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Chapter 3

Beyond the Sample: Dealing with
Extreme Values

3.1 Introduction

From descriptive statistics of financial time series data in Chapter 1 and from the investigation
of the dynamical process in Chapter 2 we have seen that the central point in the modelling of
financial market data lies in a proper management of the extreme data values appearing almost
in every financial market data set.

Two aspects are of major interest: (i) modelling the fat tails of heavy-tailed distributions and (ii)
investigating the dependencies of extreme values. In this Chapter we introduce the fExtremes
Library and describe the implemented algorithms together with the underlying concepts.

Section 2 is dedicated to the exploratory data analysis of extremes, EDA. We introduce proba-
bility and quantile plots and the mean excess function. We also consider records and the ratio
of maximum and sum as exploratory tools.

Section 3 deals with fluctuations of maxima and the generalized extremal value distribution,
GEV. We derive the limit law for maxima and discuss the maximum domain of attraction
problem, MDA. Heavy tail estimation is the central application of this section. For Fréchet type
of distributions ww estimate tail parameters from L-moments, under MDA conditions, and via
the maximum log likelihood approach.

Section 4 is concerned with Point Processes. The point process is characterized and the gener-
alized Pareto distribution derived, GPD.

Temporal dependencies and the Extremal Index are investigate in Section 5.
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3.2 Exploratory Data Analysis of Extremes

Introduction

Exploratory Data Analysis (EDA) is an approach for data analysis which employs a variety of
techniques, mostly graphical, to maximize insight into a data set, and to uncover underlying
structures. We use it here to explore and to analyze extreme values in data sets collected from
financial markets.

The philosophy underlying EDA differs from the usual statistical graphics approaches; EDA
encompasses a much larger venue. EDA describes a concept which postpones the usual assump-
tions about what kind of model the data follow with the more direct approach of allowing the
data itself to reveal its underlying structure and model. Thus EDA is a kind philosophy as to
how we disect a data set, what we look for, how we look, and how we interpret.

Usually EDA techniques are graphical in nature. The reason for the heavy reliance on graphics
is that by its nature the main role of EDA is to open-mindedly explore, and graphics gives the
analysts unparalleled power in terms of such open-mindedly exploration, enticing the data to
reveal its structural secrets, and being ever-ready to gain some new, often unsuspected, insight
into the data.

The graphical methods we discuss in the following to explore extreme values include probability
and quantile plots, the mean excess function, records, and the ratio of maximum and sum.

3.2.1 Probability and Quantile Plots

Usually one starts with the discussion of the problem:

Find a distribution function F which is a good model for the iid data X, X1, ..., Xn.

The theoretical basis that underlies probability plots is a quantile transformation, which implies
that for F continuous, the random variable Ui = F (Xi), for i = 1, ..., n, are iid uniform on (0,1).
Moreover, defining the ordered sample Xn,n ≤ ... ≤ X1,n,

(F (Xk,n))k=1,...,n = (Uk,n)k=1,...,n . (3.1)

From this it follows that
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EF (Xk,n) =
n− k + 1

n + 1
, k = 1, . . . , n . (3.2)

Also note that Fn(Xk,n) = (n−k+1)/n, where Fn stands for the empirical distribution function
of F . The graph

{
(F (Xk,n),

n− k + 1
n + 1

: k = 1, . . . , n

}
(3.3)

is called the probability plot, PP-Plot. More common however is to plot the graph

{
(Xk,n, F←(

n− k + 1
n + 1

)) : k = 1, . . . , n

}
, (3.4)

typically referred to as the quantile plot, QQ-Plot, where F← denotes the quantile function of
the distribution function F .

What are the main merits of QQ-Plots? They stem from the following properties:

• Comparison of Distribution: If the data were generated from a random sample of the
reference distribution, the plot should look roughly linear. This remains true if the data
come from a linear transformation of the distribution.

• Outliers: If one or a few of the data values contaminated by gross error or for any reason are
markedly different in value from remaining values, the latter being more or less distributed
like the reference distribution, the outlying points may easily identified on the plot.

• Location and Scale: Because a change of one of the distributions by a linear transformation
simply transforms the plot by the same transformation, one may estimate graphically
(through the intercept and slope) location and scale parameters for a sample of data, on
the assumption that the data come from the reference distribution.

• Shape: Some difference in distributional shape may be deduced from the plot. For example
if the reference distribution has heavier tails (tends to have more large values) the plot
will curve down at the left and/or up to the right.

In the following we like to address these observations by some examples. In finance it is well
known that usually the distributions of logarithmic returns behave leptokurtic, i.e. the distri-
butions exhibit in comparison to a normal distribution function fatter tails and sharper peaks.
This lepotkurtic behavior is clearly demonstrated in the following example where we show the
QQ-Plot of the logarithmic returns of the NYSE Composite Index and of the BMW share prices.

Example: Quantile Plots - xmpEDAqqplot1

Plot the time series and create QQ-plots of the logarithmic returns of the NYSE composite index
and of the BMW share prices versus the normal distribution function.

Use the standard Splus functions plot(), qqnorm() and qqline() to produce the time series graphs
and the QQ-Plots for the normal (Gaussian) distribution function:
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> x <- scan("nyseres.csv")

> plot(x, type="l", ylab="Log Returns", main="NYSE Daily Log Returns")

> qqnorm(x, ylab="NYSE Residuals", main="NYSE QQ-Plot")

> qqline(x)

The last function draws a straight line through the normal QQ-Plots. Note, that a vector may be
returned containing the intercept and slope of the line.

NYSE Daily Log Returns

Index

Lo
g 

R
et

ur
ns

0 2000 4000 6000 8000

-0
.2

0
-0

.1
0

0.
0

BMW Daily Log Returns

Index

Lo
g 

R
et

ur
ns

0 1000 2000 3000 4000 5000 6000
-0

.1
5

-0
.0

5
0.

05

NYSE QQ-Plot

Quantiles of Standard Normal

N
YS

E 
R

es
id

ua
ls

-4 -2 0 2 4

-0
.2

-0
.1

0.
0

0.
1

0.
2

BMW QQ-Plot

Quantiles of Standard Normal

BM
W

 R
es

id
ua

ls

-4 -2 0 2 4

-0
.1

5
-0

.0
5

0.
05

0.
15

� Figure 3.2.1: The upper two graphs show the daily logarithmic returns of the NYSE composite
index (left) and the of the BMW share prices (right). In the lower row, the graph on the left side
plots the daily logarithmic returns calculated from the NYSE composite index versus the normal
distribution function. The graph to the right plots the same for logarithmic returns calculated from
daily BMW stock prices.

Since the empirical distributions are far away from normal, the plotted points deviate signifi-
cantly from the straight line. The extreme points have more variability than points toward the
center. The typical ”S” shape of the curve implies that one distribution has longer tails than
the other. In the default configuration a plot from qqnorm() that is bent down on the left and
bent up on the right means that the data have longer tails than the Gaussian.
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3.2.2 The Mean Excess Function

The mean access function is a graphical tool, in particular for discrimination in the tails. Let
X be a random variable with right endpoint xF , then

e(u) = E(X − u|X > u) , 0 ≤ u < xF , (3.5)

where e(u) is called the mean excess function of X.

The quantity e(u) is often referred to as the mean excess over the threshold u. In an insurance
context, e(u) can be interpreted as the expected claim size in the unlimited layer, over priority
u. Here e(u) is also called the mean excess loss function. In a reliability or medical context,
e(u) is referred to as the mean residual life function. In a financial risk management context,
switching from the right tail to the left tail, e(u) is referred to as the shortfall.

A graphical test for tail behavior can be based on the empirical mean excess function en(u).
Suppose that X1, . . . , Xn are iid with distribution function F and let Fn denote the empirical
distribution function and ∆n(u) = {i : i = 1, . . . , n, Xi > 0}, then

en(u) =
1

Fn(u)

∫ ∞
u

F (y)dy =
1

card∆n(u)

∑
i∈∆n(u)

(Xi − u) , u ≥ 0 , (3.6)

with the convention that 0/0=0. A mean excess plot, ME-Plot, then consists of the graph

{(Xk,n , en(Xk,n)) : k = 1, . . . , n} . (3.7)

Example: Mean Excess Function Plot - xmpEDAmxf

Compare the empirical mean excess function en(u) of simulated data (n = 1000) with the corre-
sponding theoretical mean excess function e(u) for (i) standard exponential, (ii) lognormal with lnX
N(0, 4), and (iii) alfa-stable distribution function with tail index 1.7.

Use the fExtremes library function mxf.plot(data, tail=0.05, ...) which simply evaluates e(u)
from:

u <- rev(sort(data))

n <- length(data)

e <- (cumsum(u)-(1:n)*u)/(1:n)

plot(u, e)

The variable tail lets restrict the data to a predefined tail depth, by default 5%:

> set.seed(7138)

> mxf.plot(rexp(1000, rate=2), tail=1, main="Exponential DF")

> abline(0.5,0)

> set.seed(6952)

> mxf.plot(rlnorm(1000, meanlog=0, sdlog=2), tail=1, main="Lognormal DF")

> set.seed(9835)

> mxf.plot(rstab(1000,index=1.7), tail=0.1, main="1.7 stable DF")

> abline(0,0.7)
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� Figure 3.2.2: The left figure shows the empirical excess function en(u) for 1000 random variables
from an exponential distribution function. The horizontal line gives the analytical result. The figure
in the middle shows the same plot for lognormal distributed random variables. In the right figure
the random variables are drawn from an α-stable distribution function with index 1.7. We expect
that exp(λ) distributed data follow a straight line with slope 0 and intercept 1/λ as shown in the
upper graph.

Coles (1999) has written an Splus function, named mean residual life plot, which also allows
to calculate confidence intervals. With this function we want to investigate 6 different small
samples drawn from an α-stable distribution function. The plots show very impressively how
different the plots may appear. Due to the sparness of the data for calculating en(u) for large
values of u, the resulting plots are extremely sensitive to differences in the data towards the end
of the range.

