for the option on node A is 10.31.

Option prices on earlier nodes are calculate in a similar way. Note, that it is not always best
to exercise an option early when it is in-the-money. Consider node B. If the option is exercised,
it is worth 50.00 − 39.69 or 10.31. However, if it is held , it is worth (0.5076 · 6.37 + 0.4924 ·
14.64)e−0.10·0.0833 = 10.35. The option should therefore not be exercised at this node, and the
correct option value at this node is 10.35.

Working back through the tree, we find the value of the option at the initial node to be 4.48. This is
our numerical estimate for the options current value. The true value of the option, obtained using
a small ∆t, will become 4.29.

To find a general expression for the options value we define fij as the value of an American
option at time i∆t when the stock price is Sujdi−j for 0 ≤ i ≤ N , 0 ≤ j ≤ i. We will refer
to this as the value of the option at node (i, j). Since the value of an American put at ists
expiration date is max(X − ST , 0), we know that

fN,j = max[X − SujdN−j , 0] , j = 0, . . . , N .

There is a probability, p of moving from node (i, j) at time i∆t to the node (i+1, j +1) at time
(i + 1)∆t, and a probability 1 − p of moving from node (i, j) at time i∆t to node (i + 1, j) at
time (i + 1)∆t. Assuming no early exercise, risk-neutral valuation gives

fi,j = e−r∆t[pfi+1,j+1 + (1− p)fi+1,j ]

for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ i. When early exercise is taken into account, this value for fi,j

must be compared with the option’s intrinsic value, and we obtain

fi,j = max{X − Sujdi−j , e−r∆t[pfi+1,j+1 + (1− p)fi+1,j ]} .

Note, that because the calculation start at time T and work backward, the value at time i∆t
captures not only the effect of early exercise possibilities at time i∆t, but also the effect of early
exercise at subsequent times. In the limit as ∆t tends to zero, an exact value for the American
put is obtained. In practice n = 30 usually gives reasonable results.

Example: Binomial Model, the Algorithm - xmpCRRBinomial

The above formulas are implemented in the Splus function CRRBinomial(AmeEurFlag, CallPutFlag,

S, X, Time, r, b, sigma, n) in the following form, which allows to calculate calls and puts for
both, European and American options:

"CRRBinomial" <-

function(AmeEurFlag, CallPutFlag, S, X, Time, r, b, sigma, n) {

if (CallPutFlag == "c") z <- +1

if (CallPutFlag == "p") z <- -1

dt <- Time / n

u <- exp(sigma*sqrt(dt))
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d <- 1 / u

p <- (exp(b*dt) - d) / (u - d)

Df <- exp(-r*dt)

OptionValue <- z*(S*u^(0:n)*d^(n:0) - X)

OptionValue <- (abs(OptionValue)+OptionValue)/2

if (AmeEurFlag == "e") {

for ( j in seq(from=n-1, to=0, by=-1) )

for ( i in 0:j )

OptionValue[i+1] <-

(p*OptionValue[i+2] + (1-p)*OptionValue[i+1]) * Df }

if (AmeEurFlag == "a") {

for ( j in seq(from=n-1, to=0, by=-1) )

for ( i in 0:j )

OptionValue[i+1] <- max((z * (S*u^i*d^(abs(i-j)) - X)),

(p*OptionValue[i+2] + (1-p)*OptionValue[i+1]) * Df) }

OptionValue[1] }

The example script xmpCRRBinomial() calculates the option value for the option parameters used
above for the American put and investigates the behavior in the limit ∆t → 0.

...

for (n in 3:30)

OptionValue[n] <- CRRBinomial(AmeEurFlag="a", CallPutFlag="p", S=50, X=50,

Time=0.4167, r=0.1, b=0.1, sigma=0.4, n=n)

plot(OptionValue[3:30], type="b")

...

Extensions to the CRR Binomial Tree Model

The Binomial tree can be used to price options on a dividend paying stock, to price options
on indices, on currencies and on futures contracts. Furthermore the approach of Cox, Ross
and Rubinstein can be extended for options on a stock paying a known dividend yield. It can
also be applied to American barrier options which cannot priced analytically as their European
counterparts. The binomial tree approach was also applied to convertible bonds. Further variants
and extensions include trinomial trees, three-dimensional binomial trees, implied binomial trees,
and implied trinomial trees. The Splus function Library libfOptions includes functions for all
these cases:

BarrierBinomial(AmeEurFlag, TypeFlag, S, X, H, Time, r, b, sigma, n)}

ConvertibleBondBinomial(AmeEurFlag, S, X, T2, t1, r, k, q, sigma, F, Coupon, n)

Trinomial(AmeEurFlag, CallPutFlag=, S, X, Time, r, b, sigma, n)

ThreeDimensionalBinomial(AmeEurFlag, TypeFlag, CallPutFlag, S1, S2, Q1, Q2, X1, X2,

Time, r, b1, b2, sigma1, sigma2, rho, n)}

ImpliedTrinomial(ReturnFlag, STEPn, STATEi, S, X, Time, r, b, sigma, Skew, nSteps)

Examples are included, to present how to use these Splus functions. For a detailed description
we recommend to inspect Chapters 14.2 to 14.6 in the textbook of Hull (1997) and to follow
Chapters 3.1 to 3.4 in the book of Haug (1997) on option pricing formulas.

33



4.3 Pricing Formulas for Exotic Options

Introduction

Options are very versatile instruments and over the last years a whole range of option products
has grown up, these are known as exotic options. An exotic options breaks at least one of the
standard contract terms of a traditional option, notably concerning the expiry, price, strike or
underlying asset(s).

An option will be valuable to the holder if it is in-the-money. How this is determined is by
reference to an underlying rate. An exotic option payoff may be linked to the average underlying
exchange rate over a prespecified period rather than the rate on a specific date. In contrast, the
payoff may be contingent upon the price performance of a second asset, not the one on which
the option is stuck. In some cases the strike may be set after the option has been set up. There
are a number of ways that a traditional option structure can be manipulated to behave in a
different way. Essentially, exotic options can be classified according to the following categories:

• Options with contract variations

• Path-dependent options

• Limit-dependent options

• Multi-factor options

We will discuss some selected options which are of practical use in trading. In the case of
options with contract variations we present the Binary Options or also called Digital Options.
For this kind of options the amount it is in-the-money is irrelevant, the payoff is either the
predetermined amount or nothing. For the second class of path-dependent options we will
describe Asian Options and Lookback-Options. With an Asian option the strike on the option
is compared to an average rate over the period and with a lookback option the strike is set at
maturity. Beside these simple models there exists much more complex path dependent models,
known as stochastic volatility models. We will consider them later. For the third class dealing
with limit-dependent options we discuss Barrier Type Options, which have a mechanism that
activates or inactivates the option, when a particular trigger is reached. In the case of the last
class concerned with multi-factor options we present Rainbow Options and Quanto Options. A
rainbow call option can for example offer the holder to receive a return equal to the maximum
gain from either the FTSE100, the DAX30 or the SP500 index, whereas a quanto option can for
example price a foreign asset, the NIKKEI index, with a strike in USD.
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We have implemented Splus functions for calculating option prices and sensitivities for the above
mentioned exotic options. Now we will discuss these kind of options in some more detail.

4.3.1 Options with Contract Variations

Binary Type Options

Binary options behave similarly to standard options, but the payout is based on whether the
option is on the money, not by how much it is in the money. As with a standard European style
option, the payoff is based on the price of the underlying asset on the expiration date. Unlike
with standard options, the payoff is fixed at the writing of the contract. Binary options may ad-
ditionally incorporate barrier features. The benefits of these options are that the purchaser and
writer of binary options need only determine an expected direction of price movement, rather
the direction and the magnitude, in order to effectively use the option.

Use Case:

A bank wishes to hedge a key interest rate exceeding a certain level. It purchases a binary option
with strike at the level at which they wish to hedge. If the interest rate exceeds that level, they
receive a fixed payment, no matter how high the rate goes.

Chooser Options

The unique feature of a chooser option is the ability to purchase the option now, but not decide
until later whether the option is a put or a call. Two types of chooser options exists: Complex
chooser options with differing tenor and/or strike price for the call and the put, and simple
chooser options with same tenor and strike for the call and the put. Chooser options are more
expensive than standard options, since the purchaser has increased flexibility. Chooser options
provide the benefit of allowing hedging against both price increases and decreases without pur-
chasing both a call and a put.

Simple Chooser Option:

The simple chooser option gives the holder the right to choose whether the option is to be the
standard call or put after a time t1, both with the same strike X and time to maturity T . The
payoff from a simple chooser option at time t1 (t1 < T ) is

w(S, X, T, t1) = max[cGBS(S, X, T ), pGBS(S, X, T )] ,

where cGBS(S, X, T ) and pGBS(S, X, T ) are the Generalized Black-Scholes call and put formulas. A
simple chooser option can be priced using the formula derived by Rubinstein (1991c) implemented
in the Splus function

SimpleChooser(S, X, Time, t1, r, b, sigma)

Use this Splus function and calculate the price for a simple chooser option with a time to expiration
of six months and time to choose between a call and a put equal to three months. The underlying
stock price is 50, the strike price is 50, the risk free interest rate is 8% per annum, and the volatility
per annum is 25%. The result will be w = 6.1071.
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Complex Chooser Option:

The complex chooser option gives the holder the right to choose whether the option is to be a
standard call option after a time t1, with time to expiration Tc and strike Xc, or put option with time
to maturity Tp and strike Xp. The payoff from a complex chooser option at time t1 (t1 < Tc, t1 < Tp

is

w(S, Xc, Xp, Tc, Tp, t1) = max[cGBS(S, Xc, Tc), pGBS(S, Xp, Tp)] ,

where cGBS(S, X, T ) and pGBS(S, X, T ) are the Generalized Black-Scholes call and put formulas,
respectively. A complex chooser option can be priced using the formula derived by Rubinstein
(1991c) implemented in the Splus function

ComplexChooser(S, Xc, Xp, Timec, Timep, t1, r, b, sigma)

Use this Splus function and calculate the price for a complex chooser option which gives the holder
the right to choose whether the option is to be a call with time to expiration of six months an strike
price 55, or a put with seven months to expiration and strike price 48. The time to choose between
a call and a put is three months, the underlying stock price is 50, the risk free interest rate is 10%
per annum, the dividend yield is 5% per annum, and the volatility per annum is 25%. The result
will be w = 6.0508.

4.3.2 Simple Path Dependent Options

Asian Options

The unique characteristic of an Asian or average price option is that the underlying asset prices
are averaged over some predefined time interval. So Asian price options are path-dependent.
The price path followed by the underlying asset is crucial to the pricing of the option. The
averaging tends to dampen the volatility and therefore Asian price options are less expensive
than standard options. Two types of Asian price options usually are considered: (i) Asian
price European options using geometric averaging, and (ii) Asian price European options using
arithmetic averaging. Asian price options are commonly used in the foreign exchange, interest
rate and commodity markets. There are several variations on the specifications. The averaging
period can span the whole life of an option or some shorter period; options with an averaging
period less than the whole life are called partial average options. The average is typically based
on daily prices but could be based on weekly or monthly data. This monitoring frequency is
defined in the contract. The average may be arithmetic mean (standard average), a weighted
average, or a geometric mean.

Benefits: A great benefit of Asian price options is that they reduce incentives for manipulation
of the underlying price at expiration. Average strike options are often used by a seller to place
a floor on the selling price of a sequence of sales of an asset over some time horizon. Average
strike options are cheaper than standard options. Average price options are useful in situations
where the trader/hedger is concerned only about the average price of a commodity which they
regularly purchase.

Use Cases:

Suppose a nine-month European average price contract calls for a payoff equal to the difference
between the average price of a barrel of crude oil and a fixed exercise price of USD18. The averaging
period is the last two months of the contract. The impact of this contract relative to a standard
option contract is that the volatility is dampened by the averaging of the crude oil price, and
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therefore the option price is lower. The holder gains protection from potential price manipulation
or sudden price spikes.

A Canadian exporting firm doing business in the U.S. is exposed to CAD/USD foreign exchange
risk every week. For budgeting purposes the treasurer must pick some average exchange rate in
which to quote CAD cash flows (derived from USD revenue) for the current quarter. If the USD
strengthens, the cash flows will be greater than estimated, but if it weakens, the company’s CAD
cash flows are decreased.

Geometric Average-Rate Options:

If the underlying asset is assumed to be lognormally distributed, the geometric average (x1 + ... +
xn)1/n of the asset will itself be lognormally distributed. As originally shown by Kemna and Vorst
(1990), the geometric average option can be priced as a standard option by changing the volatility

σA = σ/
√

(3) and cost of carry term bA = 1
2
(b− σ2

6
).

A geometric average-rate option can be priced using the Splus function

GeometricAverageRateOption(CallPutFlag, S, SA, X, Time, Time2, r, b, sigma)

What is the value of a geometric average-rate put option with three months to maturity? The strike
is 85, the asset price is 80, the risk free rate is 5%, the cost of carry is 8%, and the volatility is
20%. The result will be p = 4.6922. Note, that the value of the standard European put option is
p = 5.2186.

Arithmetic Average-Rate Options:

It is not possible to find a closed form solution for the valuation of options on an arithmetic average
(x1 + ... + xn)/n. The main reason for this is that when the asset is assumed to be lognormally
distributed, the arithmetic average will not itself have a lognormal distribution. Arithmetic average-
rate options can be priced by analytical approximations or by numerical methods.

Turnbull’s and Wakeman’s Approximation: This approximation (1991) adjusts the mean, bA = lnM1
T

and variance σ2
A = lnM2

T
− 2bA so that they are consistent with the exact moments M1 and M2 of

the arithmetic average, some lengthy expressions.

Levy’s Approximation: An alternative formula yields this approximation (1992) with approximative
quantities for S, X, d1 and d2. Although the formula does not allow for b = 0, Levy’s formula is
expected to be a bit more accurate compared to the first approximation of Turnbull and Wakeman.

Curran’s Approximation: This approximation (1992) is based on a method called geometric con-
ditioning approach, claiming to be more accurate than other closed-form approximations derived
earlier.

Use the following three Splus functions and compare the three approximations in a reasonable range
for the parameters

TurnbullWakemanAsian(CallPutFlag, S, SA, X, Time, Time2, tau, r, b, sigma)

LevyAsian(CallPutFlag, S, SA, X, Time, Time2, r, b, sigma)

Lookback Options

The lookback option is unique because it gives the holder the right to buy an asset at its lowest
price or sell it at its highest price attained over the life of the option. At expiration you ”look
back” and choose the best price that occurred during the option term. For a lookback call
option, the lowest observed price is selected and is applied as the strike exercise price. For a
lookback put option, the highest price is selected and is applied as the exercise price. The holder
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of a lookback option can never miss the best underlying asset price. These options reduce regret,
since they guarantee a payoff if the option is in-the-money at any point during its life.

Benefits: These options pay the largest in-the-money amount over the life of the option. The
lookback call owner can buy at the lowest observed price or rate. The lookback put owner can
sell at the highest observed price or rate. A lookback option can never be out-of-the money.
The lookback holder gains economic value through hindsight.

