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Chapter 2

The Dynamical Process Behind
Financial Markets

If you can look into the seeds of time,
And say which grain will grow and which will not,
Speak.
Wiliam Shakespear, Macbeth.

Introduction

The second Chapter covers dynamical aspects of financial market data from the time series
analysis point of view. The chapter is divided in five sections concerned with the basic concepts
of univariate linear stochastic models, with the methodology of modelling heteroskedastic be-
havior, with the concepts of regressions analysis, with the approach of feedforward connectionist
networks, and finally with the ideas behind technical trading models.

In Section 2.1 where we introduce the concept of autoregressive-moving average processes we
deal with the general concepts of model selection, parameter estimation and diagnosis checking
for Arima models. We do not go into details of this big machinery of linear time series modelling,
we concentrate on the concepts in that sense, that we use this approach to remove the linear
part from a financial time series. Having achieved this, we can concentrate on the investigation
of the residuals of the linear model.

Volatility clustering is one of the central aspects which requires more sophisticated time series
models. Section 2.2 is dedicated to these models. Modelling heteroskedastic effects with the
Garch family of models is a well accepted step in this direction.

Section 2.3 is devoted to regression analysis from the time series point of view. We present the
concepts of linear and additive regression models and their generalizations. Further topics are
the projection pursuit regression approach and modelling with multivariate adaptive regression
splines.
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In Section 2.4, a differently motivated point of view takes the time series modelling approach
based on neural networks. A very prominent class of these models are the connectionist function
approximators which we can use to model nonlinear time series analysis. We give an introduction
to feedforward neural networks and show how we can use them for multivariate financial market
time series analysis.

In Section 2.5 we introduce concepts of technical trading analysis and present trading models
based on volatility adjusted time series.
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2.1 ARMA Modelling: Basic Concepts of Linear Processes

Introduction

When we like to get insight into the dynamical behavior of a financial time series, it is useful
to regard the observed series (x1, x2, . . . , xT ), as a particular realization of a stochastic process.
The process will be the family of a random variable Xt defined on an appropriate probability
space. The stochastic process can be described by a T -dimensional probability distribution. If we
could assume joint normality of the distribution then the T means, E[x1], E[x2], . . . , E[xT ], the T
variances V ar[x1], V ar[x2], . . . , V ar[xT ] and the T (T −1)/2 covariances Cov[xi, xj ], i < j would
completely characterize the properties of the stochastic process. However, such an assumption
is unlikely appropriate for most financial time series.

If normality cannot be assumed, but the process is taken to be linear, in the sense that the
current value of the process is generated by a linear combination of previous values of the
process itself and current and past values of any other related processes, then again the set of
mentioned expectations would capture its major properties.

The procedure of using a single realization to infer the unknown parameters of a joint probability
distribution is only valid if the process is ergodic, which roughly means that the sample moments
for finite stretches of the realization approach their population counterparts as the length of the
realization becomes infinite. We will assume from now on that the time series have this property.

Stationarity

One important assumption is that of stationarity, which requires the process to be in a particular
state of “statistical equilibrium”. A stochastic process is called strictly stationary if its properties
are uneffected by a change of the time origin. In other words, the joint probability distribution
at any set of times t1, t2, . . . , tm must be the same as the joint probability distribution at times
t1 + τ, t2 + τ, . . . , tm + τ , where τ is an arbitrary shift in time. For m = 1 this implies that the
marginal probability distributions do not depend on time, which in turn implies that, so long as
E[|xt|2] <∞, both the mean and variance of xt, must be constant, i.e.

E[X1] = E[X2] = . . . = E[XT ] = µ , (2.1)

and

V ar[X1] = V ar[X2] = . . . = V ar[XT ] = σ2 . (2.2)
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Setting m = 2 strict stationarity implies that all bivariate distributions do not depend on time:
Thus all covariances are functions only of the time shift (or lag) τ , i.e. for all τ

Cov[X1, X1+τ ] = Cov[X2, X2+τ ] = . . . = Cov[XT−τ , XT ]
= Cov[Xt, Xt−τ ] = γτ . (2.3)

In the following γτ denotes the autocovariances and ρτ = γτ/γ0 the autocorrelation function,
ACF, both of which only depend on the lag τ . A process is called weakly stationary if (2.1),
(2.2), and (2.3) hold, i.e. first and second order moments of the process exist and are invariant
through time. Note that strict stationarity (time invariance of distributions) always implies weak
stationarity (time invariance of first and second order moments) whereas the converse does not
hold. Assuming joint normality, however, both concepts coincide, since the normal distribution
is completely determined by its first and second order moments.

Wold’s Decomposition Theorem

A fundamental theorem in time series analysis is Wold’s decomposition theorem. The theorem
states that every weakly stationary, purely non-deterministic process (xt − µ) can be written
as a linear filter, i.e. a linear combination, of a sequence of uncorrelated random variables.
By purely non-deterministic we mean that any linearly deterministic components have been
subtracted from (xt − µ).

The linear filter representation is given by

xt − µ = ut + ψ1ut−1 + ψ2ut−2 + . . . =
∞∑

j=0

ψjut−j , ψ0 = 1 . (2.4)

The ut are a sequence of iid random variables drawn from a distribution with mean zero and
variance σ2 <∞, and Cov[ui, ui−k] = 0 for all k 6= 0. The ut are also often called innovations or
a white noise process. Wold’s decomposition underlies all the theoretical models of time series.

2.1.1 Stationary ARMA-Processes

The linear filter representation (2.4) is the origin of many realistic time series models resulting
from particular choices of the ψ-weights.

First Order Autoregressive Processes: AR(1)

Taking µ = 0 without loss of generality, choosing ψj = φj , allows equation (2.4) to be written
as

xt = ut + φut−1 + φ2ut−2 + . . .

= ut + φ(ut−1 + φut−2 + . . .)
= φxt−1 + ut . (2.5)

9



This is known as a first-order autoregressive process, given the acronym AR(1). The backshift
or lag-operator B can be introduced for notation convenience:

Bxt = xt−1 , . . . , , Bmxt = xt−m .

Rearranging equation (2.5) yields:

xt = (1− φB)−1ut

= (1 + φB + φ2B2 + φ3B3 + ...)ut .

This linear filter representation will converge as long as |φ| < 1, which is therefore the stationarity
condition.

The moments and the ACF ρk of the AR(1)-process can be characterized as follows

E[xt] = 0 ,
V ar[xt] = σ2(1 + φ2 + φ4 + ...) = γ0 ,

Cov[xt, xt−k] = γk = φγk−1 , k > 0 ,

ρk =
γk

γ0
= φk . (2.6)

Since |φ| < 1 the ACF ρk shows a pattern which is decreasing in absolute value, implying that
the linear dependence of two observations xt and xs becomes weaker with increasing distance
between t and s. Thus if φ > 0, the ACF decays exponentially to zero, while if φ < 0, the ACF
decays in an oscillatory matter. Both decays are being slow if φ is close to the non-stationary
boundaries of +1 or −1.

First Order Moving Average Processes: MA(1)

Alternatively assuming in equation (2.4) ψj = −θ and ψj = 0, j > 1 the so called moving
average process of order 1, MA(1), is obtained:

xt = ut − θut−1

= (1− θB)ut . (2.7)

Low order moments of the process in (2.7) are easily seen to be:

E[xt] = 0 ,
V ar[xt] = (1 + θ2)σ2 = γ0 ,

Cov[xt, xt−k] = −θσ2 · δk0 = γk ,

ρk = −θσ2 · δk0 .
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Here, δk0 is 1 for k = 0 and otherwise 0. Note, the two observations xt and xs generated by a
MA(1) process are uncorrelated if t and s are more than one observation apart from each other.

Autoregressive Moving Average Processes: ARMA

Both processes considered so far, i.e. the AR(1) and MA(1) process, impose strong restrictions
on the pattern of the corresponding autocovariance or autocorrelation function. More general
patterns of linear dependencies are allowed by autoregressive or moving average models of higher
order. The AR(p)- and MA(q)-model are defined as follows:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ut (AR(p)− processes) , (2.8)

and

xt = ut − θ1ut−1 − θ2ut−2 − . . .− θqut−q (MA(q)− processes) . (2.9)

A generalization of both time series models is obtained by combining the AR(p) and MA(q)
processes defining an ARMA(p,q)-process:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ut − θ1ut−1 − θ2ut−2 − . . .− θqut−q . (2.10)

Using the lag operator B equation (2.10) may be written as follows

(1− φ1B − φ2B
2 − . . .− φpB

p)xt = (1− θ1B − θ2B
2 − . . .− θqB

q)ut ,

φ(B)xt = θ(B)ut . (2.11)

There is no simple general expression for the variance, covariance and autocorrelation function
of a stationary ARMA(p,q) model. These expressions are solutions to difference equations that
cannot easily be solved by inspection. However, there are simple formulas for the variance of he
AR(p) model and the MA(p) model. For the AR(p) model we have

V ar[xt] =
σ2

u

φ1ρ1 − · · · − φpρp
.

and for the MA(q) we have

V ar[xt] = (1 + θ2
1 + · · ·+ θ2

q)σ
2
u .

Concerning the ACF, in general an AR(p) process is described by a correlation function that has
infinite extent and is represented by oscillating damped exponentials, and in general a MA(q)
process cuts after leg q. The ACF of the resultant ARMA(p,q) will eventually follow the same
pattern as that of an AR(p) process after q − p initial values.
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A process of low order which is already characterized by a flexible pattern of its autocorrelation
function, e.g. in comparison to the AR(1) or to the MA(1) process, is the ARMA(1,1)-process

xt − φxt−1 = ut − θut−1, |φ| < 1, |θ| < 1 . (2.12)

Autocovariances of order k are easily determined for the ARMA(1,1) by multiplying equation
(2.12) with xt−k and taking expectations:

E[xtxt−k − φxt−1xt−k)] = E[utxt−k − θut−1xt−k)] .

Furthermore, the following results can be derived

γk = φθk−1 , k > 1 ,

γ0 − φγ1 = σ2(1− θ(φ− θ)) , from k = 0 ,
γ1 − φγ0 = −θσ2 , from k = 1 .

Turning to the autocorrelation function one obtains:

ρ1 =
(1− φθ)(φ− θ)
1 + θ2 − 2φθ

, and ρk = φρk−1. (2.13)

This equation shows that the autoregressive coefficient governs how the ACF dies out whereas
the moving average parameter is important for the initialization of the ACF ρ1.

Partial Autocorrelation Function: PACF

Since all AR processes have ACFs that damp out it can be difficult to distinguish between
processes of different orders. To aid with such discrimination we may use the partial autocor-
relation function, named briefly PACF. Whereas the sample ACF ρ̂k is computed from a time
series realization x1, x2, . . . , xn and gives the observed correlation between pairs of observations
(xt, xt+k), having mean x and separated by time spans k

ρ̂k =
∑n−k

t=1 (xt − x)(xt−k − x)∑n−k
t=1 (xt − x)2

, k = 1, 2, . . . , (2.14)

the sample PACF φ̂kk gives the correlations between k-separated ordered pairs (xt, xt+k) with
the effect of intervening observations xt+1, xt+2, . . . , xt+k−1 removed. The sample PACF can be
computed as a function of the sample ACF

φ̂11 = ρ̂1 (2.15)

φ̂11 =
ρ̂k −

∑k−1
j=1 φ̂k−1j ρ̂k−j

1−
∑k−1

t=1 φ̂k−1j ρ̂j

k = 2, 3, . . . (2.16)
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where

φ̂kj = φ̂k−1j − φ̂kkφ̂k−1k−j k = 3, 4, . . . j = 1, 2, . . . , k − 1 .

This method of computing the sample PACF is based of a set of equations known as the Yule-
Walker equations that give ρ1, ρ2, . . . , ρk as a function of φ1, φ2, . . . , φk. Each estimated PACF
coefficient φ̂kk is an estimate of the corresponding model-based true PACF φkk.

Splus - ARMA Simulating Processes

Splus offers a whole suite of functions for modelling Arima processes. The first we like to use is
arima.sim() for the simulation of Arma processes.

The required argument model for the Splus function arima.sim() is a list of parameters specifying
an Arima model. The components of the model argument should be some or all of: order, period,
ar, ma, ndiff, ar.opt, ma.trans, and ma.opt. order is a vector of length 3 specifying the order
of an ARIMA(p,d,q); the elements of the vector are (p, d, q), where p and q are the order of the
autoregressive and moving average operators and d is the number of differences. period specifies
the period of the ARIMA operators; e.g., a seasonal operator for monthly data would have a period
of 12 (the default is 1). ar and ma are vectors of initial values for autoregressive and moving average
coefficients respectively (if not provided, the initial values to the optimizer are set to 0). ndiff is an
alternative way to specify the number of differences. A model can be specified using either order or
ar, ma, and ndiff, or both (but they must agree if both are specified). The model doesn’t explicitly
allow for a non-zero mean of the series, though the estimation is invariant to the mean of the data
for many of the possible models; if you estimate an AR model, you must subtract the mean yourself
or use the xreg argument in order to get sensible estimates. If ma.trans is TRUE (the default),
the moving average coefficients will be transformed before passing them to the optimizer, ensuring
invertibility of the model. ar.opt and ma.opt are logical vectors of length p and q respectively. If
the ith element is TRUE, then the optimizer will optimize over the ith autoregressive or moving
average coefficient. By default, the vectors are TRUE. This option is useful to fit models in which
some low order coefficients are set to 0. The likelihood is conditioned on n.cond observations.

Several optional arguments can be added: n, the length of the series to be simulated (optional
if innov is provided). innov, a univariate time series or vector of innovations to produce the
series. If not provided, innov will be generated using rand.gen. Missing values are not allowed.
n.start, the number of start-up values discarded when simulating non-stationary models. The
start-up innovations will be generated by rand.gen if start.innov is not provided. start.innov,
a univariate time series or vector of innovations to be used as start up values. Missing values are
not allowed. rand.gen, a function which is called to generate the innovations. Usually, rand.gen
will be a random number generator. xreg,a univariate or multivariate time series, or a vector, or a
matrix with univariate time series per column. These will be used as additive regression variables.
reg.coef, a vector of regression coefficients corresponding to xreg. ... additional arguments may
be passed to rand.gen.

The returned value is an univariate time series, the simulated series.

Example: ARMA Modelling, Simulating Processes - xmpArimaSimulation:

Now use this Splus function and simulate the following AR, MA and ARMA processes with a length
of 1000 data points: AR(1) processes with φ = ±0.5, AR(2) processes with φ1 = ±0.5 and φ2 = 0.3,
MA(1) processes with θ = ±0.8, and ARMA(1,1)processes with φ = ±0.5, and θ = 0.8.

x <- arima.sim(n=1000, model=list(order=c(1, 0, 1), ar=0.5, ma=0.8))

plot(1:length(x), x, type="l", main="ARMA(1,1): +0.5, +0.8")
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Splus - ACF

The standard Splus function acf() estimates and displays autocovariance, autocorrelation or partial
autocorrelation functions.

The required argument is x, a time series vector (or a matrix or a regular or a calendar time series).
Missing values are allowed only at the beginning or end of series. If x is a matrix, rows are treated
as time points and columns as univariate series.

The optional arguments include lag.max, the maximum number of lags at which to estimate the
autocovariance. If this is not supplied, it is a number proportional to the logarithm of the length of
the series. type, a character string: ”covariance” to estimate the autocovariance function, ”correla-
tion” for the autocorrelation function, or ”partial”, if the partial autocorrelation function is desired.
The start of one of the strings will suffice. plot, is a logical flag, if TRUE, the autocovariance or
autocorrelation function between pairs of univariate series will be plotted in an array of at most
5 by 5 plots per page. If type is ”correlation” or ”partial” approximate 95% confidence limits are
drawn on the plots.

The returned value is a list with the following components: acf, a three-dimensional array containing
the autocovariance or autocorrelation function estimates. acf[i,j,k] is the covariance (or correlation)
between the j-th series at time t and the k-th series at time t+1-i. lag, an array the same shape
as acf containing the lags (as fractions of the sampling period) at which acf is calculated. If j > k
and i > 1, then lag[i,j,k] is negative. n.used, the number of observations in which no missing values
occur. type, a character string indicating the type of function, “covariance”, “correlation” or “par-
tial”. series, the name of x, including transformations.

Example: ARMA Modelling, Simulating Processes, cont. - xmpArimaSimulation:

Now, plot with the help of the Splus function acf() the sample autocorrelation function and the
sample partial autocorrelation function. The results are shown in figure 2.1.1.

acf(x, lag.max=12)

acf(x, lag.max=12, type="partial")

Example: ARMA Modelling, Investigating the True ACF/PACF - xmpArimaTrueAcf:

Compare the sample ACF / PCAF with the true ACF / PACF for two simulated AR(2) processes
of length 1000 with π1 = ±0.5 and φ2 = 0.3, respectively. Use the Splus function trueacf() from
the fSeries library. The results are shown in figure 2.1.2. The graphs for the AR(2) models were
produced by the following Splus commands:

# First Model:

model <- list(ar=c(+0.5, 0.3))

x <- arima.sim(n=1000, model)

plot(1:length(x), x, type="l", main="AR(2): +0.5, 0.3")

acf(x, lag.max=12)

trueacf(model, lag.max=12)

acf(x, lag.max=12, type="partial")

trueacf(model, lag.max=12, type="partial")

# Second Model:

model <- list(ar=c(-0.5, 0.3))

x <- arima.sim(n=1000, model)

plot(1:length(x), x, type="l", main="AR(2): -0.5, 0.3")

acf(x, lag.max=12)

trueacf(model, lag.max=12)

acf(x, lag.max=12, type="partial")

trueacf(model, lag.max=12, type="partial")

The models show an exponentially decaying ACF, whereas the second model’s ACF is oscillating.
As expected, the PACF shows the first two values to be significant,
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� Figure 2.1.1 shows for various AR, MA and ARMA time series models (left column) together with the ACF
(middle) and PACF (right) From top to bottom we have two AR(1) processes with φ = ±0.5 followed by two
AR(2) processes with φ1 = ±0.5 and φ2 = 0.3.

15



MA(1): +0.8

1:length(x)

x

0 200 400 600 800 1000

-4
-2

0
2

4

Lag

A
C

F

0 2 4 6 8 10 12

-0
.5

0.
0

0.
5

1.
0

 Series : x

Lag

P
ar

tia
l A

C
F

0 2 4 6 8 10 12

-0
.5

-0
.3

-0
.1

0.
0

 Series : x

MA(1): -0.8

1:length(x)

x

0 200 400 600 800 1000

-4
-2

0
2

4

Lag

A
C

F

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : x

Lag

P
ar

tia
l A

C
F

0 2 4 6 8 10 12

-0
.2

0.
0

0.
2

0.
4

 Series : x

ARMA(1,1): +0.5, +0.8

1:length(x)

x

0 200 400 600 800 1000

-2
0

2

Lag

A
C

F

0 2 4 6 8 10 12

-0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : x

Lag

P
ar

tia
l A

C
F

0 2 4 6 8 10 12

-0
.2

0
-0

.1
0

0.
0

 Series : x

ARMA(1,1): -0.5, +0.8

1:length(x)

x

0 200 400 600 800 1000

-6
-4

-2
0

2
4

6

Lag

A
C

F

0 2 4 6 8 10 12

-0
.5

0.
0

0.
5

1.
0

 Series : x

Lag

P
ar

tia
l A

C
F

0 2 4 6 8 10 12

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

 Series : x

� Figure 2.1.1 cont. From top to bottom we have two MA(1) processes with θ = ±0.8, and two ARMA(1,1)
processes with φ = ±0.5, and θ = 0.8.
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� Figure 2.1.2 compares for two AR(2) time series models with φ1 = ±0.5 and φ2 = 0.3 the sample and the true
ACFs and PACFs.
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Stationarity and Invertibility Conditions

xt is stationary if the roots of the characteristic polynomial φ(z) have moduli which are larger
than one:

φ(z) = (1− φ1z − φ2z
2 − . . .− φpz

p) 6= 0 for |z| < 1 . (2.17)

For a stationary ARMA(p,q) process the polynomial φ(B) can be inverted such that xt has a
moving average representation of infinite order: xt = φ−1(B)θ(B)ut.

An ARMA(p,q) process is called invertible if the roots of θ(z) have moduli which are larger than
one:

θ(z) = (1− θ1z − . . .− θqz
q) 6= 0 for |z| < 1 . (2.18)

In this case xt has an autoregressive representation of infinite order: θ−1(B)φ(B)xt = ut.

Example: ARMA Modelling, Stationarity and Invertibility - xmpArimaRoots:

Let us inspect the Splus function arma.roots() from the fSeries library which can be used to
compute and to display the roots of an AR or an MA polynomial.

"arma.roots" <-

function(coefficients, nplot=400, digits=4) {

# Finds roots of the polynomial:

root <- polyroot(c(1, -coefficients))

real.root <- Re(root)

im.root <- Im(root)

# Plot polynomial function:

xrange <- range(real.root)

xrange <- c(xrange[1]-1.2*abs(xrange[1]), xrange[2]+1.2 * abs(xrange[2]))

xplot <- seq(xrange[1], xrange[2], length = nplot)

fpoly <- 1

for (i in 1:length(coefficients)) {

fpoly <- fpoly - xplot^i * coefficients[i] }

plot(xplot, fpoly, type = "l", xlab = "B", ylab = "Function")

title(main = "Polynomial Function vs. B")

abline(h = 0)

# Plot roots and unit circle:

distance <- sqrt(real.root^2 + im.root^2)

root.mat <- cbind(round(real.root, digits = digits),

round(im.root, digits = digits), round(distance, digits = digits))

dimnames(root.mat) <- list(1:nrow(root.mat), c("re", "im", "dist"))

size.limit <- max(abs(real.root), 1.5, abs(im.root))

plot(root, xlim = c( - size.limit, size.limit),

ylim = c( - size.limit, size.limit), xlab = "", ylab = "")

symbols(0, 0, circles = 1, add = T, inches = F, col = 6)

abline(h = 0)

abline(v = 0)

title("Roots and Unit Circle", xlab = "Real Part", ylab = "Imaginary Part")

# Return result:

root.mat}

Now use this function to find the roots of the polynomials (1− 1.6B − 0.4B2), (1− 0.5B − 0.1B2),
and (1− 0.5B + 0.9B2 − 0.1B3 − 0.5B4).
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� Figure 2.1.3 displays for three polynomials the polynomial functions versus B (upper row) and
the unit roots together with the unit circle (lower row). The polynomials from left to the right are:
(1− 1.6B − 0.4B2), (1− 0.5B − 0.1B2), and (1− 0.5B + 0.9B2 − 0.1B3 − 0.5B4).

arma.roots(c(1.6,0.4))

re im dist

1 0.5495 0 0.5495

2 -4.5495 0 4.5495

arma.roots(c(0.5, -0.1))

re im dist

1 2.5 1.9365 3.1623

2 2.5 -1.9365 3.1623

arma.roots(c(0.5, -0.9, 0.1, 0.5))

re im dist

1 0.1275 0.8875 0.8966

2 0.1275 -0.8875 0.8966

3 -1.8211 0.0000 1.8211

4 1.3662 0.0000 1.3662

The graphs are displayed in figure 2.1.3. The polynomial in the first example has two real roots, one
inside and the other outside of the unit circle. Thus if this were an MA (AR) polynomial the model
would be noninvertible (nonstationary). The polynomial in second example has two imaginary roots,
both of which are outside of the unit circle. Thus if this were an MA (AR) polynomial the model
would be invertible (stationary). In the third example the roots are inside the unit circle implying
noninvertibilty in the case of a MA model and nonstationarity in the case of an AR model.
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Mean Stationarity and Differencing: ARIMA

Arma models are most useful for predicting stationary time series. These models can be gen-
eralized to Arima models that have integrated random walk type behavior. These models are
useful for describing certain kinds of nonstationary behavior.In particular, an integrated Arima
model can be changed to a stationary Arma model using a differencing operation.Then we fir
an Arma model to the differenced data. Differencing involves calculating successive changes in
he values of a data series.

To difference a time series,we define a new variable Yt which is he change in Xt from one time
period to the next; i.e.

Yt = (1−B)Xt = Xt −Xt−1 , t = 2, 3, . . . , n . (2.19)

Yt is called he first difference of Xt. We can also look at differencing from the other side. In
particular, rewriting the above equation and using successive resubstitution, we end up after n
steps with

Xt = Xt−n + Yt−n−1 + · · ·+ Yt . (2.20)

This shows why we would say that a model with a (1−B)-differencing term is integrated. Then
in general

Yt = (1−B)dXt (2.21)

is a d-th order regular difference. For financial time series (usually the log prices) that have
integrated or random-walk-type behavior, first differencing leading to log returns, is usually
sufficient to produce a time series with a stationary mean.

Including Deterministic Components

In the presentation of theoretical models given above a deterministic component was always
excluded. The generalization of stationary ARMA(p,q)-processes allowing for a non-zero mean,
however, is straightforward. Augmenting the stationary process (2.10) with ν 6= 0 one obtains

φ(B)xt = ν + θ(B)ut .

Inversion of φ(B) immediately yields the expectation of xt,

µ = E[xt] = φ(B)−1ν .

Note that if φ(B) = 1 which is the pure MA(q) model, one has µ = ν .
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2.1.2 Parameter Estimation, Model Selection and Diagnosis Checking

Performing time series analysis one usually tries to remove the linear dependencies first. This
is achieved by fitting an AR, MA or Arma process to the observed data. So there is first the
problem of finding the correct order of the model - model identification - second, of fitting the
parameters φ and θ - parameter estimation - third, of selecting the most likely model - model
selection - and fourth, of checking the diagnostic properties of the selected model - diagnosis
checking.

Model Identification

One of the basic tools of the time series analyst is the plot of the (estimated) autocorrelations
ρk and partial autocorrelations φkk against the lag k. In theory, the shape of this plot can help
to discriminate between competing linear models. It is an usual practice in time series analysis
to try first to identify from summaries of the data one or just a few models that might have
generated the data. As an example, if a process is ARMA(p, q), then ρk = θk for k large, with
|θ| < 1, but if p = 0, ρk = 0 for k ≥ q + 1 so that the autocorrelations can, theoretically, help
on decide if p > 0 and, if not, to choose the value of q.

Example: ARMA Modelling, Model Identification - xmpArimaIdentification:

First use the standard Splus function arima.sim(model,...) to simulate an AR(5) subset model
with parameters φ1 = −0.4, φ2 = 0.1, and φ5 = 0.1. Identify the model by investigating the PACF
with the help of the acf() function.

# Simulate the time series:

x <- arima.sim(n=1000, n.start=100, rand.gen=rnorm,

model=list(order=c(5, 0, 0),

ar.opt=c(T, T, F, F, T), ar=c(-0.40, 0.1, 0, 0, 0.1)) )

# Plot the time series:

plot(1:length(x), x, type="l", main="Subset AR(5)")

# Identify the process through the PACF:

pacf <- acf(x, lag.max=12, type="partial")
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� Figure 2.1.4 displays to the left the subset AR(5) time series model with parameters φ1 = −0.4,
φ2 = φ5 = 0.1 and to the right the associated PACF. Note, that the PACF is consistent with a subset
AR(5) model with nonzero parameters φ at positions 1, 2 and 5.
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Parameter Estimation

All the observations that can be made in a time series analysis are samples (Xt)t=1,...,N of a
certain length N . An Arma model is described by the parameter vector

Θ =
(
σ2

u, µ, φ1, . . . , φp, θ1, . . . , θq

)
, (2.22)

where σ2
u denotes the variance of the residuals and µ the mean of the process. A stochastic

model with a parameter vector Θ determines a probability density p (X | Θ) on a set of time
series. We want to estimate the value of Θ for a given fixed time series Xt. The likelihood
function is defined as follows

L (Θ | X) = p (X | Θ) . (2.23)

We think that the value of Θ with the largest likelihood function is the most reasonable, because
in this case the probability to produce the observed data becomes maximal. If we assumed the
u’s are normally distributed with mean-zero and variance (conditional on past data) σ2

u, the
likelihood function is proportional to

(
σ2

u

)−T/2
f(χ) exp

[
−S(χ,X1, X2, ..., Xt)/− 2σ2

u

]
, (2.24)

where χ contains the parameters in φ (B) and θ (B).