Example: Mean Residual Life Plot - xmpEDAmxf2

Compare on equal plotting scales the graphs (including 95% confidence intervals) of the empirical
mean excess functions en(u) for 6 different samples each of 5000 α-stable distributed random vari-
ables with index α = 1.7.

Use the Splus function rstab(n=5000, index=1.7) to generate the random variables. Select samples
by changing the seed: set.seed(n). Then use the fExtremes library function mrl.plot(data,

umin=mean(data), umax=max(data), conf=0.95, nint=100, ...) which evaluates e(u) from:

u <- seq(umin, umax, length=nint)

for(i in 1:nint) {

data <- data[data > u[i]]

n <- length(data)

sdev <- sqrt(var(data))

e[i] <- mean(data - u[i])

xu[i] <- e[i] + (qnorm((1 + conf)/2) * sdev)/sqrt(n)

xl[i] <- e[i] - (qnorm((1 + conf)/2) * sdev)/sqrt(n) }

plot(u, e)

lines(u[xl], xl); lines(u[xu], xu)

The variables umin and umax limit the range of data to be used (by default the minimal and maximal
data values), conf denotes the size of the confidence level (by default 95%), and nint denotes the
number of intervals used for the plot, by default 100, e.g.
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> set.seed(seed(933))

> mrl.plot(rstab(n=5000, index=1.7), nint=100)
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� Figure 3.2.3: The graphs show the mean residual life plots for six different samples of α-stable
distributed random variables each of size 5000 with index 1.7.

3.2.3 Records as an Exploratory Tool

Suppose that the random variable Xi are iid with distribution function F . A record Xn occurs
if Xn > Mn−1 = max(X1, . . . , Xn−1). By definition we take X1 as a record. The record time Ln

are the random times at which the process (Mn) jumps. Define the record counting process as

N1 = 1 , Nn = 1 +
n∑

k=2

IXk>Mk−1
, n ≥ 2 . (3.8)

The result on the expected mean E(Nn) of Nn may be surprising:

ENn =
n∑

k=1

1
k

and var(Nn) =
n∑

k=1

(
1
k
− 1

k2

)
. (3.9)
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Notice that E(Nn) and var(Nn) are both of the order lnn as n → ∞. More precisely ENn −
lnn → γ, where γ = 0.5772 . . . denotes Euler’s constant. As a consequence: The number of
records of iid data grows very slowly!

Example: Plot of Records - xmpEDArecords

Plot the records, both on a linear and logarithmic scale for the daily BMW stock returns (the first
6000 data points partitioned in 6 subsamples) and the daily NYSE Composite Index (the first 8000
data points partitioned in 8 subsamples) returns. Compare the data with 8 iid random variables
sets each of 1000 data points drawn from α-stable distributions with index 1.7.

Use the fExtremes library function records(x, cuts=1, plottype="lin", ...) which evaluates
the records from the following procedure:

u <- x[1]

v <- 1

x.records <- v

while (!is.na(v)) {

u <- x[x>u][1]

v <- y[x>u][1]

if(!is.na(v)) x.records <- c(x.records,v) }

The variable cuts allows to partition the whole sample into subsamples. The default value is 1
taking all data records from the dataset. The variable plottype="lin" permits to plot on a linear
scale, alternatively "log" creates a logarithmic plot. The graphical output from

> set.seed(246)

> x1 <- rstab(n=8000, index=1.7)x1 <- scan(file="bmwres.csv")

> x2 <- scan(file="bmwres.csv")

> x3 <- scan(file="nyseres.csv")

> records.plot(x1, cuts=8, plottype="log", main="1.7-stable Returns")

> records.plot(x2, cuts=6, plottype="log", main="BMW Returns")

> records.plot(x3, cuts=8, plottype="log", main="NYSE Returns")

> records.plot(x1, cuts=8, plottype="lin", main="1.7-stable Returns")

> records.plot(x2, cuts=6, plottype="lin", main="BMW Returns")

> records.plot(x3, cuts=8, plottype="lin", main="NYSE Returns")

is shown in figure 3.2.4. Beside the records which are drawn as circles, both the expectation value
and the ±1 standard deviations are drawn by straight lines. On a logarithmic scale these lines
become straight lines in the limit n→∞.

The function returns as output for each subsample the number of records, e.g. in the case of the
α-stable distribution:

[1] 1 3

[1] 2 10

[1] 3 5

[1] 4 7

[1] 5 9

[1] 6 7

[1] 7 7

[1] 8 7

Notice, that the expectation value of the number of records is EN1000, approximately 7.5, and its
standard deviation is

√
var(N1000), approximately 2.4.
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� Figure 3.2.4: Plot of records, both on a linear (upper row) and logarithmic scale (lower row)
for the daily BMW stock returns and the daily NYSE composite index returns in comparison to
iid random variables drawn from an alpha-stable distribution with index 1.7. Sixteen different
subsamples are included in the plot to achieve better statistics.

3.2.4 The Ratio of Maximum and Sum

A simple tool for detecting heavy tails of a distribution and for giving a rough estimate of
the order of its finite moments is the Ratio of Maximum and Sum. Suppose that the random
variables X, X1, X2, . . . are iid and define for any positive p the quantities

Sn(p) = |X1|p + . . . + |Xn|p , Mn(p) = max(|X1||p, . . . , |Xn|p) , n ≥ 1 . (3.10)

We also write Mn = Mn(1) and Sn = Sn(1) slightly abusing our usual notation. One way to
study the underlying distribution is to look at the distributional or a.s. behavior of functionals
f(Sn(p),Mn(p)).
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Example: Ratio of Maximum and Sum Plot - xmpEDAmaxsum

Plot the Ratio of Maximum and Sum for exponents p ranging from 1 to 4 for random variables drawn
from a standard normal, and an α-stable distribution with index 1.7. Compare the plots with those
obtained from the daily log returns of BMW stock prices and the NYSE Composite index.

Use the fExtremes library function maxsumratio.plot(x, p=seq(1,4,1), ...), where p denotes
the power exponent, by default taking the values 1, 2, 3, 4. The ratio is calculated as

max(abs(x)^p[i]) / cumsum(abs(x)^p[i])
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� Figure 3.2.5: The plots show the ratios for maximums and sums of random variables drawn from
a standard normal (upper left) and an α-stable distribution (upper right) with index 1.7 in compar-
ison with the daily logarithmic returns of BMW stock prices (lower left) and the NYSE composite
index (lower right).

The graphical output was produced from

> set.seed(876)

> nt <- 10000

> x1 <- rnorm(nt)

> x2 <- rexp(nt)

> x3 <- rt(nt,df=4)

> x4 <- rstab(nt,index=1.0)

> x5 <- scan(file="bmwres.csv")
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> x6 <- scan(file="nyseres.csv")

> maxsumratio.plot (x1, main="Standard Normal")

> maxsumratio.plot (x2, main="Exponential")

> maxsumratio.plot (x3, main="Student-t")

> maxsumratio.plot (x4, main="Cauchy")

> maxsumratio.plot (x5, main="BMW Returns")

> maxsumratio.plot (x6, main="NYSE Returns")}

From the limit behavior of the ratio Mn/Sn one can derive the following relationships:

Rn(p) → 0 ⇔ E|X|p < ∞ ,
Rn(p) → 0 ⇔ E|X|p I{|X|≤x} ∈ R0 ,

Rn(p) → const(p) ⇔ P (|X| > x) ∈ R−αp for some α ∈ (0, 1) ,
Rn(p) → 1 ⇔ P (|X| > x) ∈ R0 .

(3.11)

Now it is immediate how one can use these limit results to obtain some preliminary information
about P (|X| > x): Plot Rn(p) against n for a variety of p values. Then Rn(p) should be small
for large n provided that E|X|p < ∞. On the other hand, if there are significant deviations of
Rn(p) from zero for large n, this is an indication for E|X|p being infinite.

Clearly, what has been said about the absolute values of the X, can be modified in the natural
way to get information about the right or left distribution tail: Replace everywhere |Xi|p by the
pth power of the positive or negative part of the Xi.

Notes and Comments

The description of the material presented here follows closely some sections from the book of
Embrechts, Klüppelberg and Mikosch (1997). Further references to this material can be found
therein.

The fExtremes library implements several Splus functions for the exploratory data analysis of
extremes. These include functions for quantile plots, mean excess function plots, for plots of
records, and for plots of the ratio of maximum and sum. The Splus functions were written by
D. Würtz implementing also some code written by S. Coles.
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3.3 Fluctuations of Maxima: GEV Distribution

Introduction

Starting an investigation of extremes it is useful to compare and contrast the Central Limit
Theorem, CLT, with the main results of Extreme Value Theory, EVT. Remember CLT, where
the general formulation goes as follows: Suppose X1, . . . , Xn are iid random variables with
distribution function F . Define the partial sum Sn = X1 + . . . + Xn. The CLT then solves the
following problems:

• Given F , find constants an > 0 and bn ∈ R so that

Sn − bn

an
→ Y , n →∞ , (3.12)

where Y is a non-degenerate random variable with distribution function G.

• Characterize a possible distribution function G of Y .

• Given a possible distribution function G, find all distribution functions which satisfy (3.12)
(the domain of attraction problem) and characterize the sequences an and bn.

Solutions to the above points are well known: e.g. consider the special case for distributions with
second finite moment. Indeed then one gets an =

√
nσ, bn = nµ, G = N (0, 1). Here N (0, 1)

is the standard normal distribution function, and all distribution functions with σ2 < ∞, are
attracted to N (0, 1).

3.3.1 Limit Laws for Maxima

Now we ask similar questions upon replacing Sn by the maximum order statistic Mn = X1,n =
max(X1, . . . , Xn). We adopt the same approach in obtaining limits of the distribution of (Mn−
bn)/an. The solution to the range of possible limit distributions is given by the following

Theorem (Fisher-Tippet): Suppose (X1, . . . , Xn) are iid random variables with distribution
function F . If there exist constants an > 0 and bn ∈ R so that

Mn − bn

an
→ Y , n →∞ , (3.13)

where Y is a non-degenerate random variable with distribution function G then G is of one of
the following types:
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I−Gumbel : Λ(x) = exp{−e−x} , x real.