Features: The lookback and standard call option prices converge as the underlying price in-
creases. A lookback option is more expensive than a standard option. A justification for this
higher cost is that they optimize market timing- a call option provides the best timing when
awaiting an increase in the underlying asset price while the put gives the best timing when
expecting a downturn. An in-the-money lookback approaches the value of the standard option.

Use Cases:

Consider a six-month currency lookback call option on 1 million BP against US dollars. At option
expiration, you can lookback over the preceding six months and chose to accept sterling at the
most favorable exchange rate that occurred. This guarantees the a no-regrets result since the best
exchange rate will be achieved.

A US manufacturer buys raw materials from a Canadian supplier. Upon receipt, he has until months
end to settle and is thus exposed to foreign exchange risk on a monthly basis. The manufacturer
would like to lock-in the most favorable exchange rate in that monthly interval.

Currency-linked bond issues, to avoid missing the best currency rates.

Open-end offshore investment funds, to assure each new investor a lock-in of the best currency rates
throughout participation in the fund.

Floating Strike Lookback Options:

A floating strike lookback call gives the holder of the option the right to buy the underlying security
at the lowest price observed, min, in the life of the option. Similarly, a floating strike lookback put
gives the option holder the right to sell the underlying security at the highest price observed, Smax
in the option’s life time. The payoff from a floating strike lookback call and put options are

c(S, Smin, T ) = max(S − Smin; 0) = S − Smin ,

c(S, Smax, T ) = max(Smax − S; 0) = Smax − S .

Floating strike lookback options were originally introduced by Goldman, Sosin and Gatto (1997).
Their result for the option prices is implemented in the Splus function

FloatingStrikeLookback(CallPutFlag, S, X, T, r, b, sigma)

Fixed Strike Lookback Options:

In a fixed strike lookback call, the strike is fixed in advance, and at expiry the the option pays out
the maximum of the difference between the highest observed price, Smax, in the option lifetime and
the strike X, and 0. Similarly, a put at expiry pays out the maximum of the difference between
the fixed strike X and the minimum observed price, Smin, and 0. Fixed price lookback options
can be priced using the Conze and Viswanathan (1991) formula, which is implemented in the Splus
function

FixedStrikeLookback(CallPutFlag, S, X, T, r, b, sigma)
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Partial-Time Floating Strike Lookback Options:

In the partial-time floating strike lookback options, the lookback period is at the beginning of the
options’s lifetime. Time to expiry is T2, and time to the end of the lookback period is t1 (t1 ≤ T2).
Except for the partial lookback period, the partial-time floating strike lookback option is similar
to a standard floating strike lookback option. However, a partial lookback option must naturally
be cheaper than a similar standard floating strike lookbook option. Heynen and Kat (1994) have
developed formulas for pricing partial-time floating strike lookback options which are implemented
in the Splus function

PartialFloatLB(CallPutFlag, S, X, T, r, b, sigma)

Partial-Time Fixed Strike Lookback Options:

In the partial-time fixed strike lookback options, the lookback period starts at a predetermined time
t1 after the initialization time of the option. The partial-time fixed strike lookback call gives a payoff
equal to the maximum of the highest observed price of the underlying asset, Smax in the lookback
period minus the strike price X, and 0. The put gives a payoff equal to the maximum of the fixed
strike price X minus the minimum observed asset price, Smin in the lookback period, T2 − t1, and
0. The partial-time fixed strike lookback option is naturally cheaper than a similar standard fixed
strike lookbackk option. Heynen and Kat (1994) have developed formulas for pricing partial-time
fixed strike lookback options which are implemented in the Splus function

PartialFixedLB(CallPutFlag, S, X, T, r, b, sigma)

4.3.3 Limit Dependent Options

Barrier Options

Barrier options are similar to standard options except that they are extinguished or activated
when the underlying asset price reaches a predetermined barrier or boundary price. Barrier
options are also path-dependent since they are dependent on the price movement of the un-
derlying asset. A knock-out option will expire early if the barrier price is reached whereas a
knock-in option will come into existence if the barrier price is reached. As with average options,
a monitoring frequency is defined as part of the option which specifies how often the price is
checked for breach of the barrier. The frequency is normally continuous but could be hourly,
daily, etc.

The following situations can be distinguished:

• Down and Out: The option is canceled or knocked-out if the asset falls to a predetermined
boundary price.

• Down and In: The option is activated or knocked-in if the asset falls to a predetermined
boundary price.

• Up and Out: The option is canceled or knocked-out if the asset rises to a predetermined
boundary price.

• Up and In: The option is activated or knocked-in if the asset rises to a predetermined
boundary price.

Benefits: The premium for barrier options is lower than standard options, as the barrier option
will have value within a smaller price range than the standard option. The owner of a barrier
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option loses some of the traditional option value and therefore it should sell at a lower price than
a standard option. The seller of the barrier lowers his exposure or risk, relative to a standard
option. Some barrier options offer a rebate; should the option be knocked-out, the holder would
receive a predefined payoff. This feature is less common. Obviously a barrier option with rebate
has more value than one without.

Features: What do you have when you buy a down-and-out call and a down-and-in call, assuming
no rebate? A standard call! Barrier options are hybrids: they are European in that they could
have a payoff at expiration but they are American in that they may exercised (extinguished)
prior to expiration. The lower cost of the barrier option makes it one of the most popular of the
exotic options for hedging purposes. Speculators are able to gain greater leverage with barrier
options for the same dollar amount.

Use Cases:

A bank may wish to purchase an at-the-money 9-month Nikkei call option struck at 17,000 with a
down-and-out barrier price of 16,000. If the price of the Nikkei falls to 16,000 or below, during the
9-month period, the bank will no longer have the benefit of Nikkei price appreciation since the call
option will have been knocked out.

An airline is concerned that events in the Middle East might drive up the price of fuel. An up-and-
in call would allow the airline to buy crude oil futures at a fixed price if some knock-in boundary
price is reached. The price of the up-and-in call would be less than a standard call with the same
expiration and exercise price so it might be viewed as a cost effective hedging instrument.

4.3.4 Multiple Factors Options

Rainbow Options

The term rainbow option is applied to an entire class of options which are written on more
than one underlying asset. Rainbow options are usually calls or puts on the best or worst of
n underlying assets, or options which pay the best or worst of n assets. Spread options are a
special case of rainbow options.

Benefits: Rainbow options are tools for hedging the risk of multiple assets. Rainbow options
provide effective hedging of assets with negative correlation. A put on the worse of two assets
provides protection from price movements in either direction.

Features: Options on two highly correlated assets are less expensive than options on two assets
which are not correlated, as lower correlation implies more variability in the individual prices.
Rainbow options at exercise may deliver either the best or worse asset in the rainbow or a call
or put option on the better or worse of the assets. Multi-color rainbow options could deliver the
best or worst m of the n assets. Rainbow model will price two-color rainbow options (options
on two underliers). Options on more than two underliers are less common and in general not
analytically tractable.

Use case:

An investment manager holds two negatively correlated risky assets. The manager expects a price
movement but does not know which asset will increase in price and which will decrease. A put on
the worse of the two assets will provide insurance no matter which price movement occurs.
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4.3.5 Pricing Formulas for Other Exotic Options

This was only a small number of exotic option models. In the book The Complete Guide to
Option Pricing Formulas E.G. Haug (1979) presents a large collection of option pricing formulas.
We have implemented all the different exotic option pricing formulas from the models presented
in his book into Splus functions. A work currently under progress is to implement also the
option sensitivities for all the models.

Here is a brief list of all Splus functions to price exotic options.

Executive(CallPutFlag, S, X, T, r, b, sigma)

ForwardStartOption(CallPutFlag, S, X, T, r, b, sigma)

TimeSwitchOption(CallPutFlag, S, X, T, r, b, sigma)

SimpleChooserOption(CallPutFlag, S, X, T, r, b, sigma)

ComplexChooserOption(CallPutFlag, S, X, T, r, b, sigma)

OptionsOnOptions(CallPutFlag, S, X, T, r, b, sigma)

ExtendibleWriter(CallPutFlag, S, X, T, r, b, sigma)

TwoAssetCorrelation(CallPutFlag, S, X, T, r, b, sigma)

EuropeanExchangeOption(CallPutFlag, S, X, T, r, b, sigma)

AmericanExchangeOption(CallPutFlag, S, X, T, r, b, sigma)

ExchangeExchangeOption(CallPutFlag, S, X, T, r, b, sigma)

OptionsOnTheMaxMin(CallPutFlag, S, X, T, r, b, sigma)

SpreadApproximation(CallPutFlag, S, X, T, r, b, sigma)

FloatingStrikeLookback(CallPutFlag, S, X, T, r, b, sigma)

FixedStrikeLookback(CallPutFlag, S, X, T, r, b, sigma)

PartialFloatLB(CallPutFlag, S, X, T, r, b, sigma)

PartialFixedLB(CallPutFlag, S, X, T, r, b, sigma)

ExtremeSpreadOption(CallPutFlag, S, X, T, r, b, sigma)

StandardBarrier(CallPutFlag, S, X, T, r, b, sigma)

DoubleBarrier(CallPutFlag, S, X, T, r, b, sigma)

PartialTimeBarrier(CallPutFlag, S, X, T, r, b, sigma)

TwoAssetBarrier(CallPutFlag, S, X, T, r, b, sigma)

PartialTimeTwoAssetBarrier(CallPutFlag, S, X, T, r, b, sigma)

LookBarrier(CallPutFlag, S, X, T, r, b, sigma)

SoftBarrier(CallPutFlag, S, X, T, r, b, sigma)

GapOption(CallPutFlag, S, X, T, r, b, sigma)

CashOrNothing(CallPutFlag, S, X, T, r, b, sigma)

TwoAssetCashOrNothing(CallPutFlag, S, X, T, r, b, sigma)

AssetOrNothing(CallPutFlag, S, X, T, r, b, sigma)

SuperShare(CallPutFlag, S, X, T, r, b, sigma)

BinaryBarrier(CallPutFlag, S, X, T, r, b, sigma)

GeometricAverageRateOption(CallPutFlag, S, X, T, r, b, sigma)

TurnbullWakemanAsian(CallPutFlag, S, X, T, r, b, sigma)

LevyAsian(CallPutFlag, S, X, T, r, b, sigma)

FourEquOptInDomCur(CallPutFlag, S, X, T, r, b, sigma)

Quanto(CallPutFlag, S, X, T, r, b, sigma)

EquityLinkedFXO(CallPutFlag, S, X, T, r, b, sigma)

TakeoverFXoption(CallPutFlag, S, X, T, r, b, sigma)
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4.4 Heston Nandi Option Pricing

Introduction

The classical Black-Scholes model is the most popular model for the valuation and the risk-
management of derivative securities. In the classical Black-Scholes model the prices of an asset
are assumed to be paths of a geometric Brownian motion process. The price cBS of an European
call option with this asset as its underlying is then evaluated as:

cBS(S, σ, t) = S N(d1
t )−Xe−r(Tm−t) N(d2

t ) , (4.46)

where

d1 =
ln (S/X) + (r + σ2/2)(Tm − t)√

(Tm − t)σ
, d2 = d1 −

√
(Tm − t)σ . (4.47)

S denotes the current asset price, X the strike price of the call option, Tm − t is the time to
maturity T 1, and r is the risk free interest rate. The volatility σ is the standard deviation of the
log returns of the asset prices. N denotes the cumulative distribution function for a standard
normal variable.

One of the drawbacks of the classical Black-Scholes model is the assumption of a constant
volatility of the log return time series of the underlying asset price. In recent years there have
been many approaches to include a time varying and even a stochastic volatility of the asset price
time series into the concept of option pricing. The most popular class of stochastic processes for
the modelling of the financial market time series are the many variants of GARCH processes.
Unfortunately many of these models lack a simple option pricing formula, in most cases the
price of an option even has to be computed with the help of numerical simulations.

However, Heston and Nandi (1999) formulated a special kind of GARCH process for which a
closed formula for the prices of European call options exists. The Heston-Nandi GARCH model
exhibits several effects known from the real financial markets, which cannot be explained by the
Black-Scholes model:

1In the following sometimes the index m may be suppressed.
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• Leptokurtosis The (unconditional) distribution of the asset price log returns is heavy tailed.

• Memory : The autocorrelations of the squared and absolute log returns of he spot prices
decay much slower compared with an exponential rate.

• Clustering of volatility : There are periods where the volatility is high, followed by periods
where the volatility is low. Especially large or especially small conditional variances persist
over a certain time interval.

• Leverage Effect : The conditional variance and the asset price log returns are negatively
correlated.

• Smile effect : The Black-Scholes implied volatilities observed for real financial market data
show a characteristic ”smile” pattern. Additionally, the skew of the smile pattern can be
produced by taking the leverage effect into consideration.

Therefore the Heston-Nandi GARCH option pricing model might be used to study and to model
more closely the behavior of real financial market data. Moreover, it can be used to test numerical
approaches, such as Monte Carlo simulations, applied to path dependent options.

First we formulate the Heston-Nandi GARCH(1,1) process and present the associated formula
for the pricing of European call options. Moreover, we state the expressions for the Greeks of
Heston-Nandi call options and introduce a hedge ratio for the hedging of derivatives within the
Heston-Nandi framework. Then we present the functions of the Splus library for the Heston-
Nandi analysis.

4.4.1 The Heston Nandi GARCH Option Pricing Model

In the Heston-Nandi GARCH model the asset prices are modelled by the discrete time stochastic
process St for which the associated log return process

Yt = log
St

St−1
= log St − log St−1 (4.48)

define a so called Heston-Nandi GARCH process. In the following we will focus on the Heston
Nandi GARCH(1,1) model.

The Heston-Nandi GARCH(1,1) Process

The Heston-Nandi GARCH(1,1) process is defined by

Yt = r + λ σ2
t + σt Zt , (4.49)

σ2
t = ω + α(Zt−1 − γ σt−1)2 + β σ2

t−1 , (4.50)

with ω > 0, α > 0 and β > 0. The innovations Zt are iid. random variables with E[Zt] = 0 and
E[Z2

t ] = 1; n the following we assume the innovations to be standard normally distributed. The
conditional variances σ2

t of the log returns between two discrete time steps are itself modelled
by a stochastic process. The conditional variance σ2

t during the time interval [t− 1, t) depends
on the information set at time t − 1 but is independent on the innovation Zt at time t. r is

43



the continuously compounded interest rate for the time interval between two successive discrete
times. Additionally the conditional variance appears in the mean as a return premium, which
allows the conditional mean of the log return to depend on the level of risk.

In contrast to other GARCH processes the conditional variance process is driven directly by the
innovations Zt and not by the log returns σtZt. This may be considered as a simplification of the
ordinary GARCH processes, which allows for the existence of a closed option pricing formula.
When the parameters α and β are set zero, the HN GARCH(1,1) process coincides with the
discrete time geometric Brownian motion process, which is the stochastic process for the asset
prices in the discrete time Black-Scholes model.