In more detail, the essential idea is the decomposition of prediction errors. We can factorize the
joint density of (X1, . . . , XT ) as

f(X1, . . . , XT ) = f(X1)
T∏

t=2

f(Xt|X1, . . . , Xt−1) .

Suppose the conditional distribution of Xt given (X1, . . . Xt−1) is normal with mean X̂t and
variance σ2

t−1, and suppose also that X1 is normal N(X̂1, σ0). Here X̂t and σt−1 are functions
of the unknown parameters φ1, . . . , φp, θ1, . . . , θq and the data. The log likelihood becomes

−2logL = −2logf =
T∑

t=1

[
log(2π) + log(σ2

t−1) +
xt − x̂t

σ2
t−1

]
. (2.25)

We can minimize this with respect to φ1, . . . , φp, θ1, . . . , θq to fit the ARMA(p,q) process. In
practice the log likelihood −2logL is modified to sum only over the range {fm+1, . . . , T}, where
m is small. For example for an AR(p) model choose m = p, so x̂t = Σp

r=1φrxt−r, t > m+1, and
σ2

t−1 = σ2
u. Note, when using this approximation to compare models with different numbers of

parameters we should always use the same m.

Additionally, the second derivative matrix of −logL (at the MLE) is the observed information
matrix, whose inverse is an approximation to the variance-covariance matrix of the estimators.
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Splus - ARMA Parameter Estimation

The standard Splus function arima.mle(x, model, ...) allows to estimate the parameters of
ARMA models.

The required arguments to call arima.mle(x, model) are x, the univariate time series or vector.
Missing values (NAs) are allowed, and model, the list of parameters specifying the Arima model.
If a simple Arima model is specified (i.e., only one component), then model should be a list with
component names from: order, period, ar, ma, ndiff, ar.opt, ma.trans, and ma.opt.

Optional arguments include n.cond, the number of observations on which to condition the likeli-
hood. n.cond must be at least P+D (the default), where P and D are the orders of the expanded
autoregressive and differencing polynomials. xreg is a univariate or multivariate time series or a
vector or matrix with univariate time series per column. These will be used as additive regression
variables. If xreg is of length 1, the mean of the time series will be estimated. Through ... addi-
tional arguments can be passed to nlmin(), a general quasi-Newton optimizer under Splus, to find
the minimum of the log likelihood function.

The return value is a list representing the result of the fitted model: model, the same as the in-
put model with the estimated coefficients substituted in the components ar and ma. var.coef, the
variance-covariance matrix for the autoregressive and moving average coefficients. loglik, -2 times
the log likelihood of the model (up to a constant factor). aic, Akaike’s information criteria, which
is loglik plus 2 times the number of parameters fit. sigma2, the estimated innovations variance.
n.used, the number of observations used to compute the likelihood. n.cond, the number of ob-
servations on which the likelihood is conditioned. reg.coef, the estimated regression coefficients
(returned if xreg is provided). converged, if the optimizer has apparently successfully converged
to a minimum, then converged is TRUE; otherwise converged is FALSE. conv.type, a character
string describing the type of convergence. series, a character string giving the name of x, including
transformations. reg.series, a character string giving the name of xreg, including transformations
(only returned if xreg is provided).

Example: ARMA Modelling, Parameter Estimation - xmpArimaEstimation:

Apply the standard Splus function arima.mle(x, model, ...) to estimate the parameters for the
simulated subset AR model specified in the previous example. We use the subset AR(5) model
favored by the PACF plot:

# Estimate parameters:

x.mle <- \textsc{Arima}.mle(x-mean(x),

model=list(order=c(5, 0, 0), ar.opt=c(T, T, F, F, T)), n.cond=10)

# Print AR coefficients and errors:

ar <- x.mle$model$ar

std <- sqrt(diag(x.mle$var.coef))

data.frame(cbind(ar,std))

The result is:

ar std

1 -0.389363 0.031624

2 0.098744 0.033959

3 0.000000 0.034104

4 0.000000 0.033959

5 0.099484 0.031624

Model Selection

We want to find a model that fits the observed data as good as possible. Initial model identifi-
cation is done using the ACF and PACF as briefly explained before. An additional procedure
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for selecting the model order is the use of a penalized log-likelihood measure, for example the
Akaike’s Information Criterion (AIC)

AIC(p, q) = −2l(Θ|X) +
2(p+ q)

T
= logσ̂2 +

2(p+ q)
T

, (2.26)

with the log-likelihood function l(Θ|X), or for example Schwarz’s Criterion (BIC) that has in
some sense better statistical properties

BIC(p, q) = −2l(Θ|X) +
(p+ q)
T logT

= logσ̂2 +
(p+ q)
T logT

. (2.27)

There exist a variety of other selection criteria that may be used to choose an appropriate model.
All these models have in common to be structured in terms of the estimated error variance σ̂2

plus a penalty adjustment involving the number of estimated parameters. It is in the extent of
this penalty that the criteria differ. The criteria are used in the way that with upper bounds,
say pmax and qmax orders p and q are selected such that the values given by the criterions are
becoming a minimum.

Example: ARMA Modelling, Model Selection - xmpArimaSelection:

Now let us estimate the parameters for all models with pmax = 6 and qmax = 6 for the simulated
time series from the previous example. Let us see if the subset model will be the favored model by
the AIC criterion if we also include this model into consideration.

Execute the following Splus functions:

# Simulate a Subset AR(5) process ...

n <- 5000

x <- \textsc{Arima}.sim(n=n, n.start=100, rand.gen=rnorm,

model=list(order=c(5,0,0), ar.opt=c(T,T,F,F,T), ar=c(-0.4,0.1,0,0,0.1)))

# Perform Maximum Loglikelihhood Estimation ...

x <- x - mean(x)

ncond <- 10

mle <- \textsc{Arima}.mle(x,

model=list(order=c(5,0,0), ar.opt=c(T,T,F,F,T), n.cond=ncond))

p <- 3;q <- 0; r <- 3

aic <- mle$aic

bic <- mle$loglik + r/log(n-ncond)

for (i in 0:8) {

for (j in 0:4) {

if (i+j > 0) {

p <- c(p, i); q <- c(q, j); r <- c(r, i+j)

mle <- \textsc{Arima}.mle(x, model=list(order=c(i, 0, j), n.cond=ncond))

aic <- c(aic, mle$aic)

bic <- c(bic, mle$loglik + (i + j)/log(n-ncond) ) }

}

}

data.frame(cbind(p, q, r, aic, bic))

plot(c(r), c(aic))

plot(c(r), c(bic))

p q r aic bic p q r aic bic p q r aic bic

1 3 0 3 14125 14116 2 0 1 1 14460 14458 3 0 2 2 14280 14276

4 0 3 3 14219 14214 5 1 0 1 14216 14214 6 1 1 2 14200 14196

7 1 2 3 14200 14194 8 1 3 4 14188 14181 9 2 0 2 14196 14192
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10 2 1 3 14198 14192 11 2 2 4 14198 14191 12 2 3 5 14164 14155

13 3 0 3 14196 14190 14 3 1 4 14198 14190 15 3 2 5 14196 14187

16 3 3 6 14159 14148 17 4 0 4 14183 14176 18 4 1 5 14149 14140

19 4 2 6 14196 14184 20 4 3 7 14177 14164 21 5 0 5 14122 14113

22 5 1 6 14129 14117 23 5 2 7 14132 14119 24 5 3 8 14135 14120

25 6 0 6 14121 14110 26 6 1 7 14123 14110 27 6 2 8 14125 14110

28 6 3 9 14128 14111 29 7 0 7 14119 14106 30 7 1 8 14120 14105

31 7 2 9 14122 14105 32 7 3 10 14124 14105

The result is shown in figure 2.1.5:
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� Figure 2.1.5 displays to the left the AIC and to the right the BIC statistics for data simulated from
a subset AR(5) time series model with parameters φ1 = −0.4, φ2 = φ5 = 0.1. Considering the fully
specified models the favored model is the AR(5) model (the lowest circle at p + q = 5). However,
including the subset AR(5) one finds that this model becomes clearly favored (the lowest circle at
p + q = 5).

Diagnosis Checking

The residuals are estimated by subtraction of the adopted model from the observed time series,
for an ARMA(p,q) process:

µ̂t = xt − φ1xt−1 − ...− φpxt−p + θ1µ̂t−1 + ...+ θqµ̂t−q. (2.28)

If the process is really “true” we expect the residuals to be iid.

Splus - ARMA Diagnosis Checking

The standard Splus function arima.diag(z, ...) computes diagnostics for an ARIMA model.
The diagnostics include the autocorrelation function of the residuals, the standardized residuals,
and the portmanteau goodness of fit test statistic.

The required argument z is a list like output from arima.mle().
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The optional arguments include: acf.resid, a logical flag, if TRUE, the autocorrelation of the
residuals will be returned. lag.max, the maximum number of lags at which to estimate the auto-
covariance. If this is not supplied, it is the maximum between gof.lag plus the number of model
parameters and a number proportional to the logarithm of the length of the series. gof.lag, if posi-
tive, then gof.lag plus the number of model parameters is the number of lags to use for computing
the Portmanteau goodness of fit statistic. If zero, then the statistic will not be computed. resid,
a logical flag:, if TRUE, then the residuals will be returned. std.resid, a logical flag: if TRUE,
then the standardized residuals will be returned. plot, a logical flag: if TRUE, the diagnostics will
be plotted using the function arima.diag.plot(). ... additional arguments may be passed to the
function arima.diag.plot().

The returned value consists of a list (which is returned invisibly when plot=TRUE) with the follow-
ing elements: acf.list, a list representing the autocorrelation function of the residuals. gof, a list
representing the Portmanteau goodness of fit statistics computed for a range of lags. The list has
four elements: lag, statistic, df, p.value. lag is a vector of the number of lags used to compute
the statistics. statistic is the vector of statistics corresponding to each lag used. df is the number
of degrees of freedom the test statistics have under the null hypothesis that the model is correct.
p.value is a vector of the p-values for the statistics using a Chi-Squared distribution with the ap-
propriate degrees of freedom. resid, the residuals or innovations for the process. std.resid, the
standardized residuals. The residuals are standardized to have unit variance under the assumption
that the model is correct and the process is Gaussian. series, the name of x, including transfor-
mations.

Example: ARMA Modelling, Diagnosis Checking - xmpArimaDiagnostics:

A quick diagnosis check looks like follows:

# Simulate Time Series:

model <- list(order=c(5, 0, 0),

ar.opt=c(T, T, F, F, T), ar=c(-0.40, 0.1, 0, 0, 0.1))

x <- arima.sim(n=1000, model=model, n.start=100)

# Estimate Parameters:

x.mle <- arima.mle(x-mean(x), model)

# Compute Diagnostics:

arima.diag(x.mle, plot=T)

The graphical output is displayed in figure 2.1.6

2.1.3 Forecasting Stationary Processes

Given a stochastic process up to time T, x1, x2, ..., xT a prominent issue within time series
analysis is to provide estimates of future variables xT+h, h = 1, 2, ..., conditional on the available
information, i.e. xT , xT−1, xT−2, .... Often the information on xt up to time T is summarized
in an information set ΩT = xT , xT−1, xT−2, ... . Within the class of stationary ARMA(p,q)
processes xT+h is given as:

xT+h = ν + φ1xT+h−1 + phi2xT+h−2 + . . .+ φpxT+h−p

+ uT+h − θ1uT+h−1 − θ2uT+h−2 − . . .− θquT+h−q . (2.29)

A convenient forecast for xT+h is the expectation of xT+h given ΩT , i.e.

xT,h = E[xT+h|xT , xT−1, xT−2, . . .] . (2.30)
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ARIMA Model Diagnostics:  x - mean(x)

ARIMA(5,0,0) Model with Mean 0� Figure 2.1.6 displays the graphical results from from the Splus function. arima.diag(). From top to bottom,
the first graph displays the time series, the second the ACF, the third the PACF and the forth the p-values of
the Ljung-Box Chi-Squared Statistics.
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It can be shown that for linear time series processes the conditional mean yields forecasts which
are characterized by minimum mean squared errors, E[a2

T,h] = E[(xT+h − xT,h)2]. The compu-
tation of xT,h follows a recursive scheme of substituting

E[xT+j |xT , xT−1, ...] =
{

xT+j , j ≤ 0 ,
E[xT+j |xT , xT−1, ...] , j > 0 ,

(2.31)

and

E[uT+j |xT , xT−1, ...] =
{
uT+j , j ≤ 0,

0 , j > 0 ,

}
(2.32)

in (2.29). As an illustrative example consider the ARMA(1,1)-model in (2.12) augmented with
a deterministic component. It is assumed that the parameters of the model are known:

xT+h = ν + φxT+h−1 + uT+h − θuT+h−1 . (2.33)

One obtains successively:

xT,1 = ν + φxT − θuT ,

xT,2 = ν + φxT,1

= ν + φ(ν + φxT − θuT ) ,
xT,3 = ν + φxT,2

= ν + φ(ν + φ(ν + φxT − θuT )) . (2.34)

Iterating (2.34) shows that with increasing forecast horizon h the forecast xT,h converges to the
unconditional mean of the process, i.e.

lim
h→∞

xT,h = E[xt] = ν(1 + φ+ φ2 + φ3 + . . .) = µ . (2.35)

The sequence of forecast errors aT,h = xT+h − xT,h is immediately obtained from (2.34). E.g.
for h = 1 one has

aT,1 = xT+1 − xT,1

= ν + φxT + uT+1 − θuT − (ν + φxT − θuT )
= uT+1 . (2.36)

Pursuing along similar lines for h = 2, 3, . . . yields

aT,2 = uT+2 + (φ− θ)uT+1, (2.37)
aT,3 = uT+3 + (φ− θ)uT+2 + φ(φ− θ)uT+1. (2.38)
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Obviously all forecasts provided in (2.34) are unbiased, i.e. the expected value of the forecast
errors in (2.36) to (2.37) and so on are zero. The variance of the forecast error, however,
increases with h. With increasing forecast horizons h the forecast error variance converges to
the unconditional variance of the process:

lim
h→∞

E[a2
T,h] = γ0 . (2.39)

Splus - ARMA Forecasting

The standard Splus function arima.forecast(x, model, ...) forecasts a univariate time series
using an Arima model. Under the assumption that the model is known, predicted values and their
standard errors are computed for future values.

The required arguments include x the univariate time series or a vector. Missing values (NAs) are
allowed. model is a list specifying an Arima model as for the function arima.mle(). Note that the
coefficients must be provided through the elements ar and ma (otherwise the coefficients are set to
zero).

Optional arguments are the following: n, the number of time periods to forecast beyond the end of
the series (optional if end is provided). end, the last date for which forecasts should be produced.
Forecasts will be produced for every time period between end(x) and end. sigma2, the estimated
innovations variance. If omitted, sigma2 will be the concentrated prediction error variance computed
from the model. xreg, a univariate or multivariate time series or a vector or matrix with univariate
time series per column. These will be used as additive regression variables. xreg must be consistent
with the number of time periods forecast: e.g., if n=10 and length(x)=20, then the number of rows
of xreg should be 30. reg.coef, a vector of regression coefficients corresponding to xreg.

The returned value is a list with the following elements: mean, the estimated mean of the fore-
casts. std.err the approximate forecast error. In a Gaussian series with known Arima model
structure, then each row of the matrix tsmatrix(mean-1.96*std.err, mean+1.96*std.err) is a 95%
(non-simultaneous) confidence interval for the forecast in that time period. Note that std.err does
not take into account the variability due to estimation of the Arima model.

Exercise: ARMA Modelling, Forecasting

Forecast the subset AR(5) model from the previous examples on the last 10 data points.

2.1.4 Case Study: ARMA Modelling of the NYSE Composite Index

Arma modelling is mostly used to separate the linear part from the nonlinear part of economic
and financial time series. Experience shows, that for logarithmic returns an Arma analysis usu-
ally provides models of low orders in p and q. An AR(1), AR(2) supported by the PACF plot, or
ARMA(1,1), ARMA(2,1), ARMA(1,2) are the outcomes from the statistical investigation. And
also information criterion statistics like AIC and BIC exhibit for these numbers of parameters
their minimal values.

In this case study we like to investigate the “Composite Index” of the New York Stock Exchange
(NYSE). This capitalization-weighted index measures the changes in aggregate market value of
all the NYSE common stocks, more than 3000. The Index is frequently adjusted to eliminate the
influence of corporate actions (mergers and spinoffs) to ensure that it reflects only movements
resulting from actual stock price changes.

29



Exercise: ARMA Modelling of the NYSE Composite Index

Investigate the partial autocorrelation function for the NYSE Composite Index with the help of the
S-plus function acf().

Calculate with the help of the Splus function arima.mle() the AIC and BIC information criterion
statistics for low dimensional AR, MA and ARMA models. What are the best models?

Calculate the residuals and the summed residual error for an AR(1), AR(2) and a subset AR(5)
model with coefficients p = 3 and p = 4 kept to zero.

Investigate the residual for an AR(2) process in more detail. Investigate density and dependencies:
QQ-plot, runs test, and correlation tests.

Notes and Comments

Arima modelling is the standard approach for linear time series analysis. The classical text
book, cited in almost every paper on time series analysis is Time Series Analysis: Forecasting
and Control written by Box and Jenkins (1976). In this section we followed the Arima modelling
approach as presented in the modern textbook The Econometric Modelling of Financial Time
Series written by Mills (1999).

Today, every statistical software package offers functions for the simulation, parameter estima-
tion, diagnosis checking and forecasting in the framework of the Arima modelling approach. Un-
der Splus these functions are arima.sim(), arima.mle(), arima.diag(), arima.forecast(),
and arima.filter(). A somewhat limited functionality is also available in the ts package
under R: Arima0() is a preliminary version, and is announced to be replaced in due course.
The standard errors of prediction exclude the uncertainty in the estimation of the Arma model
and the regression coefficients. The results are likely to be different from Splus’ arima.mle(),
which computes a conditional likelihood and does not include a mean in the model. Alterna-
tively Trapletti’s R package tseries also includes functions to oerform an Arma analysis. In
addition it is worth to note that the convention used by Splus’ arima.mle() reverses the signs
of the MA coefficients. Additional useful Splus functions for time series analysis are part of the
SplusTS package written by Meeker (1998). From his functions we implemented arima.roots(),
acf.true(), arima.iden() and arima.esti() into our fSeries library.

There exist many extensions to the Arima modelling approach presented in this Section. This
includes non-Gaussian innovations, vector Varima processes, seasonal Sarima processes, and
fractionally integrated Arfima processes. Fur a further study we refer to the cited references.
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2.2 GARCH Modelling: Mastering Heteroskedastic Processes

A major contribution of the ARCH literature is the finding that
apparent changes in the volatility of economic time series may
be predictable and result from a specific type of nonlinear
dependence rather than exogenous structural changes in variables.

Bera and Higgins 1993

Introduction

A dominant feature of the return series is volatility clustering. The conditional variance of εt
appears to be large if recent observations εt−1, εt−2, ... are large in absolute value and smaller
conditional variances are observed during periods where lagged innovations are also small in
absolute value. This effect cannot be explained by linear models such as Arma and difficult to
produce in classical regression models on “returns” based predictors. This fact led to the intro-
duction of a new kind of nonlinear models, called Arch, Engle (1982), and Garch, Bollerslev
(1986).

2.2.1 Autoregressive Conditional Heteroskedastic Processes: ARCH(p)

The Arch model is set up such that the conditional variances of the process depend on their
past values:

ut|Ωt−1 ∼ N (0, σ2
t ), t = 1, 2, ... ,

σ2
t = ω + α1u

2
t−1 + α2u

2
t−2 + ...+ αqu

2
t−q . (2.40)

An intrinsic property of the definition in (2.40) is that the second order moment of ut is given
conditional on an information set Ωt containing especially the history of the process. The
unconditional residuals ut will then be leptokurtic. The conditional and unconditional mean of
the process are zero and the autocorrelation function of the residuals ut vanishes for lags τ > 0.
Under suitable properties of ω and αi, i = 1, ..., q , lagged innovations which are large in absolute
value provide a conditional variance of ut which is also large. ut is a heteroskedastic time series
or error sequence. The process in (2.40) is termed Arch process since heteroskedasticity is
parameterized conditionally in an autoregressive manner.

Complementary to this definition one has to impose convenient conditions ensuring the volatility
(conditional variance) process to be positive. Sufficient conditions that guarantee σ2

t > 0 are
easily seen to be:

ω > 0, αi ≥ 0, i = 1, ..., q . (2.41)

Note that at least one parameter αj should be larger than zero to yield time dependent variances.
The parameter q determines the maximum order of lagged innovations which are supposed to
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have an impact on current volatility. Another representation of the Arch process immediately
reveals that the process ut fails to be linear. Let εt denote an independent and identically
distributed error sequence with mean zero and a variance which is equal to unity. Thus the
process in (2.40) can also be written as:

ut = εtσt ,

= εt

√
σ2

t ,

= εt

√
ω + α1u2

t−1 + α2u2
t−2 + ...+ αqu2

t−q . (2.42)

Assuming e.g. q = 1 is obvious that ut is related to εt−1 in a nonlinear fashion. As given
above the conditional distribution of ut is not further specified. To make Maximum-Likelihood
or Quasi-Maximum Likelihood estimation feasible it is often assumed that ut is conditionally
normally distributed or equivalently that εt follows a standard normal distribution:

ut ∼ N (0, σ2
t ) , εt ∼ N (0, 1) . (2.43)

For the return series provided in the section about Arma modelling it was not that clear whether
these series exhibit a significant linear dependence. A convenient process which is characterized
by linear and higher order dependence simultaneously is for example an autoregressive process
of order p generated from an ARCH(q)-error sequence:

xt = ν + φ1xt−1 + ...+ φpxt−p + ut ,

ut|Ωt−1 ∼ N (0, σ2
t ) ,

σ2
t = ω + α1u

2
t−1 + α2u

2
t−2 + ...+ αqu

2
t−q . (2.44)

Along similar lines one may also replace homoskedastic error terms in standard regression models
by conditionally heteroskedastic error sequences. The variance process in (2.40) is specified as a
function in lagged squared variables u2

t−i. Imposing the aforementioned positivity constraints on
ω and αi one obtains a process showing marked clusters of volatility. To achieve this property,
however, it is not necessary to specify the volatility function in terms of lagged squared variables
u2

t−i. In principle any function of ut−i which is monotonically increasing may serve to generate
volatility clusters. As a prominent example one may regard e.g. the absolute value of lagged
variables yielding an alternative parameterization of the conditional variance:

σt = ω + α̃1|ut−1|+ α̃2|ut−2|+ ...+ α̃q|ut−q| . (2.45)

Since σ2
t is the conditional expectation of u2

t , however, a specification as given in (2.40) appears
to be more natural. In addition, a specification like (2.40) facilitates the derivation of some
properties of ut in practice. Volatility clusters may cover a long period of successive observations.
For practical purposes it might become necessary to choose a conveniently high order q to
allow long range dependence of current volatility on lagged innovations. From a time series
analysts point of view it would be appealing to have a more parsimonious class of conditionally
heteroskedastic processes capturing the feature of long lasting volatility clusters.
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2.2.2 Generalized Autoregressive Conditional Heteroskedasticy: GARCH(p,q)

The generalization of stationary pure autoregressive processes towards the class of Arma models
allowed to capture relatively complicated correlation structures without violating the principle
of parsimonious time series modelling. An analogous reasoning can be made for the provision of
the generalized Arch model, i.e. the GARCH(q,p)-process. This conditionally heteroskedastic
process is obtained by augmenting (2.40) with a component which is autoregressive in σ2

t :

ut|Ωt−1 ∼ (0, σ2
t ), t = 1, 2, ...,

σ2
t = ω + α1u

2
t−1 + α2u

2
t−2 + ...+ αqu

2
t−q + β1σ

2
t−1 + ...+ βpσ

2
t−p . (2.46)

Sufficient conditions for the conditional variances to be positive are obviously:

ω > 0, αi, βj ≥ 0, i = 1, ..., q, j = 1, ..., p . (2.47)

Using lag-polynomials the specification of σ2
t in (2.46) may also be given as:

(1− β1B − ...− βpB
p)σ2

t = ω + (α1B + ...+ αqB
q)ut ,

(1− β(B))σ2
t = ω + α(B)ut . (2.48)

Assuming the roots of the polynomial (1 − β(z)) to be larger than one in absolute value the
model can also be written as an Arch process of infinite order:

σ2
t = (1− β(B))−1ω + (1− β(B))−1α(B)ut . (2.49)

Defining an uncorrelated series with zero mean as

vt = u2
t − σ2

t ,

⇔ σ2
t = u2

t − vt , (2.50)

the GARCH(q,p) yields a representation of squared errors εt by substitution into (2.46) which
is similar to an Arma process:

u2
t = ω + α1u

2
t−1 + ...+ αqu

2
t−q + vt + β1(u2

t−1 − vt−1) + ...+ β1(u2
t−p − vt−p)

= ω +
maxp,q∑

i=1

(αi + βi)u2
t−i + vt −

p∑
i=1

βivt−i. (2.51)

Although the error term vt can be shown to be uncorrelated the process defined in (2.50) is still
dependent with respect to higher order moments mitigating to some extend the interpretation
of (2.51) as an ARMA(maxp,q, p)-process for squared variables ε2t . Since vt is uncorrelated,
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however, it becomes possible to compute directly the autocorrelation pattern of ε2t implied by
a GARCH(q,p) process from its ARMA(maxp,q, p) representation. Assume for simplicity ε2t to
follow a GARCH(1,1) specification. The implied ARMA representation for squared variables ε2t
is

u2
t = ω + (α1 + β1)u2

t−1 + vt − β1vt−1 . (2.52)

From the discussion of the stationary ARMA(1,1) process the implied autocorrelation pattern
of u2

t is immediately obtained by choosing

φ = α1 + β1, θ = −β1 . (2.53)

In the ARMA(1,1)-model the parameter φ was crucial in describing how fast linear dependence
dies out at increasing horizons k = 2, 3, ... . In (2.51) the corresponding parameter is α1 + β1,
i.e. linear dependence of squared variables ε2t dies out according to the following equation:

ρk(ε2) = (α1 + β1)ρk−1(ε2), k = 2, 3, ... . (2.54)

The initial level of autocorrelation, i.e. ρ1(u2) is essentially determined by (φ + θ) in the
ARMA(1,1) model and thus by α1 + β1 − β1 = α1 in the representation given above.