II− Frechet : Φα(x) =
{

0, x ≤ 0
exp{−x−α}, x > 0

α > 0.

III−Weibull : Ψα(x) =
{

exp{−(−x)α}, x ≤ 0
1, x > 0

α > 0.

(3.14)

Collectively, the three classes of distribution are referred to as the extreme value distributions,
with types I, II and III widely known as the Gumbel, Fréchet and Weibull types, respectively.
For the Fréchet type, the extreme value distributions are heavy tailed functions whose tails
decay powerlike. In contrast, the Gumbel and the Weibull functions are light tailed. Note that
the Theorem does not guarantee the existence of a non-degenerate limit for Mn, nor specify
which limit will arise when such a limit does exist. When such a limit does exist, however, by
analogy with the CLT, we find that the limiting distribution of sample maxima follows one of
the distributions specified in the Theorem whatever the parent distribution F .

Example: Gumbel, Fréchet and Weibull Distributions - xmpGEVdistributions

Plot the density and probability functions for the Gumbel, Fréchet and Weibull distributions.

Use the fExtremes library functions

pfrechet(q, alpha=1), dfrechet(x, alpha=1),

pweibl(q, alpha=1), dweibl(x, alpha=1),

pgumbl(q), dgumbl(x),

where x and q are numeric vectors, and alpha the scale parameter.
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� Figure 3.3.1: Probabilities and densities for the standard (α = 1) Weibull (dotted), standard
Fréchet (dashed) and Gumbel (solid curve) distributions.

The limit distributions Λ,Φ,Ψ are determined up-to type: two distribution functions F1, F2 are
of the same type if there exist constants a1 ∈ R, a2 > 0 so that F2(x) = F1((x − a1)/a2), i.e.
F1 and F2 belong to the same location and scale family. Distribution functions of the Fréchet,
Weibull and Gumbel types are called the generalized extreme value distributions. In many cases
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it is inconvenient to work with three distinct classes of limiting distributions, so it is usual to
adopt a parameterization which encompasses all three types

Hξ;µ,β(x) = exp

{
−
(

1 + ξ
x− µ

β

) 1
ξ

}
, (3.15)

defined on {x : 1 + ξ(x− µ)/β > 0}. The type II and III classes of extreme value distributions
correspond respectively to the cases ξ > 0 and ξ < 0 in this parameterization, while the type I
class arises in the limit ξ → 0. The parameter ξ is referred to as the shape parameter, while µ
and β are location and scale parameters, respectively. The standard case µ = 0. β = 1 will be
denoted by Hξ = Hξ;0,1.

The estimation of extreme quantiles xp make the importance of the shape parameter ξ quite
evident. Inverting equation (3.15) yields

xp = µ− β

ξ

[
1− {− log(1− p)}−ξ

]
, (3.16)

where H(xp) = 1 − p. In extreme value terminology, xp is the return level associated with the
return period 1/p, and it is common to extrapolate the relationship (3.16) to obtain estimates
of return levels considerably beyond the range of the data to which the model has been fitted.

Example: Return Levels: - xmpGEVreturnlevels

Plot the return levels for different shape parameters of the GEV distribution.

Use the fExtremes library function qgev(p, xi, mu=0, beta=1) where p is a numeric vector, xi
the shape parameter and mu and beta the location and scale parameters respectively, with default
values 0 and 1:

p <- seq(0.001, 0.999, length=500)

x <- -1/log(1-p)

plot (x, qgev(1-p, xi=+0.3), ...)

for (xi in (0.15, 0, -0.15, -0.3) lines(x, qgev(1-p, xi=xi))
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� Figure 3.3.2: Quantiles on log scale for GEV distribution with different shape parameters -0.3,
-0.15, 0, 0.15 and 0.30.
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If ξ is negative, the quantiles are bounded above, so extrapolation to any level will lead to a finite
limit. On the other hand, if ξ is zero or positive, then the limiting distribution is unbounded,
and extrapolation leads to an infinite limit, as can be seen from figure 3.3.2.

3.3.2 Maximum Domain of Attraction Problem

Similar to the CLT, one may try to find a solution to the maximum domain of attraction problem,
i.e. given Hξ find conditions on F so that equation (3.13) holds for appropriate sequences (an)
and (bn). In this case we say F belongs to the maximum domain of attraction of Hξ with
norming constants an and bn denoted by F ∈ MDA(Hξ).

First let us consider two examples, the Exponential and Normal distributions, respectively.

Example: Convergence of Exponential Maxima - xmpGEVconvergence

Suppose F is the standard exponential distribution, so that

F (x) = 1− exp(−x) ; then F (x)n = (1− e−x)n .

Now let us inspect
F (x + log(n))n = (1− e−x−log(n))n =

(1− 1

n
e−x)n → exp(− exp(−x)) as n→∞ .

Thus with a normalization of
an = 1 and bn = log(n) ,

Mn has a limiting Gumbel distribution.

Illustrate this convergence graphically, showing the true distribution of (Mn − bn)/an for n =
10, 5, 3, 2, 1 together with the limit distribution G(x) = exp(−exp(−x)).

In order to examine more closely the convergence in the tail of the distribution, produce these plots
on a different scale. In particular plot quantiles, xp, of the distribution on a complementary log-log
scale. That is, plot xp against − log(− log(F (xp)). This choice of scale magnifies the tail region,
and presents the Gumbel limit as a linear line.

The graphs below are produced in the following way:

a <- function(n) {1}

b <- function(n) {log(n)}

n <- c(10, 5, 3, 2, 1)

plot(x, pgumbel(x), ...)

for (i in n) {

y <- (pexp(a(i)*x+b(i)))^i

lines(x, y, ...) }

plot(-log(-log(pgumbel(x))), x, ...)

for (i in n) {

y <- (pexp(a(i)*x+b(i)))^i

lines(-log(-log(y)), x, ...)
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First, define the functions a(n) and b(n). Then plot the converging graphs as function of n. Here
pexp(x) is the standard Splus function for the exponential probability function, and pgumbel(x) is
the probability function of the Gumbel distribution from the fExtremes library.
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� Figure 3.3.3: Convergence of exponential maxima to Gumbul limit. Left probability plot, Right
plot on alternative scale. Clearly the convergence is rapid, especially in the upper tail which is the
region where greatest accuracy is required.

Example: Normal Distribution: - xmpGEVconvergence

An example where convergence is much slower is where F is the standard normal distribution.
Although by no means obvious F converges with scalings

an =
1√

2 log(n)
,

bn =
√

2/ log(n)− log log n + log4π

2
√

2/ log(n)
,

(Mn − bn)/an converges again to the Gumbel distribution. In this case, even with n = 100, we will
find considerable disagreement between the distribution of the normalized Mn and the theoretical
limit, especially at extreme levels. Show this behaviour graphically.

Again, first define the Splus function for a(n) and b(n) and further follow the code from the example
above just replacing the function pexp() with pnorm():

a <- function(n) {

1/sqrt(2*log(n)) }

b <- function(n) {

sqrt(2*log(n)) -

(log(log(n))+log(4*pi))/sqrt(2*log(n))/2 }

n <- c(100, 50, 10, 5, 2)

plot(x, pgumbel(x), ...)

for (i in n) {

y <- (pnorm(a(i)*x+b(i)))^i

lines(x, y, ...) }
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plot(-log(-log(pgumbel(x))), x, ...)

for (i in n) {

y <- (pnorm(a(i)*x+b(i)))^i

lines(-log(-log(y)), x, ...)
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� Figure 3.3.4: Convergence of normal maxima to Gumbul limit. Left probability plot, Right
plot on alternative scale.

3.3.3 Heavy Tails: Fréchet Type Distribution

For applications in finance the Fréchet type turns out to be the most important model for
extremal events. The domain of attraction condition for the Fréchet takes on a particularly easy
form.

Theorem (Gnedenko): Suppose X1, . . . X2 are iid with distribution function F . Then there
exist sequences (an) and (bn) so that (3.13) holds for Y Fréchet distributed with parameter α > 0
(i.e. F ∈ MDA(H1/α) = MDA(Φα)) if and only if

1− F (x) = x−αL(x) x > 0 (3.17)

with L slowly, i.e. limx→∞
L(λx)
L(x) = 1 for all λ > 0.

Thus the class of distribution functions with regularly varying tail (3.17) enter very naturally
as standard models in the area of extreme value theory.

Now we turn to statistical issues, the estimation of the GEV distributional parameters. The
problem is how to make inferences about the parameters (ξ;µ, β). First we present moment
based estimators for the shape parameter ξ and then the likelihood estimator for the distribution
function.
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3.3.4 Estimating ξ from L-Moments

L-moments are summary statistics for probability distributions and data samples. They are
analogous to ordinary moments in the sense, that they provide measures of location, dispersion,
skewness, kurtosis, and other aspects of the shape of probability distributions or data samples,
however, they are computed from linear combinations of the ordered data values. In the book of
Hosking and Wallis (1997) one can find an excellent overview on the whole theory of L-moments.

Probability weighted moments, defined by Greenwood et al. (1979), are precursors of L-
moments. Sample probability weighted moments are computed from data values X1, X2, . . . , Xn

arranged in increasing order as

b0 =
1
n

n∑
j=1

Xj , (3.18)

b1 =
1
n

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)
(n− 1)(n− 2) . . . (n− r)

Xj .