The HN GARCH(1,1) process is stationary if β + αγ2 < 1. The persistence β + αγ2 is essen-
tially the quantity which measures the correlation between two successive absolute or squared
log returns, or in other words the memory of the absolute or squared HN GARCH(1,1) time
series. For a stationary HN GARCH(1,1) process the unconditional variance σ2, which is the
expectation value of the conditional variance can be evaluated as

E[σ2
t ] =

α + ω

1− β − αγ2
. (4.51)

The unconditional variance corresponds to the squared volatility in the Black-Scholes model.
The parameter γ is responsible for the (conditional) correlation between the log returns and the
conditional variances

Covt−1[σ2
t+1, Yt] = −2αγσ2

t . (4.52)

Therefore the parameter γ is the appropriate quantity for the modelling of the leverage effect.
For the stationary HN GARCH(1,1) processes the heavy tails of the (unconditional) log return
distribution can be measured by the kurtosis of the log returns

k =
E[(Y − E[Y ])4]
E[(Y − E[Y ])2]2

. (4.53)

The Heston-Nandi GARCH(1,1) European Call Option Pricing Formula

Following Brennan (1979) and Rubinstein (1976), it can be shown that in the Heston Nandi
GARCH(1,1) framework the following holds: If the price process of the underlying asset is
assumed to be risk neutral, the price of a derivative at time t is equal to the expectation value of
the payoff of the derivative at maturity T , conditioned on the events up to time t and discounted
at the risk free interest rate r. If the price process of the underlying is not risk-neutral, the risk
neutral price process has to be used for the computation of the price of an option.

In order to calculate the price of a derivative the conditional generating function of the spot
price process

f(Φ) = Et[SΦ
T ] . (4.54)

44



has to be computed in a first step. For the HN GARCH(1,1) process the conditional generating
function assumes the following form

f(Φ) = SΦ
T exp

(
A(t;T,Φ) + B(t;T,Φ) σ2

t+1

)
, (4.55)

where

A(t;T,Φ) = A(t + 1, T, Φ) + Φ r + B(t + 1;T,Φ) ω − 1
2

ln(1− 2α B(t + 1;T,Φ)) ,

B(t;T,Φ) = Φ (λ + γ)− 1
2
γ2 + β B(t + 1;T,Φ) +

1
2(Φ− γ)2

1− 2αB(t + 1;T,Φ) ,
(4.56)

which can be computed recursively from the boundary conditions

A(t− 1;T,Φ) = Φ r , (4.57)

B(t− 1;T,Φ) = λΦ +
1
2
Φ2 . (4.58)

Since f(iΦ) is the characteristic function of the log spot price it is possible to calculate the
requested expectation values by inverting the characteristic function following Feller (1971) [?]
or Kendall and Stuart (1977) [?]. Since the price of a derivative is the expectation value of
the payoff at maturity under the risk neutral process, the conditional generating function has
to be calculated for the risk neutral process. For a HN GARCH(1,1) process as defined in
equations (4.49) and (4.50) the associated risk neutral process assumes the same form only with
the following parameters replaced by:

λ∗ = −1
2

, (4.59)

γ∗ = γ + λ +
1
2

. (4.60)

In the second step the Heston-Nandi European call option pricing formula for a discrete time
HN GARCH(1,1) process can be evaluated: At time t, an European call option with strike price
X and expiring at maturity time T is worth

c = e−r(T−t) E∗t [max(ST −X, 0)] = (4.61)

1
2
St +

e−r(T−t)

π

∫ ∞

0
Re

[
X−iΦ f∗(iΦ + 1)

iΦ

]
dΦ

−X e−r(T−t)

(
1
2

+
1
π

∫ ∞

0
Re

[
X−iΦ f∗(iΦ)

iΦ

]
dΦ

)
,

where E∗t [ · ] denotes the expectation value and f∗(Φ) the conditional generating function under
the risk-neutral process.
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The Greeks of a Heston-Nandi GARCH(1,1) European Call Option

The HN call option price is a function of the asset price S, the strike price X, the time to
maturity (T − t), the risk free interest rate r, and the conditional variance σ2

t+1 during the time
interval [t, t + 1). Similar to the expression for the price of an European call option, there exist
closed form expressions for the Greeks, i.e. expressions for the several partial derivatives of the
Heston-Nandi call option price with respect to these variables.

The delta of an European call option can be computed straightforwardly by differentiating the
expression (4.61) for the call option price with respect to the asset price S. Assuming that it is
allowed, to interchange the differentiation and the integration in equation (4.61), the integrals
for the delta assume a similar form as in the formula for the call option price, only that the
conditional generating function f∗(Φ) for the risk neutral process is replaced by its partial
derivative with respect to the asset price ∂f∗

∂S :

∆ =
∂c

∂S
= (4.62)

1
2

+
e−r(T−t)

π

∫ ∞

0
Re

[
X−iΦ ∂f∗(i Φ+1)

∂S

iΦ

]
dΦ−X e−r(T−t) 1

π

∫ ∞

0
Re

[
X−iΦ ∂f∗(i Φ)

∂S

iΦ

]
dΦ ,

with

∂f∗

∂S
(Φ) =

Φ
S

f∗(Φ) .

Similarly we compute the expression for the gamma of the HN call option. This time the
conditional generating function in the integral for the gamma has to be replaced by ∂2f∗

∂S2 :

Γ =
∂2c

∂S2
= (4.63)

e−r(T−t)

π

∫ ∞

0
Re

[
X−iΦ ∂2f∗(i Φ+1)

∂S2

iΦ

]
dΦ−X e−r(T−t) 1

π

∫ ∞

0
Re

[
X−iΦ ∂2f∗(i Φ)

∂S2

iΦ

]
dΦ ,

with

∂f∗2

∂S2
(Φ) =

Φ(Φ− 1)
S2

f∗(Φ) .

The expression for the partial derivative of the call option price with respect to the risk free
interest rate r, the rho, is obtained by differentiating the expression (4.61) for the call option
price with respect to r:
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ρ =
∂c

∂r
= −(T − t)

e−r(T−t)

π

∫ ∞

0
Re

[
X−iΦ (1− Φ)f∗(iΦ + 1)

iΦ

]
dΦ (4.64)

+(T − t)X e−r(T−t) 1
π

∫ ∞

0
Re

[
X−iΦ (1− Φ)f∗(iΦ)

iΦ

]
dΦ .

Since the HN GARCH(1,1) model, discussed here, is a discrete time model, there exists no
derivative of the call option price with respect to the time t. However, the theta can be approx-
imated, by taking the differences between the call option prices, that are separated by one time
step and then dividing by the length of the corresponding time interval, which is in our case
just one time unit.

In the case where the structure parameters α, β and γ are set zero, the HN GARCH(1,1) model
and the BS model coincide, if the squared volatility in the BS model is equal to the unconditional
variance in the HN GARCH(1,1) model, that is σ2 = ω. Then the delta, the gamma, the rho and
the theta are identical in both models. However, the vega of the two models do not coincide. The
vega in the BS model is the partial derivative of the call option price with respect to the volatility
σ. The corresponding quantity in the HN GARCH(1,1) model were the partial derivative of the
HN call option price with respect to the square root of the unconditional variance. In contrast
to this, the vega in the HN GARCH(1,1) model is the partial derivative with respect to the
conditional variance σ2

t+1 during the time interval [t, t + 1):

V ega =
∂c

∂σ2
t+1

= (4.65)

e−r(T−t)

π

∫ ∞

0
Re

X−iΦ ∂f∗(i Φ+1)
∂σ2

t+1

iΦ

 dΦ−X e−r(T−t) 1
π

∫ ∞

0
Re

X−iΦ ∂f∗(i Φ)
∂σ2

t+1

iΦ

 dΦ ,

with

∂f∗

∂σ2
t+1

(Φ) = B(t;T,Φ) f∗(Φ) .

The partial derivatives with respect to the structure parameters {λ, α, β, ω, γ} can be found
similarly. Let Ω be one of the structure parameter under consideration. Then the following
holds:

∂c

∂x
= (4.66)

e−r(T−t)

π

∫ ∞

0
Re

[
K−iΦ ∂f∗(i Φ+1)

∂Ω

iΦ

]
dΦ−K e−r(T−t) 1

π

∫ ∞

0
Re

[
K−iΦ ∂f∗(i Φ)

∂Ω

iΦ

]
dΦ ,

where
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∂f∗

∂Ω
(Φ) =

(
∂A

∂Ω
(t;T,Φ) + σ2

t+1

∂B

∂Ω
(t;T,Φ)

)
f∗(Φ) .

Again ∂A
∂x (t;T,Φ) and ∂B

∂x (t;T,Φ) can be computed by recursion relations, which simply can be
found by differentiating the initial recursion relation (4.56), with respect to the corresponding
parameter.

Since the price of a derivative is always computed under the risk neutral measure, the partial
derivative of the call option price with respect to the structure parameter λ is equal to the
derivative with respect to the parameter γ. This follows from from equation (4.60).

Hedging in the Heston-Nandi GARCH(1,1) Model

The delta hedging method which is suitable for the Black-Scholes model is not the best hedging
strategy in the HN GARCH(1,1) model. This is because the HN GARCH(1,1) model is a
stochastic volatility model and therefore has additional variability in the asset price process.
Note that the risk of a portfolio can never be eliminated perfectly, since the HN GARCH(1,1)
model is a discrete time model.

A suitable hedge ratio h for the HN GARCH(1,1) model can be found by minimizing the variance
of the hedge error

∆Π = −∆f + h ∆S , (4.67)

where ∆f denotes the change of the price of a derivative and ∆S denotes the change of the asset
price during one time step. The minimum variance hedge ratio can be approximated (with a
first order Taylor expansion of the price of the derivative) as

hV ar
t =

∂f

∂S
− 2αγ

St

∂f

∂σ2
t+1

+
2α2

Stσ2
t+1

(
∂f
∂S St − 2αγ ∂f

∂σ2
t+1

) ∂f

∂σ2
t+1

. (4.68)

Another suitable hedge ratio can be gained by eliminating the contribution in ∆Π which depends
linearly on the change ∆S of the asset price. A straightforward calculation yields for this hedge
ratio

ht =
∂f

∂S
(St, σ

2
t+1, t + 1)− 2α

St

(
γ + λ +

µ

σ2
t+1

)
∂f

∂σ2
t+1

(St, σ
2
t+1, t + 1) . (4.69)

In the following we use this expression as the hedge ratio2 in the HN GARCH(1,1) model and
refer to it as the HN hedge ratio.

2The approximation (4.68) for the minimum variance hedge ratio is numerically unstable, because the first
order Taylor expansion is not enough accurate.
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4.4.2 Numerical Analysis of the Heston Nandi Model

The Splus function package for the Heston-Nandi analysis of financial market time series includes
functions for the simulation of HN GARCH(1,1) asset price paths, the estimation of the structure
parameters of a HN GARCH(1,1) process, the calculation of the first four moments of the
(unconditional) log return distribution of a given HN GARCH(1,1) process, the recalulation
of the conditional variances and the associated innovations from a time series, the pricing and
hedging of European call options according to Heston-Nandi and according to Black-Scholes,
and the extraction of BS implied volatilities. In the following we present the functions included
in the fOptions library, and demonstrate its applications at hand of several examples.

Overview over the Software Package

Before discussing the Splus functions in detail, we give a short overview over the functions
included in the fOptions library:

Heston Nandi GARCH(1,1) functions

• hngarch.mle - max log likelihood estimation of the HN GARCH(1,1) structure parameters
from observed log return time series

• hngarch.sim - simulation of HN GARCH(1,1) time series

• hngarch.diag - recalulation of the conditional variances and the associated innovations
of a HN GARCH(1,1) process from an observed log return time series

• hngarch.mom - moments of the HN GARCH(1,1) (unconditional) log return distribution

• hngarch.momdiff - partial derivatives of the moments of the HN GARCH(1,1) (uncondi-
tional) log returns with respect to the HN GARCH(1,1) structure parameters

• hngarch.rms - root mean square error estimates of the HN GARCH(1,1) structure pa-
rameters from observed options prices

• HNGOption - call and put prices of HN GARCH(1,1) options

• HNGGreeks - the Greeks of the HN GARCH(1,1) call and put options

• HNGOmegas - partial derivatives of the HN GARCH(1,1) call and put option prices with
respect to the structure parameters λ, α, β, ω and γ

In analogy we have also added the Black-Scholes functions

• bs.imv - extraction of BS implied volatilities from the call option prices

• bs.rms - root mean squared error estimate of BS volatility from observed call option prices

The notations hngarch.* follows those from standard Splus time series analysis and the nota-
tions HNG* follow those from the Black-Scholes options pricing.

Maximum Log Likelihood Parameter Estimation

The Splus function hngarch.mle(model, x, symmetric=T, doprint=T) allows to estimate the
structure parameters (λ, ω, α, β, γ) of a HN GARCH(1,1) process from an observed financial
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market log return time series. The parameters are estimated via the maximum loglikelihood
approach, maximizing the log-likelihood function of the HN GARCH(1,1) process, assuming that
the innovations are Gaussian distributed. hngarch.mle() returns the list $model=list(lambda,
omega, alfa, beta, gamma), which contains the estimated structure parameters for the HN
GARCH(1,1) process. Additionally, the value of the log likelihood function $mllh and the list
$moments with the theoretical moments of the (unconditional) log return distribution for the
estimated HN GARCH(1,1) process are returned. As input variable, model contains the values
for the structure parameters with which the estimation procedure is started. The vector x
contains the log return time series from which the HN GARCH(1,1) structure parameters will
be estimated. If the logical flag doprint is set to the value true, the iteration path of the
estimation process is printed. If the logical input variable symmetric is set to the value true,
the parameter γ is set zero during the whole estimation procedure and will not be estimated.

Example: HN GARCH(1,1) Parameter Estimation - xmpHNGmle

Estimate the HN GARCH(1,1) structure parameters from the log return of the SPI Futures from
the Sydney Futures Exchange, SFE. As a guess for the unconditional variance σ2, the variance of
the empirical log returns of the share index is taken. The start values are λ = −0.5, ω = 0.1 σ2,
α = 0.5 σ2, β = 0.4 and γ = 100. The Splus function calls take the following form

data <- scan(file="aofres.csv")

sigma2 <- var(data)

model <- list(lambda=-0.5, alfa=0.5*sigma2, beta=0.4, omega=0.1*sigma2, gamma=100)

hngarch.mle(model=model, data=data)

The results of the maximum log likelihood parameter estimation are displayed in the following table.

symm. HN asymm. HN NYSE log returns

λ 3.90 2.51 -
ω 1.15 · 10−5 2.56 · 10−6 -
α 2.59 · 10−5 1.28 · 10−6 -
β 0.757 0.858 -
γ 0 58.6 -

log likelihood 13635 13676 -

persistence 0.757 0.902 -
σ2 0.000154 0.000157 -

mean 0.00060 0.00032 0.000406
variance 0.000154 0.000157 0.000191
skewness 0.019 0.014 −6.44
kurtosis 3.398 3.37 192

� Table: Parameters estimated from the NYSE Index data via maximum log likelihood method for
symmetric and asymmetric Heston Nandi GARCH(1,1) processes. For the estimated models the
theoretical values for the persistence, the unconditional variance σ2, the mean, the variance, the
skewness and the kurtosis of the (unconditional) log return distribution are displayed. In addition
thefirst four empirical moments are displayed.