The ARMA(maxp,q, p) representation for ut is also useful to derive the unconditional expectation
of squared GARCH-type error terms, which is for the GARCH(1,1)-process

E[u2
t ] =

ω

(1− α1 − β1)
. (2.55)

Note that the unconditional expectation of u2
t or say the unconditional variance of ut only exists

if (α1 + β1) is less than one. For the general GARCH(p,q) process the unconditional variance
of ut exists if

β(1) + α(1) < 1 . (2.56)

holds. The unconditional variance of ut may also be evaluated using the law of iterated expecta-
tions. Since this procedure is helpful to derive further unconditional moments of a GARCH-type
error sequence the following theorem is given: Let Ψ1 and Ψ2 denote two set of random variables
satisfying Ψ1 ⊆ Ψ2 . y denotes a scalar random variable. Then

E[y|Ψ1] = E[E[y|Ψ2]|Ψ1] . (2.57)

To make the law of iterated expectations applicable to GARCH-type processes Ψ1 and Ψ2 are
interpreted as different information sets and Ψ1 is defined to be the empty set which is used
to derive unconditional expectations. Ψ2 is conveniently replaced by Ωt−1. In this case the
unconditional expectation of ut is obtained from (2.57) as:

E[ut|Ψ1] = E[ut] = E[E[ut|Ωt−1]] = 0 . (2.58)

34



Turning to unconditional autocorrelations of εt and vt or to the unconditional second order
moment of εt the following results are obtained:

E[ututk |Ψ1] = 0, k > 0 . (2.59)

E[u2
t ] =

ω

(1− α1 − β1)
. (2.60)

E[vtvt−k] = 0 . (2.61)

In addition, under normality the following result is obtained for the unconditional fourth order
moment:

E[u4
t ] =

3ω2(1 + α1 + β1)
(1− α1 − β1)(1− β2

1 − 2α1β1 − 3α2
1)
. (2.62)

Note that the unconditional fourth order moment of ut only exists if

(β2
1 + 2α1β1 + 3α2

1) < 1 . (2.63)

holds. The unconditional fourth order moment is used to compute the kurtosis of the uncondi-
tional distribution of εt. The kurtosis is defined as

κ =
E[u4

t ]
(E[u2

t ])2
− 3 . (2.64)

Normally distributed variables have a kurtosis equal to κ = 0. For the unconditional distribution
of εt κ is obtained as:

κ =
3(1− α1 − β1(1 + α1 + β1)

(1− β2
1 − 2α1β1 − 3α2

1)
− 3 . (2.65)

For α1 = β1 = 0 the kurtosis in (2.65) reduces to the kurtosis of the normal distribution,
i.e. κ = 30. Setting β1 = 0 the implied unconditional kurtosis of the ARCH(1)-model under
normality is obtained:

κ = 3
(1− α2

1)
(1− 3α2

1)
− 3 > 0, since 0 < α1 < 1 . (2.66)
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2.2.3 Modelling under Conditional Heteroskedasticity

Parameter Estimation

So far knowledge of the underlying parameters, of the GARCH models was assumed. In practice,
however, such knowledge is not available and given a sequence of observed time series variables
the underlying parameters are to be estimated. The maximum likelihood approach requires
iterative optimization routines. For such processes one has to have a reasonable choice of initial
parameters starting the estimation procedure.

To provide a general framework for the issue of estimating GARCH-type models the regression
model with conditionally heteroskedastic error terms is investigated. The model is given as:

xt = wtb+ ut, ut|Ωt−1 ∼ N (0, σ2
t ) . (2.67)

In (2.67) wt contains a set of explanatory variables which determines the conditional mean of
xt, i.e. E[xt|wt] = wtb. In principle wt may contain fixed regressor variables or even stochastic
terms, e.g. lagged dependent variables or lagged error terms or even both. εt is an error term
the distribution of which is specified conditional on an information set Ωt−1. The conditional
distribution is assumed to be Gaussian in order to make maximum likelihood estimation of the
unknown parameters in (2.67) feasible. If the normality assumption in (2.67) is violated and
thus the model given above is misspecified the estimation technique detailed below is known
as quasi maximum likelihood estimation. It is assumed that the error terms in (2.67) follow a
GARCH(q,p)-process, such that the following compact notation is introduced:

σ2
t = ω + α1u

2
t−1 + ...+ αqu

2
t−q + β1σ

2
t−1 + ...+ βpσ

2
t−p

= ω + α1(xt−1 − wt−1b)2 + ...+ αq(xt−q − wt−qb)2 + β1σ
2
t−1 + ...+ βpσ

2
t−p . (2.68)

The maximum likelihood estimator is that specific parameter vector θ that maximizes the like-
lihood function or equivalently the log-likelihood function. The latter is denoted as follows:

l(θ|xt, wt) =
T∑

t=1

lt (2.69)

=
T∑

t=1

(−1
2

ln(2π)− 1
2

ln(σ2
t )−

1
2
ε2t
σ2

t

)

=
T∑

t=1

(−1
2

ln(2π)− 1
2

ln(σ2
t )−

1
2

(xt − wtb)2

σ2
t

) . (2.70)

Compared to the common linear regression model with independent error terms the maximum
of the likelihood function cannot be obtained analytically. However, one may run iterative
maximization routines which evaluate the log-likelihood function numerically. Assuming some
regularity conditions, e.g.
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ut = ξtσt, E[ξt] = 0, E[ξ2t ] = 1, E[ξ4t ] <∞ , (2.71)

the vector of estimated parameters π̂ can be shown to be asymptotically distributed as follows:

√
T (θ̂ − θ) d→ N (0, D−1SD−1) . (2.72)

In (2.72) S is the expectation of the cross-product of first order derivatives of lt(θ) with respect
to θ and D is the negative expectation of the matrix of second order derivatives, i.e.

D =
1
T

T∑
t=1

−E[
∂2lt
∂θ∂θ′

] and S =
1
T

T∑
t=1

E[
∂lt
∂θ

∂lt
∂θ′

]. (2.73)

In case of normally distributed errors one has D = S and the asymptotically valid covariance
matrix is:

√
T (θ̂ − θ) d→ N (0, S). (2.74)

To make inference feasible it is of course necessary to replace the unknown matrices S and D
by convenient estimates

D̂ = − 1
T

∑
t=1

T
∂2lt
∂θ∂θ′

|
θ=θ̂

and Ŝ =
1
T

∑
t=1

T
∂lt
∂θ

∂lt
∂θ′

|
π=θ̂

. (2.75)

Estimation of D is only necessary if the estimated innovations are not normally distributed.

Forecasting

A common task in time series analysis is to provide forecasts of uT,h given information up
to time T . As mentioned above for the GARCH(1,1) process uT,h = 0 for all T, h. Often a
point forecast is provided jointly with a confidence interval covering the true value uT+h with
probability (1 − α). To provide such a confidence interval one has to estimate the variance of
uT+h conditional on ΩT . Forecasts of the conditional variance are most easily obtained from its
Arma representation which is given for the GARCH(1,1) model as:

σ2
t = ω + (α1 + β1)σ2

t−1 + α1vt−1 . (2.76)

Forecasts of σT+h conditional on ΩT can be computed recursively. If α1+β1 < 1 holds these fore-
casts converge to the unconditional variance implied by the process. Starting in periods where
volatility is high this forecasted variances converge from above to the unconditional variance
implying that forecasting intervals become smaller with increasing forecasting horizon h. Start-
ing in periods of lower variance forecasted variances converge from below to their unconditional
counterpart implying that forecasting intervals become larger with increasing h. Remember from
the discussion of ARMA-type processes that forecasting intervals obtained for such processes
always become larger with increasing h.
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2.2.4 Asymmetric Volatility Models: APARCH(p,q)

As mentioned a prominent feature of empirical variance processes are so-called volatility clusters
meaning that innovations which are large in absolute value tend to be followed by innovations
which are also large and vice versa. Due to the positivity constraints necessary to guarantee the
implied variances to be greater than zero a specific implication of Garch-type processes is that
the larger ut , the larger is the implied conditional variance σ2

t+h for all h > 0, i.e. a random
oscillatory behavior of σ2

t+h is ruled out by definition.

Another characteristic of Garch processes is that the conditional variance is symmetric in
lagged innovations ut−i. Positive and negative innovations which are the same in absolute value
imply the same conditional variance σ2

t+h . Note that since ut = E[xt|wt] is uncorrelated with its
history one may interpret ut as a convenient measure of news appearing in the market in time t.
From the empirical literature on returns of risky assets it is known, however, that future volatility
is much more affected by negative news compared to positive news. Such an effect might be
explained as follows: A decreasing stock price increases the firms debt/equity ratio making the
firm “more risky” and thus increasing future volatility. This feature has become popular as the
so-called leverage effect, which is obviously not captured by GARCH-type processes.

Ding, Granger and Engle (1993) also found that the empirical autocorrelations of equity return
volatility, |rt|c, were strongest for c around one confirming the Taylor effect. This empirical
observation motivates them to estimate the coefficient c rather than imposed it as squares as in
the conditional variance. Therefore, they proposed the asymmetric power Arch, called Aparch
specification:

ut|Ωt−1 = σtξt, ξt ∼ N (0, 1) ,

σδ
t = ω +

p∑
i=1

αi(|ut−i| − γiut−i)δ +
q∑

j=1

βjσ
δ
t−j , (2.77)

ω > 0, δ ≥ 0, −1 < γi < 1 ,
αi ≥ 0, i = 1, . . . , p βj ≥ 0, j = 1, . . . , q .

The added flexibility of the Aparch specification is such that it nests other members of the
Arch family, for example:

• Engle’s ARCH(p):
δ = 2 and γi = 0; βj = 0.

• Bollerslev’s GARCH(p,q):
δ = 2 and γi = 0.

• Taylor/Schwert’s GARCH(p,q):
δ = 1 and γi = 0.

• Glosten’s et al. GJR(p,q):
δ = 2 and 0 ≤ γi < 1. This allows negatives shocks to have a stronger effect on volatility. It
is also called threshold GARCH model (TGARCH) and can be write:

σδ
t = ω +

p∑
i=1

α?
i ε2

t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

γ?
i S−

t e2
t−i, (2.78)

where

α?
i = αi(1− γi)

2, γ?
i = 4αiγi, S−

i =

{
1, if εt−i < 0
0, otherwise

(2.79)
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Leptokurtic Innovations

To make maximum likelihood estimation with heteroskedastic error terms feasible we have as-
sumed so far the standardized innovations

ξt =
ut

σt
, (2.80)

and the corresponding estimates to follow a standard normal distribution. In empirical practice
the normality assumption is often rejected for the estimated innovations ξ̂t of a GARCH-type
variance equation. As outlined maximum likelihood estimation is consistent and provides asymp-
totically valid distributional results for the rescaled and centered vector of estimated parameters√
T (θ̂ − θ) under suitable conditions. If the normality assumption is violated, however, it is no

longer possible e.g. to provide valid forecasting intervals for ut+h given Ωt using quantiles of
the N (0, 1)-distribution. If the distribution of ξt is leptokurtic forecasting intervals with nom-
inal coverage probability (1 − α) computed under the normality assumption will tend to have
an empirical coverage probability exceeding the nominal coverage. To obtain valid forecasting
intervals for ut+h it pays to take a leptokurtic distribution of ξt into account.

A candidate allowing for excess kurtosis is the t-distribution, introduced by Bollerslev (1986).
A random variable Z is said to be t(θ, ø, ν)-distributed if its density function is given as:

f(z|θ, ø, ν) =
νν/2Γ(ν+1

2 )
√
πΓ(ν

2 )
1√
ø

[
ν +

(z − θ)2

ø

]−( ν+1
2

)

. (2.81)

The domain of the t-distribution is −∞ < z < ∞. θ is the expected value of Z. The so-called
scaling variable ø and ν, the degrees of freedom parameter, are both assumed to be positive
(ν > 0, ø > 0). Some remarks on the properties of this distribution are made for convenience:

• E[Z] = θ, if ν > 1, V ar[Z] = ν
ν−2

ø, if ν > 2.

• The standardized random variable Z? = (Z − θ)/
√

ø follows a Student t(ν)-distribution with
density function obtained from (2.81) assuming ø = 1 and θ = 0 (Z? ∼ t(ν) = t(0, 1, ν)).

• With increasing degrees of freedom the t-density in (2.81) can be closely approximated by a
normal density, φ(z|µ, σ2), with corresponding mean and variance, i.e. for ν →∞.

f(z|θ, ø, ν) ≈ φ

(
z|θ,

ν

ν − 2
ø

)
and f(z|0, 1, ν) ≈ φ(z|0, 1).

The t-distribution is more concentrated around the zero mean compared to the standard nor-
mal distribution. In addition the t-model has fatter tails than the N(0,1) distribution. Both
properties are stylized facts of financial market data.

Another attractive candidate is a (truncated) α-stable distribution as defined in Part I. However,
through the lack of an easy representation of the distribution function, the maximum likelihood
approach becomes from the numerical point of view difficult to handle.
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Example: GARCH Time Series Simulation with Different Innovations - xmpGarchInnovSim:

Use the Splus function garch.sim() from the fSeries library to simulate the time series of length
10000 for three symmetric Taylor-Schwert GARCH(1,1) processes with parameters ω = 0.001, α =
0.1, β = 0.8, γ = 0, δ = 1 created from the following distribution functions: Normal distribution,
Student t-distribution with 4 degrees of freedom, and α-stable distribution with index 1.9. Plot the
result together with the associated autocorrelation functions. Although the name of the function
is garch.sim() the function allows the simulation of the more general Aparch models allowing for
innovations drawn from a general distribution.

The arguments for the functions are: model, a list including the following model parameters, omega,
the constant coefficient of the variance equation, alfa, the autoregressive coefficients, beta, the vari-
ance coefficients (by default zero), gamma, the asymmetry coefficients (by default zeros), delta, the
variance coefficient (by default 2), alfa.selected if not defined, an array with succeeding numbers
ranging from 1 to the number of alfa coefficients q, otherwise an array with the selected lag numbers
used to define in a simple way subset models, beta.selected, the same for the beta-coefficient.
innov, the innovations, start.innov, the innovations for excluded starting values, doplot, a logical
flag, if true the simulated time series is plotted,(by default F).

The returned value is the time series vector.

# Settings:

set.seed(311)

n.innov <- 10000

model <- list(omega=1.0e-3, alfa=0.1, gamma=0,

alfa.selected=1, beta=0.8, beta.selected=1, delta=1)

# Normal Distribution:

innov <- rnorm(n.innov)

start.innov <- rnorm(1000)

x <- garch.sim (model=model, innov=innov, start.innov=start.innov)

s <- sqrt(var(x))

plot(x, type="l", ylim=c(-s,s)*plot.scale,

main="GARCH(1,1) - Normal Innovations")

acf(abs(x))

# Student t-Distribution with df=4:

innov <- rt(n.innov, df=4)

start.innov <- rt(1000, df=4)

x <- garch.sim (model=model, innov=innov, start.innov=start.innov)

s <- sqrt(var(x))

plot(x, type="l", ylim=c(-s,s)*plot.scale,

main="GARCH(1,1) - Student t(4) Innovations")

acf(abs(x))

# Alpha-Stable Distribution with Index 1.9:

innov <- rstab(n.innov, index=1.9)

start.innov <- rstab(1000, index=1.9)

x <- garch.sim (model=model, innov=innov, start.innov=start.innov)

s <- sqrt(var(x))

plot(x, type="l", ylim=c(-s,s)*plot.scale,

main="GARCH(1,1) - 1.9-stable Innovations")

acf(abs(x))

The result is shown in figure 2.2.1.
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GARCH(1,1) - Normal Innovations
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GARCH(1,1) - 1.9-stable Innovations
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� Figure 2.2.1 displays the time series of three simulated GARCH(1,1) processes with normal, t-distributed and
α-stable innovations together with the associated autocorrelation function.

Example: APARCH Time Series Simulations - xmpGarchAparchSim:

Use the Splus function garch.sim() from the fSeries library to simulate models from the Aparch
family: Engel’s ARCH(p), Bollerslev’s GARCH(p,q), Taylor-Schwert’s GARCH(p,q), Glosten et
al.’s GJR(p,q), all with normal distributed innovations, e.g.

# Glosten’s et al. GJR(p,q) model

x <- garch.sim (model=list(

omega=1.0e-5, alfa=0.1, gamma=0.2, alfa.p=1, beta=0.6, beta.q=1,

beta=0.6, delta=2), innov=rnorm(n.innov), start.innov=rnorm(1000))

The result is shown in figure 2.2.2.
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ARCH(2) Model
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GARCH(1,2) Model
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TS GARCH(1,2) Model
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GJR(1,1) Model
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� Figure 2.2.2 displays the time series of four simulated APARCH(1,1) processes, from above to below: Engel’s
ARCH(p), Bollerslev’s GARCH(p,q), Taylor-Schwert’s GARCH(p,q), Glosten et al.’s GJR(p,q), all with normal
distributed innovations.
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Example: APARCH Parameter Estimation - xmpGarchMle:

Use the Splus function garch.mle() from the fSeries Library to estimate the model parameters
for simulated APARCH processes including:

1 Engle’s ARCH(2) with normal innovations,

2 Subset ARCH(3[1,3]) model,

3 Bollerslev’s GARCH(1,1) with normal innovations,

4 Taylor-Schwert’s subset TS-GARCH(1,5[1,5]) model, delta=1,

5 GARCH(1,1) normal innovations with δ-optimization,

6 GARCH(1,1) with normal innovations and γ-asymmetry,

7 GARCH(1,1) model same as from 6) and δ-optimization,

8 APARCH(1,1) with α-stable innovations with δ- and index parameter optimization.

Here follows the example for case 4:

# 4) Taylor-Schwert’s TS-GARCH(1,5[1,5]) subset model, delta=1

xsim <- garch.sim(model=list(omega=1.0e-6, alfa=0.1,

beta=c(0.7, 0.1), beta.selected=c(1,5), delta=1),

innov=rnorm(n=nt), start.innov=rnorm(n=1000), doplot=T)

parameters <- garch.mle(x=xsim, model=list(model="norm",

omega=1.e-5, alfa=0.1, beta=c(0.2,0.2),

beta.selected=c(1,5), delta=1), n.cond=10)

The result reads:

...

[1] "xvec"

[1] 1e-005 1e-001 2e-001 2e-001

...

STARTING PARAMETERS

Iteration Call

[1] 1

Functionvalue

[1] -98962.79

Estimated Parameters

[1] 1e-005 1e-001 2e-001 2e-001

ITERATION PATH

Iteration Call

[1] 8

Functionvalue

[1] -101593

Estimated Parameters

[1] 6.885793e-006 9.804430e-002 1.835696e-001 1.835611e-001

...

Iteration Call

[1] 326

Functionvalue [1] -102625.3

Estimated Parameters

[1] 1.221429e-006 1.022095e-001 7.134607e-001 5.947400e-002

...
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2.2.5 Case Study: High Freuqency USDDEM FX Rates

As an example for Garch modelling we like to discuss here the case of high frequency US Dollar
/ German Mark exchange rates. The data were collected tick-by-tick from a Reuters feed over
a period of 56 months from October 1992 to May 1997. The rates were de-seasonalized on an
average time scale of 30 minutes according to the procedure shown in section 1.5.1 based on
data from the first 12 months.

� Figure 2.2.3 - The upper graph shows the log returns of the USDDEM rate on time intervals of 30 minutes
over a period of 56 months ranging from October 1992 until May 1997 leading to 81788 data points. The two
lower graphs are for comparison with a simulated normal distribution with the same variance and with a α-stable
distribution with index α = 1.9. Source: D. Würtz (1997), unpublished.

The logarithmic returns are shown in the upper time series of Figure 2.2.3 covering more than
80’000 data points. The simple inspection by eye tells us that an approximation of the returns
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by iid normal random deviates with equal mean and variance or by iid α-stable random deviates
with an appropriate index is a rather poor approach. The simple inspection of a time series by
eye is quite impressive, and we see that by no means a random normal process can explain the
dynamics of a financial time series. The same holds for a random α-stable process. Whereas in
the first case the structure of extremal events appears to be absent, we find in the second case
too many and too large peaks in the form of “needles”. Also we miss the effect of the clustering
of volatilities.

Figure 2.2.4: Even modelling the time series with a GARCH(1,1) model, either with normal or
α-stable innovations does not yield a satisfactory result in comparison of the simulated with the
empirical data.

Figure 2.2.5: That a simple GARCH(1,1) model cannot be sufficient to generate the pronounced
structures in a financial time series becomes evident if we investigate the seasonal patterns in
more detail. Although we have already removed the major seasonal dependencies through the
de-seasonalization approach based on the business-time concept, there remain still pronounced
structures in the autocorrelation function and in the periodogram as shown in the figures. Mainly
the day-one peak with lag number 67 is the most evident one.

Figure 2.2.6: The periodogram suggests to try a model with 7 components with time lags
as suggested by the periodogram analysis. However, the α-stable innovations overestimate the
peaks in the log-returns, so that we apply innovations truncated at a predetermined peak level.
Now it is quite impressive how close the simulated time series looks to the empirical foreign
exchange return data.

Figure 2.2.7: The remaining question is now, how good does the modelled time series reflect
the distributional properties. For this we have plotted the distribution of the log returns for
the estimated models in comparison with the empirical log return data. In addition a quantile-
quantile plot is shown and the distribution of monthly kurtosis values.

Figure 2.2.8: Now, we will take a look on the scaling properties of the log returns. The scaling
power law calculated from aggregating the log return time series is best fitted by the truncated
7-component Garch model. Considering a monthly moving time window of 1 year length we
find that the scaling exponent changes significantly over time. This is true in physical time as
well as in θ-time. Plotting the distribution of the scaling exponents we find the best agreement
with the distribution obtained from the truncated 7-component Garch model.

Figure 2.2.9: With the last graph we like to investigate the case of a simple GARCH(1,1) model
in more detail. The graph shows the change of the parameters α, β and the persistence over
time. When the scaling index approaches 0.5, the persistence becomes close to one.

Figure 2.2.10: For one realization we show the log-likelihood function as a function of α and β
in a 3-D perspective and in a 2-D contour plot. Note how flat the log-likelihood surface appears.
This is a general property when estimating Garch models, and it is a fact which requests for
powerful optimization algorithms.

Exercise: USDDEM GARCH Modelling

Reinvestigate some of the aspects presented in this case study. The data records for the de-
seasonalized USDDEM FX rates are part of the fSeries Library.
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� Figure 2.2.4 - The graphs show the simulated returns from a GARCH(1,1) model with normal distributed
innovations and returns from a GARCH(1,1) model with stable distributed innovations with index α = 1.9.
Source: D. Würtz (1997), unpublished.

� Figure 2.32.5 - The figure shows to the left the autocorrelation function of the USDDEM exchange rates for
records sampled every 30 minutes in physical time. In the middle we have the same graph, but now the data
are sampled in business time. Seven more or less pronounced structures are still remained and marked in the
periodogram. Source: D. Würtz (1997), unpublished.
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� Figure 2.2.6 - The upper graph shows a simulated times including additionally 7 components, names 1.9-
GARCH(1,1+7c) model, derived from the periodogram analysis of the USDDEM rates. The lower graph displays
returns obtained from a simulation of a truncated 1.9-tGARCH(1,1+7c) model. Note, all parameters for the
individual models are estimated by a log-likelihood estimation procedure. Source: D. Würtz (1997), unpublished.

� Figure 2.2.7 - The figure to the left shows the distribution of the empirical data in comparison to the
GARCH(1,1) model with normal innovations and to the 7-component GARCH model with truncated α-stable
innovations. In the middle, the QQ-Plot shows how close the truncated GARCH model fits the data. The figure to
the right displays the distribution of the kurtosis as obtained from monthly moving time windows of 1 year length.
The best agreement is again achieved by the truncated GARCH model. Source: D. Würtz (1997), unpublished.
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� Figure 2.2.8 - The first 3 graphs show the scaling law behavior of the log-returns: The scaling power law, the
change of the scaling exponent over time, and the distribution of scaling exponents. The calculations were done
on a monthly moving time window of 1 year length.

� Figure 2.2.9 - The last graph to the right shows the variation of the parameters α, β and the associ-
ated persistence over time for a simple GARCH(1,1) model with normal innovations. This graph is consistent
with the findings concerning the scaling law index: As the scaling index approaches 0.5, the persistence becomes
close to one. Source: D. Würtz (1997), unpublished.

� Figure 2.2.10 - The figure shows the log-likelihood surface for a GARCH(1,1) model with normal innovations
as estimated from the USDDEM exchange rates. During the optimization ω is kept fixed through the empirical
variance of the log return data. Source: D. Würtz, unpublished.
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Notes and Comments

The original sources on Arch and Garch modelling are the papers Autoregressive Conditional
Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation written by Engle
(1982) and Generalized Autoregressive Conditional Heteroskedasticity written by Bollerslev
(1986). An early review article ARCH Models: Properties, Estimation and Testing was written
by Bera and Higgins (1993). Further readings include the articles collected in the book ARCH
edited by Engle (1995). This collection brings together a series of leading research papers.
Papers present both theory and financial market analysis, and discuss the key issues in the use
of ARCH models to study volatility and correlation: which model to use, what time intervals
to employ, how to model multivariate systems, how to apply the models to price and trade
financial instruments. SThe original source for Aparch models is Ding, Granger and Engle
(1993). Case studies on stocks include the work of Peters (2001) and of Lambert and Laurent
(2001).

There are a series of further aspects we have not considered in this section. These include
for example irregularly spaced ACD-GARCH models, integrated and fractionally integrated
Garch models, heterogeneous ARCH models, the temporal aggregation of Arch and Garch

models, the testing for heteroscedasticity in time series data.

ACD-GARCH Models: One of the salient features of financial market data is that they are
irregularly spaced. Thus durations between observed events of interest are themselves random
and Engle and Russell (1998) proposed the autoregressive conditional duration (ACD) model to
tackle this problem. Since then the empirical analysis of durations between market events has
developed in several directions and moreover has integrated some aspects of the microstructure
theory of financial markets. The ACD model has been extended n different directions. Jasiak
(1996) analyzed the persistence of intertrade durations using the fractionally integrated ACD
model, FIACD. She argues that the autocorrelation function of the durations can show a slow,
hyperbolic rate of decay typical of long memory processes. Grammig and Maurer (1999) used
the ACD model with a Burr distribution rather than a Weibull, thus allowing more flexibility
in the shape of the conditional hazard function. Bauwens and Giot (1999) have developed a
logarithmic ACD model that avoids positivity restrictions on the parameters and is therefore
more flexible to introduce exogenous variables. Bauwens and Giot (1998) introduced an
asymmetric ACD model where the dynamics of the duration process depend on the state of the
price process. Russell and Engle (1998) also analyzed jointly durations and prices. Ghysels et
al. (1997) introduced the stochastic volatility duration model (SVD). They claim that the fact
the durations appear to be driven only by movements in the conditional mean is not sufficient,
and they proposed a model in which the volatility of the durations is also stochastic.

IGARCH and FIGARCH Models: The GARCH model implies that the effect of a volatility
shocks vanishes over time at an exponential rate. By contrast, the integrated GARCH model,
IGARCH, implies a complete persistence of such a shock. These features are often in contradici-
tion to the stylized facts drawn from the study of financial markets. To cope with this issue,
Baillie, Bollerslev and Mikkelsen (1996) introduced the Fractionally Integrated GARCH model,
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FIGARCH, that allows for some persistence of volatility shocks more in line with these facts.
Empirical applications of this model to the major daily exchange rates were undertaken by
Baillie, Bollerslev and Mikkelsen (1996), Tse (1998), and Beine, Laurent and Lecourt (1999).

HARCH Models: Müller et al., (1995), introduced the Heterogeneous Auto-Regressive Condi-
tional Heteroscedastic process, HARCH. This process has been developed as an improvement
of traditional ARCH-type models in order to describe the behavior of FX time series: (1) a
long memory in the volatility with a positive autocorrelation of absolute price changes declining
slower than exponentially, and (2) an asymmetry between volatilities observed with different
time resolutions. The HARCH process precisely reproduces these empirical facts. The fat tail
behavior of the HARCH process was investigated by Embrechts et al. (1996).

Splus/R Software: The software from the fSeries Library includes Splus functions to simulate
and to estimate APARCH processes. In addition the R module tseries written by Trapletti
also contains a garch() function and methods to model a basic GARCH(p,q) time series process
by computing the maximum-likelihood estimates of the conditionally normal model. garch()

uses a Quasi-Newton optimizer. The optimizer uses a Hessian approximation computed
from the BFGS update. The gradient is either computed analytically or using a numerical
approximation. For more details see Dennis, Gay and Welsch (1981), Dennis and Mei (1979),
Dennis and More (1977), and Goldfarb (1976).

S+GARCH Module: Furthermore, a commercial S module S+GARCH is available, including
functions on univariate GARCH, garch(), and multivariate GARCH modelling, mgarch(). The
univariate case includes the basic GARCH model, the Threshold GARCH model, the Power
GARCH model, the Exponential GARCH model, the Two-Component GARCH model, and
GARCH-in-Mean models. The multivariate models are the Diagonal VECH model of Boller-
slev, Engle and Woldridge (1988), the BEKK Model of Engle and Kroner (1995), the Matrix
Diagonal Model of Ding (1994) and Bollerslev, Engle and Nelse (1995), the Vector Diagonal
Model, the Two-Parameter Model, the Conditional Constant Correlation Model of Bollerslev
(1987), and the Principal Component Model by Ding (1994) originally proposed by Kahn. In ad-
dition to providing maximum likelihood estimation for the univariate and multivariate GARCH
models for a conditionally Gaussian errors distribution, S+GARCH provides conditional non-
Gaussian distribution likelihood estimation based on univariate and multivariate t-distributions,
and univariate generalized Gaussian distributions. The BHHH algorithm, Brent et al. (1974),
is used for optimization.
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2.3 Regression Modelling from the Time Series Point of View

Sir Francis Galton showed in 1886 that the height of the sons of
tall fathers “regressed” towards the mean height of the population
through several successive generations. In other words, sons of
unusually tall fathers tend to be shorter than their fathers and
sons of unusually short fathers tend to be taller than their fathers.