L-moments are derived as linear combinations of probability weighted moments that have simple
interpretations as measures of the location, dispersion and shape of the data sample. The first
few L-moments are defined by

l1 = b0 , (3.19)
l2 = 2b1 − b0 ,

l3 = 6b2 − 6b1 + b0 ,

l4 = 20b3 − 30b2 + 12b1 − b0 ,

where the higher coefficients are those of shifted Legendre polynomials. The first L-moment is
the sample mean, a measure of location. The second L-moment is (a multiple of) Gini’s mean
difference statistic, a measure of the dispersion of the data values about their mean. By dividing
the higher-order L-moments by the dispersion measure, we obtain the L-moment ratios,

tr =
lr
l2

. (3.20)

These are dimensionless quantities, independent of the units of measurement of the data. t3 is a
measure of skewness and t4 is a measure of kurtosis, these are respectively the L-skewness and
L-kurtosis.

For a probability distribution with cumulative distribution function F (x), probability weighted
moments are defined by

βr =
∫

x{F (x)}rdF (x) , r = 0, 1, 2, . . . . (3.21)
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L-moments are defined in terms of probability weighted moments, analogously to the sample
L-moments.

λ1 = β0 , (3.22)
λ2 = 2β1 − β0 ,

λ3 = 6β2 − 6β1 + β0 ,

λ4 = 20β3 − 30β2 + 12β1 − β0 .

L-moments ratios are defined by

τr =
λr

λ2
. (3.23)

Estimating ξ from L-moments now consists of equating model moments based on Hξ;µ,β to the
empirical moments based on the data. This approach yields

3b2 − b0

2b1 − b0
=

3ξ − 1
2ξ − 1

, (3.24)

β =
((2b1 − b0)ξ

Γ(1− ξ)(2ξ − 1)
,

µ = b0 +
β

ξ
(1− Γ(1− ξ)) ,

where b0, b1 and b2, are the probability weighted moments.

Example: GEV simulated Data L-Moments Estimation - xmpGEVpwm1

Create 8000 random variables, GEV distributed with parameters ξ = 0.3, µ = 0, and β = 1. Esti-
mate the parameters from the first three probability weighted moments. Plot the series of random
variables and compare the empirical density with the estimated density and the true density.

Use the function gev.pmw() from the fExtremes library to estimate xi, mu and beta. gev.pwm()

evaluates the first three probability weighted moments implementing the FORTRAN routine ”sam-
pwm” from Hosking into the Splus function sampwm(). Having the weights w0, w1, and w2 we can
solve for xi with the help of the standard Splus function uniroot(). From xi and the weights we
can derive mu and beta with the help of the standard Splus function gamma(). Here is a short outline
of the Splus function code:

"sampwm" <- function(x, nmom=3, a=-0.35, b=0, kind=1) {

result <- .Fortran( "sampwm",

as.double(rev(sort(x))),

as.integer(length(x)),

as.double(rep(0,nmom)),

as.integer(nmom),

as.double(a),

as.double(b),

as.integer(kind))

result[[3]] }
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"y" <- function(xi, b0, b1, b2) {

(3^xi-1)/(2^xi-1)-(3*b2-b0)/(2*b1-b0) }

"gev.pwm" <- function(x) {

w <- sampwm(x, nmom=3, a=-0.35, b=0, kind=1)

b0 <- w[1]; b1 <- w[2]; b2 <- w[3]

xi <- uniroot(f=y, interval=c(-5,+5), b0=w[1], b1=w[2], b2=w[3])$root

beta <- (2*b1-b0)*xi / gamma(1-xi) / (2^xi-1)

mu <- b0 + beta*(1-gamma(1-xi))/xi

list(xi=xi, mu=mu, beta=beta) }

First create and plot the GEV random variables, then plot their density, estimate the parameters
and add to the density plot the graph for the estimated and true density:

> x <- rgev(8000, xi=0.3)

> plot(x)

> plot(density(x), n=100, width=0.5)

> parm <- gev.pwm(x)

> s <- seq(-1/parm$xi ,5, 100)

> lines(s, dgev(s, parm$xi, parm$mu, parm$beta))

> lines(s, dgev(s, xi=0.3))

> parm

$xi:

[1] 0.3251

$mu:

[1] 0.003107

$beta:

[1] 1.005
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� Figure 3.3.5: The graph to the left shows the simulated GEV variables. To the right the graph
displays the density plot of the empirical data (circles) and the graphs of the estimated and true
GEV. The latter two are so close, that they cannot be distinguished by visual inspection.

The result of this example shows us, that for a large sample the estimate is in a quite good
agreement with the simulated empirical data. Now let us apply the same procedure to the
monthly maxima of the negative logarithmic returns of the German BMW stock price data and
of the NYSE Composite Index data.
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Example: BMW Stock Data L-Moments Estimation - xmpGEVpwm2

Plot the daily log returns of the BMW stock prices. Determine (approximately) quarterly block
maxima by dividing the log-series into subseries of 63 business days. Estimate the parameters for
the GEV distribution. Check the quality of the estimation process by comparing the block maxima
histogram to the estimated GEV distribution and by plotting a QQ-Plot of the empircal data versus
the estimated GEV distribution.

Use the fExtremes library function block.maxima(x, blocklength=63) to create the block maxima
data and the standard Splus function hist(x) to display the histogram plot. The estimation yields
the following values for the parameters ξ, µ and α:

> x <- scan("bmwres.csv")

> gev.pwm(x)

$xi:

[1] 0.228

$mu:

[1] 0.028

$beta:

[1] 0.0115

> 1/parm$xi

[1] 4.39

The results for the NYSE Composite Index data are: ξ = 0.406, µ = 0.015, beta = 0.0052, and
α = 1/ξ = 2.46.
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� Figure 3.3.6: The graphs in the upper row show the daily log-returns of the BMW stock prices
(left) and the series of the 63-days block maxima data (right). The lower graphs show diagnostic
plots: The histogram of block maxima together with the estimated GEV distribution (left) and the
QQ-Plot of the empirical data versus the estimated GEV distribution(right).
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3.3.5 Estimating ξ under MDA Conditions

Let us start from a Theorem on an equivalence assertion for MDA(Hξ).

Theorem: Characterization of MDA(Hξ) For ξ ∈ R the assertion F ∈ MDA(Hξ) is equiv-
alent to: For x, y > 0, y 6= 1,

lim
s→∞

U(sx)− U(s)
U(sy)− U(s)

=


xξ−1
yξ−1

if ξ 6= 0,

ln x
ln y if ξ = 0.

(3.25)

where U(t) = F←(1−t−1), t > 0 and F← denotes the quantile function of a distribution function
F .

Method 1: Pickands Estimator

A reformulation of relation (3.25) leads to Pickands’ estimation procedure for quantiles outside
the range of the data, using

lim
t→∞

U(c(t)t)− U(t)
U(t)− U(t/c(t))

= 2ξ . (3.26)

whenever limt→∞ c(t) = 2 for a positive function c. From this expression an empirical estimator,
the so called Pickands’ estimator, can be constructed:

ξ̂
(P )
k,n =

1
ln 2

ln
Xk,n −X2k,n

X2k,n −X4k,n
→ ξ n →∞ . (3.27)

Under further conditions on k and F the estimator is asymptotic normal,

√
k(ξ̂ − ξ) → N (0, v(ξ)) , n →∞ ,

v(ξ) = ξ2(22ξ+1+1)
(2(2ξ−1) ln 2)2

.

This result forms the core of a whole series of results, Pickands (1975), and Decker and de Haan
(1989), concerned with quantile and tail estimators and confidence interval constructions.

Method 2: Hill’s Estimator

Suppose X1, . . . , Xn are iid with distribution function F ∈ MDA(Φα), α > 0, thus 1− F (x) =
x−αL(x), x > 0, for slowly varying function L. The Hill Estimator of α takes on the following
form:

α̂(H) = α̂
(H)
k,n =

1
k

k∑
j=1

lnXj,n − lnXk,n

−1

. (3.28)
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Hill’s Estimator should be viewed as a counterpart to Pickands’ estimator. Note, under further
conditions on k, F and iid sequence Xn the estimator is asymptotic normal,

√
k(α̂(H) − α) → N (0, α2) .

Here k = k(n) → ∞ in an appropriate way, so that as in the case of the Pickands estimator,
an increasing sequence of upper order statistics is used. One of the interesting facts concerning
equation (3.28) is that various asymptotically equivalent versions of α̂(H) can be derived through
essentially different methods, see Embrechts et al. (1997).

Example: Hill’s Estimator - xmpGEVhillplot

Plot the shape parameter α obtained from Hill’s estimator as a function of the order statistic and
threshold values together with its 95% confidence intervals.

Use the Splus functions hill.plot(data, param="alpha", start=15, end=NA, reverse=F, ci=T,

ci.p=0.95, auto.scale=T, labels=T, ...) from the fExtremes library. The required argument
data is a data vector or a time series. The optional arguments are: param allows to select whether
”alpha” or ”xi” (1/alpha) should be plotted. start is the lowest number of order statistics at which
to plot a point, and end the highest number of order statistics at which to plot a point. reverse

allows to select whether the plot is to be by increasing threshold (TRUE) or increasing number of
order statistics (FALSE). ci, a logical flag, if TRUE, the probability for asymptotic confidence band
is added to the plot; for no confidence band set to FALSE. auto.scale decides whether or not the
plot should be automatically scaled; if not, xlim and ylim may be entered as graphical parameters.
labels, a logical flag, if TRUE, the axes would be labeled.

> set.seed(471)

> x1 <- rstab(10000, index=1.8)

> x2 <- scan(file="nyseres.csv")

> hill.plot( x1, auto.scale=F, ylim=c(0,3.5))

> hill.plot( x2, auto.scale=F, ylim=c(0,6.0))

> hill.plot(-x1, auto.scale=F, ylim=c(0,3.5))

> hill.plot(-x2, auto.scale=F, ylim=c(0,6.0))

Figure 3.3.7 shows the results for the log-return values of the NYSE composite index and a simulated
series of 10000 alpha-stable random variables with index 1.8. Both, upper and lower tails are
investigated. The first plot was created by the Splus command hill.plot(rstab(1000,1.8).