Simulation of Asset Prices

The function hngarch.sim(model, r=0, S0=1, innov, start.innov, doplot=T, doprint=T)
allows to simulate sample paths of a HN GARCH(1,1) stochastic process for a given set of (es-
timated) structure parameters. hngarch.sim() returns a list, containing the vector of the
simulated log return time series $x and the vector with the associated conditional variances $h.
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The list model=list(lambda, omega, alpha, beta, gamma) specifies the structure parame-
ters of the HN GARCH(1,1) process. The interest rate term r is simply added to the log return
time series and is set zero by default. The innovations for the artificial sample path are provided
by the vector innov. The vector start.innov contains the starting innovations, which will be
omitted in the output time series, but which are used, to bring the time series into a state of
equilibrium. The artificial log-return time series and the associated conditional variance time
series have the same length as the vector of the innovations. The initial asset price St=0 is
specified by the variable S0. If the logical flag doplot is set true, the simulated asset prices and
the percentual log returns are plotted as a function of time. Finally, by setting the logical flag
doprint on the value true, additional information about the simulated asset price path can be
provided.

Example: Simulation of HN GARCH(1,1) Price Paths - xmpHNGsim

Simulate HN GARCH(1,1) asset price paths and the associated log returns.

The absolute log returns of financial market time series show a characteristic long range dependence
in the autocorrelation function. In contrast, the autocorrelations of the artificial absolute log returns
of a HN GARCH(1,1) process decay at exponential rate and show significant values only for small
lags.

It is obvious, that a stationary HN GARCH(1,1) does not fit the empirical data very well. A pos-
sible explanation for this might be, that the assumption of a stationary HN GARCH(1,1) process,
describing the empirical data is less realistic, since the rules and the behavior of a financial market
clearly change as time passes by. Therefore, we assume in the following, that the data are not
described by a stationary HN GARCH(1,1) process during the whole time period and we allow the
structure parameters to change over time: The empirical time series is divided into subintervals of
equal length, and for each interval the HN GARCH(1,1) structure parameters are estimated sepa-
rately. The result is a non stationary log return time series, consisting of stationary HN GARCH(1,1)
processes with different structure parameters in each time interval. The autocorrelation function
of the artificial log returns of such a non-stationary process shows significant values even for large
lags. This illustrates, that a change of the structure parameters may be of great importance for the
modelling of financial market time series, and may lead to a much better fit to the empirical data.

The figure shows the plots of the SFE SPI Futures data and its log returns in comparison to
artificial log return time series which are realizations of the estimated stationary and the estimated
non-stationary HN GARCH(1,1) processes.

Diagnostics - Extraction of Conditional Variances and Innovations

The Splus function hngarch.diag(model, r=0, ht1=-1, x, doplot=T) allows to recalculate
the conditional variances and the associated innovations from a log return time series, when the
structure parameters of the associated HN-GARCH(1,1) process are known. hngarch.diag()
returns a list containing the vector with the conditional variance time series $h and the vector
with the associated innovations $z, which are recalculated from the log return time series that is
provided by the vector x. The structure parameters of the HN GARCH(1,1) process are specified
in the list model=list(alfa, beta, omega, gamma, lambda). Additionally an interest rate
term r may be specified, which is simply subtracted from the log return time series x. In
order to start the iteration to extract the conditional variances, a start value for the conditional
variance ht1 is needed. If ht1 assumes a negative value (which is the default), the iteration
starts with the value of the unconditional variance σ2 = ω+α

1−β−αγ2 used for ht1. The vectors
of the conditional variance time series $h and the innovations $z have the same length as the
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� Figure 4.4.1: The SFE SPI Index Futures, the associated log returns and the artificial log return time series
which are realizations of a simulated stationary and a simulated non-stationary HN GARCH(1,1) processes. These
graphs are the output of the Splus example xmpHNGsim.scc.
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� Figure 4.4.2: Autocorrelations of the absolute log returns of the SFE SPI Index Futures, and of realizations of
the simulated stationary and non-stationary HN GARCH(1,1) processes. The graphs are the output of the Splus
example xmpHNGsim.scc.
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vector of the log returns x. If the logical flag doplot is set to true the time series of the log
returns, the recalculated innovations and conditional variances are plotted.

The extraction of the conditional variances and the associated innovations of the log return
time series can be used to test if the innovations are identical independent normally distributed
random variables, which were the case if the specified model fitted the financial market data
perfectly. The dependence between the innovations can be analyzed by an investigation of the
autocorrelations between the innovations and with help of statistical tests.

Example: Conditional Variances and Innovations - xmpHNGdiag

Extract and plot the conditional variance time series and the associated innovations the SFE SPI
Index Futures time series. Use the structure parameters of the HN GARCH(1,1) process as estimated
via the maximum likelihood method. Furthermore, plot the autocorrelations of the innovations,
showing that the innovations are not perfectly independent random variables. This implies that a
HN GARCH(1,1) process with normally distributed innovations is not a perfect model for the SFE
SPI Index Futures data.

Moments of the Log Return Distribution

The Splus function hngarch.mom(model, r=0) calculates the first four moments of the uncondi-
tional log return distribution for a stationary HN GARCH(1,1) process with standard normally
distributed innovations. hngarch.mom() returns a list with the theoretical values for the $mean,
the $variance, the $skewness and the $kurtosis of the (unconditional) log return distribution.
We have also access to the $persistence of the corresponding HN GARCH(1,1) process and
to the values for E[σ2

t ] ($meansigma2), E[σ4
t ] ($meansigma4), E[σ6

t ] ($meansigma6) and E[σ8
t ]

($meansigma8), which are needed for the computation of the moments of the unconditional log
return distribution. The only arguments are the risk free interest rate r and the structure param-
eters of the HN GARCH(1,1) process, which are specified in the model list model=list(alfa,
beta, omega, gamma, lambda).

The Splus function hngarch.momdiff(model, r=0) returns a list with the associated partial
derivatives of the persitence, the unconditional variance (and the other moments of the condi-
tional variance), the mean, the variance, the skewness and the kurtosis of the log returns, with
respect to the structure parameters λ, α, β, ω and γ of the HN GARCH(1,1) process. The
HN GARCH(1,1) structure parameters for which the partial derivatives shall be computed are
specified in the list model. The partial derivative of the kurtosis with respect to the parameter
α, for example can be accessed with $dkurtosisalfa hngarch.momdiff() can be used in order
to compute the derivatives of the HN option price with respect to the physical parameters, such
as the unconditional variance, the persistence or the kurtosis.

Pricing of European Call Options

The Splus function HNGOption(CallPutFlag, model, S, X, Time, r=0, ht1) evaluates the
prices of call and put options according to the Heston-Nandi GARCH(1,1) model. HNGOption()
returns the price for the selected option styke. The arguments are the CallPutFlag taking the
string values ”c” or ”p”, the HN GARCJ(1,1) model list the asset price S, the strike price X,
the Time to maturity, the risk free interest rate r, and the volatility ht1. The HN prices for put
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� Figure 4.4.3: The conditional variance tim series and the associated innovations recalulated from the NYSE
Index log return time series. The model parameters were estimated with the max log likelihood method in
Example 1. The figure on the bottom shows the autocorrelations of the innovations time series.
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options are evaluated by this function using the put-call parity 3. The corresponding functions
are

Example: Scaling Properties of Option Prices - xmpHNGscaling

This Splus script demonstrates the usage of the option pricing functions by showing the scaling
properties of put option prices. An analysis of the Black-Scholes option pricing formula reveals
that the prices of Black-Scholes options depend only on the arguments σ2(T − t) and the ratio
S/Xe−r(T−t). By doubling the volatility, and dividing the time to maturity by the factor 4, we do
not change the price of a BS option. The Figure shows that a similar result holds for the HN option
prices. It has to be noted, that the doubling of the volatility not only corresponds to the doubling
of the conditional variance ht1 at time t but also corresponds to a doubling of the unconditional
variance σ2, which plays the same role in the HN GARCH model as the squared volatility in the Black
Scholes model. Therefore, we chose the structure parameters for the HN GARCH(1,1) model as fixed
functions of the unconditional variance (α = 0.5 σ2, β = 0.4, γ = 0.1/σ, ω = 0.595 σ2, λ = −0.5)
and scale them only by scaling the value for the unconditional variance.

The Greeks of an European Call Option

The Greeks denote the partial derivatives of the option price with respect to the asset price
S (the delta), the volatility σ (the vega), the time t (the theta) and the interest rate r (the
rho). The gamma denotes the option price derived two times with respect to the asset price S.
The Splus function HNGGreeks(CallPutFlag, Selection, model, S, X, Time, r=0, ht1)
returns the value of a HN GARCH(1,1) option Greek of a call or put option, which is selected
in the argument Selection. The other arguments are the same as for the Splus function
HNGOPtion().

Example: HN Greeks of a Call Option - xmpHNGGreeks

The Splus script Example6.scc plots the Greeks of a Heston Nandi call option for different as-
set/strike price ratios and for different times to maturity.

Black-Scholes Implied Volatility Derived from Market Prices

The Splus function bs.imv(CallPutFlag, price, S, X, Time, r=0, ... allows to extract
the Black-Scholes implied volatility from the market price c of an European call option, the asset
price S, the strike price X and the time remaining to expiration (T − t). The implied volatility
is computed by solving for the zero in the difference between the BS price and the market price
of the option, with the volatility as the variable. bs.imv() returns the daily squared BS implied
volatility of a call option with the market price c, the risk free interest rate r, the asset price S,
the strike price X and the time to maturity time.

Example: The Smile Effect

In the Splus script Example8.scc we first compute the HN call option prices for four different sets
of HN GARCH(1,1) structure parameters. Then the annualized Black-Scholes implied volatility is
computed with the help of the bs.imv function. The BS implied volatility of the HN GARCH(1,1)
option prices as a function of S/X, shows the same ”smile pattern” as this is often observed for real
option prices.

3Put-Call Parity: c + Xe−r(T−t) = p + S where c is the price of an European call option and p is the price of
an European put option. X denotes the strike price and S denotes the asset price
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� Figure 4.4.4: The BS and HN put option prices as functions of S/X and the product σ2(T − t). In the HN
GARCH model σ2 denotes the unconditional variance. In each plot three different scalings are displayed. The
time to maturity is multiplied by the factor scale and the squared volatility is divided by the factor scale, such
that the product σ2(T − t) is a constant. The put option in the lower row is at the money.
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Root Mean Square Parameter Estimation and Option Misspricing

We could price an option by estimating the HN GARCH structure parameters from historical
asset price data via the maximum log likelihood method, and then using these parameter esti-
mates to evaluate the HN GARCH option price. Similarly we could estimate the BS volatility
from historical asset prices and use this estimate to evaluate the BS option price. Since the price
of an option reflects the expectations about the future evolution of the asset prices, the pricing
of an option that is based solely on historical information could be not suitable. Therefore it is
more appropriate to estimate the needed quantities from the historical option prices, which to
some extent contain information about the expectations about the future behavior of the asset
prices.

Since the BS and the HN GARCH model have both closed form solutions for the option prices,
it is quite natural to estimate the underlying structure parameters by minimizing the difference
between the market prices and the model prices. The difference may be expressed as sums of
volume weighted squared errors (L2 norm). There have been implemented two Splus functions
for the root mean square error (RMSE) estimation, which allow for the BS model to find the
optimal value for the volatility Θ = σ, and for the HN GARCH(1,1) model to find the optimal
structure parameters Θ = (α, β, ω, γ, λ). The estimations are done by minimizing the root mean
squared error

RMSE =

∑
Options(cMarket − cModel)2V olume∑

Options V olume
. (4.70)

Options is a set of traded call options with the prices cMarket, the asset prices S, the strike prices
X and the times to maturity (T−t). cModel are the associated call option prices according to the
BS or the HN GARCH model . The (relative) misspricing is defined as the difference between
cMarket and cModel divided by the market call option price.

bs.rms (c, r=0, S, X, time, volume, tolerance=1e-8)

returns a list containing the estimated volatility $sigma2 of the BS model, the RMS error $rmse
and the vector of the misspricings $misspricings. The arguments of this function are the vector
c with the market prices of the selected call options, the risk free interest rate r, the vector S
with the asset prices, the vector X with the strike prices, the vector time with the times to
maturity (in days) and the vector volume with the traded volume of the options. The tolerance
to which accuracy the RMS error will be determined is specified in the argument tolerance.

For the HN GARCH(1,1) model additional arguments are needed: the starting values for the
structure parameters and the time series with the prices of the underlying. The latter argument
is needed to extract the conditional variances for the estimated model. The conditional variances
need not to be estimated, since they can be recalculated from the asset price history.

hngarch.rms (model, c, r=0, X, time, volume, U, utime, tolerance=1e-8, doprint=T)

returns a list with the estimated HN GARCH(1,1) structure parameters $parameters = list(lambda,
omega, alfa, beta, gamma), the root mean square error $rmse, the vector $misspricings
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with the misspricings, and the vector $ht1 with the conditional variances. The needed ar-
guments include the list model = (lambda, omega, alfa, beta, gamma), which specifies the
starting parameters for the RMS error estimation, the vector c with the market prices of the
selected call options, the risk free interest rate r, the vector S with the asset prices , the vector
X with the strike prices, the vector time with the times to maturity (in days), and the vector
volume with the traded volume of each option. U is the vector with the prices of the underly-
ing and utime is the vector with the associated days until expiration. The tolerance to which
accuracy the RMS error will be determined is specified in the argument tolerance.

Example: HN GARCH(1,1) Structure Parameters from SFE Future Calls - xmpHNGrms

This Splus script applies the functions bs.rms and hngarch.rms on traded call options with the
SFE future contracts as the underlying asset. The prices of the SFE futures, the traded call options
and the relative misspricing for the estimated BS and HN GARCH(1,1) models are shown in Figure
4.4.2. The most traded call options, i.e the options with the largest trading volume, are at the
money. Therefore the misspricing is small for the at the money options, since then the root mean
square error is small. The misspricing for the traded call options with the largest trading volume is
smaller for the HN GARCH model than for the BS model, because there are more degrees of freedom
in the HN GARCH(1,1) model, such that is able to fit the empirical data better than the BS model.
For the options that are not at the money, however, the misspricing is smaller for the BS model as
it can be verified in Figure 4.4.2. Note furthermore, that the estimation of the HN GARCH(1,1)
structure parameters directly from the SFE future prices via the maximum log likelihood method
leads to results which differ a lot from the root mean squared error parameter estimation indirectly
from the option prices.

Estimation method λ ω α β γ

root mean square error 0.49 3.3 · 10−5 1.9 · 10−9 0.46 3005
max log likelihood 7.07 4.6 · 10−6 3.3 · 10−7 0.01 1660

� HN GARCH(1,1) structure parameters estimated directly from the SFE future contract prices
via maximum likelihood method and estimated indirectly from the associated European call option
prices via RMS error minimization.