Introduction

Today, the term regression applies to different types of prediction problems and does not nec-
essarily imply a regression towards the population mean. In this section we will discuss some
modern regression tools from the point of view of time series analysis and forecast. The material
on modern regression tools is exhaustive and thus it cannot be presented in general. Here we
will concentrate on four topics: These deal with the conceptual approach of regression analysis
with examples from (i) Linear Models, (ii) Generalized Additive Models, (iii) Projection Pur-
suit Regression, and (iv) Multivariate Adaptive Regression Splines. For all mentioned methods
implementations of the algorithms are available as Splus and R functions.

We will use regression analysis mainly to find an adequate approximation of a multivariate
function in general perturbed by noise. The goal is to model the dependence of a response
variable y on one or more predictor variables x1, . . . , xn, given realizations (named pattern)
{yi, x1i, . . . , xni}N

1 . The dynamics that generated the data is presumed to be described by

y = f(x1, . . . , xn) + ε (2.82)

over some domain (x1, . . . , xn) ∈ D ⊂ Rn containing the data. f(·) captures the joint predictive
relationship of y on (x1, . . . , xn) and ε serves as an additive stochastic component. The aim of
regression analysis is to construct a functional relationship f̂(x) that can serve as a reasonable
approximation to f(·) over the domain D of interest. The notion of reasonableness depends on
the purpose for which the approximation is to be used. Lack of accuracy is usually defined by
the expected error

E =
1
N

N∑
i=1

w(xi)∆[f̂(xi), f(xi)] . (2.83)

Here x = (x1, . . . , xn), ∆ is some measure of distance, and w(x) is an optional weight function.
In the following we concentrate on univariate responses y, for the “multivariate” generalization
we refer to the literature []. It is also worth to note, that in the case of univariate autoregressive
time series analysis we will interpret equation (2.82) as

xt = f(xt−1, . . . , xt−n) + εt . (2.84)
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The principal approach to function approximation has been to fit a parametric function g(x|{âj}p
1)

to the training pattern most often by least-squares. That is

f̂(x) = g(x|{âj}p
1) , (2.85)

where the parameter estimates are given by

{âj}p
1 = argmin{âj}p

1

N∑
i=1

[yi − g(x|{âj}p
1)]

2. (2.86)

As one would expect, the Linear Model, LM, is the most commonly used parameterization
defined through the linear function

g(x|{âj}p
1) = a0 +

p∑
i=1

aixi, p ≤ n . (2.87)

An Additive Model, AM, extends the notion of a linear model by allowing some or all linear
functions of the predictors to be replaced by arbitrary smooth functions of the predictors. Thus
the standard linear model defined by eqn. () is replaced by the additive model

g(x|{âj}p
1) = a0 +

p∑
i=1

hi(xi), p ≤ n . (2.88)

Because the forms of the functions hi are generally unknown, they are estimated using some
form of a smoother. Several methods of smoothing a function are implemented in the Splus
or R software packages, like for example locally weighted regression smoothers, cubic spline
smoothers, or kernel type smoothers. However, the problem which arises with the AM approach
is that many new model parameters will be added. Thus the dimensional setting of the models
can become quite large, due to the fact that many data sets are high dimensional. Then it is
a common practice to use lower dimensional linear projections of the data. Since there exist
infinitely many projections from a higher to a lower dimension, it is important to have a technique
of pursuing a finite sequence of projections that can reveal the relevant structures of the data.
Combining both projection and pursuit leads to the so called Projection Pursuit Regression,
PPR, modelling approach. The approximation is of the form

f̂(x) = α0 +
p∑

i=1

fi(αT
i x) . (2.89)

Multivariate Adaptive Regression Splines, are a technique to improve these methodologies. Its
geometrical concept is to partition the whole region in disjoint subregions {Rm}M

1 and to fit
with a separate function in each subregion, generally taken to be as constants.

ifx ∈ Rm , then f̂(x) = gm(x|{aj}p
1) , (2.90)

with gm(x|am) = am . (2.91)
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2.3.1 Linear and Generalized Linear Models

The starting point in our exploration of regression models for time series analysis and forecast-
ing will be the classical linear model approach. First we study the traditional Linear Model
approach, discuss how to estimate the regression coefficients and how to test their significance.
Modelling the dependence of a continuous response is made explicit by estimating the slope and
intercept of a straight line. Generalized Linear Models extend the classical linear model approach
to non-gaussian response probability distributions together with a link function describing how
the responses are related to the linear predictor. Logit and Probit Models are discussed in some
more detail.

Classical Linear Models

We start with the classical Linear Model approach. We collect the n responses in a column vector
y, which we view as the realization of a random vector Y with mean E(Y) = µ and variance-
covariance matrix var(Y) = σ2I, where I is the identity matrix. The diagonal elements of
var(Y) are all σ2 and the off-diagonal elements are all zero, so the n observations are uncorrelated
and have the same variance. Under the assumption of normality, Y has a multivariate normal
distribution with the standard mean and variance. Suppose we have data for the p predictors
x1, . . . , xp, which take the values xi1, . . . , xip for the i-th unit. We will assume that the expected
response depends on these predictors and we will assume that µi is a linear function of the
predictors

µi = β1xi1 + . . .+ βpxip (2.92)

for some unknown coefficients β1, . . . , βp. These coefficients are called regression coefficients.

The equation can be rewritten more compactly using matrix notation as µ = Xβ, where µ is
a column vector with all the expected responses, β is a column vector with all the regression
coefficients, and X is a n × p matrix containing the values of the p predictors for the n units.
The matrix X is usually called the model matrix or design matrix. The expression Xβ is called
the linear predictor.

How do we estimate the parameters β and σ2 ? The likelihood principle instructs us to pick the
values of the parameters that maximize the logarithm of the likelihood function. The normal
log-likelihood becomes

logL(β, σ2) = −n
2
log(2πσ2)− 1

2

∑
(yi − µi)2/σ2 . (2.93)

Note, that maximizing the log-likelihood with respect to the regression coefficients β for a fixed
value of σ2 is equivalent to minimizing the sum of squared differences between observed and
expected values, or residual sum of squares

RSS(β) =
∑

(yi − µi)2 = (y −Xβ)T (y −Xβ) . (2.94)
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Taking the derivatives of the residual sum of squares with respect to β and setting the derivative
equal to zero leads to the so called normal equations for the maximum log-likelihood estimator
to β̂

XTXβ̂ = XTy . (2.95)

If the model matrix is of full column rank (most statistical packages detect and omit redundancies
automatically), we yield an explicit formula for the ordinary least squares estimator (OLS) or
Maximum log-Likelihood Estimator, MLE, of the linear parameters

β̂ = (XTX)−1XTy . (2.96)

There are several numerical methods around for solving the normal equations, e.g. Gaussian
elimination, Cholesky decomposition, model factoring, Householder reflections, Givens rotations,
Gram-Schmidt orthogonalization. We will not discuss these methods in view of their advantages
and disadvantages. We will trust the calculations implemented in a reliable statistical software
package.

Substituting the OLS estimator of β into the log-likelihood function gives a profile likelihood
for σ2

logL(σ2) = −n
2
log(2πσ2)− 1

2
RSS(β̂)/σ2 . (2.97)

Differentiating this expression with respect to σ2 and setting the derivative to zero leads to

σ2 = RSS(β̂)/n . (2.98)

The estimator happens to be biased, which can be corrected dividing by n− p instead of n1.

How can we test the significance of the regression coefficients β? The Wald Test allows us to
test

H0 : βj = 0 . (2.99)

The MLE β̂j has a distribution with mean 0 (under H0) and variance given by the j-th diagonal
element of var(β̂) = (XTX)−1σ2. Thus we can base our test on the ratio

t =
β̂j√

var(β̂j)
. (2.100)

Under the assumption of normality of the data, the ratio of the coefficient to its normal error
has under H0 a Student’s t distribution with n−p degrees of freedom when σ2 is estimated, and
a standard normal distribution if σ2 is known. In large samples the ratio has approximately a
standard normal distribution.

1Note, that is is analogous to the use of n− 1 instead of n when estimating a variance.
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How to model the dependence of a Continuous Response y on a single linear predictor x? Let
us start by recognizing that the response will vary even for constant values of the predictor, and
model this fact by treating the responses yi as realizations of random variables

Yi ∼ N(µi, σ
2) (2.101)

with means µi depending on the values of the predictor xi and constant variance σ2. The
simplest way to express the dependence of the expected response µi, on the predictor xi is to
assume a linear functional relationship

µi = α+ βxi , (2.102)

which defines a straight line. Equation (2.101) can be interpreted to define the random structure
of the model writing equivalently Yi = µi + εi, where εi ∼ N(0, σ2) and equation (2.102)) defines
the systematic structure of the model stipulating that µi = α + βxi. Combining these two
statements yields the traditional formulation of the model.

It may be of interest to note that in the simple linear regression the estimates of the constant
value and intercept are given by

α̂ = y − β̂x and β̂ =
Σ(x− x)(y − y)

Σ(x− x)2
, (2.103)

where x and y are the means of the predictor and response variables, respectively. A straightfor-
ward generalization is the dependence of a continuous response on two or more linear predictors.

How to fit a linear model? The Splus function lm(formula, data, ...) allows to fit a linear
model, and the function predict.lm() to forecast from new data. The function summary.glm()
produces a summary report of a fitted glm object. Here are some more details:

Splus - Linear Modelling

lm(formula, data, ...) fits a linear model. As arguments for the function lm() serve the formula,
a formula object, with the response on the left of a ∼ operator, and the terms, separated by +

operators, on the right (e.g. formula <- response ∼ predictor.2 + predictor.5), and data a
data.frame in which to interpret the variables named in the formula. Several optional arguments
can be added including for example weights, subset specifications, and others. The returned value
is an object of class lm representing the fit. Generic functions such as predict, summary, print,
plot, and many others have methods to show the results of the fit. The structure of the lm object is
described in detail in the help document, and contains components like, coefficients, residuals,
fitted.values, and many others.

predict.lm(object, newdata, set.fit=F, ...) extracts the fitted values from a lm object and
returns the predictions. In the argument list object is a fitted lm object, newdata is a data frame
containing the values at which predictions are required, and if se.fit is set TRUE, pointwise
standard errors are computed along with the predictions.
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Exercise: CAPM - Betas for Portfolio Management

The capital asset pricing model (CAPM) is an important model in the field of portfolio management.
It explains variations in the rate of return rj on a security j as a function of the return on a market
portfolio rm. Generally, the return on any investment is a measure relative to its opportunity cost,
which is the risk-free asset return rf . The resulting difference is called the risk premium, since it
is the reward or punishment for making a risky investment. CAPM says that the risk premium on
security j is proportional to the risk premium on the market portfolio.

rj − rf = αj + βj(rm − rf ) ,

where αj represents a rate of price change and βj is the j’th security’s beta value. A stock’s beta is
important because it reveals the stock’s volatility. It measures the sensitivity of security’s return to
variation in the whole stock market. As such, values of beta less than one indicate that the stock
is “defensive” since its variation is less than the market’s. A beta greater than one indicates an
“aggressive” stock.

Download monthly prices of the 30 Dow Jones shares and the index itself from finance.yahoo.com,
and calculate the associated log-returns. For the risk free return use the 1-Month Treasury Bills
which can be downloaded from www.economagic.com.

First compute mean and standard deviations for each share, the index, and the short term interest
rate. Plot dependent variables against the independent variable. Estimate α’s and β’s on a rolling
window for all shares. Calculate the profit (total return), risk (volatility), and maximum drawdowns
of the two portfolios where the first invests in the 10 shares with the lowest beta’s and the second
in the 10 shares with the highest beta’s. How is the portfolio affected, using monthly β forecasts
instead of using historical β’s?

Generalized Linear Models

A Generalized Linear Models, GLM, extends the classical linear model and is therefore applicable
to a wider range of data analysis problems. The GLM consists of the following components:

• A monotonic differentiable link function g describes how the expected value of yi is related to
the linear predictor ηi.

ηi = g(µi) = xiβ,

where the linear component µi is defined as in the case of the LM.

• The response variables yi are independently distributed and have a probability distribution
from an exponential family.

f(yi) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
.

Here, θi and φ can be identified essentially as location and scale parameters, and ai(φ),
b(θi), and c(yi, φ) are known functions. The dispersion parameter is either known or must be
estimated.

The exponential family includes such useful distributions as the Normal, Binomial, Poisson,
Gamma, and others. As in the case of LMs, fitted GLMs can be summarized through statistics
such as parameter estimates, their standard errors, and goodness-of-fit statistics. Parameter
estimates are obtained using the principle of maximum log-likelihood and hypothesis tests are
based on comparisons of likelihoods.
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Exercise: The Exponential Family

Show, that for the probability density function of the exponential family the mean and variance are
given by

E(Yi) = µi = b′(θi)

var(Yi) = σ2
i = φb′′(θi)ai(φ)

Identify, for the normal distribution

f(yi) =
1√

2πσ2
exp{−1

2

(yi − µi)
2

σ2
}

the functions ai(φ), b(θi), and c(yi, φ)

A GLM is constructed by choosing an appropriate response probability distribution and an
appropriate link function. Here are some examples:

Classical Linear Model:

• response variable: a continuous variable

• distribution: Normal

• link function: identity η ≡ µ

Poisson Regression in Log Linear Model:

• response variable: a count

• distribution: Poisson

• link function: logarithm η = log(µ)

Gamma Model with Log Link:

• response variable: a positive continuous variable

• distribution: Gamma

• link function: logarithm η = log(µ)

Logistic Regression:

• response variable: a proportion

• distribution: Binomial

• link function: logit η = log( µ
1−µ

)

How to estimate the parameters? - The IRLS Algorithm: An important practical feature of
GLMs is that they can all be fit to data using the same algorithm: Iteratively Reweighted
Least Squares, IRLS. Given a trial estimate of the parameters β̂ we calculate the estimated
linear predictor η̂i = xT

i β̂ and use that to obtain the fitted values µ̂i = g−1(η̂i). Using these
quantities, we calculate the working dependent variable

zi = η̂i + (yi − µ̂i)
dηi

dµi
, (2.104)

where the rightmost term is the derivative of the link function evaluated at the trial estimate.
Next we calculate the iterative weights

wi = pi/

[
b′′(θi)

(
dηi

dµi

)2
]
, (2.105)

where b′′(θi) is the second derivative of b(θi) evaluated at the trial estimate and we have assumed
that ai(φ) has the usual form φ/pi. This weight is inversely proportional to the variance of the
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working dependent variable zi given the current estimates of the parameters, with proportionality
factor φ. Finally, we obtain an improved estimate of β regressing the working dependent variable
zi on the predictors xi using the weights wi, i.e. we calculate the weighted least-squares estimate

β = (XTWX)−1XTWz , (2.106)

where X is the model matrix, W is a diagonal matrix of weights with the entries wi and z is
the response vector with entries zi. The procedure is repeated until convergence is achieved.

Example: Estimation with Normal Data

Assume normal data with identity link ηi = µi. Then the derivative is dηi/dµi = 1 and the working
dependent variable is yi itself. Since in addition b′′(θi) = 1 and pi = 1, the weights are constant and
no iteration is required.

What is a Quantal-Response Model? - Logit, Probit and Extreme Value Distribution: In a
quantal-response model, a strictly increasing and continuous distribution function F is given
such that F has range (0, 1). The responses yi have value 0 or 1. The probability that yi = 1 is
µi = F (ηi). The link function g(·) is F−1. Common examples involve the Logit Model based on
the logistic distribution function

F (x) =
1

1 + e−x
,

the Probit Model based on the standard normal distribution function,

F (x) = Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy ,

and the extreme-value model based on the distribution function

F (x) = 1− exp(−ex) .

In the logit case, the link function is the logit transformation with value log[p/(1− p)] for p in
(0, 1). In the probit case, the link function is Φ−1. In the extreme-value case, the link function
has value log[−log(1− p)] for p in (0, 1).

How to fit a Generalized Linear Model? The Splus function glm(formula, family, data,
...) allows to fit a generalized linear model, and the function predict.glm() to forecast from
new data. The function summary.glm() produces a summary report of a fitted glm object. Here
are some more details:

Splus - Generalized Linear Modelling

glm(formula, family, data, ...) fits a generalized linear model. As arguments for the function
glm() serve as in the case of the linear model the formula expression, the data.frame data, and
in addition the family object, a list of functions and expressions for defining the link and variance
functions, initialization and iterative weights. Families supported are gaussian, binomial, poisson,
Gamma, inverse.gaussian and quasi. Functions like binomial produce a family object, but can be
given without the parentheses. Family functions can take arguments, as in binomial(link=probit)
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in which to interpret the variables named in the formula. Several additional optional arguments can
be added including for example weights, subset specifications, and others. The returned value is an
object of class glm which inherits from the lm object representing the fit. Generic functions such as
predict, summary, print, plot, and many others have methods to show the results of the fit. The
structure of the glm object is described in detail in the help document, and contains components
like, coefficients, residuals, fitted.values, and many others.

predict.glm(object, newdata, set.fit=F, ...) extracts the fitted values from a glm object
and returns the predictions. In the argument list object is a fitted glm object, newdata is a data
frame containing the values at which predictions are required, and if se.fit is set TRUE, pointwise
standard errors are computed along with the predictions.

Exercise: GLM Forecasting US Recession - xmpRegRecession

Recession is associated with bad times like high unemployment and low production, or more general
with a stagnant economy. Strictly speaking though, a recession is the period when overall economic
activity is actually declining and production, employment, and sales are falling below normal. A
recession starts just after a business cycle peak, the high point in the level of economic activity, and
ends at the business cycle trough, the low point.

A popular rule of thumb is that two consecutive quarterly declines in real GDP signal a recession.
This rule is consistent with the dispersion and duration requirements for a recession and with the
average recessionary path of real GDP; however, two very small quarterly declines might not produce
the depth required for a recession. The most widely accepted determination of business cycle peaks
and troughs is made by the National Bureau of Economic Research, NBER. NBERs definition of a
recession is: “... a significant decline in activity spread across the economy, lasting more than a few
months, visible in industrial production, employment, real income, and wholesale and retail trade”,
refers to the length of the recession, which must be a sustained decline.

NBER had identified six recessions from January 1960 through September 1999: 1969.12-1970.11,
1973.11-1975.03, 1980.01-1980.07, 1981.07-1982.11, and 1990.07-1991.03. Several modelling ap-
proaches are used to analyze and forecasting these periods: Simple rules of thumb using the Index
of Leading Indicators, CLI, Neftci’s model improving these rules by developing a a formal statistical
model of the probability of recession, the Probit model improving on Neftci’s model by allowing to
assess the importance of multiple indicators simultaneously, the GDP forecasting model, and the
Stock-Watson model that tries to capture the institutional process of the NBER’s Business Cycle
Dating Commitee, for details see A.J. Filardo (1999).

Here we consider the observation that the yield curve can serve as a predictor of US Recessions, e.g.
see A. Estrella and F.S. Mishkin [1996]. The steepness of the yield curve should be a reasonable
indicator of a possible future recession for several reasons: Current monetary policy has a significant
influence on the yield curve spread and hence on real activity over the next several quarters. A rise
in the short rate tends to flatten the yield curve as well as to slow real growth in the near term.
This relationship, however, is only one part of the explanation for the yield curves usefulness as a
forecasting tool. Expectations of future inflation and real interest rates contained in the yield curve
spread also seem to play an important role in the prediction of economic activity. The yield curve
spread variable examined here corresponds to a forward interest rate applicable from three months to
ten years into the future. This rate can be decomposed into expected real interest rate and expected
inflation components, each of which may be helpful in forecasting. The expected real rate may be
associated with expectations of future monetary policy and hence of future real growth. Moreover,
because inflation tends to be positively related to activity, the expected inflation component may
also be informative about future growth.

Use the Probit model to directly relate the probability of being in a recession to the yield curve
spread between the 10-year treasury bond and the 3-month treasury bill. Analyze the model and
evaluate one, three and six month ahead forecasts. Compare the results with the Stock Watson
Recession Index, shown in the figure.
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VKRUW UDWHV RU IDOOLQJ ORQJ UDWHV� 7KH DXWKRU QRWHG WKDW DOO 8�6� UHFHVVLRQV VLQFH ���� �ZLWK WKH H[FHSWLRQ RI
����� ZHUH SUHFHGHG E\ ORZ VSUHDGV ODUJHO\ FDXVHG E\ LQFUHDVLQJ VKRUW UDWHV DQG WKDW WZR UHFHQW HSLVRGHV RI
ORZ VSUHDGV WKDW ZHUH QRW IROORZHG E\ UHFHVVLRQ6WKDW LQ ���� DQG ����6ZHUH FDXVHG E\ IDOOLQJ ORQJ UDWHV� 6R
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7R EHWWHU FRPSDUH WKH SHUIRUPDQFH RI WKH WKUHH OHDGLQJ LQGH[HV WKDW ZH KDYH GLVFXVVHG� ZH ILUVW FDOFXODWH
WKH SUREDELOLW\ RI UHFHVVLRQ IRU ERWK WKH &RQIHUHQFH %RDUG OHDGLQJ LQGH[ DQG WKH \LHOG FXUYH EDVHG RQ KRZ
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DORQJ ZLWK WKH UHDO�WLPH 6WRFN DQG :DWVRQ SUREDELOLWLHV RI UHFHVVLRQ�

J Figure 2.3.1: A negative yield curve is a strong recession signal. The graph shows the difference
between the yields in the 10-year and 1-year treasury bonds, which has turned negative prior to
every recession since the early 1950s. However, the index turned negative in the mid-60s, but was
not followed by a recession. Source A. König, FED, (1999).

I Figure 2.3.2: The figure shows the Stock Watson Index from 1961 to 1998 (black line) together
with the recession periods (grey bars). Source NBER.

Here comes the Splus implementation:

# Read the Dataset from File:

# Column 1: Date - CCYYMM

# Column 2: Recession 0 | 1

# Column 3: 3 Month Treasury Bills

# Column 4: 10 Years Treasury Bonds

recession <- recession.dat()

# Settings:

horizon <- 6

n <- length(recession[,1])

# Response and Predictors

response <- recession[,2][(1+horizon):n]

predictor1 <- recession[,3][1:(n-horizon)]

predictor2 <- recession[,4][1:(n-horizon)]

predictor3 <- predictor1 - predictor2

# Mid-Month Dates:

ccyy <- floor(recession.dat[,1]/100)

time <- ccyy + (recession[,1]-100*ccyy-0.5)/12

time <- time[1:(n-horizon)]

# Data:

data <- data.frame(cbind(response, predictor1, predictor2, predictor3))

# Fit:

family <- binomial(link=probit)

# GLM Model 1 - Spread:

model.glm <- glm(response ~ predictor3, family=family, data=data)

summary.glm(model.glm)

in.sample <- predict.glm(model.glm, newdata=data, type="response")

plot(time, response, type="n", main="GLM - Spread")

lines(time, response, type="h", col=10)

lines(time, in.sample)
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J Figure 2.3.3: Model 1 shows the fit of recession data based on the spread of 10 years and 1 year
treasury bonds.
I Figure 2.3.4: Model 2 is more general and fits recession data, by regression of 10 years and 1 years
treasury bonds instead of using the spread.

# GLM Model 2 - Linear Combination:
model.glm <- glm(response ~ predictor1 + predictor2, family=family, data=data)
summary.glm(model.glm)
in.sample <- predict.glm(model.glm, newdata=data, type="response")
plot(time, response, type="n", main="GLM")
lines(time, response, type="h", col=10)
lines(time, in.sample)

Here is the output of the Splus example program:

Call: glm(formula = response ~ predictor3, family=family, data=data)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.12 -0.5442 -0.2827 -0.1266 3.059

Coefficients:
Value Std. Error t value

(Intercept) -0.4807 0.09989 -4.813
predictor3 0.6528 0.08229 7.933

(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 353.8 on 426 degrees of freedom

Residual Deviance: 261.9 on 425 degrees of freedom
Number of Fisher Scoring Iterations: 5
Correlation of Coefficients:

(Intercept)
predictor3 0.4956

Call: glm(formula = response ~ predictor1 + predictor2, family=family, data=data)
Deviance Residuals:

Min 1Q Median 3Q Max
-3.197 -0.3981 -0.2558 -0.1058 2.184

Coefficients:
Value Std. Error t value

(Intercept) -2.3922 0.32148 -7.441
predictor1 0.6923 0.08871 7.804
predictor2 -0.4534 0.08536 -5.312

(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 353.8 on 426 degrees of freedom

Residual Deviance: 217 on 424 degrees of freedom
Number of Fisher Scoring Iterations: 5
Correlation of Coefficients:

(Intercept) predictor1
predictor1 -0.0918
predictor2 -0.3349 -0.8986
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2.3.2 AM - Additive and Generalized Additive Models:

The Additive Model, AM, generalizes the LM by

f̂(x) = s0 +
p∑

i=1

si(xi) , (2.107)

where the sj are unknown smooth functions. These functions are not given in a parametric
form, but instead they have to be estimated from the data avoiding the assumption of linearity
in the explanatory variables. However, AM retains the assumption that explanatory variable
effects are additive. Thus the response is modelled as the sum of arbitrary smooth univariate
functions of the explanatory variables. Note, that one needs a reasonably large sample size to
estimate each si.

A Generalized Additive Model, GAM, extends the AM in the same spirit as the GLM extends
the LM model, namely for allowing a link function and for allowing non-normal distributions
from the exponential family.

GAMs and GLMs can be applied in similar situations, but they serve different analytic purposes.
GLMs emphasize estimation and inference for the parameters of the model, while GAMs focus
on exploring data non-parametrically. In this sense GAMs are more suitable for exploring the
data set and visualizing the relationship between the dependent variable and the independent
variables.

How to estimate the parameters? - Backfitting and Scoring: A GAM model can be fitted
using the local scoring algorithm, which iteratively fits weighted additive models by backfitting.
The backfitting algorithm is a Gauss-Seidel method for fitting additive models, by iteratively
smoothing partial residuals. The algorithm separates the parametric from the nonparametric
part of the fit, and fits the parametric part using weighted linear least squares within the
backfitting algorithm. The algorithm requires a smoothing operation as for example a kernel or
a spline smoother. For large classes of smoothing functions, the backfitting algorithm converges
to a unique solution.

How to fit a Generalized Additive Model? The Splus function gam(formula, family=gaussian,
data, ...) allows to fit a generalized additive model. The function summary.gam() produces
a summary report of a fitted gam object, the function predict.gam() forecasts from new data,
and the function plot.gam() creates an appropriate plot for each term in a generalized additive
model object. Here are some more details:

Splus - Generalized Additive Modelling

gam(formula, family, data, ...) fits a generalized additive model. As arguments for the func-
tion gam() serve as in the case of the generalized linear model the formula expression, the family

name, and the data.frame data. Several optional arguments can be added including for example
weights, subset specifications, and others. The returned value is an object of class gam which inherits
from the glm and lm object representing the fit. Generic functions such as predict, summary, print,
plot, and many others have methods to show the results of the fit. The structure of the gam object is
described in detail in the help document, and contains components like, coefficients, residuals,
fitted.values, and many others.

predict.gam(object, newdata, set.fit=F, ...) provides a ”safe” method of prediction from
a fitted gam object. In the argument list object is a fitted gam object, newdata is a data frame
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J Figure 2.3.5: Model 1 shows the fit of recession data based on the spread of 10 years and 1 year
treasury bonds.
I Figure 2.3.6: Model 2 is more general and fits recession data, by regression of 10 years and 1 years
treasury bonds instead of using the spread.

containing the values at which predictions are required, and if se.fit is set TRUE, pointwise
standard errors are computed along with the predictions.