Method 3: Deckers-Einmahl-deHaan Estimator

A disadvantage of Hill’s estimator is that is essentially designed for F ∈ MDA(Hξ), ξ > 0. In
Deckers, Einmahl, de Haan (1989), Hill’s estimator is extended to cover the whole class Hξ,
ξ ∈ R. They came up with the following proposal:

ξ̂k,n = 1 + H
(1)
k,n +

1
2

(H(1)
k,n)2

H
(2)
k,n

− 1

−1

, (3.29)
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� Figure 3.3.7: Hill plot for a simulated series of α-stable random variables with index 1.8 (left)
and the log-return values of the NYSE Composite Index (right). Both, upper and lower tails are
investigated, shown in the upper and lowee figures, respectively.

where

H
(1)
k,n =

1
k

k∑
j=1

(lnXj,n − lnXk+1,n) (3.30)

is the reciprocal of Hill’s estimator (modula an unimportant change from k to k + 1) and

H(2)
n =

1
k

k∑
j=1

(lnXj,n − lnXk+1,n)2. (3.31)

Because H
(1)
k,n and H

(2)
k,n can be interpreted as empirical moments, ξ̂k,n is also referred to as a

moment estimator of ξ.
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Example: Shape Parameter - xmpGEVshaparm

The function shaparm.plot(x, tails, doplot, alfa.range=c(-0.5,1.5), xi.range=c(0,10))

plots the shape parameter α or ξ obtained from Pickands’, Hill’s and Decker-Einmahl-deHaan esti-
mators. Individual plots can be displayed for predefined threshold values on a log-scale from which
α or ξ are estimated as mean values. Both, upper and lower tails are considered in the same plots.

x is a data vector, in this example the logarithmic returns of the NYSE Composite Index, tails is
a vector of threshold values for which α and ξ are evaluated; here we select 10 different tail depths
ranging from 1% to 10% of the data. doplot is a vector of logical values of the same length as
tails. For those elements which are set TRUE a plot is generated, otherwise not. alfa.range and
xi.range are optional arguments, which define the plot ranges for α and ξ with default values set
to c(-0.5,1.5) and c(0,10), respectively. In the example we have overwritten the default values
for the xi.range.

To become more definite, the plots of shape parameters in figure 3.3.8 for the NYSE Composite
Index were generated by the following commands, producing this output:

> x <- scan(file="nyseres.csv")

> tails <- c(0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10)

> doplot <- c( F, F, F, F, T, F, F, F, F, F)

> shaparm.plot (x, tails, doplot, xi.range=c(0,8))

[1] 0.01

[1] 0.9020344 0.3838229 0.4609961

[1] 0.2176707 0.2192884 0.1760605

[1] 0.02

[1] 0.6415300 0.3462955 0.4669930

[1] 0.3016799 0.2322289 0.1862094

...

[1] 0.1

[1] 0.3072878 0.3082789 0.3896214

[1] 0.1344260 0.2693792 0.1807588

Here, for each tail value ranging from 1% to 10% of the data three lines are printed: The first line
gives the tail depth (e.g. 0.02 2%) and the succeeding two lines give the α values for the upper
and lower tails, respectively. The three numbers belong from left to right to Pickands’, Hill’s and
Decker-Einmahl-deHaan’s Estimator.

3.3.6 Maximum Likelihood Estimation of ξ; µ, β

Suppose we have an observed sequence of maxima, Mn,1, . . . ,Mn,k, which for simplicity we
rewrite as X1, X2, . . . , Xk, and we assume that n is sufficiently large for the GEV approximation
to be valid. The inferential procedure would consist of the numerical maximization of the
likelihood function

l(ξ, µ, β) =
∑
i=1

k

{
− log β − (1 + 1/ξ)log[1 + ξ(

xi − µ

β
)]− [1 + ξ(

xi − µ

β
)]−1/ξ

}
. (3.32)

together with diagnostics checks.

• Numerical maximization of equation (3.32) presents generally no difficulties.

• The calculation of standard errors follows immediately from classical likelihood theory by
inversion of the observed information matrix.
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� Figure 3.3.8: The figures give in the right column a summary of the inverse shape parameter as a function of
tail depths for the Pickands’, Hills’ and Deckers-Einmahl-deHaan’s estimators. The upper curves belong to the
lower (loss) tail. The left column shows a snapshot for a tail depth of 5%. The shape parameter is derived from
a l1-fit on a logarithmic scale.
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• Diagnostic checks usually consists of a comparison of empirical and model-based estimates
of the distribution of Mn. Of course, the model is required for extrapolation, but it should
fit reasonably well to the most extreme of the observed data also. Comparison of quantiles
based on the GEV and the empirical distribution function in a quantile-quantile plot
give an assesment of fit. Similarly, the empirical and model-based distributions can be
compared in a probability plot.

• In the case of return level plots, it is usual to plot estimated quantiles, xp, obtained by
substitution of the maximum likelihood estimates of (ξ, µ, β) into (??), on a complementary
log-scale. That is, plot xp against − log(− log F (xp)).

• The simplest method to calculate confidence intervals for quantiles is via the delta method,
but asymmetry in the likelihood surface suggests that much more accurate intervals can
be obtained using intervals based on the profile likelihood.

Alltogether it is worth to note, that in many cases likelihood based estimators are preferable
compared to moment based estimators. Two R / S-plus packages for GEV fitting are available:
One written by S. Coles and the other written by A. McNeil. They are slightly different in the
produced output, we will give an example for both.

Example: GEV Fitting - xmpGEVmle

The Splus function gev.mle(x) fits through the likelihood approach the parameters ξ, µ, and β
to a GEV distribution. The function returns a TRUE/FALSE indicator of whether the likelihood
was successfully maximized or not, and if it was, the maximum likelihood estimates ((ξ; µ, β),
respectively) and their standard errors. These items are just a summary of all the output items,
such the covariance matrix of the estimates, which can be examined by storing the fit as an object.
The covariance matrix and corresponding standard errors are obtained by inversion of the hessian
matrix which in turn is obtained by numerical differencing.

Furthermore, the function gev.diag(gevfit.object) gives a graphical diagnostic of the GEV fit
including probability, quantile, return level and density plots. The return level plot also includes
95% confidence intervals based on the delta method.

The function gev.profxi(gevfit.object, xlow, xup, conf=0.95) examines the profile likelihood
for ξ over the range c(xlow,xup). Also included are lines corresponding to the maximum likelihood,
and a confidence profile likelihood interval for ξ, by default 95%.

Using the function gev.prof(gevfit.object, p, xlow, xup, conf=0.95) plots the profile likeli-
hood for qp over the interval c(xlow,xup) and gives the corresponding 95% (by default) confidence
interval. Thus, this function allows to study quantiles, particularly at extreme levels. For example
the p = 0.01% quantile of the block maxima data, corresponding to the value which is exceeded
in any given block with probability 0.01. For annual blocks this is the so called 100 year return
level. By re-parametrizing the GEV likelihood in terms of qp, the corresponding GEV quantile, and
maximizing with respect to the other 2 parameters, yields the tprofile likelihood for qp.

For example the plots in figure 3.3.9 for the NYSE Composite Index were generated by the following
commands, producing this output:

> x <- scan(file="nyseres.csv")

> xlength <- length(x)

> blocklength <- 63

> x <- x[1:(blocklength*floor(xlength/blocklength))]

> data <- apply(matrix(-x, byrow=T, ncol=blocklength), 1, max)

> plot(data, type="l", main="Lower Tail - Monthly Maxima")

> gevfit.object <- gev.fit(data)

> print(gevfit.object)
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� Figure 3.3.9: The plots show from upper left to lower right the daily log-Returns of the NYSE Composite
Index, the quarterly maxima (minima) of the lower tail, the GEV probability, quantile, return level and density
plots, the orofile likelihood for ξ and quantile q0.01.
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$conv:

[1] T

$nllh:

[1] -453.7699

$mle:

[1] 0.014950939 0.005673978 0.318026031

$se:

[1] 0.0005531673 0.0004686979 0.0703838384

...

$cov:

[,1] [,2] [,3]

[1,] 3.059941e-007 1.648557e-007 -9.640511e-006

[2,] 1.648557e-007 2.196777e-007 2.888646e-006

[3,] -9.640511e-006 2.888646e-006 4.953885e-003

> gev.diag(gevfit.bject)

> gev.profxi(gevfit.object, xlow=0.15, xup=0.60)

> gev.prof(gevfit.object, p=0.01, xlow=0.05, xup=0.15)

In addition he Splus function gev.res() calculates the residuals and shows a scatterplot.
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� Figure 3.17: The two plots show the residuals from GEV fitting.

Notes and Comments

In this section we discussed fluctuations of maxima in the framework of the GEV distribution.
Most of the material was taken from the textbook of Embrechts, Klüppelberg and Mikosch
Modelling Extremal Events and from the review article of Coles and Tawn Statistical Methods
for Extreme Values. For the L-moments approach we refer to the textbook of Hosking and Wallis
Regional Frequency Analysis.

The fExtremes library for the investigation of fluctuations of maxima cllects a series of Splus
functions implementing code written by Coles, McNeil and Würtz. Parameter estimation for the
GEV distribution through maximum likelihood estimation implements source code written by
McNeil and Coles. The L-Moments method accesses a Fortran routine written by Hosking. The
Hill plot for estimating the shape parameter under MDA conditions includes functions written
McNeil.
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3.4 Extremes via Point Processes

Introduction

As a procedure for statistical inference the technique of modelling block maxima with a GEV
distribution is highly inefficient since only one data point within a block is used. This weakness
has led to the development of other characterizations which enable extreme data other than
just the block maxima to be incorporated into the analysis. A first class of such methods to
be considered were “threshold methods” whereby all observations which exceed some specified
threshold are modelled according to some distribution.