Hedging of European Call Options

In the Black-Scholes (implied volatility) delta hedging strategy, the hedge ratio h is set equal to
the BS delta of the derivative. The volatility σ, which is needed for the computation of the BS
delta, is estimated from the current call option prices, when the hedge ratio is updated.

bs.hedge(S, c, time, X, r=0, sigma2=-1

returns a list containing the vector $hedgeratio with the BS (implied volatility) delta hedge
ratios at the times when the hedge ratio is updated. The times when the hedge ratio is updated
are specified in the input vector time. Additional arguments are the vector S and the vector c
which contain the asset and the call option prices at the times when the hedge ratio is updated.
The argument X denotes the strike price of the hedged call option and the argument r denotes the
risk free interest rate. If the argument sigma2 assumes a negative value (which is the default),
the implied volatilities from the option prices in c are used for the computation of the hedge
ratios. Otherwise the squared volatility is assumed as a constant with the value sigma2. Note
that the estimation of the BS implied volatility becomes numerically unstable for times near to
maturity, such that a constant volatility (which has to be estimated somehow) might be useful.
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Futures and traded SFE Call Options
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� The prices of the SFE future contracts, the traded call options and the percentual misspricings between the
traded and the BS/HN call options.
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Besides the hedge ratios the output list contains the hedge errors and the gains from trade
during the time interval between two successive dates when the hedge ratio is updated. The
associated vectors can be accessed by $hedgeerror and $gainsfromtrade.

Example: Hedge Performance of Discrete Time Black-Scholes Delta Hedging - xmpBShedge

This Splus script simulates 1000 asset price paths of length 100 days, which are realizations of a
Brownian motion process with a volatility of 16% per trading year. For each path the function
bs.hedge is used to determine the BS (implied volatility) delta hedge errors during one day, which
is the time interval between the updating of the hedge ratio. The variance of the hedge errors and
the average absolute hedge errors are then evaluated for each of the 100 days before maturity. When
the hedge ratio is updated less frequently, the hedge performance of the BS delta hedging strategy
gets worse.

The Heston-Nandi hedging strategy uses the hedge ratio (4.69), which differs from the HN delta
of the call option especially for γ parameters different from zero. The conditional variances for
the computation of the hedge ratio are recalculated according to the relation

σ2
t+1 = ω + βσ2

t + α

(
log St − log St−1 − r − λσ2

t − γσ2
t

)2

σ2
t

. (4.71)

Unlike as in the BS delta hedging strategy the volatility can be recalculated directly from the
asset prices. Instead the structure parameters of the HN GARCH(1,1) model have to be provided
by an estimation.

hngarch.hedge(S, c, X, U, time, ht1=-1, r=0)

returns a similar output list for the HN hedging strategy as the function bs.hedge for the BS
delta hedging strategy. The structure parameters for the HN GARCH(1,1) model are specified
in the list model. For the recalculation of the conditional variances, the asset price time series
U with the prices at each discrete time point from the day on when the hedging is started has
to be provided. The value for the conditional variance at the day when the hedging is started
is provided by the argument ht1. If ht1 assumes a negative value, the start value for the
conditional variance is set equal to the unconditional variance of the specified HN GARCH(1,1)
process.

Example: Hedge Performance of the Heston-Nandi Hedging Strategy - xmpHNGhedge

The Splus script Example11.scc demonstrates the application of the function hn.hedge, by showing
that the HN hedging strategy performs better than the BS (implied volatility) delta hedging strategy
for options traded in an artificial financial market which behaves according to the HN GARCH(1,1)
model.
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Notes and Comments

In section 1, most of the Splus functions were derived from the Excel Spreadsheets as presented
in the book of Haug. For the software implementation, done by D. Würtz, in most cases only
minor changes were required to make them ready for Splus.

The Exotic options were also implemented from the book of E.G. Haug (1997).

The software package for pricing Heston Nandi Options was written by D. Würtz, and some
functions were added by R. Angliker. These Splus functions rely on several Fortran77 routines:
DUMINF - BFGS optimization routine to perform the max log likelihood estimation of the HN
GARCH(1,1) structure parameters; DQAGI - Semi-infinite integration routine to evaluate the
integrals in the HN option pricing formulas; DFZERO - bisection/secant algorithm in order to
search for the zero to solve for the BS implied volatility; DNLS1E - Levenberg-Marquard routine
to perform the root mean square error estimation of the HN GARCH(1,1) structure parameters;
CN to calculate the cumulative normal distribution function in the pricing formula for the BS
options; CDEXP2, CDLOG2 substitutions for the double precision non-standard Fortran77 routines
for portability reasons.
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4.5 Monte Carlo Simulations of Options

4.5.1 The Monte Carlo Approach

A Monte Carlo Simulation for pricing options approximates the expected derivative’s cash flows
with a simple arithmetic average of the cash flows over a finite number of simulated price paths.
Consider, for example, the simple case of a Plain Vanilla European call option. The price of
this option is expressed as the expectation value of its payoff, discounted at the risk-free interest
rate.

c = e−r(T−t)E[max(ST −X, 0)] .

If we simulate enough possible stock prices, say N = 100′000, and take the average of the returns
of the option, we expect to make a good approximation for the real price.

c ' e−r(T−t)
N∑

i=1

max(0, S
(i)
T −X)/N , (4.72)

where

S
(i)
T = S exp

[(
r − 1

2
σ2

)
T + σT

1
2 ε(i)

]
and ε(i) ∼ φ[0, 1] , (4.73)

and the i = 1, 2, ..N enumerates the configurations.

The Monte Carlo procedure is, in fact, not adapted to price path-independent options, where the
return value of the option is only determined by the final value of the price. Compared to other
procedures, Monte Carlo simulation is numerically efficient when there are several variables to
define the return value of a price path, that is a path-dependent option. The option price is
then the expectation value of the return of these paths, that is a multi-dimensional integral over
the variables that characterize a path. Consider the multi-dimensional integral

I =
∫ 1

0
ddxf(x) . (4.74)
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In general, traditional approaches to multi-dimensional integration grow exponentially with the
dimension of the space, d, in which the integral is being performed. So, to obtain a certain
accuracy, the required CPU time TCPU to run the algorithm, scales as

TCPU ∼ εd/α , (4.75)

where ε is a constant, and α is determined by the particular integration “rule” being used (i.e.
first-order, second-order etc.). In contrast, for stochastic techniques, like Monte Carlo, the error
is due to random sampling over the integration region, expecting for the required CPU time

TMC
CPU ∼ 1

N

N∑
i=1

f(x(i)) . (4.76)

The resulting error scales much more favorably, as 1/
√

N . Actually the required computation
time doesn’t explicitly depend on the dimension of the integral. The variance is as important as
the mean in stochastic sampling; without it, one cannot assign a significance to any result: the
way the estimate 〈f〉 approaches the true value of the integral is determined by the variance.
The fact that the variance is independent of the number of dimension is the foundation of Monte
Carlo integration and can be shown formally by the central limit theorem, which states that
the distribution of averages approaches a normal distribution, whose spread around the central
value, determined by the square root of the variance, is proportional to 1/

√
N . We just recall

here the formulation of the central limit theorem:

Central Limit Theorem

If X1, X2, ... are a set of random independent variables identically distributed with mean µ and
variance σ2, then the distribution of

X1 + X2 + ... + XN −Nµ

σ
√

N
(4.77)

tends to a standard normal distribution when N →∞.

This result can expressed as:

lim
N→∞

P

{
X1 + ... + XN

N
− µ ≤ a

}
=

1√
2π(σ/

√
N)

∫ a

−∞
e

N
2σ2 x2

dx, (4.78)

showing that the expression X1+... +XN
N tends to be normally distributed with mean µ and

variance σ2/N . This can be, of course, applied to equation (4.76) to conclude that a Monte
Carlo estimator converges to the true value with variance proportional to 1/N thus a spread
around the mean (error) proportional to 1/

√
N with a factor of proportionality equal to σ, the

square root of the variance of the distribution f(x). Figure 4.5.1 shows, for a Plain Vanilla
European option, the relative error, as function of the Monte Carlo steps with a squared root
scale for the x-axis. The relative error is defined here as e/c where c is the Black-Scholes price
and e = 2σ. This guarantees that more than 95% of the estimation are include in c± e.
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� Figure 4.5.1: Monte-Carlo simulation: Estimation of the relative error as function of N on the basis of 500
independent price estimations of a Plain Vanilla option with S = 100, X = 100, σ = 0.5, t = 1, and r = 0.

4.5.2 Monte Carlo Estimators of the Greeks

Over the last decade, a variety of direct methods have been developed for estimating partial
derivatives by simulation. Direct methods compute a derivative estimate from a single simula-
tion, and thus do not require re-simulation at a perturbed parameter value. Under appropriate
conditions, they result in unbiased estimates of the derivatives themselves, rather than of a
finite-difference ratio. Our discussion focuses on the use of pathwise derivatives as direct esti-
mates, based on a technique generally called infinitesimal perturbation analysis, see Glassermann
(1991).

The pathwise estimate of the true Black-Scholes Delta dc/dS is the derivative of the sample
price c(i) with respect to S0. More precisely, it is

dc(i)

dS
= lim

δ→0

c(i)(S + δ)− c(i)(S)
δ

,

provided the limit exists with probability 1. If c(i)(S) and c(i)(S + δ) are computed from the
same random number ε(i), then, provided S

(i)
T 6= X, we have

dc(i)

dS
=

dc(i)

dS
(i)
T

dS
(i)
T

dS
= e−r1{ST >X}

S
(i)
T

S
, (4.79)

Here we used used equation (4.73) to get

dS
(i)
T

dS
= e(r− 1

2
σ2)+ε(i) =

S
(i)
T

S

and
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dc(i)

dS
(i)
T

= e−r d

dST
max(0, ST −X) =

{
e−r , ST > X,
0 , ST < X.

As ST , Cc fails to be differentiable; however, since this occurs with probability zero, the random
variable dc(i)

dS is almost surely well defined.

The pathwise derivative dc(i)

dS can be thought as limiting case of the common random numbers
finite-difference estimator, in which we evaluate a limit analytically rather than numerically. It
is a direct estimator of the option delta because it can be computed directly from a simulation,
starting at S without the need for a separate simulation at a perturbed value S. The question
remains whether this estimator is unbiased; that is whether

E

[
dc(i)

dS

]
=

dc

dS
≡ d

dS
E

[
c(i)

]
. (4.80)

The bias of the pathwise estimate thus reduces to the interchangeability of derivative and expec-
tation. The interchange is easily justified in this case; see Broadie and Glassermann (1993) for
this example and conditions for more general cases. Applying the same reasoning used above,
we obtain the following pathwise estimators of Vega for the Black-Scholes price:

V ega(dc/dσ) : e−r1ST >X
ST

σ

(
ln(ST /S)− (r − 1

2
σ2)T

)
(4.81)

Each of these estimators is unbiased. Of course, Monte Carlo estimators are not required for
these derivatives because closed-form solutions are available for each. The Black-Scholes setting
is useful for illustration, but the utility of the technique rests in the applicability to more general
models. Broadie and Glassermann (1993) have derived and studied pathwise estimates, both
theoretically and numerically), for Asian options and a model with stochastic volatility. For
example, the Asian option delta estimate is simply

e−r S

S
1{S>X} , (4.82)

where S is the average asset price used to determine the option payoff. Evaluating this expression
takes negligible time compared with a re-simulation to estimate the option price from perturbed
initial stock prices. The pathwise estimate is thus both more accurate and faster to compute
than the finite-difference approximation. These advantages extend to a wide class of problems.

4.5.3 Variance-Reduction Techniques

Computer time efficiency is the crucial point for fast and reliable Monte Carlo simulations. Thus
we present in the following techniques to reduce the variance in Monte Carlo Simulations. The
advantage of variance reduction, which means obtaining faster convergence with less sample
points, is obviously desirable for Monte Carlo simulations, but sometimes overlooked.
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Random Number Generator Efficiency

We must, however, not forget to take into account the computation time required to generate a
random sequence. If a certain way of generating random numbers allows to obtain variance re-
duction, it is only efficient when the computer time necessary to generate these random numbers
is sufficiently low. More precisely, suppose that we have a choice between two types of random
generators for a Monte Carlo simulation. Monte Carlo samples of N points approximate the
real value to estimate with variances σ2

1 and σ2
2, respectively. If we denote with b1 the time to

generate a random number in the first sequence and b2 the time to generate a random number
in the second, the first method is better than the second only when

σ2
1b1 < σ2

2b2 . (4.83)

The value e ≡ σ2b is sometimes referred as the efficiency of the procedure, their ratios e1/e2,
will allow us to make comparisons.

Antithetic Variates

One of the simplest and most widely used techniques in financial pricing problems is the method
of antithetic variates as variance-reduction technique. Consider the problem of computing the
Black-Scholes price of an European call option. Independent replications of the terminal stock
prices are generated from formula (4.73). In this context, the method of antithetic variates is
based on the observation that if ε is a standard normal distribution, then so does −ε. Similarly

c(−) = e−r(T−t)
N∑

i=1

max
(
0, ST (−ε(i))−X

)
/N ' c,

is an unbiased estimator of the option price, as is therefore

cAV =
1
2
(c(+) + c(−)) . (4.84)

We can now compare the efficiencies as follows. Because c(+) and c(−) have the same variance,

var

[
1
2

(
c(+) + c(−)

)]
=

1
2

{
var

[
c(+)

]
+ cov

[
c(+), c(−)

]}
. (4.85)

Thus we have

var [cAV ] ≤ var
[
c(+)

]
if cov

[
c(+), c(−)

]
≤ var

[
c(+)

]
.

However, cAV uses twice as many replications as c(+), so we must account for differences in
computational requirements. If generating the ε takes a negligible fraction of the work per
replication, then the work to generate cAV is roughly double the work to generate c(+). Thus
for antithetics to increase efficiency, we require

2var [cAV ] ≤ var
[
c(+)

]
, (4.86)
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which in light of equation (4.85), simplifies to the requirement that cov
[
c(+), c(−)

]
≤ 0. That

this condition is met is easily demonstrated. The function

c(+) = g(ε(1), ε(2), ..., ε(N)) = e−r(T−t) 1
n

N∑
i=1

max
(
0, ST (−ε(i))−X

)
is the composition of the mapping from the ε’s to the stock prices and from the stock prices to
the discounted option payoff. As the composition of two increasing functions, g is monotone, so
we find according to Barlow and Proschan (1975)

E[g(ε)g(−ε)] ≤ E[g(ε)]E[g(−ε)], (where ε = (ε(1), ε(2), ..., ε(N))) (4.87)

i.e., Cov[c(+), c(−)] ≡ E[g(ε)g(−ε)]−E[g(ε)]E[g(−ε)] ≤ 0, and we may conclude that antithetics
improve Monte Carlo simulations.

This argument can be adapted to show that the method of antithetic variates increases effi-
ciency in pricing a European put and other option that depend monotonically on inputs (e.g.
Asian options). On the other hand, the notable departure from monotonicity in some barrier
options (e.g. down-and-in call) suggests that the use of antithetics in pricing these options may
sometimes be less effective.

Quasi Monte Carlo Methods: Low-Discrepancy Sequences

Quasi Monte Carlo Methods use deterministic sequences, called low-discrepancy sequences,
which are in some sense well distributed. The main advantage we expect is that we achieve
a faster convergence compared with Monte Carlo simulations based on random numbers.

To simulate a price path using low-discrepancy sequences, we first generate numbers θ in the
interval [0, 1), and then transform it into normally distributed numbers. For each time interval
i, a new εi is generated, and the corresponding asset price follows from equation (4.73).