Exercise: GAM Forecasting US Recession, cont. - xmpRegRecession

Here we continue with the US Recession example and show how to fit and forecast the data within the
generalized additive modelling approach. For smoothing we apply local regression, lo, alternatively
we can select spline smoothing, s.

# Settings ...

family <- binomial(link=probit)

# GAM Model 1 - Spread:

model.gam <- gam(response ~ lo(predictor3), family=family, data=data)

summary.gam(model.gam)

in.sample <- predict.gam(model.gam, newdata=data, type="response")

plot(time, response, type="n", main="GAM - Spread")

lines(time, response, type="h", col=10)

lines(time, in.sample)

# GAM Model 2 - Linear Combination:

model.gam <- gam(response ~ lo(predictor1) + lo(predictor2), family=family, data=data)

summary.gam(model.gam)

in.sample <- predict.gam(model.gam, newdata=data, type="response")

plot(time, response, type="n", main="GAM")

lines(time, response, type="h", col=10)

lines(time, in.sample)

The fit is shown in figure 2.3.5 and figure 2.3.6. Here is the output of the Splus example program,
produced by the function summary.gam().

Call: gam(formula=response~lo(predictor3), family=family, data=data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.061 -0.5187 -0.2697 -0.1855 2.811

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 353.8 on 426 degrees of freedom

Residual Deviance: 252.8 on 422.1 degrees of freedom
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Number of Local Scoring Iterations: 5

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept) 1

lo(predictor3) 1 2.9 9.37 0.02273

Call: gam(formula=response~lo(predictor1)+lo(predictor2), family=family, data=data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.111 -0.2208 -0.02788 -0.000622 2.034

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 353.8 on 426 degrees of freedom

Residual Deviance: 134.9 on 418 degrees of freedom

Number of Local Scoring Iterations: 10

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept) 1

lo(predictor1) 1 3.5 32.54 7.78e-007

lo(predictor2) 1 2.5 38.78 9.00e-009
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2.3.3 Projection Pursuit Regression

The AM considers sums of functions taking arguments in the natural coordinates of the space
of explanatory variables. When the underlying function is additive with respect to variables
formed by linear combinations of the original explanatory variables, the AM is inappropriate.
Projection Pursuit Regression can handle such cases.

Projection Pursuit Regression, PPR, uses an approximation of the form

f̂(x) = α0 +
p∑

j=1

fj(αT
j x) . (2.108)

Thus the model is approached as a sum of nonlinear transformations of one-dimensional pro-
jections of x, where in principle any smoother may be used to estimate the functions fj . In
practice, the PPR model is most useful in situations where p can be chosen as smaller than d,
in which case a “dimension reduction” has taken place. The effectiveness of the approach lies
in the fact that even for small to moderate p, many classes of functions can be closely fit by
approximations of this form.

A Generalized Projection Pursuit Regression Model, GPPR, extends the PPR to the exponential
family distributions and a link function in the same spirit as the GLM and GAM extend the
Linear Model and the Additive Model. This approach is discussed in detail by O. Lingjaerde
and K. Liestol (1998). In the following we will concentrate on the PPR algorithm.

How to estimate the Parameters? We will present a way for finding the fj , in a nonparametric
regression context. Friedman and Stuetzle (1981) present the following algorithm.

Algorithm: Projection Pursuit Regression

• Let ri = yi for i = 1, . . . , n and M = 0. M is a “term counter”.

• Construct the next term in the model. Let Z = αT
j x , and construct a smooth function fj(Z)

of the current residuals ordered in ascending value of Z. Next, calculate a measure of fit I(α)
based on the fraction of so far unexplained variance that is explained by fj :

I(α) = 1−
Σn

i=1(ri − fj(α
T
j xi))

2

Σn
i=1r

2
i

Find the vector aM+1 that maximizes I(α), which is the heart of the projection pursuit concept:
αM+1 = argmaxαI(α) and the smooth function fM+1 .

• If I(α) becomes smaller than a specified threshold, the algorithm is converged. Otherwise, we
define new residuals and proceed to the next step: M = M + 1 and ri = ri − fM+1(αM+1xi),
for i = 1, . . . , n.

Note that the functions fj are univariate. Essentially, PPR breaks down the data into di-
mensions, not necessarily along the standard coordinate axes, but axes determined by I(α).
Moreover, by virtue of the algorithm’s termination criterion, as few dimensions as possible are
used to describe the data.

How to fit a PPR model? The PPR algorithm is implemented under Splus by the function
ppreg(y, x, ...). Unfortunately, the arguments do not allow for the quiet common formula
input. ppr(formula, data...) is the counterpart under R, distributed in the modreg package.
ppr is based on essentially the same code as used by ppreg under Splus. The fSeries library
makes use of the modreg package under Splus. Here are some more details:
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J Figure 2.3.7: Model 1 shows the fit of recession data based on the spread of 10 years and 1 year
treasury bonds.
I Figure 2.3.8: Model 2 is more general and fits recession data, by regression of 10 years and 1 years
treasury bonds instead of using the spread.

Splus - Projection Pursuit Regression

ppr(formula, family, data, ...) fits a projection pursuit regression model. As arguments for
the function ppr() serve as in the case of GLM and GAM the formula expression, and the data.frame
data. Several optional arguments can be added including for example weights, subset specifications,
and others. The returned value is an object of class ppr representing the fit. Generic functions
such as predict, summary, plot, and many others have methods to show the results of the fit. The
structure of the ppr object is described in detail in the help document, and contains components
like, residuals, and many others.

predict.ppr(object, newdata, set.fit=F, ...) extracts the values from a ppr object and re-
turns the predictions. In the argument list object is a fitted ppr object, newdata is a data frame
containing the values at which predictions are required.

Exercise: PPR Forecasting US Recession, cont. - xmpRegRecession

Here we continue with the US Recession example and show how to fit and forecast the data within
the projection pursuit regression modelling approach.

# Settings ...

# PPR Model 1 - Spread:

model.ppr <- ppr(response ~ predictor3, data=data)

summary.ppr(model.ppr)

in.sample <- predict.ppr(model.ppr, newdata=data, type="response")

plot(time, response, type="n", main="PPR - Spread")

lines(time, response, type="h", col=10)

lines(time, in.sample)

# PPR Model 2 - Linear Combination:

model.ppr <- ppr(response ~ predictor1 + predictor2, data=data)

summary.ppr(model.ppr)

in.sample <- predict.ppr(model.ppr, newdata=data, type="response")

plot(time, response, type="n", main="PPR")

lines(time, response, type="h", col=10)

lines(time, in.sample)
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The fit is shown in figure 2.3.7 and figure 2.3.8. Here is the output of the Splus example program,
produced by the function summary.ppr().

Call: ppr.formula(formula = response ~ predictor3, data=data, nterms=5)

Goodness of fit:

5 terms

0

Projection direction vectors:

term 1 term 2 term 3 term 4 term 5

1 -1 1 0 0

Coefficients of ridge terms:

term 1 term 2 term 3 term 4 term 5

0.206790 0.024804 0.007813 0.000000 0.000000

Call: ppr.formula(formula = response ~ predictor1 + predictor2, data=data, nterms=5)

Goodness of fit:

5 terms

15.63

Projection direction vectors:

term 1 term 2 term 3 term 4 term 5

predictor1 0.8652 0.4321 -0.5235 -0.7428 0.6379

predictor2 -0.5014 -0.9018 -0.8520 0.6695 -0.7701

Coefficients of ridge terms:

term 1 term 2 term 3 term 4 term 5

0.2405 0.1810 0.1973 0.1141 0.1509
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2.3.4 MARS - Multivariate Adaptive Regression Splines

This section describes the Multivariate Adaptive Regression Spline, MARS, approach developed
by J.H. Friedman (1990). The goal of this procedure is to improve the existing methodologies
outlined above. The material is divided into three parts. First we present the geometrical
concept of recursive partition regression and the corresponding stepwise regression approach.
This connection allows us easily to understand the MARS algorithm outlined in the second
part. The third and final part will be devoted to software software implementation of the
MARS algorithm together with some examples and exercises.

Recursive Partitioning Regression

The Geometrical Concept: MARS is most easily understood through its connections with Re-
cursive Partitioning Regression. This model takes the form

ifx ∈ Rm, then f̂(x) = gm(x|{aj}p
1) , (2.109)

where {Rm}M
1 are disjoint subregions representing a partition of D. The functions gm are

generally taken to be as constants

gm(x|am) = am . (2.110)

The goal is to use the data to simultaneously estimate a good set of subregions and the pa-
rameters associated with the separate functions in each subregion. Continuity at subregion
boundaries is not enforced.

How to partition the domain? The partitioning is accomplished through the recursive splitting
of previous subregions. The starting region is the entire domain D. At each stage of the
partitioning all existing subregions are optimally split in two daughter subregions. The recursive
subdivision is continued until a large number of subregions are generated. The subregions are
then recombined in a reverse manner until an optimal set is reached. This process must be
based on criterion that penalizes both for lack of fit and increasing number of regions. Thus
recursive partitioning models are fairly interpretable, can be represented by a binary tree, and
are fairly rapid to construct and especially rapid to compute. However, the disadvantage of the
approximating functions is that they are discontinuous at the subregion boundaries, and this is
in many cases more than a cosmetic problem.

Stepwise Regression: Recursive partitioning regression is generally viewed as a geometrical pro-
cedure. This framework provides the best intuitive insight into its properties. However, it can
also be viewed in a more conventional light as a stepwise regression procedure. The idea is
to produce an equivalent model to equations (2.109) and (2.110) by replacing the geometrical
concepts of regions and splitting with the arithmetic notions of adding and multiplying. The
starting point is to cast the approximation (2.109) and (2.110) in the form of an expansion in a
set of basis functions

f̂(x) =
M∑

m=1

Bm(x) . (2.111)
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The basis functions Bm take the form

Bm(x) = I [x ∈ Rm] , (2.112)

where I is an indicator function having the value one if its argument is true and zero otherwise.
The {am}M

1 are the coefficients of the expansion whose values are jointly adjusted to give the
best fit to the data. The {Rm}M

1 are the same subregions of the predictors space as in equations
(2.109) and (2.110). Since these regions are disjoint only one basis function is nonzero for any
point x so that (2.111) and (2.112) are equivalent to (2.109) and (2.110).

The aim of recursive partitioning is not only to adjust the coefficient values to best fit the data,
but also to derive a good set of basis functions (subregions) based on the data at hand. A
forward stepwise regression procedure is outlined as:

Algorithm 1 - Recursive Partitioning

01 B1(x)← 1
02 For M = 2 to Mmax do: lof? ←∞
03 For m = 1 to M − 1 do:
04 For v = 1 to n do:
05 For t ∈ {xvj |Bm(xj) > 0}
06 g ← Σi6=maiBi(x) + amBm(x)H[+(xv − t)] + aMBm(x)H[−(xv − t)]
07 lof ← mina1,...,aM LOF (g)
08 if lof < lof? then lof? ← lof ; m? ← m; v? ← v; t? ← t; end if
09 end for
10 end for
11 end for
12 BM (x← Bm?H[−(xv − t)]
13 Bm?(x← Bm?H[+(xv − t)]
14 end for
15 end algorithm 1

� Algorithm 1: H[η] denotes a step function indicating a positive argument being 1 for η ≥ 0 and
0 otherwise, and lof(g) is some procedure that computes the lack-of-fit of a function g(x) to the
data. The first line is equivalent to setting the initial region to the entire domain. The first For-loop
iterates the “splitting” procedure with Mmax being the final number of regions (basis functions).
The next three (nested) loops perform an optimization to select a basis function Bm? (already in
the model), a predictor variable xv? and a “split point” t?. The quantity being minimized is the
lack-of-fit of a model with Bm? being replaced by its product with the step function H[+(xv? − t?)],
and with the addition of a new basis function which is the product of Bm? and the reflected step
function H[−(xv? − t?)]. This is equivalent to splitting the corresponding region Rm? on variable v?

at split point t?. Note that the minimization of LOF (g) with respect to the expansion coefficients
(line 7) is a linear regression of the response on the current basis function set.

The basis functions produced by Algorithm 1 have the form

Bm(x) =
Km∏
k=1

H[skm · (xv(k,m) − tkm)] . (2.113)

The quantity Km is the number of “splits” that gave rise to Bm whereas the arguments of the
step functions contain the parameters associated with each of these splits. The quantities skm

in (2.113) take on values ±1, and indicate the (right/left) sense of the associated step function.
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� Figure 2.3.9: Owing to the forward stepwise (recursive) nature of the procedure the parameters
for all the basis functions can be represented on a binary tree that reflects the partitioning history.
The figure 2.3.1 shows a possible result of running Algorithm 1 in this binary tree representation,
along with the corresponding basis functions. The internal nodes of the binary tree represent the
step functions and the terminal nodes represent the final basis functions. Below each internal node
are listed the variable v and location t associated with the step function represented by that node.
The sense of the step function s is indicated by descending either left or right from the node. Each
basis function (2.113) is the product of the step functions encountered in a traversal of the tree
starting at the root and ending at its corresponding terminal node.

The v(k,m) label the predictor variables and the tkm represent values on the corresponding
variables.

With most forward stepwise regression procedures it makes sense to follow them by a backwards
stepwise procedure to remove basis functions that no longer contribute sufficiently to the accu-
racy of the fit. This is especially true in the case of recursive partitioning. In fact the strategy
here is to deliberately overfit the data with an excessively large model, and then to trim it back
to proper size with a backwards stepwise strategy. A proper tree pruning scheme must delete
(sibling) regions in adjacent pairs by merging them into a single (parent) region. Thus splits
rather than regions (basis functions) are removed.

The MARS Algorithm

Continuity: A fundamental limitation of recursive partitioning models is lack of continuity. The
models produced by equations (2.109) and (2.110) are piecewise constant and sharply discon-
tinuous at subregion boundaries. This lack of continuity severely limits the accuracy of the
approximation. It is possible, however, to make a minor modification to Algorithm 1 which will
cause it to produce continuous models with continuous derivatives.

The only aspect of Algorithm 1 that introduces discontinuity into the model is the use of the
step function H[η] as its central ingredient. If the step function were replaced by a continuous
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function of the same argument everywhere it appears (lines 6, 12, and 13), algorithm 1 would
produce continuous models. The choice for a continuous function to replace the step function is
guided by the fact that the step function as used in Algorithm 1 is a special case of the one-sided
truncated power basis functions for representing q-th order splines

bq(x− t) = (x− t)q
+ . (2.114)

Here t is the knot location, q is the order of the spline, and the subscript indicates the positive
part of the argument. For q > 0 the spline approximation is continuous and has q−1 continuous
derivatives. A two-sided truncated power basis is a mixture of functions of the form

b±q (x− t) = [±(x− t)]q+ . (2.115)

The step functions appearing in Algorithm 1 are seen to be two-sided truncated power basis
functions for q = 0 splines.

The usual method for generalizing spline fitting to higher dimensions is to employ basis functions
that are tensor products of univariate spline functions. Using the two-sided truncated power
basis for the univariate functions, these multivariate spline basis functions take the form

B(q)
m (x) =

Km∏
k=1

[skm · (xv(k,m) − tkm)]q+ , (2.116)

along with products involving the truncated power functions with polynomials of lower order
than q. Note that skm = ±1. Comparing equation (2.113) with (2.116) we see that the basis
functions (2.113) produced by recursive partitioning are a subset of a complete tensor product
(q = 0) spline basis with knots at every (distinct) marginal data point value. Thus:

Recursive partitioning can be viewed as a forward/backward stepwise regression pro-
cedure for selecting a (relatively very small) subset of regressor functions from this
(very large) complete basis.

MARS Implementation: Algorithm 2 implements the forward stepwise part of the MARS strat-
egy by incorporating the following modifications to recursive partitioning:

Modifications to Algorithm 1

(a) Replacing the step function H[±((x− t)] by a truncated power spline function [±(x− t)]q+.

(b) Not removing the parent basis function Bm?(x) after it is split, thereby making it and both its
daughters eligible for further splitting.

(c) Restricting the product associated with each basis function to factors involving distinct predictor
variables.

The proposed implementing strategy is to employ q = 1 splines in the analog of Algorithm 1 in
lines 6, 12, and 13. This procedure, called “forward stepwise algorithm”, is outlined as:
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Algorithm 2 - Forward Stepwise

01 B1(x)← 1 ; M ← 2
02 Loop until M > Mmax : lof? ←∞
03 For m = 1 to M − 1 do:
04 For v! ∈ {v(k, m)|1 ≤ k ≤ Km}
05 For t ∈ {xvj |Bm(xj > 0}
06 g ← ΣM−1

i=m aiBi(x) + aMBm(x)H[+(xv − t)]+ + aM+1Bm(x)H[−(xv − t)]+
07 lof ← mina1,...,aM+1 LOF (g)
08 if lof < lof? then lof? ← lof ; m? ← m; v? ← v; t? ← t; end if
09 end for
10 tend for
11 end for
12 BM (x← Bm?H[+(xv − t)]+
13 BM+1(x← Bm?H[−(xv − t)]+
14 end loop
15 end algorithm 2

� Algorithm 2: The parent basis function is included in the modified model in line 6, and remains
in the updated model through the logic of lines 12-14. Basis function products are constrained to
contain factors involving distinct variables by the control loop over the variables in line 4, see 2.113,
2.116. This algorithm produces Mmax q = 1 tensor product (truncated power) spline basis functions
that are a subset of the complete tensor product basis with knots located at all distinct marginal
data values. As with recursive partitioning, this basis set is then subjected to a backwards stepwise
deletion strategy to produce a final set of basis functions. The knot locations associated with this
approximation are then used to derive a piecewise cubic basis, with continuous first derivatives,
thereby producing the final (continuous derivative) model.

Unlike recursive partitioning, the basis functions produced by Algorithm 2 do not have zero
pairwise product expectations; that is, the corresponding “regions” are not disjoint but overlap.
Removing a basis function does not produce a “hole” in the predictor space (so long as the
constant basis function B1 is never removed). As a consequence, it is not necessary to employ a
special “two at a time” backward stepwise deletion strategy based on sibling pairs. A usual “one
at a time” backward stepwise procedure of the kind ordinarily employed with regression subset
selection can be used. Algorithm 3 presents such a procedure for use in the MARS context.

Algorithm 3 - Backwards Stepwise

01 J? = {1, 2, · · · , Mmax} ; K? ← J?

02 lof? ← min{aj |j∈J?} LOF (Σj∈J?ajBj(x))
03 For M = Mmax to 2 do: b←∞ L← K?

04 For m = 2 to M do: K ← L− {m}
05 lof ← min{ak|k∈K} LOF (Σk∈KakBk(x))
06 if lof < b then b← lof K? ← K ; end if
07 if lof < lof? then lof? ← lof ; J? ← K ; end if
08 end for
09 end for
15 end algorithm 3

� Algorithm 3: Initially (line 1) the model is comprised of the entire basis function set J? derived
from Algorithm 2. Each iteration of the outer For-loop of the algorithm causes one basis function
to be deleted. The inner For-loop chooses which one. It is the one whose removal either improves
the fit the most or degrades it the least. Note that the constant basis function B1(x) = 1 is never
eligible for removal. The algorithm constructs a sequence of Mmax − 1 models, each one having
one less basis function than the previous one in the sequence. The best model in this sequence is
returned (in J?) upon termination.
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Anova Decomposition: The result of applying Algorithms 2 and 3 is a model of the form

f̂(x) = a0 +
M∑

m=1

am

Km∏
k=1

[skm · (xv(k,m) − tkm)]+. (2.117)

Here a0 is the coefficient of the constant basis function B1, and the sum is over the basis
functions Bm, equation (2.116), produced by Algorithm 2 that survive the backwards deletion
strategy of Algorithm 3 and skm = ±1. This (constructive) representation of the model does
not provide very much insight into the nature of the approximation. By simply rearranging the
terms, however, one can cast the model into a form that reveals considerable information about
the predictive relationship between the response y and the predictors x. The idea is to collect
together all basis functions that involve identical predictor variable sets.

The MARS model, equation (2.117), can be recast into the form

f̂(x) = a0 +
∑

Km=1

fi(xi) +
∑

Km=2

fij(xi, xj) +
∑

Km=3

fijk(xi, xj , xk) + . . . . (2.118)

The first sum is over all basis functions that involve only a single variable. The second sum is
over all basis functions that involve exactly two variables, representing (if present) two-variable
interactions. Similarly, the third sum represents (if present) the contributions from three-variable
interactions, and so on. Thus interpretation of the MARS model is greatly facilitated through
its Anova decomposition (2.118). This representation identifies the particular variables that
enter into the model, whether they enter purely additively or are involved in interactions with
other variables, the level of the interactions, and the other variables that participate in them.

Model Selection: Several aspects of the MARS procedure (Algorithms 2 and 3) have yet to be
addressed. Among these are the lack-of-fit criterion lof , and the maximum number of basis
functions Mmax. The lack-of-fit criterion used with the algorithm depends on the distance (loss)
function ∆ specified within the expected error functional, (2.83). The most often specified
distance is squared-error loss

∆[f̂(x), f(x)] = [f̂(x)− f(x)]2 (2.119)

because its minimization leads to algorithms with attractive computational properties. We use
a generalized cross-validation criterion (GCV)

lof(f̂M ) = GCV (M) =
1
N

N∑
i=1

[yi − f̂M (xi)]2/[1−
C(M)
N

]2. (2.120)

Here the dependencies of f(·), equation (2.117), and the criterion, on the number of (non-
constant) basis functions M is explicitly indicated. The GCV criterion is the average-squared
residual of the fit to the data (numerator) times a penalty (inverse denominator) to account
for the increased variance associated with increasing model complexity C(M) (number of basis
functions M).
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Software Implementations

The original Fortran Mars 3.5 software package written by Friedman which implements the
described MARS algorithms is no longer available for a free download from the Internet. Mars
is now offered as a commercial software product by Salford Systems. However, there are two
other Splus/R software packages available which implement the MARS algorithm.

The MDA Package:

This package provides the Splus functions mars() and predict.mars() which were coded by
Trevor Hastie and Robert Tibshirani from scratch, and did not use any of Friedman’s MARS
code. The authors claim that the functions give quite similar results to Friedman’s program,
but not exactly the same results. Friedman’s Anova decomposition is not implemented nor
categorical predictors are handled properly yet.

The Polymars Package:

Charles Kooperberg and Martin O’Connor (1997) have written Splus/R functions which im-
plement the Mars procedure. In their model the regression data is generated from the “true
model” given by: y = f(X1, . . . , Xp) + ε. The function f(·) is approximated using functions
that depend on only one or two of the Xi. That is, we use the approximative model (2.118),
motivated from the perspective of the Anova decompositions in which higher order interactions
are ignored. Polymars uses linear splines and their tensor products to model the functions
f(·).

Initially the constant function a0 in equation (2.118) is fitted to the data. Then the algorithm
decides which basis functions are candidates for addition and which basis functions can be added
to the current model. The best candidates are added, then the model is fitted and evaluated,
and if the model is better than the best one, it will be saved. This procedure continues until
the maximum model size is reached or no candidates are left. In the second step it is decided
which basis function can be removed from the model, and the one that is the worst predictor is
removed. The model will be fitted and evaluated again, and if the model is better than the best
one, it will be saved. This procedure continues until the minimum model size is reached. The
GCV criterion (2.120) is used, where C(M) = d ×M is used. d, penalizing for larger models,
is usually set a value ranging between 3 and 5. This criterion is evaluated at the end of each
addition and deletion step and the best-model-so-far by this criterion is stored.

Arguments to Polymars: The polymars() functions has as only required arguments the re-
sponses and predictors, but offers a series of optional arguments. Here follows a brief summary,
for the details we refer to the help page and the software manual.

• responses - vector of responses, or a matrix for multiple response regression

• predictors - matrix of predictor variables for the regression

• weights - vector of observation weights

• maxsize - maximum number of basis functions allowed to grow to in the stepwise addition procedure

• gcv - parameter used to find the overall best model from a sequence of fitted models

• additive - should the fitted model be additive in the predictors?

• startmodel - the first model that is to be fit by the polymars function

• knots - defines how the function is to find potential knots for the spline basis functions

• knot.space - is an integer describing the minimum number of order statistics apart that two knots can be

• ts.resp - testset responses for model selection

• ts.pred - testset predictors

• ts.weights - testset observation weights
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• classify - when the response is discrete (categorical), polymars can be used for classification

• factors - used to indicate that certain variables in the predictor set are categorical variables

• tolerance - measure for each possible candidate to be added/deleted

• verbose - when set TRUE, the function will print out a line for each addition or deletion stage

Interpreting the returned model - The visible model: Using summary or print (which defaults to
summary) on an object returned from polymars prints out three components:

• The call which produced the object.

• An Splus data-frame, fitting which contains certain statistics about the model fitting routine. Each row
represents one step in the fitting routine. The first column 0/1 has a 1 for an addition step and a zero for
a deletion step. The second column, size, contains the resulting number of basis functions in the model
after this step. Next there is a column RSS containing the residual sum of squares. For multiple response
regression or classification there will be more than one column RSS1, RSS2 . . ., one for each response or
class. The last column contains the measure of fit which used to find the best overall model. It is normally
GCV for generalized cross validation, see Section. But it can also be T.S. RSS for test set residual sum of
squares or T.S.M.C. for test set misclassification.

• The Polymars model itself is printed as a data-frame, each row corresponding to a basis function. The
first row corresponds to the intercept. The first four (or five) columns relate to the basis function and the
last column (more than one for multiple response regression or classification) contains the coefficients. For
classification coefficients see also conversion below.
The first column pred1 contains the index of the first predictor of the basis function. Column knot1 is a
possible knot in this predictor. If this column is NA, the first component is linear. If any of the basis
functions of the model are categorical then there will be a level1 column. Column pred2 is the possible
second predictor involved (if it is NA the basis function only depends on one predictor). Column knot2
contains the possible knot for the predictor pred2, and it is NA when this component is linear. For example
the following model

pred1 knot1 level1 pred2 knot2 coefs SE

1 0 NA NA 0 NA 59.123913 9.0277

2 13 NA NA 0 NA -5.508833 2.2838

3 13 6.29 NA 0 NA 4.834013 1.9678

4 4 NA 1 0 NA 9.486980 2.6050

has an intercept of 59.12 and predictor 13 has two terms in the model, a linear term with coefficient −5.51
and a term with a knot (X13 − 6.29)+ with coefficient 4.83. One level of variable 4 is in the model (this
was actually a 0/1 variable) with coefficient 9.49. Standard errors for the coefficients are also included.
A line such as

pred1 knot1 pred2 knot2 coefs SE

2 0 3 0.28 12.45667 3.3382

corresponds to a basis function X2× (X3− 0.28)+ with coefficient 12.46.

Interpreting the returned model - The invisible model:

• model.size contains the number of basis functions in the returned model.

• fitted and residuals contain the fitted values and the residuals of the original dataset used to fit the
model.

• responses contains number of responses per case in original dataset.

• ranges.and.medians is a 3 × p matrix, where p is the number of predictors in the original dataset, each
column corresponding to a predictor. Rows 1 and 2 contain the minimum and maximum values of the
predictor and row 3 contains the median value of the predictor. These are computed from the original
(training) dataset and are used in the plotting function.
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• factor.matrix is is a r × s matrix where r is the number of categorical predictor variables in the model
and s is the maximum number of levels that any of these has +2. Each column represents a categorical
variable. The first row contains the index of the predictor, the second row contains the number of levels it
has and the remaining rows contain the value of each level (filled out to the end with NA’s if necessary).
This is used in the plotting function.

• conversion is a c×2 matrix where c is the number of classes or categories in the response when Polymars
is used as a classifier. In classification a single response vector is split up into a multiple response matrix
with each column corresponding to a class and each case having a 1 in the column corresponding to it’s
original response and all other columns zero.
In the conversion matrix each row corresponds to one class. In the first column it’s original class, as a
character or number, is recorded. The second column holds the response number, or column index of the
new response matrix. The coefficients of model are ordered according to this numbering. It is used for
computing further fitted values (classes).

Several examples are discussed in Friedman’s paper. Here we pick up one which was also
discussed in Kooperberg’s and O’Connor’s (1997) Polymars software manual.