3.4.1 Point Process Characterization

Again we take X1, X2, . . . , Xn to be an iid series from an unknown distribution F . The basic
idea is to form a 2-dimensional point process {(i, Xi); i = 1, . . . , n} and to characterize the
behavior of this process in regions of the form [t1, t2]× (u,∞), thus giving a representation for
the behavior of the Xi at large levels. More formally, the asymptotic argument is developed as
follows. Suppose F is in the domain of attraction of G. That is, there are sequences of constants
an, bn such that equation (3.13) holds for some non-degenerate distribution G given by

G(x) = exp
{
−[1 + ξx]−1/ξ .

}
(3.33)

We now construct a sequence of point processes on R2 by

Pn =
{(

i

n + 1
, (Xi − bn)/an

)
: i = 1, . . . , n

}
. (3.34)

The scaling is chosen to normalize the maximum over Pn; non-extreme observations become
scaled towards the lower end-point. Figure 3.4.1 illustrates this procedure when the Xi are
exponentially distributed:

The key feature of this characterization is that away from the lower boundary the process
behaves like a non-homogenous Poisson process. The simplest characterization of such a process
is that the numbers of points in any non-overlapping sets are independent. The process can be
uniquely specified by the intensity measure Λ(A) = E(number of points in A). In this particular
construction, the process Pn converges weakly to a Poisson process on sets which exclude the
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� Figure 3.4.1: Point process Pn for n = 5, 10, 100, 500, 1000, 10000 respectively with the Xi

exponentially distributed.

lower boundary. Denoting the intensity measure of this limiting process by Λ, it follows from
the Poisson property that for the region A = {(t1, t2)× (u,∞)}:

exp{−Λ(A)} = P{number of points inA}

= P{Mn ≤ x}

≈ exp
{
−[1 + ξx]−1/ξ

}
.

(3.35)

Thus, at high levels, the process Pn should approximate a Poisson process with intensity function
given by

Λ{(t1, t2)× (x,∞)} = (t1 − t2)[1 + ξx]−1/ξ . (3.36)

For statistical purposes it is useful to make two slight modifications to this representation. First,
we can absorb the rescaling coefficients an and bn into the GEV distribution and obtain that
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Pn = {( i
n+1 , Xi) : i = 1, . . . , n} may be approximated above high thresholds by a Poisson process

with intensity function

Λ{(t1, t2)× (x,∞)} = (t1 − t2)[1 + ξ(x− µ)/β]−1/ξ . (3.37)

Consequently, the distribution of the maximum over the entire observation period is GEV with
distribution function

G(x) = exp

{
−
[
1 + ξ

(x− µ)
β

]−1/ξ
}

. (3.38)

In applications it is more usual to parameterize the model so that the maximum over one block
of observations has this distribution. This is easily achieved. If the n observations correspond
to nb blocks of data then we write the intensity function as

Λ{(t1, t2)× (x,∞)} = nb(t1 − t2)[1 + ξ(x− µ)/β]−1/ξ . (3.39)

This does not alter the structure of the model, but ensures that the parameters (ξ;µ, β) cor-
respond to the GEV distribution of the block maximum. To summarize, the overall procedure
becomes:

• Build the point process

Pn =
{

(
i

n + 1
, Xi) : i = 1, . . . , n

}
.

• Above a high threshold u, Pn approximates a non-homogeneous Poisson process.

• The intensity function of the process P is

Λ{(t1, t2)× (x,∞)} = nb(t1 − t2)[1 + ξ(x− µ)/β]−1/ξ .

The essential point is that this result gives us a characterization for all observations which are
extreme in the sense of having exceeded a high threshold u. Note, that what determines a high
threshold is yet to be made clear however. Thus we can incorporate all such extreme observations
into the inference. The most natural approach is based on the point process likelihood. Suppose
we make n observations in total over nb periods. Then with a region of the form Av = [0, 1] ×
(v,∞) for v > u the likelihood is given by

L(Av; ξ, µ, β) = exp{−Λ(Av)}
∏NAv

i=1 dΛ(ti, xi)

= exp
{
−nb

(
1 + ξ v−µ

β

)−1/ξ
}∏NAv

i=1 β−1
(
1 + ξ xi−µ

β

)−1/ξ−1
,

(3.40)

where x1, . . . , xNA
is an enumeration of the NA points that exceed the threshold v.
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Example: Fitting Point Processes - xmpPOTppfit

The Splus function pp.fit(xdat, ufun, nobs) estimates the parameters (ξ, µ, β) for a data vector
xdat from the point process over a threshold ufun.

In addition it is possible to produce a range of diagnostic plots to check the quality of the fit. Simple
probability and quantile-quantile plots are calculated using the function pp.diag(pp.object).

There is also the issue how to make the choice of threshold, and having made the choice, deciding
whether it was satisfactory or not. There is a trade-off in threshold choice: thresholds which are
too low incur bias due to the invalidity of the asymptotic argument; thresholds which are too high
have few exceedances and so sampling variability is high. One (computationally intensive and con-
sequently very slow) method of threshold verification is based on the likelihood analysis itself. The
asymptotic argument presented above suggests that the model with parameters (ξ, µ, β) is valid at
all levels above some suitably high threshold. Thus, if we fit the model at a range of thresholds,
then we should observe some stability in the parameter estimates (relative to their sampling vari-
ability) at a threshold where the asymptotics are valid. The function pp.fitrange() plots each of
the MLE’s against threshold, together with confidence bands corresponding to 1.96 standard errors.

For example the plots in figure 3.19 for the NYSE Composite Index were generated by the following
commands, producing this output:

> data <- scan(file="nyseres.csv")

> plot(data, type="l", main="log-Returns")

> u <- 0.02

> y <- data[data < -u]

> x <- (1:length(data))[data < -u]

> points(x, y, col=5)

> pp.object <- pp.fit(-data, ufun=u, nobs=252)

> print(pp.object)

...

> pp.diag(pp.object)

> pp.fitrange(data, umin=0.01, umax=0.04, nobs=252, nint=15)

...

3.4.2 Generalized Pareto Distribution

This type of analysis derives as a simple special case of the point process approach. The idea
is to obtain an explicit approximation for the conditional distribution. With the same notation
as before, let X?

n,i = (Xi − bn)/an for i = 1, . . . , n. Then, for u sufficiently large for the Poisson
limit with intensity (3.36) to be a valid approximation on [0, 1]× (u,∞),

P{X?
n,i > u + x|X?

n,i} ≈ Λ{(0,1)×(u+x,∞)}
Λ{(0,1)×(u,∞)}

= [1 + ξx]−1/ξ .

(3.41)

In applications, therefore, exceedances of a high threshold, u, can be modelled as having distri-
bution specified by equation (3.41). Again, the unknown coefficients an and bn can be absorbed
into the distribution to give

P{Xn,i > u + x|Xn,i} = [1 + ξ
x

β
]−1/ξ . (3.42)
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� Figure 3.19: Point process analysis of the lower tail of the daily log-Returns of the NYSE Com-
posite Index. The plots to the left show the returns together with data points exceeding from above
the threshold value u = 0.02, the probability plot and quantile-quantile plot comparing empirical
with model-based results. To the right we have plots showing the MLE’s for the three parameters
against threshold values.
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This is referred to as the Generalized Pareto distribution (GPD). Taking the limit ξ → 0 gives
the exponential distribution as a special case. Note also that there is no location parameter in
this model, as the effect of the re-location by an is lost through the conditioning.

The role of this distribution in the context of extremes was first established by Pickands (1975)
who showed that convergence of the sample maxima to a GEV distribution is equivalent to a
Poisson rate of exceedances of asymptotically high thresholds, together with a GPD distribution
for the excesses themselves. From a practical viewpoint, the GPD distribution gives us a model
which has some asymptotic justification for the distribution of excesses above a high threshold,
conditional on being above that threshold see Figure 3.X. Inference can be based directly on
this model, but of course, this amounts to exactly the point process likelihood discussed above.
There is, however, one characteristic of the GPD distribution which acts as a useful diagnostic
in threshold selection. That is, if the conditional distribution of the X follow the GPD model
(2.13), then

E(X − u|X > u) =
β + ξu

1− ξ
(3.43)

provided ξ < 1. Moreover, if the GPD model is valid at a threshold u, then it should be valid
at all thresholds v greater than u. Hence, a plot of the sample mean of exceedances of u against
u should be linear above a level at which the asymptotic argument is valid. Furthermore, the
slope and intercept of that line give simple estimates of ξ/(1 − ξ) and β/(1 − ξ), respectively.
This is a mean residual life plot.

Example: Mean Residual Life Plot - xmpPOTmrlplot

The Splus function mrl.plot(data) produces a mean residual life plot. Approximate confidence
intervals are also included, 95% being the default level. Usually, the interpretation of mrl plots is
not easy, since the variability in the plotted data is high.

For example the following plots were generated as follows:

> x <- scan(file="nyseres.csv")

> mrl.plot(-x, main="NYSE Losses")

Thus from plotting the exceedances we can get the idea of a suitable threshold to fit the GPD.

McNeil (1997) has also shown how to find a closely related approximation to the distribution of
the ground-up exceedances of a threshold, i.e. the excesses plus u, and to the tail of the original
unknown underlying distribution. The distribution of the exceedances we define as Fu(x − u)
for x ≥ u and this may be approximated by Gξ;β(x − u) = Gξ;u,β(x). For points in the tail of
the distribution (x ≥ u) we note that

F (x) = P{X ≤ X} = (1− P{X ≤ u})Fu(x− u) + P{X ≤ u} .

We know that we can estimate Fu(x−u) by Gξ;u,β(x) for u large. We can also estimate P{X ≤ u}
from the data by Fn(u), the empirical distribution function evaluated at u. Thus for X ≥ u we
can use the tail estimate
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� Figure 3.4.3: These are the mean residual life plots for the lower (losses) tails of the log returns
of the BMW stock and the NYSE Composite index values.

F̂ (x) = (1− Fn(u))Gξ;u,β(x) + Fn(u)

to approximate the distribution function F (x). It can be shown that F̂ (x) is also a generalized
Pareto distribution, with the same shape parameter xi, but with scale parameter β̃ = β(1 −
Fn(u))xi and location parameter µ̃ = u− β̃((1− Fn(u))−ξ − 1)/ξ.