In the terminology of low-discrepancy sequences, the number of time intervals is referred to
as the number of dimensions of the simulations. Each path being parameterized with n θ’s, a
path is thus a point in the n dimensional “space of the θ’s” and the price, proportional to the
expectation value of the option, is an integral over this space.

Very important for Monte Carlo simulations is the ability to generate “good” ε’s which means
that, for each time step, the distribution of simulated ε’s across all price paths should closely
approximate φ(0, 1). The fact that ε = N−1

(0,1)(θ), reduces the problem of getting “good” ε’s to a
problem of generating sequences of θ’s “well” uniformly distributed over the hypercube [0, 1)n.
Figure 4.5.3 simulates an uniform distribution of 1000 points over a two-dimensional space with
a “standard” (pseudo) random generator. Figure 4.5.4 shows to corresponding two dimensional
normal distribution. We observe that certain points are clustered together, which also implies
that some regions will have few points.

In general, the more evenly the points are distributed throughout the domain, the more accu-
rate the simulation. This is the approach of low-discrepancy sequences. The points are “deter-
ministically” rather than randomly chosen to fill the hypercube uniformly, thereby minimizing
clustering and improving accuracy.

69



•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

• •
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

• •

•

•

•

••

•

•
•

•

•

•
•

•

•

•

•

•

• •
•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

••

•

•

•

•

•

•

• •

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

••
••

•

•

•

•

•
•

•

•

•

••

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•
•

•
•

••

•

•
•

•

•

•

•

•

•

•

• •

• •

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•
•

•

•
•

•
•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

••

•

•

•

••

•

•

• •

• ••

•

•

•
•

• •

•

•

•

••
•

••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•

•

• •

• •

•

••

•

•

•

•
•

• •

•

•

•

•

••

•
•

•

•

•

•

•

•
•

•

• •

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

• •

•

•

• •

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

• •

•

•

•

••

•
•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

• •

•
•

•

•

•

•

•

•

•

•

••

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

• •

•
•

• •

•

•

•

•
•

•

•

•

•

•

• ••

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•• •

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

Pseudo-Random

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Low-discrepency sequence (Sobol)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

� Figure 4.5.3: Pseudo-Random versus Low-Discrepancy Sequences.
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� Figure 4.5.4: Normal Distributions of Pseudo-Random versus Low-Discrepancy.
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Recall that a Monte Carlo simulation using random sequences generates error bounds that are of
the order 1/

√
N , where N is the number of simulated paths. Also the error bound is independent

of dimensionality. Low-discrepancy sequences, on the other hand, generate an upper bound to
the error that has been estimated by the Koksma-Hlawska inequality. They find an upper bound
to the error of the order of (logN)n/N , where n is the number of dimensions (i.e. time intervals).
This can be expressed as follow.

Kossma-Hlawaka Theorem:

Let Id = [0, 1)n and let f have bounded variation on [0, 1)n in the Hardy-Krause 4 sense. Then for
any x1, x2, ...xN ∈ In we have∣∣∣∣∣ 1

N

N∑
k=1

f(xk)−
∫

In

f(u)du

∣∣∣∣∣ ≤ C(f)
(logN)n

N
(4.88)

where C(f) is a constant.

The error bound provided by this theorem, while it is of theoretical interest, is unfortunately of
little help in most practical situations. The constant C(f) is very difficult to estimate accurately
in high dimensions and “often extremely large”, see Spanier and Maize(1994).

Studies using low-discrepancy sequences in finance applications find that the errors produced
are substantiallly lower than the corresponding errors generated by standard Monte Carlo sim-
ulations. Three low-discrepancy sequences are the Halton, Faure and Sobol sequences. We will
use the Sobol sequences because their applications in finance have given the best results in the
paper of Boyle, Broadie, Glasserman, (1995). It is actually the most popular low-discrepancy
sequence.

Example: Sobol Random-Generator

We present here the method proposed by Antonov and Saleev’s (1979) which is an improvement
of the original Sobol method (about 20 % faster). The construction of a Sobol sequence follows a
three-step procedure.

Step 1: Generate a set of odd integers mi, for i = 1, 2, ..., [log2N ] + 1, that satisfy the condition:
0 < mi < 2i, where N is the number of price paths, and [log2N ] is the bigger integer smaller or
equal than log2N . M = [log2N ] + 1 is the maximum number of digits in the expansion of N in base
2. This step entails a quite complicated recursive procedure:

We start with a series of integers h1, h2, h3, .. where hj is either “0” or “1”. The hj are the coefficients
of a primitive polynomial modulo 2

P (x) =

q∑
i=0

hix
i, where hq = h0 = 1, (4.89)

and q is the dimension of the polynomial. The theory of primitive polynomial modulo 2 is a topic in
number theory that we will not discuss here. It suffices here to say that there are special polynomials
among those whose coefficients are zero or one. An example is x9 + x4 + x3 + x + 1 which we can
abbreviate with (q, p) = (9, 13), where the bits of p in base 2 indicates the values of hi’s, 0 < i < q,
in the following way:

hi =
[ p

2i−1

]
mod 2 . (4.90)

4For a more complete discussion of the Hardy-Krause definition variation and details on this theorem see
Niederreiter (1992).
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The brackets “[ ]” are defined as above. In our example; p = 13 = 000001101 indicates h1 = h3 =
h4 = 1 and h2 = h5 = h6 = h7 = h8 = 0 .

The first q odd integers m1, m2, .., mq must be supplied. They can be chosen freely, provided they
satisfy that mi is odd and 0 < mi < 2i. Next we generate the set of the other mi for q < i ≤ M
using the coefficient of the primitive polynomial and a recursive relationship for i > q:

mi = mi−q ⊕ 2qmi−q ⊕ 2q−1h1mi−q+1 ⊕ ... ⊕

22hq−2mi−2 ⊕ 2hq−1mi−1 = mi−q

q−1⊕
j=0

2q−jhjmi−q+j (4.91)

where ⊕ is the bit-by-bit exclusive-or (XOR) operator:

1⊕ 0 = 0⊕ 1 ≡ 1

and

1⊕ 1 = 0⊕ 0 ≡ 1. (4.92)

For instance: 35⊕ 27 = 100011⊕ 011011 = 111000 = 56.

Step 2: Calculate a set of “direction numbers” by converting mi into a binary fraction in the base
2 number system. The i-th direction number v(i) for i = 1, 2, ..., M is given by

v(i) =
mi

2i
(4.93)

which is always smaller than zero since mi < 2i. For example, if m5 is 14 (14 < 25 = 32), its
direction number is given by

v(5) =
15

25
= 01110 >> 5 = 0.01110 = 0 + 0

1

2
+ 1

1

4
+ 1

1

8
+ 1

1

16
+ 0

1

32
,

where “>> 5” means “shift the number by 5 digits to the left” (while “>> 5” means “shift the
number by 5 digits to the right”). In concrete algorithms, we can thus represent v(i) by the integer
V (i):

V (i) = 2M−imi = mi << M − i, so that v(i) =
V (i)

2M
, (4.94)

which in our example would be of the form:

V (5) = 0111000... 0︸ ︷︷ ︸
M times

.

Step 3: Calculate the i-th Sobol number θ(i) for i = 0, 1, 2, ..., N − 1 using the Antonov and Saleev
recursive algorithm:

θ(i + 1) =
Θ(i + 1)

2M

Θ(i + 1) = Θ(i)⊕ V (c) (4.95)

where Θ(0) = 0; V (c) represents the c-th direction number; and c is the rightmost zero-bit in the
base 2 expansion of i (e.g., the rightmost zero-bit of 87=“01010111” is the the fourth digit from the
right; hence c=4).

Example: N = 1024, M = 11, (q, p) = (5, 4) that is h1 = h2 = h4 = 0 and h0 = h3 = h5 = 1.
Equation (4.91)is: mi = 25mi−5⊕mi−5⊕22mi−2 and we finally set m1 = 1, m2 = 3, m3 = 7, m4 =
5, m5 = 29 and obtain:
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i mi V (i) v(i)

1 1=00000000001 1024=10000000000 0.5

2 3=00000000011 1536=11000000000 0.75

3 7=00000000111 1792=11100000000 0.875

4 5=00000000101 640=01010000000 0.3125

5 29=00000011101 1856=11101000000 0.90625

6 53=00000110101 1696=11010100000 0.828125

7 23=00000010111 368=00101110000 0.1796875

8 51=00000110011 408=00110011000 0.19921875

9 249=00011111001 996=01111100100 0.486328125

10 881=01101110001 1762=11011100010 0.8603515625

11 1393=10101110001 1393=10101110001 0.68017578125

To generate an n-dimensional Sobol sequence (i.e., n time intervals per price path) beginning with
the first dimension, each successive dimension is generated sequentially using a different primitive
polynomial. Typically, the procedure begins with the primitive polynomial of lowest degree, and
moves to higher degrees as n increases. The steps 1 and 2 are repeated for each of the n dimensions,
using a different primitive polynomial for each dimension, while step 3 is executed simultaneously
for all dimension, giving an n-dimensional vector.

We have plotted in Figure 4.5.5 some charts of the repartition of the random numbers in different
dimensions.

Example: Sobol Random Generator Efficiency

We have implemented a Sobol random generator to simulate HN GARCH(1,1) processes and com-
pared the obtained efficiency with the one of an standard “pseudo” random generator. For the
model under consideration we used the parameters published in the paper of Heston and Nandi
(1997) evaluated for the SP500, with data ranging from 01/08/92 until 12/30/94.

α = 1.32e− 6 (4.96)

β = 0.589

γ = 422.095

ω = 5.02e− 6

σ0 = 9.45e− 3

We have estimated the efficiency as function of the dimension (1 day=1 dimension) on the basis of
250 independent prices evaluations for each efficiency estimate with a relative accuracy of 1% for
the evaluation of the call prices. We obtain the following results:

Number Pseudo Random MC Sobol MC Efficiency
of Days TCPU [s] Efficiency TCPU [s] Efficiency Ratio

5 0.4 6.36e-06 0.4 1.13e-07 56.1

20 1.5 7.92e-05 1.5 7.68e-06 10.3

60 4.4 5.49e-04 4.4 1.98e-04 2.77

120 8.9 2.07e-03 8.9 1.42e-03 1.46

The ratios of the two efficiencies have been represented on Figure 4.5.6 which shows that the advan-
tages of a Sobol random generator are very significant until 50 dimensions. For higher dimensions,
until 150, it is still advantageous to use a Sobol random generator rather than a uniform one.
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� Figure 4.5.6: Efficiency of Monte Carlo simulations with a standard uniform random number
generator versus Monte Carlo simulations with a Sobol generator as function of the dimension of
the domain of integration.

Example: MC GARCH Option Pricing with Leptokurtic Innovations

To observe the influence of a fat tailed distribution on the option pricing, we have used a student-t
distribution which is a good candidate allowing for excess kurtosis.

To observe the influence of the excess kurtosis on the option pricing, we have used the max-likelihood
estimated parameters from the times-series of the SFE future prices from 1992 to 1999.
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� Figure 4.5.7: GARCH Option Pricing with Leptokurtic Innovations Represented by Points “-.-”
versus Gaussian Innovations, “*”. The Prices are calculated with 1% of accuracy. nu go from 3 to
7 and the Prices Converge to the Gaussian Values as nu increases. The computational time is the
biggest for nu equal 3.
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Figure 4.5.7 and figure 4.5.8 represent the Monte Carlo pricing of a call option with X = 100 for
different values of the “degree of freedom”, ν, in the Student’s t-distribution. As expected, the smile
effect is more important when ν is small. The fat tails increase the price of the option significantly.
We have run the Monte Carlo simulations until S = 90. Unfortunately as shown in figure 4.5.7, the
computational time blows up for extreme out of the money options. To be able to investigate these
particular options which are in fact the most difficult to price accurately, more sophisticated Monte
Carlo methods like “importance sampling” will become necessary. The problem with “standard”
sampling is the fact that with increasing S more and more of the generated paths have zero payoff. A
significant variance reduction would be certainly achieved if we made a weighed sampling, generating
only the paths that contribute to the integral to be calculated. This will be discussed in the next
section.
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� Figure 4.5.8: Yearly Implied Volatility in % as function of 1/ν. We see that the Curvature is
bigger when ν is small accentuating the Smile effect.

4.5.4 Monte Carlo Importance Sampling

The method of antithetic variates denies efficiently reducing the variance in simulations where
prices of deep-out-of-the-money options are to be evaluated. The estimator is still subject to
high uncertainties since most of the simulation runs return a value of zero.

The importance sampling technique builds on the observation that an expectation under one
probability measure can be expressed as an expectation under another one through the use of a
likelihood ratio. Its primary focus is to concentrate simulating on sample paths that contribute
most to estimate the expected payoff.

Normally, the more a call option becomes out-of-the-money the more simulations are required
to maintain a constant variance of the estimator. However, we are free to generate ST with
any other drift µ, provided we weight the result with the appropriate likelihood ratio Lµ. The
larger the drift µ, the higher the probability that the option ends in-the-money at maturity and
the smaller the number of samples required to estimate the option price, as has been shown by
Vázquez-Abad and Dufresne (1998) as well as by Su and Fu (2000) in their studies.
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When changing the risk-neutral measure from Q, which involves r, to P , which encompasses µ,
the expression for the estimator evaluates to

EQ [max (Sr
T −X, 0)]

= EQ[max(Sr
T (X̃r)−X, 0)]

= EQ[Lµmax(Sr
T (X̃r + (µ− r)σ)−X, 0)]

= EP [Lµmax(Sµ
T −X, 0)] , (4.97)

where the following notations are effective

Xµ
k = µσ∆t + σ

√
∆tZk ,

X̃µ = (Xµ
1 , . . . , Xµ

n ) ,

Sµ
k∆t = Sµ

(k−1)∆te
Xµ

k ,

µσ = µ− σ2

2
. (4.98)

In the case of Gaussian innovations, the term for the likelihood ratio calculates to

Lµ =
(

Sµ
T

S0

) r−µ

σ2

e
(µ2

σ−r2
σ)T

2σ2 . (4.99)

ST needs not even be sampled from a log-normal distribution. The only requirement is that the
support of the importance sampling measure contains the support of the original measure for
the likelihood ratio being well-defined. It is therefore an absolute continuity requirement which
means that any distribution for ST whose support includes (0,∞) is admissible. Hence, the
importance sampling technique also holds true when reverting to fat tailed distributions such as
the Student-t distribution.

With the use of importance sampling, the simulation procedure becomes similar to the one
pricing an at-the-money option and the number of simulation steps needed to attain a certain
accuracy threshold remains constant, completely independent of the strike to asset price ratio,
see table 4.5.1.