Example: A function of ten Variables - xmpPolymars10

This example shows the ability of the Mars procedure to find structure in data while ignoring noise.
The data is created using the function

f(x) = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

in a 10-dimensional hypercube using 100 points. The predictors where drawn from a uniform
distribution and ε is from a standard normal distribution.

# Function to Estimate:

fx <- function(x){10*sin(pi*x[,1]*x[,2])+20*(x[,3]-0.5)^2+10*x[,4]+5*x[,5]}

# Estimate Polymars Model:

N <- 100

x <- matrix(runif(N*10), byrow=T, ncol=10)

y <- func1(x) + rnorm(N)

model <- polymars(responses=y, predictors=x)

# Print Polymars Summary:

summary.polymars(model)

# Plot Polymars z(x1,x2) and z(x3)

plot.polymars(model, 1, 2, zlim=c(6,20))

x <- y <- seq(0, 1, length=50)

z <- function(x,y) {10*sin(pi*x*y)+15/2}

persp(x=x, y=y, outer(x, y, FUN=z), zlim=c(6,20),

xlab="Predictor 1", ylab="Predictor 2", zlab="Response")

plot.polymars(model1, 3)

plot(x=x, y=20*(x-0.5)^2+15/2, type="l", xlab="Predictor 3", ylab="Response")

The result is as follows. Note that the procedure works quite well in picking up the main structure
present in the data without picking up any of the 5 noise covariates.

Call:

polymars(responses = y, predictors = x)

Model fitting

0/1 size RSS GCV

1 1 1 1996.2 21.660

2 1 2 1471.9 17.390

.. . . ... ...

48 0 2 1471.9 17.390

49 0 1 1996.2 21.660
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Model produced

pred1 knot1 pred2 knot2 coefs SE

1 0 NA 0 NA 2.106 1.0106

2 2 NA 0 NA -4.383 2.9119

3 4 NA 0 NA 8.261 0.6285

4 1 NA 0 NA -1.414 3.9449

5 5 NA 0 NA 5.446 0.5892

6 2 0.4618 0 NA 9.700 4.9703

7 1 NA 2 NA 52.752 7.4072

8 1 NA 2 0.4618 -36.462 8.1528

9 1 0.3165 0 NA 3.964 5.4778

10 1 0.3165 2 NA -40.366 8.6617

Rsquared : 0.879
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� Figure 2.3.10: The graphs compare the Polymars estimate (left) to the exact functional rela-
tionship (right), using the Splus functions plot.polymars(), persp() and plot().

Kooperberg and O’Connor (1997) note, that this example with its highly curved relationships is
not an ideal setting for Polymars with it’s piecewise linear splines. This is particularly true for x3

since the procedure insists that a linear basis function is the first term fit to any variable. A linear
term will not improve the fit any more than just the constant intercept term so the model building
procedure will be averse to adding any x3 terms. For this reason x3 should be specified to be in the
startmodel. Thus recalculate the example with the following statement

model <- polymars(responses=y, predictors=x, startmodel=c(3,NA,0,0))

and compare the result using the defaults for the startmodel.
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J Figure 2.3.11: Model 1 shows the fit of recession data based on the spread of 10 years and 1 year
treasury bonds. The lower graphs show the result for the classifyer Polymars.
I Figure 2.3.12: Model 2 is more general and fits recession data, by regression of 10 years and 1
years treasury bonds instead of using the spread. The lower graphs show the result for the classifyer
Polymars.

Exercise: PPR Forecasting US Recession, cont. - xmpRegRecession

Here we continue with the US Recession example and show how to fit and forecast the data within the
Polymars modelling approach2. Note, there is also the possibility to run Polymars in a classifyer
mode, setting the argument classify=T. The fit is shown in figure 2.3.11 and figure 2.3.12, and for
the classifyer type in figure 2.3.13 and 2.3.14.

# POLYMARS Model 1 - Spread:

model.polymars <- polymars(responses=response, predictors=predictors3, classify=F)

summary.polymars(model.polymars)

in.sample <- predict.polymars(model.polymars, newdata=data, type="response")

plot(time, response, type="n", main="POLYMARS - Spread")

lines(time, response, type="h", col=10)

lines(time, in.sample)

# POLYMARS Model 2 - Linear Combination:

predictors12 <- cbind(predictor1, predictor2)

model.polymars <- polymars(responses=response, predictors=predictors12, classify=F)

summary.polymars(model.polymars)

in.sample <- predict.polymars(model.polymars, newdata=data, type="response")

plot(time, response, type="n", main="POLYMARS - Linear Combination")

lines(time, response, type="h", col=10)

lines(time, in.sample)

2Note, that a formula input for the response and predictors is not available.
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2.3.5 Case Study: Technical Analysis of Stock Markets

Studies on trading financial market instruments, called among traders “Technical Analysis” are
in most cases based on daily data records providing Open, High, Low, and Close Prices, and
sometimes also Volume and Open Interest from the Futures Markets. Such investigations can
be found in most of the many trading books usually written by “Market Gurus”. The simple
approach presented in these books takes the signals from trading indicators to buy and sell in-
struments. Other investigations, inspired by “academic traders” use more elaborate approaches,
where neural networks are the most popular ones. In these investigations the trading indicators
are used as predictor variables for the input units of a connectionist network, and the output
unit represents a value supporting the buy or sell decision.

As a typical publication in this field we cite the paper Using AI in Developing Market Predictions:
A Study of the Pacific Basin Capital Markets written by C.C. Yang, S.T. Chou, W.H.Chu, F.Lai
(1995). The authors focus on the stock markets in Hong Kong, Taiwan, and Japan in the Years
1992 and 1993 and use a neural network model to derive trading decision rules. Predictors
are formed from retrospective features of the stock markets and the predictive trend is used
as response. Before we further specify their investigation we make an excursion to learn more
about technical trading indicators.

Trading Indicators

Technical Analysis is based on information obtained from trading indicators derived from market
data records. The purpose of charting this information as function of time is to identify “price
trends” and nontrending periods as they begin to develop and to make trading decisions based
on this kind of information.

VOL - Trading Volume

Volume is defined as the number of units traded during a time period. This number is significant in
that it supports a prevailing price trend. Volume should expand in the direction of a major trend.
If the trend is up, the volume should increase as buying pressure exceeds selling pressure. As prices
are accepted and level off, there will also be a levelling in volume. The same would be true if prices
fall. Volume will expand, representing a major change in the trend.

ROC - The Momentum or Rate of Change

Momentum measures the price’s ”rate of change”. The momentum is measured by calculating price
differences over a predefined time period. As these prices oscillate around zero, they measure the
rates of ascent or descent of an instrument. If prices are rising and the momentum line is above the
zero line and rising, the current up-trend is accelerating. In an upward trend, if the momentum line
begins to flatten out, current advances are the same as the advances achieved n number of periods
(days) ago. If the momentum line begins to drop toward the zero line, this would indicate that the
upward trend is still in existence but is losing momentum. When the momentum line moves below
the zero line, the latest close is below the close from the number of periods one has specified. A
downward trend is now in effect. Momentum can be used as a leading indicator to reveal the reversal
of a trend. The momentum line shows this advance or decline and levels off while the trend is still
in effect. Then it begins to move in the opposite direction as prices begin to level off. Many traders
use the zero line to indicate buy and sell signals. When the momentum indicator is above the zero
line a buy signal is indicated and when it’s below the line is a sell signal is indicated. However, buy
positions should only be taken when the momentum goes above zero if the overall market trend is
up. Sell positions should be taken only when momentum goes below zero if the overall price trend
is down.
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EMA - Exponential Moving Averages

The moving average is a way of calculating the average price of an instrument over a given time
period. As prices change over time, the average price reflects the change, but at a slower pace. The
moving average is used as an indicator to identify changes in trends. The moving average compares
the current price to the moving average price. If the current price moves above the moving average,
expectations are higher than the average of the last n number of periods (days). This would indicate
a buy signal. If the current price moves below the moving average, the current expectations are
lower than the last n number of days. This would indicate a sell signal. The moving average was
designed to inform the trader of an instrument’s price trend, not to determine the top or bottom
. Since the moving average indicates a trend, a trader would be buying or selling shortly after the
current price goes through the moving average. Finding the right number of periods on which to
base the moving average is critical in determining it’s predictability. This time period should fit
the trading cycle the trader follows. For example, a long-term trader using day charts would use a
different time period than a short-term trader who uses minute or tick charts.

RSI - Relative Strength Index

The relative strength index is used by the traders to demonstrate the inner strength of a price
trend. This indicator is also used with futures spread trading to track the spread between nearby
and distant contract months. Whether or not a trader does spread trading, by tracking the RSI one
can often see which way the market is going, as well as its strength or weakness. Relative Strength
is calculated by averaging up and down closes over a given period of time. The result indicates how
much strength is left in a trend. It is plotted on a scale of 0 to 100% (or equivalently between 0
and 1, sometimes the indicator is shifted to get around zero). When the RSI tops above 70%, it
indicates the instrument is “overbought”. When it bottoms below 30%, it indicates the instrument is
“oversold”. These RSI tops and bottoms will usually be formed before the underlying price indicates
the same. The number of periods (days) used to measure this index will be determined after some
experimentation. This number was originally recommended as 14 periods. Some analysts also use
9 or 25. Usually, the faster the instrument moves, the smaller the numbers.

MACD - Moving Average Convergence/Divergence

The MACD displays the relationship between two moving averages of prices. A 26-period exponential
moving average is subtracted from a 12-period exponential moving average. Then a 9-period moving
average of the MACD is plotted on top of the MACD. This is considered the “signal line”, which
predicts the crossing (convergence) of the two moving averages. The results are plotted around
a zero line. When the MACD crosses above its signal line, a buy signal is indicated. When the
MACD crosses below the signal line, a sell signal is indicated. The 26, 12 and 9 periods represent a
long-term trading instrument. There are two other ways to use the MACD: – (1) When the MACD
crosses above zero, the trend is up. When the MACD crosses below zero, the trend is down. (2))
When the MACD is making new lows while prices fail to reach new lows or when the MACD is
making new highs and the prices fail to reach new highs a divergence occurs. – MACD is a good
study for verifying what prices are doing during a long trend. During a shorter trend, the MACD
may not be as reliable.

%K and %D - The Stochastic Oscillator

The Stochastic Oscillator compares a security’s closing price to its price range over a specific period
of time. The Stochastic Oscillator is displayed as two lines. The main line called %K and the second
line %D which is an exponentially smoothed %K. The %D line renders the buy/sell signals. The
result is measured as a percentage and plotted on a scale between 0 and 100%. A result above 70%,
a high value of %K, would put the price near the top of the total price range. A result below 30%,
a low %K, would put the price near the bottom of the total price range. Ways to use the Stochastic
Oscillator: – (1) A Buy is indicated when the %K or %D falls below a specified level, typically
30%, and then rises above that level. A Sell is indicated when the line rises above a specified level,
typically 70%, and then goes below that level. (2) A Buy is indicated when the %K line rises above
the %D line. A sell is indicated when the %K line falls below the %D line. (3) When prices are
making new highs and the Stochastic does not exceed its previous highs a divergence occurs, often
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indicating a change in the current trend. – The buy/sell signals are triggered when the s%K line
crosses the %D line after the %D line has changed direction. At the bottom, the buy signal is
generated. At the top, the sell signal is generated. If the Stochastic oscillator is used with intraday
charts, some traders suggest charting a weekly Stochastic to check the overall long-term trend on
the instrument.

%R - Percent Retracement

%R measures the latest price of an instrument in relation to its price range over a given number of
periods. The %R value is plotted on a scale of 0 to -100. This study is similar to the Stochastic,
however the scale is reversed. %R values of greater than -20% indicate overbought, and values
smaller than -80% indicate oversold. The concepts for interpreting %R is testing the presence of
a divergence in the overbought or oversold areas. The suggested time periods are 5, 10, and 20
periods, all based on 1/4, 1/2, or the entire monthly trading cycle. It is not unusual to see an
overbought or oversold indication for a long period of time. Then the traders wait for the price to
turn up or down before buying or selling or they find themselves in or out of the instrument long
before it’s price actually moves in the opposite direction.

DMI, ADX, and Directional Indicators

The Directional Movement Index, DMI, provides, on a scale of 0 to 100, an indication of how much
movement is present in an instrument, that is, whether the instrument is trending or not. The
Average Directional Movement Index, ADX, does the same thing. However, it shows a (smoothed)
moving average of the DMI. The higher the ADX, the more the instrument is trending. If an
instrument is trending, it becomes a good candidate for trend-following studies. The ADX can also
be used to compare several instruments to decide which is trending and which is non-trending, so
the trader can take action based on this information. Directional Indicators give buy and sell signals
based on upward or downward movement: – (1) The +DI measures positive (or upward) movement.
(2) The -DI measures negative (or downward) movement. – A buy signal is indicated when the +DI
line crosses over the -DI line. A sell signal is indicated when the -DI line crosses over the +DI line.
It should be noted that the buy or sell signals are best taken when the ADX is also indicating a
trend.

We have added to the fSeries Library a series of trading indicators commonly used in technical
analysis. In the following example we list these functions, from which we can easily derive the
mathematical formula for the trading indicators. Feel free to add further indicators.

Example: Trading Indicators

The following S-plus functions are part of the fSeries Library. The trading indicators are functions
of Prices Prices X (as O Open, H High, L Low, C Close), and V trading volume. These functions can be
grouped in four major categories. Utility Functions: EMA Exponential Moving Average, BIAS Bias,
ROC Rate of Change, OSC EMA-Oscillator. Oscillators: MOM Momentum, MACD MACD, CDS MACD
Signal Line, CDO MACD Oscillator, VOHL High/Low Volatility, VOR Volatility Ratio. Stochastics
Indicators: FPK Fast %K, FPD Fast %D, SPD Slow %D, APD Averaged %D, WPR Williams %R, RSI
Relative Strength Index. Directional Movement Indicators: DMP Plus Directional Movement, DMM
Minus Directional Movement, DMX Directional Movement ADX Average Directional Movement.

### UTILITY FUNCTIONS: ####

"ema" <- function(x, lambda, startup=0){

# EXPONENTIAL MOVING AVERAGE:

# EMA(n) = lambda*X(n) + (1-lambda) * EMA(n-1); lambda = 2 / ( n+1)

if (lambda >= 1) lambda <- 2/(lambda+1)

if (startup == 0) startup <- floor(2/lambda)

if (lambda == 0){ xema <- rep (mean(x),length(x))}

if (lambda > 0){ xlam <- x * lambda

81



xlam[1] <- mean(x[1:startup])

xema <- filter(xlam, filter=(1-lambda), method="rec")}

xema }

"bias" <- function(x, lag) {

# BIAS: (X - EMA) / EMA

xema <- ema(x, lag); (x - xema)/xema }

"roc" <- function(x, lag){

# RATE OF CHANGE INDICATOR: ROC: (X(n) - X(n-k) ) / X(n)

c(rep(0,times=lag),diff(x, lag=lag)) / x }

"osc" <- function(x, lag1, lag2) {

# EMA OSCILLATOR INDICATOR: (EMA_LONG - EMA_SHORT) / EMA_SHORT

xema1 <- ema(x, lag1); xema2 <- ema(x, lag2)

(xema1 - xema2)/xema2}

### OSCILLATORS: ###

"mom" <- function(x, lag) {

# MOMENTUM INDICATOR: MOM: X(n) - X(n-lag)

c(rep(0,times=lag),diff(x,lag=lag)) }

"macd" <- function(x, lag1, lag2) {

# MA CONVERGENCE DIVERGENCE INDICATOR: MCD: (EMA_LONG - EMA_SHORT)

ema(x, lag1) - ema(x, lag2) }

"cds" <- function(x, lag1, lag2, lag3) {

# MACD SIGNAL LINE INDICATOR: SIG: EMA(MCD)

ema(macd(x,lag1,lag2), lag3) }

"cdo" <- function(x, lag1, lag2, lag3) {

# MACD OSCILLATOR INDICATOR: CDO: MACD - SIG

macd(x, lag1, lag2) - cds(x, lag1, lag2, lag3)}

"vohl" <- function(high, low) {

# HIGH LOW VOLATILITY: VOHL: high - low

high - low }

"vor" <- function(high, low){

# VOLATILITY RATIO: VOR: (high-low)/low

(high - low) / low }

### STOCHASTICS OSCILLATORS: ###

"fpk" <- function(close, high, low, lag) {

# FAST %K INDICATOR:

minlag <- function(x, lag) { xm <- x

for (i in 1:lag){

x1 <- c(x[1],x[1:(length(x)-1)])

xm <- pmin(xm,x1); x <- x1}

xm}

maxlag <- function(x, lag) { xm <- x

for (i in 1:lag){

x1 <- c(x[1],x[1:(length(x)-1)])

xm <- pmax(xm,x1); x <- x1}

xm}

xmin <- minlag(low, lag)

xmax <- maxlag(high, lag)

(close - xmin ) / (xmax -xmin) }

"fpd" <- function(close, high, low, lag1, lag2) {

# FAST %D INDICATOR: EMA OF FAST %K

ema(fpk(close, high, low, lag1), lag2) }

"spd" <- function(close, high, low, lag1, lag2, lag3) {

# SLOW %D INDICATOR: EMA OF FAST %D

ema(fpd(close, high, low, lag1, lag2), lag3) }

"apd" <- function(close, high, low, lag1, lag2, lag3, lag4) {
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# AVERAGED %D INDICATOR: EMA OF SLOW %D

ema(spd(close, high, low, lag1, lag2, lag3), lag4) }

"wpr" <- function(close, high, low, lag) {

# WILLIAMS %R INDICATOR:

minlag <- function(x, lag){ xm <- x

for (i in 1:lag){

x1 <- c(x[1],x[1:(length(x)-1)])

xm <- pmin(xm,x1); x <- x1}

xm}

maxlag <- function(x, lag) { xm <- x

for (i in 1:lag){

x1 <- c(x[1],x[1:(length(x)-1)])

xm <- pmax(xm,x1); x <- x1}

xm}

xmin <- minlag(low, lag)

xmax <- maxlag(high, lag)

(close - xmin ) / (xmax -xmin) }

"rsi" <- function(close, lag) {

# RSI - RELATIVE STRENGTH INDEX INDICATOR:

sumlag <- function(x, lag) { xs <- x

for (i in 1:lag){

x1 <- c(x[1],x[1:(length(x)-1)])

xs <- xs + x1; x <- x1}

xs}

close1 <- c(close[1],close[1:(length(close)-1)])

x <- abs(close - close1); x[close<close1] <- 0

rsi <- sumlag(x,lag)/sumlag (abs(close-close1),lag)

rsi[1] <- rsi[2]

rsi }

The investigation of C.C. Yang et al. (1995) makes use of eleven technical indicators, chosen a
priori by analysis as inputs for a 11-7-1 connectionist network. Four basic indicators, ema, bias,
osc, and roc are used as atomic operations to generate the eleven predictors X(i)

t . The precise
definition of these indicators is given in the following exercise. The response Yt or output of the
system is to reveal the trend of the stock market and to enable us to build a prediction model for
assisting in making trading decisions, i.e. the trend of the price movement in the next trading
days. Here are the rules:

• If Yt−1 > lower threshold of SELL and Yt > upper threshold of SELL then SELL one unit,

• if Yt−1 < upper threshold of BUY and Yt > lower threshold of BUY then BUY one unit,

• otherwise HOLD.

with the following two constraints:

• If there have been two consecutive SELLs and the closing PRICE is still increasing then HOLD until there
is a significant withdrawal in the PRICE (e.g. 10%),

• if there have been two consecutive BUYs and the closing PRICE is still decreasing then HOLD until there
is a significant return in the PRICE (e.g. 10%).

The upper and lower thresholds for the SELL signal were set to 0.9 and 0.6, respectively, whereas
those for the BUY signal were set to 0.1 and 0.4. The combination of the upper and lower
thresholds enables the system to smooth and those unwanted noisy surges.
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Exercise: Trading the Pacific Basin Capital Markets

The predictors and the response in the notation of C.C. Yang et al. are

• X1 = K12
n

• X2 = K12
n −D12

n

• X3 = RSI6
n

• X4 = RSI6
n −RSI12

n

• X5 = MA3(FR6)

• X6 = OSC3,10(FR6)

• X7 = V A6(MA3(RSI6
n))

• X8 = V A6(MA3(RSI6
n))− V A6(MA3(RSI12

n ))

• X9 = OSC3,6(Cn)

• X10 = BIAS10(Cn)

• X11 = BIAS10(Vn)

• Y = FKj,k
n

where K is defined by the function fpk(), D by fpd(), RSI by rsi(), MA by ema(), OSC by
osc(), and BIAS by bias(). Additionally FR is defined by

FRn =
Hn − Ln

Cn−1
,

and VA by

V An = V An−1 +
2Cn − Ln −Hn

Hn − Ln
Vn .

The predictive trend FK is calculated as

FKj,k
n =

Cn+1 −MINn+1+k
i=n+1+k(Ci)

MAXn+1+k
i=n+1+k(Ci)−MINn+1+k

i=n+1+k(Ci)
,

where as usual C, H, L, and V are Close, High, Low, and Volume, respectively.

The fSeries Library provides data for the Hang Seng (Hong Kong), TSE (Taiwan), and Nikkei
(Japan) Index. For missing data (beside for Saturday and Sundays) add the price and volume data
from the previous business day. Thus a trading decision for those missing days does not add to a
positive or negative return. Then calculate the 11 predictors X and the response Y . Perform the
investigation in form of a moving window on a training set of 1 year or 250 business days, and a
forecasting set of approximately 1 month, i.e. 20 days. Produce charts for the index, the returns,
the volume, and the trading indicators over the whole set of data. Then we explore for the returns
the basic statistical properties moving along the data set. Finally simulate the trading results.

Notes and Comments

Linear and Generalized Linear Models: There are several statistical textbooks around concerned
with the LM and GLM approach. These include for example the books of McCullagh and
Nelder, Generalized Linear Models, (1989), and Dobson, An Introduction To Generalized Linear
Models, (1990). Beside these textbooks several tutorials are available on the Internet. We
followed partly the course material written by Rodriguez, Linear Models for Continuous Data
(Chapter 2), and Generalized Linear Model Theory (Appendix B), (2001). Regression models
with discrete variables are described in the lecture notes of Fox, Logit and Probit Models, (2001).
A very helpful source describing both the theoretical aspects of Linear Modelling and the Splus
software is Venables’ and Ripley’s (2001) book Modern Applied Statistics with S, Chapter 7 on
Generalized Linear Models.
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Additive and Generalized Additive Models: GAMs are described in the textbook Generalized
Additive Models written by Hastie and Tibshiranie (1995). The section presented here on GAM’s
is mainly based on Chapter 2 and Appendix B of the lecture notes of N.N. (2001) and publications
of the SAS Institute, ... ().

Projection Pursuit and Generalized Projection Pursuit Regression: This section followed the
review article of Klinke and Grassmann (1998). What follows is a list of further references taken
from this review: The idea of “Projection Pursuit” has been introduced by Kruskal (1969; 1972)
for exploratory data analysis. The approach has been successfully implemented for exploratory
purposes by many authors, e.g. Friedman and Tukey (1974), Jee (1985), Huber (1985), Jones
and Sibson (1987), Friedman (1987), Hall (1989), Cook and Cabrera (1992), Cook, Buja and
Cabrera (1993), Posse (1995), and Nason (1995). The idea has been applied to location and
symmetry estimation by Blough (1989) and by Maller (1989), to density estimation by Friedman,
Stuetzle and Schroeder (1984), by Chen (1987), Rejtö and Walter (1990, 1992), to classification
by Friedman and Stuetzle (1981a) by Portier, Dippon and Hetrick, (1987), by Flick, Jones, Priest
and Herman (1990), and to discriminant analysis by Posse (1992), by Ahn and Rhee (1992), and
by Polzehl (1995). Good references about projection pursuit are Jones and Sibson (1987) and
Huber (1985). Generalized Projection Pursuit Regression, GPPR, is a natural extension of PPR
to exponential family distributions. For further information we refer to the paper Generalized
Projection Pursuit Regression, written by Lingjaerde and Liestol (1998) and to the paper Logic
Response Projection Pursuit written by Roosen and Hastie (2000).

Multivariate Adaptive Regression Splines: The material presented for the MARS methodology
was taken from Jerome Friedman’s paper Multivariate Adaptive Regression splines and the
material about Polymars was taken from a series of publications written by Kooperberg, Stone
and coworkers. Other references to the Mars methodology include the papers ...

Other Regression Models: Note, that the models fitted by GAM and PPR are examples of non-
parametric regression. S-PLUS includes other functions for performing nonparametric regres-
sion, including the ace() function, which implements a technique for nonparametric regression,
alternating conditional expectations, or avas(), additive and variance stabilizing transforma-
tions. For details concerned with these approaches we refer to Chapter 8, More on Nonparamet-
ric Regression of the Splus Guide to Statistics (1999).
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2.4 Neural Networks: Feedforward Connectionist Networks

Introduction

Neural Networks have attracted during the last years so many attention, especially in the finance
community, so that we devote an extra section to this issue.

Inspired more from biological aspects than statistical concepts neural networks were becoming
probably one of the most prominent tools for parametric non-linear time series analysis and
forecasting. Its close relationship to regression analysis allows to use the networks for the
analysis and forecasts of financial markets. The research literature is huge on these topics and
today the basic material is also available in many textbooks about neural networks.

In the following we concentrate on the neural network approach developed in the context of
modelling economic and financial market data in the 90ties. We introduce neural networks of
the “feedforward connectionist network” and present some efficient modelling schemes to make
the networks available for forecasting and trading purposes.

2.4.1 Regression by Neural Networks

Neural networks of the “feedforward” type represent a certain class of nonlinear functions f :
Rm → Rn. For time series analysis the output space is usually one-dimensional (n = 1). We
specify the network to read

x̂t = f(xt−1, . . . , xt−I) = w0 +
H∑

l=1

wl tanh

(
al0 +

I∑
k=1

alkxt−k

)
. (2.121)

Here we have written I for “input” and introduced another net parameter H for “hidden”.
This equation defines a “single hidden layer feedforward connectionist network”. Figure 2.3.1
shows a sketch of such a network (I = 3, H = 3) together with a prototype node. The value
of the function is denoted by x̂t, to note that the output is an “estimate” of the time series
at time t based on the I immediately preceding values. Thus the net can serve to model the
process xt = f(xt−1, . . . , xt−I) + εt. The term “feedforward” characterizes the structure of the
net determined by the connections.

However, the network is not restricted to the form as written in equation 2.121. It can be used
in a much broader sense
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� Figure 2.5.1 Prototype node and connectionist network configuration for the purpose of time series analysis.
The node computes a weighted (wi) sum of the input values (xi), adds a threshold constant (w0) and applies the
transfer function (g() (linear, tanh() or another choice). The output of the node os therefore g(w0 + Σwixi). The
bottom figure shows a “single hidden layer feedforward connectionist network” with three units in the input and
hidden layer. The output layer consists of one node only. The shading denotes nonlinear transfer functions. The
empty nodes apply the identity as transfer function. This is a graphical representation of equation 2.121 with
I = 3 and H = 3. Source: deGroot, (1993)

Yt = f(Xt−1, . . . ,Xt−I) = w0 +
H∑

l=1

wl tanh

(
al0 +

I∑
k=1

alkXt−k

)
, (2.122)

where we perform a regression type analysis of predictors X against one or more response values
Y.

There is an input layer with I nodes, a hidden layer with H nodes and an output layer with
(usually) a single node. Nodes are computing elements of these nets, each has several input
connections and one connection for the output. Another term for nodes is “units”. The output
is computed based on the “activity” of the node by applying the node’s transfer function g. In
our networks, the input and output layer consist of nodes with g(x) = x, while the nodes of
the hidden layer show nonlinear transfer characteristics, e.g. modelled by g(x) = tanh (x). The
activity y of each node is computed via a weighted (wi) sum of its inputs (xi) and an additive
threshold (w0) to be y = w0 +

∑
iwixi. All wi and thresholds of a net are called weights for

simplicity. Therefore in equation (2.121) the weights are the elements of {w0, wl, al0, alk}, l =
1, . . . ,H; k = 1, . . . , I. There are two types of parameters in equation (2.121). The first type
determines the network topology (I,H), while the other type fixes the mapping (weights). In
other words: Of all smooth mappings f : RI → R, equation (2.121) defines a subclass, which is a
certain “feedforward artificial neural network with one hidden layer”. This subclass of mappings
is “parameterized”. Fixing the number of units in the hidden layer means further reduction of
the subclass of functions. Specification of weights selects one of the elements of the reduced
subclass.