Example: Fitting the GPD and the Tail - xmpPOTgpd

The Splus function gpd.fit() fits the GPD. Additionally gpd.diag() plots the GPD and the tail
in comparison to the estimated distributions, and displays a residual and QQ-plot

> x <- scan(file="nyseres.csv")

> result <- gpd.mle(x, u=0.02)

> qpd.diag(result)

[1] "Excess Distribution"

[1] "threshold = 0.02 xi = 0.202 scale = 0.00537 location = 0.02"

[1] "Tail of Underlying Distribution"

[1] "threshold = 0.02 xi = 0.202 scale = 0.00228 location = 0.00466"
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� Figure 3.4.4: Fitting the GPD (upper left) and tail (upper right) above threshold u = 0.02 for
the NYSE Composite Index log-returns. The lower graphs show residual and QQ-plot.

3.4.3 The r-Largest Order Statistics Method

This technique can be derived as a special case of the point process approach. Given a sequence
of iid variables Xi, X2, . . . the block maximum method is based on the limiting distribution of
(Mn − bN )/an, the normalized maximum order statistic.

Defining M
(i)
n to be the i-th largest order statistic, the technique here is to obtain the limiting

joint distribution of

(
M

(1)
n − bn)

an
,

M
(2)
n − bn)

an
, . . . ,

M
(r)
n − bn)

an

)
(3.44)

for sone choice of r. Setting u = M
(r)
n in the likelihood ([?]) gives the likelihood
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L = exp

−
(

1 + ξ
M

(r)
n − µ

β

)−1/ξ


r∏
i=1

β−1

(
1 + ξ

M
(i)
n − µ

β

)−1/ξ−1

. (3.45)

Again, because this result derives directly from the point process representation, as an inferential
procedure we may just as well use the point process likelihood (??) directly, in this case setting
the threshold at the r-th order statistic.

Finally, note that using the r-largest method wit r = 1 is equivalent to the GEV block maxima
method.

Notes and Comments

This section discusses the point process characterization as described in Chapter 2 Alternative
Characterizations - Improved Inferences of Coles’ and Tawn’s review article Statistical Methods
for Extreme Values.

The Splus functions in the fExtremes library were implemented from Coles’ and McNeil’s soft-
ware packages.
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3.5 The Extremal Index

Assume a dyke has to be build at the seashore to protect against floods with 95%
certainty for the next 100 years. Suppose it has been established that the 99.9 and
99.95 percentiles of the annual wave-height are 10m and 11m, respectively. If the
annual maxima are believed to be iid then the dyke should be 11m high, 0.999510 ≈
0.95. But if the annual maxima are stationary (temporal dependent with extremal
index θ = 0.5, then one can show that a height of 10m is sufficient, 0.9990.5∗100 ≈
0.095. How do we can understand this result?

Source: Embrechts et al. (1997) taken from Weismann.

Introduction

The study of extremes in the presence of temporal dependence has focused on two types of
dependence: (i) Long-range dependence and (ii) Short-term dependence. In applications, short-
term dependence at extreme levels is common, with a tendency for extreme events to cluster. On
the other hand long-range dependence is in general sufficiently weak not to affect the asymptotics
of extreme value analysis.

Until now independence among observations was assumed. In practice however time series are
often characterized by serial correlations. The maxima tend to cluster. In order to quantify the
effect of serial dependence the extremal index θ is defined as

θ = limn→∞P{max(X2, . . . Xpn ≤ un|X1 ≥ Un} ,

where pn = o(n) and the sequence un is such that P{Mn ≤ un} converges. The correct inter-
pretation is that θ is the reciprocal of the mean cluster size at asymptotically extreme levels,
but more loosely it is just the reciprocal of the mean cluster size. The following theorem states
the effect of the extremal index θ on the asymptotics of maxima. In this theorem the quantity
M∗

n denotes the maximum of a sequence of independent variables X∗1 , . . . , X∗n with the same
marginal properties as the original Xi, (i = 1, . . . , n), series.

Theorem:

If X1, X2, . . . is a stationary process with no long range dependence and with extremal index
θ > 0, then

P

{
Mn − bn

an
< x

}
→ G1(x)

if and only if

P

{
M∗

n − bn

an
< x

}
→ G2(x)

with G1 and G2 non degenerate and

45



G1(x) = Gθ
2(x) .

From the theorem it is concluded that the asymptotic distribution of the maxima of a serial
correlated sequence is still a GEV distribution. The extremal index θ only affects the location
and scale parameters but not the shape parameter. Hence the type of the limiting distribution
is unaffected.

3.5.1 The Extremal Index: Blocks Method

Starting from the definition of the extremal index θ, we have

P (Mn ≤ un) ≈ P θ(M̃n ≤ un) = F θn(un) , (3.46)

provided nF (un) → τ > 0. Hence

lim
n→∞

P (Mn ≤ un)
n lnF (un)

= θ . (3.47)

This simple limit relation suggests constructing naive estimators of θ. Since we do not know
F (un) and P (Mn ≤ un) these quantities have to be replaced by estimators. A candidate for
estimating the tail nF (un) is its empirical version

N

n
=

1
n

n∑
i=1

I{Xi>un} . (3.48)

To find an empirical estimator for P (Mn ≤ un) is not straightforward. However, assuming a
specific type of asymptotic independence (see Embrechts et al. 1997, Chapter 4.4) implies

P (Mn ≤ un) ≈ P k(M[n/k] ≤ un) (3.49)

for constant k or slowly increasing k = k(n). This approximation forms the basis for the blocks
method. For the sake of arguments assume that n = rk for integers r = r(n) → ∞ and
k = k(n) → ∞. Otherwise, let r = [n/k]. This divides the sample X1, . . . , Xn into k blocks of
size r:

X1, . . . , Xr; . . . ;X(k−1)r+1, . . . , Xkr . (3.50)

For each block we calculate the maximum

M (i)
r = max(X(i−1)r+1, . . . , Xir) , i = 1, . . . , k . (3.51)

Relation (3.49) then suggests the approximation
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P (Mn ≤ un) = P

(
max
1≤i≤k

M (i)
r ≤ un

)
≈ P k(Mr ≤ un) ≈

(
1
k

k∑
i=1

I
M

(i)
r ≤un

)k

=
(

1− K

k

)k

.

(3.52)

A combination of these heuristic arguments with (.) leads to the following estimator of θ:

θ̂(1)
n =

k

n

ln(1−K/k)
ln(1−N/n)

=
1
r

ln(1−K/k)
ln(1−N/n)

. (3.53)

Here N is the number of exceedences of un by X1, . . . , Xn and K is the number of blocks with
one or more exceedences. A Taylor expansion argument yields the estimator

θ̂(2)
n = K/N =

1
r

K/k

N/n
≈ θ̂(1)

n . (3.54)

The blocks method accounts for clustering in the data. If the event

happens one says that a cluster occured in the ith block. These events characterize the extremal
behavior of Xn if we assume that the size r(n) of the blocks increases slowly with n. This gives
us some feeling for the dependence structure in the sequence Xn. In this case, the extremal index
is a measure of the clustering tendency of high threshold exceedances in a stationary sequence.

In practice, it turns out (as in the case of the estimation of the index xi) that it is not easy to
obtain accurate estimates of θ. Especially, given that we have n observation, how do we choose
the values of r (or k) and un?

3.5.2 The Extremal Index: Reciprocal Mean Cluster Size

An alternative approach yields the interpretation of the extremal index as the reciprocal of the
mean cluster size []. This interpretation of θ suggests an estimator based on the blocks method:

θ̂(2)
n =

Σk
i=1IM i

r>un

Σn
i=1I{Xi>un}

K

N
, (3.55)

i.e. number K of clusters of exceedances divided by the total number N of exceedances. The
same estimator has already been suggested as an approximation to θ̂

(1)
n .

3.5.3 The Extremal Index: Runs Method

...

θ̂(3)
n =

Σn−r
i=1 IAi,n

Σn
i=1I{Xi>un}

=
Σn−r

i=1 IAi,n

N
, (3.56)

where
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Ai,n = {Xi > un, Xi+1 ≤ un, . . . , Xi+r ≤ un} . (3.57)

This means we take any sequence of r = r(n) consecutive observations below the threshold as
separating two clusters.

Example: Extremal Index: xmpEXindex1

Plot the values of the extremal index estimates θ̂
(1,2,3)
n as a function of quantiles ranging between

99% and 99.9%. Select as data samples a large (80’000 points) and a short (8’000 points) series
of random variables drawn from Student’s distribution with four degrees of freedom together with
their exponentially smoothed averages (EMA created dependencies with λ = 0.2). As real world
examples consider the BMW stock and NYSE composite index returns.

Use the fExtreme library function

exindexes(x, blocklength, quantiles=seq(0.990,0.999,0.001),

doprint=T, doplot=T, ...},

where x is a numeric vector of input data X (in finance usually the log-returns or residuals of a time
series), blocklength is a numeric value specifying the length of the blocks (from which the number
of blocks r can be determined), quantiles is a numeric vector characterizing the desired tail depths,
by default ranging in ten equal steps from 99.0% to 99.9% (from which the thresholds un can be
determined). Note, setting the blocklength to 1, allows block maxima data as input. Furthermore,
replacing the data vector x by -x allows for the investigation of the lower tail of the distribution.

A look into the Splus function shows us how the estimates are evaluated:

...

k <- floor(length(x)/blocklength) # Number of blocks

n <- k*blocklength # Number of data points

x <- x[1:(k*blocklength)] # Truncate rest of data

x <- matrix(x, ncol=blocklength, byrow=T) # Arrange in matrix form

ordered <- sort(x) # Sort in reverse order

u <- ordered[floor(quantiles*length(x))] # Determine thresholds

...

# Now calculate extremal index for each threshold u:

...