Implementation of the Algorithm

The algorithm we have implemented subsequently encloses the Bollerslev’s GARCH(1, 1),

lnSt = lnSt−1 + µ + λσ2
t + σtZt ,

σ2
t = ω + ασ2

t−1Z
2
t−1 + βσ2

t−1 . (4.100)

Duan’s N-GARCH(1, 1)
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X/S: 1.05 1.15 1.25
Analytic Model

Black-Scholes Price 1.575 0.205 0.015
HN-GARCH(1, 1) Price 1.196 0.004 0

Antithetic Variates
Black-Scholes Price 1.583 0.206 0.015

Error 0.51 % 0.46 % 0.57 %
Simulation Steps 80’000 160’000 200’000
Computation Time 7 sec 12 sec 15 sec

HN-GARCH(1, 1) Price 1.201 0.007 0
Error 0.40 % - -
Simulation Steps 90’000 200’000 400’000
Computation Time 9 sec 18 sec 42 sec

Antithetic Variates + Importance Sampling
Black-Scholes Price 1.583 0.206 0.015

Error 0.50 % 0.48 % 0.47 %
Simulation Steps 12’000 12’000 12’000
Computation Time 2 sec 2 sec 2 sec

Table 1: Comparison of computation times in seconds for standard European call options bearing different strike to asset price ratios.
The first block (Analytic Models) summarizes exact results, the second block (Antithetic Variates) denotes the calculations
performed only taking use of antithetic variates, and the third one (Antithetic Variates + Importance Sampling) sums up
the corresponding results with the additional application of importance sampling. Identical parameters concernS = 100,
T = 30 days, E[σ] = 25% andr = 0%. The HN-GARCH(1,1) model parameters are listed in table 2.

Gaussian and Student-t distributed innovations. Grace to
the modular concept of the software package, further pric-
ing models as well as other distributions are easily addable
to the existing ones.

Variance reduction is standardly performed by the use
of antithetic variates and is applied on all models. When
pricing options bearing a negative moneyness, importance
sampling is additionally activated.

As an example for standard normal distributed innova-
tions that drive a Black-Scholes model, the process to gen-
erate the paths is specified by

S
(i)
T = S0e

(r− 1
2 σ2)T+σ

√
TZ(i)

, (10)

where

Z
(i)
k ∼ N (0, 1) k = 1, . . . , n (11)

andn = T/∆t denotes the number of steps in each path.
With the Monte Carlo estimate formax(ST − X, 0),

the pricing formula (2) for a European call figures out to

ĉ = e−rT 1
N

N∑
i=1

[max(S(i)
T −X, 0)], (12)

where the estimate is replaced by the average over the pos-
sible outcomes minus the strike price.

For the determination of the option’s delta we enlisted
the assistance of pathwise derivatives based oninfinites-
imal perturbation analysiswhich result in unbiased esti-
mates under the appropriate conditions. The advantage of

this approach lies in the fact that the derivatives are com-
puted from a single simulation without the need for per-
turbed resimulations.

5 PRICING GARCH OPTIONS

The sector of path-dependent options combined with
the appliance of the stochastic volatility models reflects the
domain where the Monte Carlo simulation reveals its full
potency.

Grace to the programs efficiency, we were able to in-
vestigate in the BS, GARCH, N-GARCH and HN-GARCH
models in further detail and to examine the consequences
on prices when varying the models’ different structure pa-
rameters. The synopsis of our work is illustrated in fig-
ure 2 where the prices and implied volatilities of the dif-
ferent models are mutually opposed for European calls and
puts respectively.

The parameters for the different pricing models are
summarized in table 2 and are either estimated from mar-
ket data or adopted from published work, see references
[12] and [15].

The Influence of Fat-tailed Innovations

The appliance of heavy-tailed distributions generally
increases the contracts’ values across all models and strike
prices as can bee verified in figure 3. It also discloses a
notable result by showing that the introduction of fat-tailed

4

� Table 4.6.1: Comparison of computation times in seconds for standard European call options bearing differ-
ent strike to asset price ratios. The first block (Analytic Models) summarizes exact results, the second block
(Antithetic Variates) denotes the calculations performed only taking use of antithetic variates, and the third one
(Antithetic Variates + Importance Sampling) sums up the corresponding results with the additional application
of importance sampling. Identical parameters concern S = 100, T = 30 days, E[σ] = 25% and r = 0%. The
HN-GARCH(1,1) model parameters are listed in table 4.5.2.

lnSt = lnSt−1 + µ + λσ2
t + σtZt ,

σ2
t = ω + ασ2

t−1(Zt−1 − γ)2 + βσ2
t−1 . (4.101)

and Heston and Nandi’s HN-GARCH(1, 1) model

lnSt = lnSt−1 + µ + λσ2
t + σtZt ,

σ2
t = ω + α(Zt−1 − γσt−1)2 + βσ2

t−1 . (4.102)

as well as the Black and Scholes model as a limiting case. The Black-Scholes and Heston-Nandi
models are attractive inasmuch they offer analytical solutions which allow to compare the nu-
merical with the exact results. Contrary, the GARCH and N-GARCH models are only accessible
via simulation. However, they impose less stringent constrictions on the paths’ properties and
can be tailored to fit observed data more accurately.

Virtually all types of options are accessible via the simulation program as it calculates the entire
path of the underlying. Currently, our algorithm masters plain vanilla call and put options, and
for example arithmetic and geometric Asian options as well as Lookback and Digital options. The
library contains different random generators for Gaussian and Student-t distributed innovations.
Grace to the modular concept of the software package, further pricing models as well as other
distributions are easily addable to the existing ones.

Variance reduction is standardly performed by the use of antithetic variates and is applied
on all models. When pricing options bearing a negative moneyness, importance sampling is
additionally activated.
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As an example for standard normal distributed innovations that drive a Black-Scholes model,
the process to generate the paths is specified by

S
(i)
T = S0e

(r− 1
2
σ2)T+σ

√
TZ(i)

, (4.103)

where

Z
(i)
k ∼ N (0, 1) k = 1, . . . , n (4.104)

and n = T/∆t denotes the number of steps in each path.

With the Monte Carlo estimate for max(ST − X, 0), the pricing formula (??) for a European
call figures out to

ĉ = e−rT 1
N

N∑
i=1

[max(S(i)
T −X, 0)] , (4.105)

where the estimate is replaced by the average over the possible outcomes minus the strike price.

For the determination of the option’s delta we enlisted the assistance of pathwise derivatives
based on infinitesimal perturbation analysis which result in unbiased estimates under the ap-
propriate conditions. The advantage of this approach lies in the fact that the derivatives are
computed from a single simulation without the need for perturbed re-simulations.

Pricing GARCH Options

The sector of path-dependent options combined with the appliance of the stochastic volatility
models reflects the domain where the Monte Carlo simulation reveals its full potency.

Grace to the programs efficiency, we were able to investigate in the BS, GARCH, N-GARCH
and HN-GARCH models in further detail and to examine the consequences on prices when
varying the models’ different structure parameters. The synopsis of our work is illustrated in
figure 4.6.2 where the prices and implied volatilities of the different models are mutually opposed
for European calls and puts respectively.

The parameters for the different pricing models are summarized in table 4.6.2 and are either
estimated from market data or adopted from published work, see Heston (1993) and Hsieh and
Ritchken (2000).

The Influence of Fat-tailed Innovations

The appliance of heavy-tailed distributions generally increases the contracts’ values across all
models and strike prices as can bee verified in figure 4.6.3. It also discloses a notable result
by showing that the introduction of fat-tailed innovations alone can produce the characteristic
volatility smile observed in real market prices. Remarkably, this property emerges independently
on the existence of any correlation between the individual log-returns as is understood by the
curved line of the Student-t Black-Scholes prices. Likewise, the curvature of the smile derived
from GARCH(1, 1) prices accentuates. The model already embodies a less prominent smile with
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Pricing of European Put Options with Different Path Models
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Figure 2: Summary of the results for European call (top row) and put (bottom row) options calculated with the Black-Scholes,
GARCH(1,1), N-GARCH(1,1) and HN-GARCH(1,1) models. The left column displays the respective prices, facing their
Black-Scholes implied volatilities on the right side. Alike model parameters areX = 100, T = 21 days, E[σ] = 25% and
r = 0%.
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Figure 3: Repercussions of fat tailed distributions on the prices and implied volatilities of European call options calculated by simu-
lations with the Black-Scholes and GARCH(1,1) models. The results obtained with Gaussian innovations are compared to
the respective ones where the innovations were drawn from a Student-t distribution with 5 degrees of freedom. Alike model
parameters areX = 100, T = 21 days, E[σ] = 25% andr = 0%.

6

� Figure 4.6.2: Summary of the results for European call (top row) and put (bottom row) options calculated
with the Black-Scholes, GARCH(1,1), N-GARCH(1,1) and HN-GARCH(1,1) models. The left column displays
the respective prices, facing their Black-Scholes implied volatilities on the right side. Alike model parameters are
X = 100, T = 21 days, E[σ] = 25% and r = 0%.
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Figure 1: Comparison of the convergence behavior of European call options. The top row shows the evolution of two identical contracts
(S = 100, X = 98, T = 30 days, E[σ] = 25%, r = 0%) determined with the Black-Scholes and the HN-GARCH(1,1)
model (for model parameters refer to table 2). The bottom row depicts the convergence performance of two out-of-the-money
contracts (S = 100, X = 115, T = 30 days,σ = 25% andr = 0%) priced with the use of antithetic variates (left panel)
and in addition with the importance sampling technique (right panel).

Model ω α β γ λ
HN-GARCH(1, 1) 4.93910−6 1.57910−6 9.06210−9 785.3 -0.5
GARCH(1, 1) 4.96010−7 7.30010−2 0.925 0 -0.5
N-GARCH(1, 1) 8.99110−6 6.75010−3 0.525 8 -0.5

Table 2: Summary of the risk-neutral parameters for the HN-GARCH(1,1), GARCH(1,1) and N-GARCH(1,1) models used to calculate
the data displayed in figure 1, 2 and 3.

innovations alone can produce the characteristic volatility
smile observed in real market prices. Remarkably, this
property emerges independently on the existence of any
correlation between the individual log-returns as is under-
stood by the curved line of the Student-t Black-Scholes
prices. Likewise, the curvature of the smile derived from
GARCH(1, 1) prices accentuates. The model already em-
bodies a less prominent smile with white noise random
numbers due to the allowance for an unlimited kurtosis
which raises the occurrence of more extreme deviations
from the median log-return.

The Role of the Persistence

We performed a thorough investigation in various
GARCH(1, 1) processes which differ in their structure pa-
rameters but exhibit the same macroscopic qualities such
as an equal unconditional variance and kurtosis. We chose
three models bearing three different levels of persistence
(refer to table 3). Its last column reproduces the persis-
tenceα + β which controls the decay of random shocks to
the conditional variance. The closer to one the longer in-
fluence the effects of past volatility fluctuations the future
evolution.

5

� Table 4.6.2: Summary of the risk-neutral parameters for the HN-GARCH(1,1), GARCH(1,1) and N-
GARCH(1,1) models used to calculate the data displayed in figure 4.6.1, 4.6.2, and 4.6.3.
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Figure 4: Effects of different values for the persistence in similar GARCH(1,1) models on standard European call options. The left chart
depicts the prices generated by the three models with the corresponding Black-Scholes values, the right side illustrates the
implied volatilities. All models yield an equal value for the unconditional variance and the kurtosis. Coinciding parameters
areX = 100, T = 21 days, E[σ] = 25% andr = 0%.

GARCH(1, 1) ω α β γ λ α + β
Low Persistence 6.01710−5 7.56410−1 0.001 0 -0.5 0.757
Medium Persistence 2.45610−5 5.01010−1 0.400 0 -0.5 0.901
High Persistence 4.96010−7 7.30010−2 0.925 0 -0.5 0.998

Table 3: Comparison of the risk-neutral parameters of the three GARCH(1,1) models with different levels of persistence, used to calcu-
late the data displayed in figure 4.

The summary is illustrated in figure 4. The left im-
age shows the prices yielded by the three different models
along with the Black-Scholes results. More profound intel-
ligence is reaped from the right hand chart which depicts
the corresponding implied volatilities. When reverting to
the GARCH(1, 1) process

Yt = λσ2
t + σtZt, (13)

σ2
t = ω + ασ2

t−1Z
2
t−1 + βσ2

t−1, (14)

it is recognized thatα controls the magnitude of the inno-
vations’ driven random effects, whileβ governs the decay
rate of past events in the variance’s evolution in equation
(14).

Hence, the model with the highest level of persistence
reveals the least pronounced smile due to the diminished ef-
fects of random shocks on the volatility because of the low
value forα. Additionally, the high reading forβ induces
long-lasting effects by past shocks, therefore enabling a
fairly appropriate forecast of future volatility schemes. The
combination of these two factors constitutes, that the un-
certainty about the forthcoming progression decreases rel-
atively to the other two models.

The more distinctive curvature of the model with the
lowest persistence traces back to the fact of a minuscule
value for β which causes the influence of the variance’s
past evolution to vanish. Contrary, the higher reading forα

enhances the extension of the individual and unpredictable
changes in volatility. Consequently, prices for out- and in-
the-money options are raised and hence the volatility smile
accentuates.

However, the smile of the model with the intermediate
value for the persistence is even more arcuated as in the
model with the lowest persistence. This behavior shows
that the option prices sensitively depend on the peculiar
combination of the model’s parameters. In the example
on hand, the modestly high value forα still seems to en-
able ample fluctuations in order to sustain increased prices
while the higher figure forβ did not yet reach a level where
prediction of future volatility formation becomes more co-
herent. Far from it, it is more likely to provoke a strong
enough clustering of extreme events raising the probability
of large price swings in short time spans. Out- and in-the-
money options are the primary beneficiaries of this con-
stitution and consequently the smile’s curvature advances
even more.

The simulation’s efficiency allowed us to investigate in
the repercussions of fat-tailed innovations on option prices.
We demonstrated that the renowned smile is at least partly
invoked by the introduction of a heavy-tailed distribution
alone.

Furthermore, we studied the implications of the
GARCH(1, 1) model’s different structure parameters on
option prices and their implied volatilities. We have shown

7

� Table 4.6.3: Comparison of the risk-neutral parameters of the three GARCH(1,1) models with different levels
of persistence, used to calculate the data displayed in figure 4.6.4.
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Pricing of European Put Options with Different Path Models
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Figure 2: Summary of the results for European call (top row) and put (bottom row) options calculated with the Black-Scholes,
GARCH(1,1), N-GARCH(1,1) and HN-GARCH(1,1) models. The left column displays the respective prices, facing their
Black-Scholes implied volatilities on the right side. Alike model parameters areX = 100, T = 21 days, E[σ] = 25% and
r = 0%.
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Figure 3: Repercussions of fat tailed distributions on the prices and implied volatilities of European call options calculated by simu-
lations with the Black-Scholes and GARCH(1,1) models. The results obtained with Gaussian innovations are compared to
the respective ones where the innovations were drawn from a Student-t distribution with 5 degrees of freedom. Alike model
parameters areX = 100, T = 21 days, E[σ] = 25% andr = 0%.

6

� Figure 4.6.3: Repercussions of fat tailed distributions on the prices and implied volatilities of European call
options calculated by simulations with the Black-Scholes and GARCH(1,1) models. The results obtained with
Gaussian innovations are compared to the respective ones where the innovations were drawn from a Student-t
distribution with 5 degrees of freedom. Alike model parameters are X = 100, T = 21 days, E[σ] = 25% and
r = 0%. Efficient Monte Carlo Simulations for Options Pricing
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Figure 4: Effects of different values for the persistence in similar GARCH(1,1) models on standard European call options. The left chart
depicts the prices generated by the three models with the corresponding Black-Scholes values, the right side illustrates the
implied volatilities. All models yield an equal value for the unconditional variance and the kurtosis. Coinciding parameters
areX = 100, T = 21 days, E[σ] = 25% andr = 0%.