In what sense does the network implement a function approximator?

A complete specification of net topology and weights fixes the mapping realized by the network.
The approximative nature of this mapping is defined with reference to a “desired” mapping. In
artificial neural network applications this mapping is known only for a set of values (“examples”),
a closed form is unknown. Specifically, there is a set of input values {xp}1≤p≤P , xp ∈ RI (called
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“input patterns”) and for each of these there is a corresponding “desired” (or “target”) pattern
zp, p = 1, . . . , P . Patterns come in pairs (xp, zp). The approximation realized by the network is
expressed by means of an “error functional” E which takes all patterns into account:

E =
1
2

P∑
p=1

(f(xp)− zp)
2 (2.123)

This error functional has to be minimized, i.e. the “desired” mapping is approximated by
the network on the basis of the “examples”. The functional value f(xp) computed by the
network, when pattern xp is “presented” at its inputs, is usually called “obtained” pattern. The
process of estimating network parameters (weights) with respect to this error functional raises
a nonlinear optimization problem. Solving this iteratively is called “learning”, the algorithm is
called “learning algorithm”. The most widely used algorithm is “backpropagator” as described
in Rumelhart and McClelland (1986).
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2.4.2 Time Series Analysis With CNAR Models

For a successful time series analysis approach with connectionist networks several aspects have
to be considered. They include usually a process of preprocessing the data, a scheme to select
pattern, an initialization process for the network parameters, the estimation of the network
parameters itself together with a monitoring process, diagnostic tools, and forecasting tools
together with a combination approach of individual networks.

Neural Networks and Dynamical Systems Analysis

Neural networks can be utilized for dynamical systems analysis. Consider a nonlinear dynamical
system evolving in a space of small dimension m. The time evolution of the system is described
in continuous time by

ẋ(t) = Fµ (x(t)) , x ∈ Rm. (2.124)

The set of coordinates describing the system is denoted by x, Fµ determines the nonlinear time
evolution of coordinates, µ serves as (experimental) control parameter. In discrete time, the
evolution can be formulated to read

x(n+ 1) = fµ (x(n)) , n ∈ N. (2.125)

In the last two decades those dynamical systems have extensively been investigated which show
a regular behavior for small values of the control parameter, but whose trajectories become more
and more complicated as µ is increased. Special attention has been paid to dissipative systems
exhibiting “chaos”. A linear analysis models the behavior of the system by introducing modes
(e.g. independent oscillators). Increasing µ leads to an increased number of excited modes:
the more excited modes, the more complex the (dissipative) system. In this interpretation a
continuous power spectrum of the dynamical system indicates an infinite number of excited
modes. Introduction of nonlinear dynamics allows a different interpretation of such a spectrum:
The spectrum may be generated by a system evolving nonlinearly in finite dimensions. In
the nonlinear context the linear dimension concept of “number of excited modes” has to be
replaced by new concepts like “number of non-negative characteristic exponents” or “information
dimension”. For a detailed introduction to dynamical systems analysis we refer to Eckmann and
Ruelle (1985).

For the task of reconstructing the dynamics from an experimental signal of the system it is
customary to use time delays. A m-dimensional signal x(t) from scalar measurements u(t) is
obtained by choosing different delays T1 = 0, T2, . . . , TN and writing xk(t) = u(t + Tk). In this
manner a N -dimensional signal is generated. This results in a projection of the trajectories
of the system in N dimensions. Depending on the choice of variable u and in particular on
the time delays, the projection will look different. These choices for the reconstruction of a
dynamical system have to be made carefully. An important observation in this context needs to
be discussed briefly. Measurements on a physical system supply information of limited precision
due to a number of independent effects. First of all the setup of an experimental situation
may be hard to reproduce with the required degree of accuracy. This is important for systems
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with sensitive dependence of their time evolution on initial parameters. Furthermore there are
measurement errors. These limit the information as well.

There are a number of properties of neural networks which make them attractive for an applica-
tion in the context of reconstructing dynamical systems. Since the data to construct the model
from is a time series, patterns can be formed in the same way as using time delays. A pattern
is formed from the time series {xt} by specifying a “grouping scheme” τ1, . . . , τI with respect to
a certain time index t. The input pattern then reads (xt−τ1 , . . . , xt−τI ), the desired output will
be xt for example. Since the transfer function of the units in the hidden layer is a hyperbolic
tangent, there is nonlinearity in the network which may allow to approximate complicated time
series, even with chaotic behavior. The ability of networks to deal with data corrupted by noise,
is an interesting feature. This might enable the network to extract the correct dynamical model
from noise corrupted measurements of limited precision. Another feature of neural network is
their adaptiveness. Since the model parameters are determined via an optimization procedure,
the mapping is not completely determined by the net topology. For example, if some of the
connections are reduced to zero, the mapping may change its overall characteristics. Another
motivation for applying neural networks to reconstruction tasks are theoretical results showing
that these networks are universal function approximators, Cybenko (1988), Funahashi (1989),
Hornik, Stinchcombe and White (1989). In other words, our networks are capable of arbitrarily
accurate approximation to any real-valued continuous function over a compact set.

With respect to the problem of reconstructing dynamical systems, Lapedes and Farber (1987)
were among the first researchers to perform an empirical study. They explored the ability of
neural networks on nonlinear signal processing tasks. One of their examples was the logistic
map xt+1 = µxt(1−xt). This map shows many of the properties described above for dynamical
systems. Here, µ serves as control parameter. For µ greater than a certain constant (µc ≈ 3.5699)
the system shows chaotic behavior for almost all choices of µ. This results in a continuous and
flat power spectrum, although the system is one-dimensional and deterministic. Lapedes’ and
Farber’s goal was to adjust the weights in a network, enabling a prediction of the next point xt+1

in this chaotic series (µ = 4.0) given the present point xt. The network structure of their
investigations was specified with one input, five hidden, and one output units. The input and
output units had a linear transfer function, while the five hidden units were assigned sigmoid
ones g(x) = 1/2 (1 + tanh (x)). Lapedes and Farber also provided a direct connection from the
input node to the output node. They initialized the network with small random weights and then
“trained” the system with backpropagation on a sample of 1000 pairs (xt, xt+ 1). Prediction
was performed on 500 different pairs with a normalized root mean square error of 1.4 · 10−4.
They also tested the approximation by iterating predictions (“prediction on predicted values”),
i.e. the output of the net from the previous step serves as the net’s input in the next step.
This worked well for a number of iterates. This early work of Lapedes and Farber had a strong
resonance among physicists working in the field of nonlinear systems and chaotic time series.
Casdagli (1989) published a comparison of different methods on the problem of constructing a
“predictive model directly from time series data” [Cas89]. In this paper Casdagli summarized
some algorithms developed for this task and compared their abilities by applying them to a
choice of chaotic time series. Among the conclusions of this comparison was a “superiority” of
the neural network technique. Casdagli also explicitly mentioned the close relationship between
reconstruction tasks and statistical time series analysis.
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Data Preprocessing

In the preprocessing of data we consider two aspects: 1) Standardization of pattern and 2) the
proper selection of predictors.

Pattern Standardization

There are a number of “shifting” and “scaling” operations reported in the literature. When the
network has a linear output node, the estimated value is not restricted to a fixed interval. In
principle there is no need for scaling, and the network is able to model a wide range of values.
In order to handle data from a variety of sources we perform data standardization known from
statistics to our data: At each input node k the mean 〈xt−k〉 and the standard deviation σxt−k

of all N input patterns are computed:

〈xt−k〉 =
1
N

∑
p

x
(p)
t−k,

σxt−k
=

1
N − 1

(
∑

p

(x(p)
t−k − 〈xt−k〉)2)1/2.

Then the value x(p)
t−k of the p -th pattern at this node transforms into

x̃
(p)
t−k =

(x(p)
t−k − 〈xt−k〉)
σxt−k

. (2.126)

Standardization scales the data to a common numerical range, which proves especially useful in
multivariate analysis.

Indicator Selection

Another important step of data preprocessing is the identification of input variables. In uni-
variate modelling this means specification of time lags; however, multivariate modelling requires
identification of relevant predictors. In the univariate case one can compute the partial autocor-
relation function, PACF, to get some hints on significant lags. Multivariate modelling is more
difficult than univariate. Usually, there exist a large number of potential predictors as possible
input variables for a network. A quite common approach for the search on predictors is based
on plausibility considerations. Another approach is based on statistical tests. Each selected
predictor value is paired with the response value. The tests then evaluate the significance level
of “correlations” among data. The outcome of the test procedures leads to an ordering of the
time series with respect to their forecast quality.

Pattern Selection

Random selection of validation examples for the optimization is reported about in the literature.
Authors make use of the validation set to decide when to stop optimization, i.e. the value of the
performance criterion is followed for both sets during learning epochs. In order to eliminate the
random nature of the decision, which pattern to assign to which set, we need an interpretation
of the validation idea. After that we need a deterministic algorithm based on this idea. This
raises the question of how reliable the net estimates are in regions where no training patterns
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are available. If any of the validation patterns are close to training patterns and if we choose the
correct model, then the residuals of the estimated values and the validation patterns must be
similar to those of the training set. Such a smooth mapping is desired in order to keep the risk of
overfitting small. “Similar” is meant with respect to the mean and the variance of the training
residuals. If, however, the validation patterns are far away from patterns in the training set,
nothing particular can be said. What does “close” and “far” mean? These terms are meaningful,
if they are related to the density of training patterns. This density is determined on the input
patterns in RI if there are I input units. It would also be advantageous to incorporate the
density of patterns into the performance measure. The current formulation of the performance
measure favors accurate modelling where patterns are dense, while other less dense regions can
be approximated with less accuracy. However, if we wish to model phase space trajectories,
we have to model seldomly visited points as accurately as often visited ones, which could be
achieved by the introduction of weights for the patterns. Patterns which belong to high-density
regions have a small weight, patterns in sparse regions carry a larger weight. The performance
criterion would then read

EW =
1
2

∑
pWp(x̂p − xp)2∑

pWp
, (2.127)

where Wp denotes the weight of pattern p. The question then arises how to determine these
weights in a meaningful and non-arbitrary way.

deGroot and Würtz (1991) proposed a clustering algorithm for both tasks, the selection of
training/validation patterns and weight assignment. Here, “clusters” are defined as in the k-
means problem described by Hartigan and Wong (1979). The cluster centers are identified as
“representative patterns” for a certain region. The number of patterns per cluster represents
the density of patterns in that region. If there are N patterns available in total and we decide
the training set to be of size T , then there are N − T patterns in the validation set. We
run a clustering algorithm to find T clusters, with the conditions that the cluster centers are
patterns and the totaled sum of the variances in the clusters is as small as possible. If a cluster
has exactly two members we randomly select one of them to be the center. Distances in the
clustering process are Euclidean. Only input coordinates are considered when computing the
distances. The reason for this latter requirement is that the similarity criterion must exclude the
target value, because the target value is believed to be the true value plus an error. Therefore, if
the inputs coincide but the target values of two patterns differ, this discrepancy is solely due to
the error term. After the clustering we transfer the cluster centers to the training set, while the
other patterns are transferred to the validation set. The validation patterns get a “weight”. This
is the inverse of the cardinality of validation patterns belonging to the same cluster. Example:
If there are six validation patterns in a cluster, then each of them gets a weight of 1/6.

The cluster algorithm operates in a deterministic manner. Initially each pattern belongs to a
cluster of its own. Then the closest two patterns are joined into one cluster. After that the
distance matrix is updated with respect to the new cluster center. Then again the two nearest
clusters are joined and so on. Each joining operation reduces the number of clusters by one.
However, for a good solution we need an algorithmic step which transfers single patterns from one
cluster to another, if that reduces the total variance. For this reason after each joining operation
the patterns are checked whether they can be transferred to another cluster with a reduction of
variance. The algorithm terminates if the number of clusters equals T . This procedure works
well. However, the problem how to determine the appropriate number of training patterns needs
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to be solved. A large number of training patterns leads to small clusters. As soon as there is
only one member in the final cluster, there is no validation value. On the other hand, we would
like both sets to be similar to each other with respect to the monitored values described below.
This requires T not to be chosen too large.

Initialization of Network Parameters

If we insert the approximation tanh (x) ≈ x into equation 2.121 we get

̂̃xt =

(
w0 +

H∑
l=1

wlal0

)
+

I∑
k=1

(
H∑

l=1

wlalk

)
x̃t−k. (2.128)

This approximation holds for small arguments of the hyperbolic tangent. In equation 2.128
we have rearranged the terms of the sum in order to obtain similarity with the notation in
equation (2.5). In this limiting case the network behaves like an AR-model of order I. The con-
ditions for the “degree” of the AR behavior are specified by the activities in the hidden layer.
The dynamics of these activities is governed by an inner product of patterns and weights: The
activity y of node l is computed as yl = al0 +

∑
k alkx̃t−k, where a denotes constants. We discuss

the role of the weights first. If the weights at a specific hidden node are small, then that node
has essentially a linear transfer characteristic. From this observation we draw a first conclusion.
Our connectionist approach, which is “justified” by its nonlinearity, includes the potential to
operate like a linear network, i.e. in our context a linear time series model. What does the
word “potential” mean in this sentence? We have to keep in mind that the final model will be
a result of a nonlinear optimization procedure. Thus, if the optimization algorithm converges
with small weights at the hidden layer, then the linear potential of the network was realized by
the optimization process. The key to our connectionist methodology lies in proceeding in the
reverse direction. If we initialize the network with small weights at each hidden unit, then we
know that we have an approximately linear model. Starting from this linear initialization the
optimization algorithm will then be able to increase the activities at the hidden units, thereby
enlarging the arguments of the hyperbolic tangent, i.e. increasing the nonlinearity of the time
series model. So far we have neglected the contributions of the patterns to the activities of the
hidden nodes. If we compute the weights in our initialization procedure we have to make sure
that the patterns do not destroy the validity of our linear approximation. Here we benefit from
our standardization of input variables, because this procedure essentially confines the numerical
values of the input patterns to a range of approximately ±3.

Hidden Layer Initialization - PCA

Our goal is now to create an initial linear model such that equation 2.128 is a valid approximation
to the nonlinear equation. The simplest realization would be an initialization of the parameters
with small random numbers. We will compute instead a full linear model as the initial guess of
the parameters, because this provides additional knowledge about the model properties which
turns out to be useful. Since there are more parameters in the connectionist network than in
the AR-model, we need more equations. From equation (2.1) we deduce that each hidden unit
performs a projection of the input pattern vector on an axis given by the weights at that node.
Now suppose the data to be presented to the network show internal dependencies (e.g. linear
correlations). This may be the case for univariate as well as multivariate data. If we wish to

93



process “informative” data only, we have to consider these dependencies. In order to take linear
correlations among our input data explicitly into account, we write the input X to the net as a
linear combination of some input data vectors Yk:

X = α1Y1 + α2Y2 + · · ·+ αIYI . (2.129)

Now Y1 is supposed to incorporate as much information of the inputs as possible: Y1 may also
be written as a linear combination of the x̃t−k. In this context “information” should be read as
“maximum variance”. If we project the data onto the axis Y1, the squared sum of the residual
vectors should be minimal. By residual vector we mean the difference between the original and
the projected vector. In the next term of equation (4.3), Y2 is calculated the same way. This
time we have the additional requisition that Y2 must be orthogonal to Y1. This orthogonalization
procedure is continued up to YI . In fact, this recipe for extracting relevant information from
data is well known in statistical data analysis under the name principal component analysis
(PCA). In a practical application the principal components (which we called Yk) are computed
simultaneously. They are the eigenvectors of the correlation matrix of the standardized data.
The corresponding eigenvalues represent weights imposed on the eigenvectors. The larger the
eigenvalue the more important the component. In statistics the eigenvalues are utilized to
distinguish “real” information from noise. There are a number of criteria to do so. Since the
sum of the eigenvalues (λi) equals the trace of the correlation matrix, one selects only those
eigenvalues which are larger than a certain threshold, which is chosen to be not much smaller
than one (e.g. λi > 0.8). Another common choice is to incorporate all largest components, until
their sum exceeds a certain fraction (1 − α) of the trace. (With λ1 ≥ λ2 ≥ . . . ≥ λI select
the smallest element of {n :

∑n
i=1 λi ≥ (1 − α) · trace}.) The disadvantages of the method

may be seen in their derivation from arguments valid only in the linear case and the open
question of how to initialize additional hidden units if there are more of them than there are
input units. The advantages, on the other hand, may be seen in their conceptual simplicity,
their clear interpretation and their data based derivation. Here again we “reverse” the approach
of the literature. There are a number of authors demonstrating that the final result of the
optimization can be the space spanned by the principal components, see e.g. Oja (1982), Baldi
and Hornik (1989), Malki and Moghaddamjoo (1991). Instead we initialize the network to have
this property, because we are interested in the additional (nonlinear) capabilities of the network.
We summarize the first steps of weight initialization in the following algorithm.

Algorithm: Weight Initialization

• At each input node k standardize the data of pattern p (and the target values).

x̃
(p)
t−k = (x

(p)
t−k − 〈xt−k〉)/σxt−k .

• Compute the correlation matrix C of the standardized data.
(C)kl =

∑
p x̃p−k x̃p−l/(N − 1)

• Compute eigenvalues λj and normalized eigenvectors nj of C.

• Standardize eigenvectors. tj =
√

λj nj

The last step is intended to reflect the importance of the component in the weights. The I
components of the eigenvector tl (C is an I × I matrix) are now the weights at the hidden unit
l, i.e. alk ≡ (tl)k, k = 1, . . . , I; l = 1, . . . ,H. If we look at equation 2.121 we find that this
construction leads to the desired projection of the input vector onto this eigenvector. Since we
standardized the data we simply put al0 ≡ 0 for all l.
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Output Layer Initialization - AR Modelling

We are now ready for estimating the weights at the output layer. This initialization follows the
linear methodology, because we wish to initialize the net to approximate a full linear AR-model of
order I. We therefore compute the weights via equation 2.128 and a least squares fit (w0 should
be close to zero as well due to standardization). Thus we have computed a complete initial
solution of the linear network. This computation provides an estimate for each parameter. No
random numbers are involved in this procedure. On the other hand, it is not a unique estimate,
because eigenvectors are only defined up to a reversal of sign. However, this property does not
change the linear solution, because the AR-modelling procedure takes care of it.

Now we have to return to the question of validity of the linear approximation. This means we
have to discuss how to make use of the initial estimate. If we want the result of our linear
calculations to be of any value for the net initialization, we have to concentrate on the weighted
sum at the hidden units, because these are the arguments of the hyperbolic tangent:

∑
k alkx̃t−k

(recall that al0 ≡ 0). Since the alk are fixed, we have to look at the patterns. Among all the
projections at the hidden nodes there will be a maximum for a particular pattern. We determine
the largest absolute value of this sum (projection) by presenting all the learning patterns to the
net. This “critical” value requires the validity of the linear approximation tanh (x) ≈ x as the
“worst” case. In most situations it will be sufficient to look at the first hidden unit, whose
weights correspond to t1, since this is the tj of greatest length by construction. As we are still
considering the linear net, we are free to reduce this maximal projection to any desired small
value by an appropriate scaling factor without altering the general approximation capabilities
of the network, i.e. the AR-model. We call this scaling factor γ. It controls the limit of linearity
of our initialization. Thus, our method requires the introduction of one additional parameter.
Generally, additional parameters introduced by any method must be considered a weakness of
that method. However, our parameterized construction seems to be acceptable, because we
can give a clear meaning to γ: we measure the degree of nonlinearity of our initial weight
configuration by this γ. This parameter is also fixed at the very beginning of and unaltered
during the analysis. — We still have to decide how to compensate the scaling introduced by γ.
We choose to scale the patterns appropriately, the alternative being a decrease of the weights
at the hidden layer. Rumelhart (1988) observed and postulated that the weights of the network
have to be small. If we decrease the weights at the hidden layer, this has to be compensated by
enlarging the weights at the output layer (equation (4.2)), thereby violating Rumelhart’s rule.
For this reason we decided to scale the patterns. This will also change the threshold of the
output node, but since this value is already small and will only be decreased, scaling of patterns
is the better alternative. Again we summarize the technical steps of the linear initialization.

Algorithm: Linear Initialization:

• Compute the maximal projection y′max of all learning patterns
( p ∈ L) on the tj .
y′max = maxp∈L {|

∑
k ajkx̃p−k|, j = 1, . . . , H }

• Choose the “degree of non-linearity” γ (typically 0.05 ≤ γ ≤ 0.5).

• Scale the patterns such that maximal projection equals γ.
x̃′p−k = x̃p−k · γ/y′max ∀p∀k

• Compute the weights at the output layer with respect to the outputs of the hidden layer via
the AR-modelling procedure.
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All these algorithmic steps are carried out for the linear network, i.e. equation 2.121 without
the hyperbolic tangent.3

Benefits from the Linear Initialization:

At this point we have an initial estimate of the network parameters and a measure for the validity
of the linear model. The parameters specify a linear model of order I. What are the benefits of
this situation? Why is it advantageous to compute the initial estimate rather than initialize the
weights randomly? The advantage of our procedure is that we have complete knowledge of the
situation. The “zero-th” iteration of the optimization is well understood. We know the degree
of linearity and nonlinearity of our model. We can give arguments why we chose the particular
number of hidden units. We can rank the hidden units according to their importance. We know
that the projections at the hidden units are in mutually orthogonal directions. And we have the
performance of the linear model as a yardstick for our nonlinear estimation process.

Our linear initialization allows further steps to be taken. We may use techniques from linear
modelling to judge the relevance of input variables. This is interesting for both, univariate and
multivariate situations. If we find (linear) correlations between input variables, we know that
PCA will detect them. For this reason, dependencies among the input variables are immediately
reflected by the net structure. On the other hand, choosing (linearly) independent variables will
result in more hidden units which are also more significant, providing greater modelling power
to the network. It is a common standpoint in the neural network community that the network
is able to “extract” relevant and to neglect irrelevant data during the optimization process. For
this reason, there is no special treatment of irrelevant data, e.g. a removal from the training set.
Our method favors a different attitude. Every additional (hidden) unit introduces a number of
additional parameters. Since the network can be very sensitive to misspecified models, these
parameters are likely to fit the noise rather than being reduced to zero. For this reason we prefer
preprocessing of data leading to less parameters for the network rather than the opposite, which
is common in the neural network literature.

Parameter Estimation

We now turn to the process of parameter estimation. This must be achieved numerically by an
optimization algorithm.

Training the Net with Higher Order Optimization Algorithms

The presented connectionist method provides a linear approximative model as initial estimate.
The optimization algorithm now may explore the nonlinearity of the patterns and modify the
weights appropriately. This includes decreasing the weights at the hidden units, leading to
an even more linear model. We are therefore interested in a procedure that will examine the
“surroundings” of our starting point and then proceed in the appropriate direction.

deGroot and Würtz (1991) have presented results which demonstrate the superiority of a second
order optimization algorithm for the estimation process of the network parameters. The initial-

3We would like to mention that the implementation of this initialization procedure sounds more costly than it
really is when actually coded. Mostly elementary numerical procedures of linear algebra are required. These are
readily available in public domain libraries like NETLIB or STATLIB.
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ization allows further justification of higher order approaches. Since we compute the parameters
of the initial solution via the AR-modelling procedure to be a “linear” minimum, we expect
a small gradient (depending on γ) in the nonlinear equation as well. In fact, if we choose γ
small enough, the optimization algorithm will not be able to distinguish the linear from the
nonlinear situation, because of numerical imprecision. Let us have a look at the characteristics
of backpropagation in this case. If the chosen step size is too large, then we will be off our initial
estimation after just one single step. If, however, we choose a very small step size, we will not be
able to move away from the initial estimate within a reasonable amount of time. Therefore we
need an optimization algorithm that takes the local structure at our starting point adaptively
into account.

A comparison of various optimization algorithms of different orders has been performed by
deGroot and Würtz (1991). The conclusions are: As long as computer memory does not enforce
limitations a second order optimization algorithm is preferable. The numerical results presented
in the following were obtained with the NETLIB implementation of the BFGS algorithm. The
most prominent benefit from choosing a second order algorithm is the short execution time. The
introduction of these algorithms reduces “learning” to the order of minutes on a PC or Unix
based workstation. Thus CNAR time series analysis can be performed interactively.

Monitoring the Parameter Estimation Process

We may also ask whether or to what extent we can make use of our knowledge about the prop-
erties of the initial solution. It turns out that we can extract valuable information about the
nonlinear solution, if we “monitor” characteristic values of the current solution during opti-
mization. We have already met an example of monitoring when we explained the performance
criterion for the training and validation set, respectively. The monitoring information allows
an interpretation of what is going on in the network at least on a qualitative level. Before we
describe the actual values we monitor in the next paragraphs, we wish to discuss the potential
benefits briefly. Some of the values we will monitor were introduced by Weigend and Rumelhart
(1990). However, since they started from a randomly initialized set of parameters, they were
only interested in the structures developing during optimization. In contrast, we pay attention to
changes in these characteristic values. We are then able to interpret these changes qualitatively,
because we have our initial model with its known properties included in the process. If we are
able to identify and monitor values which are related to the overall net properties rather than
to the particular set of patterns, we have a chance to observe the global net behavior. But more
information related to the pattern set is also desirable, because we can hope to augment our
knowledge from the performance criterion with this additional data. Although the performance
criterion does not inform too well about inner changes of the model it is nevertheless an evident
value to “monitor”. It is interesting to relate the internal development of the net to the behavior
of the general performance.

Regression Analysis - Linear versus Nonlinear Net

An interesting fact is the usefulness of the nonlinearity of the network. Since we know that the
net has the potential of linear modelling, we would like to be sure that it operates successfully
in the nonlinear regime. Otherwise we could be tempted to drop the whole network method
and apply linear modelling. If we compare the linear approximation of the network equation
2.128 to the real network 2.121, we see that if the net is essentially linear the outputs of both
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“networks” (i.e. equations) should not be too different from each other. We therefore propagate
each pattern through both networks with identical parameters. (The nets differ only in the
presence or absence of the hyperbolic tangent.) This results in a pair of output values for each
input pattern. We denote the output of the linear (nonlinear) net for pattern p by ηp (ζp). We
plot the linear versus the nonlinear output for each pair and fit a linear regression to this set
of points. If the network were completely linear, all points should lie on the diagonal resulting
in a slope of one. For this reason we monitor the slope of the regression line together with its
estimated error. Let the regression ζ(η) = a+ bη, then we estimate

〈η〉 =
1
N

∑
p

ηp,

a =
1
N

(∑
p

ζp − b
∑

p

ηp

)
,

b =

∑
p {ζp (ηp − 〈η〉)}∑

p (ηp − 〈η〉)2
,

σ2
b =

1
N−2

∑
p(ζp − a− bηp)2∑

p (ηp − 〈η〉)2
.

Although it may be interesting to check a as well, we only monitor b. The reason for this is
the interpretation of deviations of b from unity. We are only interested in qualitative changes
during optimization.