N <- length(x[x>z]) # Number of exceedances

K <- sum(sign(apply(x, 1, max)-z)+1)/2 # Blocks with exceedances

...

theta1 <- (k/n)*log(1-K/k)/log(1-N/n) # Theta (1)

theta2 <- K/N # Theta (2)

t <- diff((1:n)[x>z])

theta3 <- length(t[t>blocklength])/N # Theta (3)

...
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NYSE - 8390 points
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� The four plots show the extremal indexes for a long (80’000 points) and a short (8’000 points)
series of Student t-distributed (4 degrees of freedom) ranom variables (left graphs), together with
the EMA smoothed series (λ = 0.2), graphs on the right side. This example demonstrates the
influence of dependencies on the extremal index created by smoothed data records. We also see that
it becomes rather difficult to estimate the extremal index for shorter time series. One also observes
the fact that usually θ1 is larger than θ2, and the latter is larger than θ3.

Remark: The EMA filtered series xi = λxi + (1 − λ)xi−1 were calculated with the help of the
standard Splus function filter() as:

lambda <- 0.2

xbar <- x * lambda

xbar[1] <- x[1]

xbar <- filter(xbar, filter=(1-lambda), method="rec")

49



BMW - 6146 points - upper
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NYSE - 8390 points - lower
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� The four plots show the extremal index for the logarithmic returns of the BMW stock prices
(upper row) and the NYSE composite index (lower row) for both, the upper (to the left) and lower
tail (to the right).

A different point of view in plotting the extremal index takes the Splus function exindex() from
the EVIS software package of A. McNeil []:

Example: Extremal Index: xmpEXindex2

Plot the values of the extremal index estimate θ̂
(1)
n as a function of thresholds u and K for the BMW

stock and NYSE composite index returns.

Use the fExtreme library function

exindex(data, block, start = 5, end = NA, reverse = F,

auto.scale = T, labels = T, table = T, ...),

where data is a numeric vector of input data or a daily time series, block is either an integer value
specifying the number of blocks r (from which the blocklengths can be determined) or a string
variable taking one of the values month|quarter|year if data is a time series. In this case the Splus
function

blocks(data, block = "quarter", func = max)
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allows to determine the block maxima.

The output produced by the function exindex() for the lower tail in the case of the NYSE data is

N K un theta2 theta1

[1,] 15 5 0.03386695 0.33333333 0.3892907

[2,] 16 6 0.03330663 0.37500000 0.4561044

[3,] 18 7 0.03194501 0.38888889 0.4941326

[4,] 19 8 0.03149290 0.42105263 0.5610423

[5,] 21 9 0.03128161 0.42857143 0.6015455

[6,] 22 10 0.03113046 0.45454545 0.6758827

[7,] 25 11 0.03015246 0.44000000 0.6979819

[8,] 39 12 0.02667477 0.30769231 0.5253125

[9,] 72 13 0.02259791 0.18055556 0.3357635

[10,] 87 14 0.02168161 0.16091954 0.3328211

[11,] 162 15 0.01794776 0.09259259 0.2195216

[12,] 181 16 0.01727691 0.08839779 0.2598157

Notes and Comments

The presentation of the theoretical background of the extremal index was taken from Chapter
8.1 from the book of Embrechts et al. (1997). Further references to this material ... .

The Splus function exindexes() was written by D. Würtz and the functions exindex() and
blocks() were implemented from the EVIS software package of A. McNeil.
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3.6 Risk Management

Introduction

Sometimes later ...

3.6.1 Value at Risk

A good introduction to value at risk is given by the Risk Grades Technical Document written by
Kim and Mina (2000) document. More detailed material can be found in the original Resmetrics
Documentations from JP Morgan. A further source is the PhD thesis of ...

3.6.2 Stress Testing

A brief introduction to stress testing provides the article Stress Testing written by Simozar
(1998). To get insight into into current practice we refer to the paper Stress Testing by Large
Financial Institutions: Current Practice and aggregation Issues published by the Bank for In-
ternational Settlemets, BIS. For further reading we mention the reports A Coherent Framework
for Stress Testing written by Berkowitz from the US Federal Reserve and Stress Testing edited
by Grau from the Austrian National Bank.

3.6.3 Extremes and Implied Risk Management

This is also the title of book edited by Embrechts (2000) with 18 contributions from several
authors. The book covers in four chapters basic extreme value theory, risk measures and extreme
value theory, applications to finance, and applications to insurance. A detailed description of ...
can be found in the diploma thesis of Frahm ().

...
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3.7 The fExtremes Library

3.7.1 Summary of Splus Function

The following section gives an overview over the Splus functions available in the fExtremes
Library. The programs are grouped by their functionalities. A short description follows each
Splus function name.

Exploratory Data Analysis Functions

Standard Splus offers the qq.plot() function for the investigation of extremal values. The
fExtremes library adds the following functions:

mxf.plot Mean excess function plot

mrl.plot Mean residual life plot

records.plot Plot of Records

maxsumratio.plot Ratio of Maximum and Sum Plot

Distribution Functions

Several additional density, cumulative probability, and quantile functions as well as random
number generators which play important roles in the extremal value theory can be accessed
through the fExtremes library. These functions include:

dfrechet Density function for the Frechet distribution

pfrechet Probability function

qfrechet Quantile function

rfrechet Random variables

dweibl Density function for the Weibull distribution

pweibl Probability function

qweibl Quantile function

rweibl Random variables

dgumbel Density function for the Gumbel distribution

pgumbel Probability

qgumbel Quantile function

rgumbel Random variables

dgev Density function for the GEV distribution
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pgev Probability

qgev Quantile function

rgev Random variables

dgpd Density function for the GPD distribution

pgpd Probability

qgpd Quantile function

rgpd Random variables

Fluctutations of Maxima: GEV

For an investigation of the fluctuations of maxima the fExtreme library implements tools to fit
the GEV distribution via the l-moments approach and via the maximum likelihood estimation
procedure. Additionally functions are available to find the shape parameter from Pickands’,
Hill’s and Decker-Einmahl-deHaan’s estimators.

gev.pwm PWM parameter fit to a GEV distribution

gev.fit MLE parameter fit to a GEV distribution

gev.diag Graphical diagnosis of the GEV fit

gev.profxi Examination of the profile likelihood for xi

gev.profq Examination of the profile likelihood for q_p

gev.res

hill.plot Plot Hill’s Estimator

shaparm.plot Pickands, Hill and Decker-Einmahl-deHaan Estimator

block.maxima Utility to calculate block maxima

Extremes via Point Processes: GPD

To explore extremes via point processes the fExtreme library has functions for the peak over
threshold parameter fit and for the mean excess function fit.

pp.fit Peak over threshold parameter fit

pp.diag Diagnostic Analysis - Probability and QQ-plots

pp.fitrange Plot each of the MLE’s against threshold

mxf.fit Mean Excess function fit to xi

Extremal Index

For the calculation of the extremal index two Splus functions are offered by the fExtremes
library:

exindex Extremal Index

exindexes Extremal Indexes

3.7.2 List of Splus Datasets

nyseres.csv log returns of NYSE Composite index values

bmwres.csv log returns of BMW stock prices
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3.7.3 List of Splus Examples

The material presented is illustrated by several Splus examples In the following we give a full
list of all examples together with a short description:

xmpEDAqqplot[123] 3.2 Quantile-quantile plots

xmpEDAmxf[123] 3.2 Mean excess function plots

xmpEDArecords 3.2 Records plot

xmpEDAmaxsum 3.2 Ratio of maximum and sum plot

xmpGEVdistributions 3.3 Gumbel, Frechet, Weibull Ddistributions

xmpGEVreturnlevels 3.3 Return levels

xmpGEVconvergence 3.3 Convergence of exponential and Gaussian maxima

xmpGEVpwm[12] 3.3 GEV probability weighted moments fit

xmpGEVhillplot 3.3 Hill plot

xmpGEVshaparm 3.3 Shape parameter summary plots

xmpGEVmle.ssc 3.3 GEV maximum likelihood estimation

xmpPOTppfit 3.4 Fitting Ppoint processes

xmpPOTmrlplot 3.4 Mean residual life plot

xmpPOTgpd 3.4 Fitting the FPD and the tail

xmpEXindex 3.5 Extremal Index

xmpEXindexes 3.5 Extremal Index

3.7.4 Software Packages

The fExtremes was written by the author implementing beside his own functions additional
functions and routines written by others. This includes McNeils’ EVIS Splus package, a collection
of Splus functions written by S. Coles and the Fortran package on L-moments from Hosking.

Mc Neil’s Splus Package EVIS:

Alexander McNeil, ETH Zurich, EVIS Software for Extreme Values in S-Plus: Working with
Paul Embrechts at ETH Zurich A. McNeil has developed SPlus functions for extreme value data
analysis. The central activities are: fitting the generalized extreme value distribution (GEV) to
block maxima/minima; fitting the generalized Pareto distribution (GPD) to excesses over high
thresholds; fitting a Poisson point process with GPD marks to the point process of threshold
exceedances. Also included are a number of useful exploratory data analysis functions.

Source available from:
http://www.math.ethz.ch/ mcneil/

Coles’ Splus Package:

Stuart Coles Home Page: Extreme value course notes. This is a link to a manuscript on extreme
value theory and modelling. Both the notes and associated Splus code have been revised (as of
9/6/99) to include the fitting of arbitrary covariates in extreme value models. The text includes
a recently revised chapter on multivariate extremes, written also with Jan Currie and Jonathan
Tawn.
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Source available from:
http://www.stats.bris.ac.uk/ masgc

Hosking’s FORTRAN Library L-moments:

An archive of 73 FORTRAN subroutines for statistical analysis using L-moments, and some aux-
iliary routines used by the L-moment routines. Submitted by M. Handcock, handcoc@ibm.com)
[2/Feb/90] to the Stat Library.

Source available from:
http://www.stat.cmu.edu/general/lmoments1.0
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