GARCH(1, 1) ω α β γ λ α + β
Low Persistence 6.01710−5 7.56410−1 0.001 0 -0.5 0.757
Medium Persistence 2.45610−5 5.01010−1 0.400 0 -0.5 0.901
High Persistence 4.96010−7 7.30010−2 0.925 0 -0.5 0.998

Table 3: Comparison of the risk-neutral parameters of the three GARCH(1,1) models with different levels of persistence, used to calcu-
late the data displayed in figure 4.

The summary is illustrated in figure 4. The left im-
age shows the prices yielded by the three different models
along with the Black-Scholes results. More profound intel-
ligence is reaped from the right hand chart which depicts
the corresponding implied volatilities. When reverting to
the GARCH(1, 1) process

Yt = λσ2
t + σtZt, (13)

σ2
t = ω + ασ2

t−1Z
2
t−1 + βσ2

t−1, (14)

it is recognized thatα controls the magnitude of the inno-
vations’ driven random effects, whileβ governs the decay
rate of past events in the variance’s evolution in equation
(14).

Hence, the model with the highest level of persistence
reveals the least pronounced smile due to the diminished ef-
fects of random shocks on the volatility because of the low
value forα. Additionally, the high reading forβ induces
long-lasting effects by past shocks, therefore enabling a
fairly appropriate forecast of future volatility schemes. The
combination of these two factors constitutes, that the un-
certainty about the forthcoming progression decreases rel-
atively to the other two models.

The more distinctive curvature of the model with the
lowest persistence traces back to the fact of a minuscule
value for β which causes the influence of the variance’s
past evolution to vanish. Contrary, the higher reading forα

enhances the extension of the individual and unpredictable
changes in volatility. Consequently, prices for out- and in-
the-money options are raised and hence the volatility smile
accentuates.

However, the smile of the model with the intermediate
value for the persistence is even more arcuated as in the
model with the lowest persistence. This behavior shows
that the option prices sensitively depend on the peculiar
combination of the model’s parameters. In the example
on hand, the modestly high value forα still seems to en-
able ample fluctuations in order to sustain increased prices
while the higher figure forβ did not yet reach a level where
prediction of future volatility formation becomes more co-
herent. Far from it, it is more likely to provoke a strong
enough clustering of extreme events raising the probability
of large price swings in short time spans. Out- and in-the-
money options are the primary beneficiaries of this con-
stitution and consequently the smile’s curvature advances
even more.

The simulation’s efficiency allowed us to investigate in
the repercussions of fat-tailed innovations on option prices.
We demonstrated that the renowned smile is at least partly
invoked by the introduction of a heavy-tailed distribution
alone.

Furthermore, we studied the implications of the
GARCH(1, 1) model’s different structure parameters on
option prices and their implied volatilities. We have shown

7

� Figure 4.6.4: Effects of different values for the persistence in similar GARCH(1,1) models on standard European
call options. The left chart depicts the prices generated by the three models with the corresponding Black-Scholes
values, the right side illustrates the implied volatilities. All models yield an equal value for the unconditional
variance and the kurtosis. Coinciding parameters are X = 100, T = 21 days, E[σ] = 25% and r = 0%.

white noise random numbers due to the allowance for an unlimited kurtosis which raises the
occurrence of more extreme deviations from the median log-return.

The Role of the Persistence

We performed a thorough investigation in various GARCH(1, 1) processes which differ in their
structure parameters but exhibit the same macroscopic qualities such as an equal unconditional
variance and kurtosis. We chose three models bearing three different levels of persistence (refer
to table 4.6.3). Its last column reproduces the persistence α + β which controls the decay of
random shocks to the conditional variance. The closer to one the longer influence the effects of
past volatility fluctuations the future evolution.

The summary is illustrated in figure 4.6.4. The left image shows the prices yielded by the three
different models along with the Black-Scholes results. More profound intelligence is reaped from
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Model Plain Vanilla Geometric Asian Lookback Digital
Black Scholes

21 days 3 sec 4 sec 4 sec 4 sec
45 days 6 sec 8 sec 8 sec 6 sec
90 days 10 sec 13 sec 13 sec 11 sec

HN-GARCH(1, 1)
21 days 5 sec 6 sec 6 sec 5 sec
45 days 7 sec 9 sec 9 sec 8 sec
90 days 12 sec 16 sec 16 sec 13 sec

N-GARCH(1, 1)
21 days 4 sec 5 sec 5 sec 5 sec
45 days 7 sec 8 sec 8 sec 8 sec
90 days 11 sec 14 sec 14 sec 12 sec

Table 4: Summary of computation times in seconds for different path models and option types with maturities of 21, 45 and 90 trading
days. All computations comprised 50’000 steps and yielded an error to the analytic solution (where available) of less than 0.5
percent for at-the-money calls.

that the dynamics are highly determined by the delicate in-
teraction of the two parametersα andβ which control the
variance’s evolution and hence exert distinct alterations in
the options’ prices and their implied volatilities, see [3].

6 THE SOFTWARE PACKAGE : MC POP

Our emphasis lied on a an efficient and user-
friendly software package MCpop∗, Monte Carlo for Path-
Dependent Options Pricing. We ensured that the simula-
tion is being executed as fast as possible without potential
restraints imposed by a particular software. Input of model
and asset parameters is carried out hassle-free and graph-
ical output of the simulation’s results occurs instantly and
continuously. Grace to the modular concept, further an-
nexation of stochastic processes and different option types
is realized by adding a few lines without rewriting any part
of the code.

To achieve these goals, we implemented the calculation
of the assets’ paths, the arithmetically most intensive tasks,
in the common programming languageC†. For data input
and output we reverted toS-PLUSsince it represents one
of the most popular statistical analysis tools. Note, that our
software can also implemented inR‡. This enables our sim-
ulation software to be utilized unconfined of any operating
system and licensed software on any machine. The libraries
are compiled with theWatcom32-bit compilers§ version
11.0 for integration as a complete library inS-PLUS.

∗The S-PLUSsoftware package MCpop can be downloaded from
http://www.itp.phys.ethz.ch/econophysics/MCpop/

†The analytic formulas for pricing HN-GARCH options were imple-
mented from theS-PLUSsoftware package ”HNgarch” [2].

‡R, an open-source derivative of S-PLUS, is available for download at
http://cran.r-project.org/

§An open-source version of the Watcom Compiler including C, C++
and Fortran can be obtained fromhttp://www.openwatcom.org/

7 SUMMARY

Our program demonstrates a fast, efficient and reliable
way to practically price options of any kind on an off-the-
shelf computer such as a standard desktop or laptop com-
puter without the need of costly high-end machines.

Grace to the Monte Carlo approach, the task of deter-
mining the fair prices of standard and exotic options is re-
duced to a simplistic routine. Its modular concept also al-
lows for a straightforward extension with different stochas-
tic models as well as different option types. The implemen-
tation of importance sampling keeps the computational ef-
forts to reliably price deep-out-of-the-money options mini-
mal.

The S-PLUS environment allows for a direct estima-
tion of the model-specific structure parameters from his-
toric time series. The parameters can then be effortlessly
adjusted to accommodate for an exact and up-to-date ap-
proximation of the underlying’s evolution.

Standardly, the simulation’s variance is reduced by the
use of antithetic variates while for deep-out-of-the-money
options the importance sampling technique is additionally
adopted.

Its realization in conjunction with the Black-Scholes
model is straightforward as its distribution is perfectly de-
termined. However, its partial lack of knowledge with
skewed processes such as the N-GARCH and HN-GARCH
models imposes tighter complications in the technique’s
application.

The program standardly performs 50’000 runs in
around 10 seconds to evaluate the option’s price. For plain
vanilla options, a satisfying accuracy was already attained
with less simulation steps. Truly, due to the minuscule
computation times, any level of accuracy is attained within
negligible time frames. Even long-term contracts with ma-
turities of up to one year did not exceed a span of 30 sec-
onds. Table 4 imparts a notion of the algorithm’s effec-

8

� Table 4.6.4: Summary of computation times in seconds for different path models and option types with
maturities of 21, 45 and 90 trading days. All computations comprised 50’000 steps and yielded an error to the
analytic solution (where available) of less than 0.5 % for at-the-money calls.

the right hand chart which depicts the corresponding implied volatilities. When reverting to the
GARCH(1, 1) process

Yt = λσ2
t + σtZt, (4.106)

σ2
t = ω + ασ2

t−1Z
2
t−1 + βσ2

t−1, (4.107)

it is recognized that α controls the magnitude of the innovations’ driven random effects, while
β governs the decay rate of past events in the variance’s evolution in equation (4.107).

Hence, the model with the highest level of persistence reveals the least pronounced smile due
to the diminished effects of random shocks on the volatility because of the low value for α.
Additionally, the high reading for β induces long-lasting effects by past shocks, therefore enabling
a fairly appropriate forecast of future volatility schemes. The combination of these two factors
constitutes, that the uncertainty about the forthcoming progression decreases relatively to the
other two models.

The more distinctive curvature of the model with the lowest persistence traces back to the fact
of a minuscule value for β which causes the influence of the variance’s past evolution to vanish.
Contrary, the higher reading for α enhances the extension of the individual and unpredictable
changes in volatility. Consequently, prices for out- and in-the-money options are raised and
hence the volatility smile accentuates.

However, the smile of the model with the intermediate value for the persistence is even more
arcuated as in the model with the lowest persistence. This behavior shows that the option prices
sensitively depend on the peculiar combination of the model’s parameters. In the example on
hand, the modestly high value for α still seems to enable ample fluctuations in order to sustain
increased prices while the higher figure for β did not yet reach a level where prediction of future
volatility formation becomes more coherent. Far from it, it is more likely to provoke a strong
enough clustering of extreme events raising the probability of large price swings in short time
spans. Out- and in-the-money options are the primary beneficiaries of this constitution and
consequently the smile’s curvature advances even more.
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The simulation’s efficiency allowed us to investigate in the repercussions of fat-tailed innovations
on option prices. We demonstrated that the renowned smile is at least partly invoked by the
introduction of a heavy-tailed distribution alone.

Furthermore, we studied the implications of the GARCH(1, 1) model’s different structure pa-
rameters on option prices and their implied volatilities. We have shown that the dynamics are
highly determined by the delicate interaction of the two parameters α and β which control the
variance’s evolution and hence exert distinct alterations in the options’ prices and their implied
volatilities.
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4.6 The fOptions Library

4.6.1 Summary of Splus Funcions

The following section gives an overview over the Splus functions available in the fOptions
Library. The programs are grouped by their functionalities. A short description follows each
Splus function name.

Pricing Generalized Black-Scholes Options

GBlackScholes The generalized Black Scholes (GBS) model

GDelta Delta for the GBS model

GGamma Gamma for the GBS model

GVega Vega for the GBS model

GTheta Theta for the GBS model

GRho Rho for the GBS model

GCarryOfCost Carry-of-Cost sensitivity for the GBS model

BAWAmericanApproximation Barone-Adesi and Whaley American option approximation

BSAmericanApproximation Bjerksund and Stensland American option approximation

Pricing Options with Binomial and Trinomial Trees

CRRBinomial Standard binomial tree model

BarrierBinomial Barrier options in binomial trees

Trinomial Trinomial tree model

ThreeDimensionalBinomial 3-dimensional binomial trees on 2 assets

ImpliedTrinomial Implied trinomial tree model

Pricing Exotic Options

ExecutiveOption ...

ForwardStartOption

TimeSwitchOption

SimpleChooserOption

ComplexChooserOption

OptionsOnOptions

ExtendibleWriterOption

TwoAssetCorrelation

EuropeanExchangeOption
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AmericanExchangeOption

ExchangeExchangeOption

OnTheMaxMinOption

SpreadApproximation

FloatingStrikeLookbackOption

FixedStrikeLookbackOption

PartialFloatLBOption

PartialFixedLBOption

ExtremeSpreadOption

StandardBarrierOption

DoubleBarrierOption

PartialTimeBarrierOption

TwoAssetBarrierOption

PartialTimeTwoAssetBarrierOption

LookBarrierOption

SoftBarrierOption

GapOptionOption

CashOrNothingOption

TwoAssetCashOrNothingOption

AssetOrNothingOption

SuperShareOption

BinaryBarrierOption

GeometricAverageRateOption

TurnbullWakemanAsianOption

LevyAsianOption

FourEquOptInDomCurOption

QuantoOption

EquityLinkedFXOption

TakeoverFXOption

Pricing the Heston-Nandi GARCH(1,1) Option

hngarch.mle Max-Log-Lokelihood estimation of structure parameters

hngarch.sim Simulation of time series

hngarch.cvi Re-evaluation of coniditonal variances and innovations

hngarch.mom Moments of the unconditional log-return distribution

hngarch.momdiff Partial derivatives of the moments

hngarch.cop Call and

hngarch.pop put prices of HN-Garch(1,1) options

hngarch.cogreeks Greeks of the call and

hngarch.pogreeks put options

hngarch.coparms Partial derivatives of call and put option prices

hngarch.poparms with respect to the structure parameters

hngarc.rms Root mean square error estimates of structure parameters

from real option prices

Pricing Options with MC Simulations

...

4.6.2 List of Datasets

...
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4.6.3 List of Splus Examples

xmpCRRBinomial Standard binomial tree model

xmpBarrierBinomial Barrier options in binomial trees

xmpTrinomial Trinomial tree model

xmpThreeDimensionalBinomial 3-dimensional binomial trees on 2 assets

xmpImpliedTrinomial Implied trinomial tree model

...

4.6.4 Software Packages

Haug’s Excel Spreadsheets

The book of Haug (1997) on option pricing formulas includes Excel spreadsheets to evaluate
option prices and greeks for a series of plain vanilla and exotic options. The spreadsheets
also include programs for option pricing with binomial and trinomial trees. The original Excel
spreadsheet programs were the basis to the Splus functions written by D. Würtz.

Heston-Nandi Options Package

The “Heston-Nandi Options Package” includes Splus functions to evaluate option prices and
greeks, to simulate the time series process, and to estimate the structure parameters for HN-
Garch(1,1) options. The functions were written by Diethelm Würtz and Reto Angliker. Some
of the Splus functions are calling Fortran routines. DUMINF - a BFGS optimization routine
to perform the log-likelihood estimation of the structure parameters, DQAGI - a semi-infinite
integration routine to evaluate the integrals in the HN option pricing formulas, DFZERO - a
bisection/secant algorithm in order to search for the zero to solve for the Black-Scholes implied
volatility, DNLS1E - a Levenberg-Marquard Rroutine to perform the root mean square error
estimation of the structure parameters.

Monte Carlo Package

The “Monte Carlo Options Package” includes Splus functions to simulate option prices and
greeks based on several variance reduction methods like antithetic variates, low discrepancy
sequences and importance sampling. The functions were written by Diethelm Würtz and Beat
Bannwart. Some of the functions are calling C or Fortran routines written by the authors an
others. The functions are included to the fOptions library.
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