Eigenvalue Analysis - Correlation Among Hidden Units

We learned from our initialization procedure that the initial weights at the hidden units form
mutually orthogonal vectors. This means that the outputs of the hidden units are uncorrelated.
Since these outputs are linearly combined at the output node, uncorrelated outputs make “op-
timal” use of the hidden units. It is interesting to check whether the optimization procedure
introduces correlations among the hidden units. If linear correlations exist this indicates redun-
dant information. This redundancy is not desired at the input to the output layer, because it
indicates a misspecification of the hidden layer. We therefore compute the eigenvalues of the
correlation matrix of the hidden units outputs υ(p)

l . Let y(p)
l denote the activity of hidden unit l

if pattern p is presented to the net, y(p)
l = al0 +

∑
k alkx̃

(p)
t−k. The output of this hidden node

with this activity is denoted by υ
(p)
l = g(y(p)

l ) = tanh (y(p)
l ). The correlation between node l

and l′ is computed as

υ̃
(p)
l =

υ
(p)
l − 〈υl〉
συl

,

Cll′ =
1
N

∑
p

υ̃
(p)
l υ̃

(p)
l′ ,

where the first equation denotes standardization of outputs and the second equation denotes the
element of the correlation matrix C. If there were any linear relations between these outputs, the
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correlation matrix would show eigenvalues different from one. It may also be useful to interpret
qualitative changes in the eigenvalues.

Singular Value Analysis - Identifying Linear Nodes

The Singular value decomposition (SVD) is the next technique we use to monitor the optimiza-
tion process. It is applied to the weights at the hidden layer. SVD computes three matrices U ,
W , and V from the matrix A such that A = UWV T . If A is a M × N matrix, then U is a
column-orthogonal M ×N , W a N ×N diagonal matrix with positive or zero elements, and V
an orthogonal N ×N matrix. The matrices U and V are each orthogonal in the sense that their
columns are orthonormal. In compact form

Aij =
N∑

k=1

wkUikVjk. (2.130)

Here the columns of A are the weights at a specific unit, i.e. Akl = alk in notation of equation
2.121. Contrary to the correlation analysis, no pattern-based information is involved in this
analysis. The diagonal elements of matrix W are of interest in our analysis. The singular values
give qualitative information about the nonlinearity of the nodes and also about the specification
of the hidden layer: Since we start from an initial solution with a known degree of nonlinearity,
we may identify all singular values less than or equal to the initial singular values as belonging to
essentially linear nodes. On the other hand, singular values (much) larger than the initial ones
should belong to nonlinear nodes. We present an intuitive explanation for this reasoning. Since
the matrices U and V are (column-)orthonormal, their elements can neither grow arbitrarily
large nor extremely small, when the elements of A are modified by the optimization procedure.
If the entries of A grow large (small), this can only be “compensated” by an increase (decrease) of
diagonal elements of A. This argument also explains the qualitative nature of the interpretation
of changes in the singular values. The important point here is that any model with more than
one linear node is misspecified, because all linearity may be assigned to one single hidden unit.

Indications for Overfitting

If we introduce a validation set (e.g. by the clustering algorithm proposed above) then we can
monitor its characteristics simultaneously. If training and validation set are initially similar,
then discrepancies between the two sets developing during optimization indicate overfitting.
This supports our proposition that the size of the training set needs to be chosen carefully.

Diagnostics

Diagnostic checking is an important step of statistical time series modelling. Usually it is
ignored in the neural literature on time series analysis. Diagnostic checking can be formulated
with respect to a single model and it can help to choose the best from a variety of models. Each
of these is expected to show iid residuals with zero mean.

The problem of choosing the best specified model out of a set of individual models is addressed
by information criterion statistics. If we were fitting polynomials to our data it would be a
known observation that the more parameters we introduce the more accurate the fit will be.
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A fit that is too perfect with polynomials would result in bad interpolation and extrapolation
properties of the “model”. This is serious in time series analysis, because the main use of these
models lies in exactly these areas. The selection of models based on IC for this reason does
not only include the goodness-of-fit. It also takes into account the number of parameters in the
model as a penalty term. The basic formulation then is

IC = − maximum log likelihood + number of free parameters in model .

Among all models that with minimal IC will be selected. A rigorous mathematical derivation
of these concepts, which relies on asymptotic properties of the estimators, can be performed
for ARMA(p,q) processes. This analysis gives rise to slightly different formulations of the sec-
ond IC term. We present two of the information criteria developed in this framework, the
Akaike IC (AIC) and the Bayesian IC (BIC).

AIC(p,q) = N ln σ̂2
p,q + 2 (p+ q), (2.131)

BIC(p,q) = N ln σ̂2
p,q + 2 (p+ q) lnN, (2.132)

where σ̂2
p,q is the estimated residual variance and N is the number of observations entering

the estimation, i.e. the number of time series points in our case. It is also customary to look
at “normalized” information criteria, where the above equations are divided by the number of
observations, e.g. NAIC = ln σ̂2 + 2(p + q)/N [GaS81]. In applications of these criteria one is
interested in absolute differences between AICs (BICs) of the order of one. Since the derivation
of the information criterion relies on the linearity of the model, we use the criterion in a closely
related sense. We denote this in the computed criterion by a prime (e.g. NAIC′).4

Antithetic Combination of Models

We will now discuss the question whether we can combine the information from different models
to obtain an improvement in the modelling. We obtain different models for example from
iterations of the modelling process as mentioned in Tong’s paradigm. We will present two
slightly different ways of combining the results of connectionist modelling. The first one does
not take the existence of other models into account, the second one deals with information
obtained from previous models. First of all, however, we will estimate the combination effect.
Assume two models and their residuals. Pattern p has the desired value x(p), the estimated
values are x̃(p,i), where i = 1, 2. We then have for the residuals ε̃(p,i) = x̃(p,i) − x(p). The
variances of the residuals read

σ̃2
1 =

1
P

P∑
p=1

ε̃2(p,1) σ̃2
2 =

1
P

P∑
p=1

ε̃2(p,2). (2.133)

Now consider the combined value x̃(p,1/2) = 1/2(x̃(p,1) + x̃(p,2)). For its variance we compute

4The properties of a time series model can also be explored by a prediction on the predicted values (sometimes
called “n step ahead forecasting”). If we were to reconstruct attractors we could check whether characteristic
features like cyclic behavior are captured in the model.
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σ̃2
1/2 =

1
P

P∑
p=1

(
1
2
(
x̃(p,1) + x̃(p,2)

)
− x(p)

)2

=
1
4
σ̃2

1 +
1
4
σ̃2

2 +
1

2P

P∑
p=1

ε̃(p,1)ε̃(p,2).

If we compute expectation values from this equation we get

〈ε̃21/2〉 =
1
4
〈ε̃2(1)〉+

1
4
〈ε̃2(2)〉+

1
2
〈ε̃(1)ε̃(2)〉. (2.134)

If both residuals are uncorrelated and have the same expected variance, then the expected
residual variance of the combined series is reduced by a factor of two. Furthermore, if they are
anticorrelated the expected variance is even reduced to zero. This technique is called antithetic
combination. deGroot and Würtz (1991) introduced this technique into connectionist time series
analysis independently of Mani (1991). Now the strategy has to be a combination of models
which are as uncorrelated as possible. The first attempt is to neglect this requirement. One
then assumes that the various models are independent from each other. The other approach
incorporates the knowledge taken from the first model by modifying the target values. If we
require complete anticorrelation, ε̃(1) = −ε̃(2), then the new target values are x′(p) = 2x(p)−x̃(p,1).
This equation aims at anticorrelation between residuals of the two series. We would like to add
the observation that a second model, for which σ̃2

1 ≈ σ̃2
2 holds, may be difficult to estimate. In

fact, if the first model were the “true” model, then, conceptually, the true values are computed
by exactly this model and there is no space for a second model of equal quality (i.e. σ̃2

2 � σ̃2
1).

A different approach could therefore try to model the residuals of the first model by setting
x′(p) = x(p) − x̃(p,1) and then addition of the two models. Our antithetic construction, however,
works well, because the true model is usually unknown in practical cases.

The CNAR Software Package

This package provides a complete implementation of the connectionist technique described in
this section. The goal of this software development is to provide tools for the time series
analyst which enable interactive data analysis and modelling. We point out some features of
our software: The design principles for the software package were modularity and portability.
Modularity is quite natural for time series analysis software, because the analysis itself proceeds
in steps which are well separated from each other. Modularity also allows exclusion of certain
steps of the analysis. For example the weight initialization part can be skipped. Then the
software provides random initialization of the network parameters. Portability facilitates the
software to be run in a server-client environment. While computationally intensive parts like
searching for indicators or clustering can be performed on the more powerful machines in a
network of computers, less intensive parts are executed on the “clients”. The software runs on
Unix based Sun workstations, Silicon Graphics machines and Convex and Cray supercomputers.
The libraries of main programs and subroutines are written mainly in Fortran and partially in C.
There are around 20,000 lines of code, some of which was obtained from public domain sources,
most of which, however, was written by the authors themselves.
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2.4.3 Case Study: Power Consumption Forecasts in West-Bohemia

The following case study deals with the prediction of electric power consumption in West-
Bohemia in the Czech Republic and was done by Würtz, deGroot and Pelikan (1991). Accurate
predictions of power consumption is an important task for the effective operation, planning
and control of any electric energy systems. We are interested in short term forecasts especially
in the load of the early morning period. The task is as follows: Given the consumption at
6:00 am predict the values for 8:00, 9:00, and 10:00 am, respectively. These forecasts allow to
regulate and control the maximum peak level at the morning hours in a better economic way
and already small improvements in the forecast performance of a quarter or half percent result
in essential savings. Since an accurate prediction of power consumption is of relevant practical
importance, there are many different forecasting models documented in literature, ranging from
linear approaches, via knowledge-based systems, to artificial neural networks.

Data and Selection of Predictors

Here we use data recorded from June 1990 to December 1991. A record includes information on
hourly loads and on averaged daily temperatures and cloud cover variables. The meteorological
data were computed as a weighted sum from 22 stations located in the West-Bohemian area.
Consumption is measured in MW, temperatures in oCelsius, and he cloud cover variables are
discrete values between 0.0 and 1.0 in steps of 0.1, where the lowest value corresponds to a bright
sky while the highest value 1.0 denotes the overcast sky.

The time series to be predicted Yt = {Yt(i)} are the differences in consumption

Yt(1) : load today 8:00 am− load today 6:00 am,
Yt(2) : load today 9:00 am− load today 6:00 am,
Yt(3) : load today 10:00 am− load today 6:00 am.

Exercise: Forecasting Power Consumption

Investigate the power consumption data, power.dat as supported by the fSeries Library. Calculate
basic statistics, plot consumption and meteorological data as function of time.

The response function Yt(2) for 9:00 am is shown in figure 2.4.1 together with the load changes
from 6:00 am to 9:00 am in figure 4.2.2. The 5:00 am load shows a quite regular behavior. The
working days are well separated from the weekends. The highest power consumption is observed in
the winter period during the first two weeks of February, the lowest during July which is summer
vacation time. An irregular load can be identified during Christmas and the New Year period.

In order to identify predictors it is quite helpful to have a look onto cross-correlations of predic-
tors and response variables. We consider the following set of predictors:

Xt(1) : load today 3:00 am
Xt(2) : load today 4:00 am
Xt(3) : load today 5:00 am
Xt(4) : load today 6:00 am
Xt(5) : load yesterday 8:00 am− 6:00 am
Xt(6) : load yesterday 9:00 am− 6:00 am
Xt(7) : load yesterday 10:00 am− 6:00 am
Xt(8) : load day before yesterday 8:00 am− 6:00 am
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� Figure 2.4.4: West-Bohemian power consumption data at 6:00 am in the year 1991. The full circles denote
working days, Saturdays and Sundays are marked by a triangle and an octogon sign, respectively.
� Figure 2.4.5: Changes in West-Bohemian power consumption between 6:00 am and 9:00 am in the year 1991.
The plot symbols are the same as in the left figure.

Xt(9) : load day before yesterday 9:00 am− 6:00 am
Xt(10) : load day before yesterday 10:00 am− 6:00 am
Xt(11) : load a week ago 8:00 am− 6:00 am
Xt(12) : load a week ago 9:00 am− 6:00 am
Xt(13) : load a week ago 10:00 am− 6:00 am
Xt(14) : average temperature yesterday
Xt(15) : average temperature day before yesterday
Xt(16) : cloud cover yesterday
Xt(17) : cloud cover day before yesterday

Exercise: Forecasting Power Consumption, cont.

Build a set of predictors X and investigate their cross-correlation functions with the Y responses.
Plot scatter diagrams.
Some of the cross-correlation scatter diagrams are shown in figure 2.4.6. These include consumptions
at 4:00, 5:00, 6:00 am (first row); load changes between 6:00 and 9:00 am yesterday, day before
yesterday, week ago (second row); temperature yesterday, day before yesterday, cloud coverage
yesterday (third row). The scatter plots in the first row show two well separated clusters, one for
the working and the other one for the weekend days. Within each cluster we see a clear correlation
of the data. The next three scatter plots show the load differences. In the first plot of this sequence
we detect four clusters; in the upper right corner we find the working days from Tuesday to Friday
and in the other three corners of the plot we find Saturday, Sunday and Monday well separated.
The second plot shows the working days Tuesday to Friday in the upper right corner, the weekend
days in the upper left corner, and Monday and Tuesday in the lower right corner. In the “week
ago” scatter plot we have the weekend on the diagonal in the lower part and the working days in
the upper part. For the meteorological data in the last row we also observe strongly correlations.
For the temperatures we observe again the separation of working and weekend days, for the cloud
coverage data this observation is less pronounced.
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� Figure 2.4.6: Scatter diagrams of selected predictors X vs. response Yt(2). The symbols are the same as in
figure 2.4.4. The first row shows the consumption data at 6:00, 5:00, and 4:00 am. The second row displays the
load changes between 6:00 and 9:00 am, one day, two days, and a week ago (Y: yesterday, B: day before yesterday,
W: one week ago.) The last row illustrates meteorological dependencies, temperatures one ant two day ago, and
yesterday’s cloud coverage.

Neural Network Modelling

The setup for the neural networks as illustrated in Figure 2.4.3 includes as inputs consumption
and temperature information, i.e. the standardized predictors Xt(1) . . . Xt(15 serve as inputs,
and as response serves one of the three load differences Yt1 . . . Yt(3).

The data set consists of 579 data records. After excluding Christmas, New Year and national
holidays, we are left with 324 days to build our models on. We decide to have a rolling time
window for the modelling process. We select a number of days to estimate the model coefficients
and then we use the model to predict the consumption for a certain number of days. Afterwards
the window is shifted in such a way that the days we made a prediction on are included in the
estimation, excluding the corresponding number of “oldest” data points. Then we estimate a
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[Cloud Cover Before Y.]

[Cloud Cover Yesterday]

Load Today   H am-6 am

Temperature Yesterday

Load Week Ago 10 am-6 am

Load Week Ago  9 am-6 am

Load Week Ago  8 am-6 am

Load Before Y. 10 am-6 am

Load Before Y.  9 am-6 am

Load Before Y.  8 am-6 am

Load Yesterday 10 am-6 am

Load Yesterday  9 am-6 am

Load Yesterday  8 am-6 am

Load Today 6 am

Load Today 5 am

Load Today 4 am

Load Today 3 am

Temperature Before Y.

� Figure 2.4.7: Setup of the CNAR network for modelling power consumption data. The first 13 indicators are
used in a first step, then the next two are included. Cloud cover data dot not improve the forecast and therefore
are left aside. The symbol H at the output denotes 8, 9, and 10 am, respectively. Source: deGroot, (1993)

new model, predict the consumption and move the window on, ready for the next model. We
choose two sizes for the estimation window size, approximately three months (81 days) and
approximately half a year (162 days). We use three modelling approaches, linear regression
(LM) and a connectionist network with topology 13-4-1 or 15-4-1, where either the weights are
randomly initialized (NN/RANDOM) or where the weights are initialized by the PCA scheme
(NN/PCA). The results are shown in the following table:

Window Size: 81 Window Size: 162
Model: Time: Indicators Indicators

1-13 1-15 1-13 1-15

Linear 8:00 2.80% 2.73% 2.59 % 2.49 %
Regression: 9:00 2.67% 2.64 % 2.53 % 2.53 %
Model LM 10:00 2.94% 2.87 % 2.67 % 2.59 %

Connectionist 8:00 3.85% 3.44 % 2.90 % 2.92 %
Network: 9:00 2.96% 4.19 % 2.92 % 2.80 %
Model NN/RAND 10:00 4.30% 6.84 % 3.07 % 3.04 %

Connectionist 8:00 2.74% 2.77 % 2.67 % 2.59 %
Network: 9:00 2.68% 2.56 % 2.57 % 2.58 %
Model NN/PCA 10:00 2.96% 2.79 % 2.72 % 2.67 %

� Table: Average absolute errors of load forecasts in 1991. The first column describes the model, LM - linear
modelling, NN/RAND - randomly initialized network, NN/PCA - initialized net by principal component analysis.
Note, that in the case of the neural networks, the forecasts are the mean of 30 different network configurations.
The second column gives the time, the third the results for a window size of 81 days and the last for a window size
of 162 days. The left number in columns 3 and 4 exclude the temperature, while the right column includes this
information. Note that a small but consistent improvement in the averaged error is achieved when we include the
temperature information. A decrease of the error also occurs when we double the window size of the estimation
from 81 to 162.

Exercise: Forecasting Power Consumption, cont.

Can the generalized linear modelling, additive modelling, generalized additive modelling or the
MARS modelling approach lead to a better forecasting performance? Reinvestigate the power
consumption forecasts making use of these approaches.
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Antithetic Combinations of Neural Networks

The simple neural network approach is not able to do essentially better forecasts than the linear
model. Now we investigate if by antithetic combinations of neural networks the forecasts can be
improved. To answer this question we concentrate on data around October 1991. The estimation
period covers 162 days, and we include indicators 1–15. Now we vary the forecasting period to
count 9, 18, 27, and 36 days. This means a single model is sufficient for daily forecasts on a
period of 36 days and four models are required for nine days daily forecasts. After estimating one
model on the original data, we change the target values in order to obtain optimally de-correlated
patterns. We repeat this procedure for a third model.

Indicators 1-15, Window Size: 162

Training

162 days 1.43 % 1.60% 1.56% 1.13%
0.488 0.140 0.481

Forecasting

9 days 2.45 % 2.17 % 1.96 % 1.77%
0.874 0.444 0.159

18 days 2.60 % 2.86% 2.22% 1.87%
0.383 0.275 -0.099

27 days 2.32 % 3.28% 2.11% 2.03%
0.501 0.316 -0.041

36 days 2.35 % 3.47% 1.99% 2.02%
0.419 0.143 0.074

Note: Linear regression 9 days training error: 2.18%
Linear regression 9 days forecast error: 2.53 %

� Table: Absolute forecast errors for 9 am load and correlation coefficients of the residuals for the combination of
three connectionist networks. The target values were modified in order to obtain maximally de-correlated models.
The columns denote left to right errors for model 1, model 2, model 3, and the combination of all three. The
second row in each line gives the correlation between model 1 and model 2, 2/3, and 3/1. For comparison the
last row shows the error of the linear analysis.

The results of this analysis are given in table 2.4.2. In the first block from left to right we have
the errors of models 1, 2, and 3 in percent, while the second line gives the correlation coefficients
between model 1 and model 2, 2/3, and 1/3, respectively. The block on the right hand side
contains the average error of a combination of all three models. For comparison the last row
shows the error of the linear analysis. We observe very small correlations between the models. It
is interesting to note that the de-correlation that was calculated on the training interval is also
observed in the forecasting interval. In this instance the nonlinear models are better than the
linear one. The improvement from an error of 2.53% down to an error of 1.77% is roughly 30%.

The NN Monitoring Scheme

Now we wish to explore our connectionist method for different values of the scaling parameter γ.
We repeat the whole procedure with a smaller (γ = 0.05, model 2) and a larger value (γ = 0.2,
model 3). We obtain average errors of about the same size. The differences between the models
with different γ are mutually more similar than any of them with model R. — The existence of
five different models gives rise to an investigation of the antithetic combinations. This analysis
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� Figure 2.4.8: Monitoring schemes for the optimization process as a function of the iterations for three de-
correlated connectionist networks. From top to bottom we show: iteration path, slope of regression analysis,
investigation of hidden correlation matrix, and singular value decomposition. A description can be found in the
text. Source: deGroot, (1993)
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is summarized in table 5.5. We find correlations coefficients between 0.83 and 0.95 if we compute
them for all combinations of models L, 1, 2, and 3. If we combine these models, we observe a
consistent improvement compared to the isolated models. As the correlation coefficient between
model R and the other models ranges between 0.59 and 0.78, we also combine this model
with the others, although model R shows quite large errors. Indeed we observe a consistent
improvement. These observations explain also that the combination of all five models leads to
the smallest errors.

For one instance of this last set of experiments we plot the monitoring in figure 5.20. The first
row shows the iteration path, the second row the slope of the regression analysis, the third row
the investigation of the correlation matrix and the last row the singular value decomposition.
In the first row of the figures we observe a rapid decrease of the performance measure in the
first few iteration steps of the optimization process for the training set (diamonds) as well for
the forecasting set (octagons). This decrease is typical if the number of hidden units does not
equal the number of input units. The sharp dropping is followed by a continuing decrease in
the performance of the training set data albeit a less steep one, whereas the variance of the
forecasting set remains almost constant. In the second row of the figures we plot the slope of the
regression of the linear/nonlinear net versus iterations of the optimization algorithm together
with the error estimate of the slope. The significant deviation of the slope from unity indicates
that the three networks are operating in the nonlinear regime. The next row of the figures shows
the time evolution of the eigenvalues of the correlation matrix during the optimization process.
We observe for the training (diamonds) and forecasting set (octagons) a behavior that does not
indicate linear correlations between the hidden units. This is least so in the plot for model 2.
Here, we could try a restart with only three units. Overall, the eigenvalue analysis supports our
choice of four hidden units. Let us finally look at the singular value decomposition of the weight
matrix. After a few hundred iterations all singular values are larger than those of the initial
network configuration. Note that this indicates an increase of nonlinearity which is independent
of the particular pattern set. We also do not observe one or two dominating singular values.
This is a further indication for the net utilizing all four hidden units.

In summarizing we note that the idea of antithetic combination of networks proves to yield
quite good models in this case study. Prediction of load increase is possible with an error well
below 2%. Our connectionist method results in much better models for the data than the models
obtained from random initialization. Furthermore our method allows specification of four hidden
units.
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2.5 Design and Implementation of Trading System

Trade to establish the best track record, with steady gains and small
drawdowns. -
The best trading systems are crude and robust. They are made of a
few elements. The more complex systems, the more elements can break. -
A robust system holds up well when markets change.

Alexander Elder - Trading for a Living

Introduction

In this section we report on the design and implementation of an intra-daily trading system
developed by D. Würtz and R. Schnidrig (1995, 1996). We describe how to calculate trading
signals which give the entry points to trading positions and we describe in detail the strategy
they used to decide how and when to exit a trade. The major elements of the trading system are
also discussed: Using high frequency financial market data, working on an operational volatility
based time scale and considering forecasts of the trading indicators. Furthermore, aspects of
parameter selection, model evaluation and paper trading results are also presented.

To build a (real time) trading system includes a lot of different aspects: having reliable financial
market data at hand, finding the proper timescale on which we enter or close trading positions,
and calculating the recommendations combining technical trading rules with concepts from
forecasting trading signals.

An important aspect is the timescale underlying the dynamics of the financial markets. Having
the right “operational timescale” which holds the volatility of the time series essentially constant
over time leads to a much more robust system compared to a trading model operating in physical
time.

In a final step we introduce forecasts of indicators in designing trading systems. We include
results from forecasts of trading indicators into the trading recommendations. This results in
a much more reactive trading system. Traditional trading models consider only historical price
movements, but don’t do forecasts on indicators to learn about future price changes.

2.5.1 Trading Indicators, Trading Signals, and Trading Rules

The trading system takes quoted prices from a Reuters data selection feed. The foreign exchange
markets trade mainly on the basis of two-way markets; i.e. market makers will simultaneously
show prices, at which they will buy (bid) or sell (ask). In this scheme we distinguish four kinds
of prices:

• Bid Price: The price at which a market maker will buy (their bid), P bid
t .

• Ask Price: The price at which a market maker will sell (their offer), P ask
t .

• Middle Price: The average price of the bid and ask price, P t = (P bid
t + P ask

t )/2.

• Current Price: This price depends on the position of the trade. If the current position is
neutral, we use the middle price, if long we use the bid price, and if short, we use the ask
price.
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Market practice dictates that the first price given, i.e. the one on the left, is the bid and the
price on the right is the ask (offer). From quoted prices we calculate trading indicators from
which we obtain trading signals according to given trading rules. These trading rules tell us
which trading position we should take.

• Trading Indicators are time dependent functions usually calculated from historical prices. It
is assumed that they are highly correlated to future price movements of the markets.

• Trading Rules are the result of strategies which combine different trading indicators to give a

• Trading Signal which is the recommendation to enter a new position, to reverse or close a
position, or to change the current stop loss value. The

• Trading Position tells us if we are currently in a neutral (standing aside of the market), long
(we have bought) or short (we have sold) position of a trade.

Our trading system combines a long term trend following indicator with a short term oscillator
to follow the price movements. The price we use is the middle price P t of the bid and ask.
In principle any other monotonous increasing function, e.g. the logarithmic prices, logP t =
1/2(logP bid

t + logP ask
t ), can be used to calculate a trading indicator. In our case we use just

the middle price.

We use a long and a short term indicator to filter out the disadvantages of both while preserving
their strengths on the two different time scales. Our trading strategy demands that we examine
the long term trend first. It allows us to trade only in the direction of the long term trend. It
uses the short term oscillations for entering positions. Trend following indicators are used to
identify long term trends. We use the MACD indicator to identify the direction of the market
movement. The second step applies a short term oscillator to find deviations from the long term
trend. The trading system allows us to take only those signals that point in the direction of the
long term trend. We use a generalization of the STOCHASTIC indicator.

Entry Points

Entry points give the signals called “ENTER LONG” or “ENTER SHORT”. They tell us when
to enter from a “neutral” position to a new long (buy) or short (sell) position. Our entry points
are determined from the interplay of a long term trend indicator, a short term oscillator and an
overbought/oversold indicator.

Long Term Indicator

Trend following indicators are coincident or lagging indicators, i.e. they turn after trends have
already reversed. We have selected the MACD indicator as our signal choice, since it can
be calculated very easily from three EMAs. EMAs, Exponential Moving Averages, are trend
following tools that give greater weight to the latest data and respond to changes faster than
simple equally weighted moving averages. EMAs are calculated recursively in the following way:

EMAλ(P t) = λP t + (1− λ)EMAλ(P t−1). (2.135)

Here λ = 2
(T+1) denotes the decay length, where T is the length of the historical time window

under consideration. These formulas tell us, that moving averages identify trends by filtering
out daily price ripples.
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MACD is an indicator build from three EMAs on different time horizons. The MACD indicator
consists of two lines: the MACD LINE and the SIGNAL LINE. The MACD LINE is made of
two EMAs. It responds to changes in prices relatively fast. The SIGNAL LINE is made of the
MACD LINE smoothed with another EMA. It responds to changes in prices more slowly. The
MACD indicator is constructed in the following way:

• Calculate a medium EMA (e.g. T = 12 days) of middle prices

• Calculate a long EMA (e.g. T = 26 days) of middle prices

• MACD LINE : Subtract the long from the medium EMA

• SIGNAL LINE : Calculate a short EMA (e.g. T = 9 days) of the MACD LINE

The numbers for the time horizons were taken as examples from Elder’s book. MACD appears
usually on price charts as two lines whose crossovers give trading signals. These crossovers
between MACD LINE and SIGNAL LINE identify changing markets. Trading in the direction
of a crossover means going in the direction of the market. Thus buy and sell signals are given
when the MACD LINE crosses above or below the SIGNAL LINE. This behaviour can easily
be checked by using the following trading indicator

Trading Indicator 1:

MACD(P t) := MACD LINE(P t)− SIGNAL LINE(P t)

Short Term Oscillator

STOCHASTIC is a short term oscillator very popular among traders. It tracks the relationship
of the middle price to the recent high-low range. STOCHASTIC consists of two lines: a fast
line called %K and a slow line called %D. The first step is to calculate %K5

%K(P t) =
2P t − (P high

t−T ...t + P
low
t−T ...t)

P
high
t−T ...t − P

low
t−T ...t

, (2.136)

where P t is the middle price at time t and P
high,low
t−T ...t are the highest or lowest middle prices

observed during the past time window of length T . The standard width for the STOCHASTIC
indicator is T = 5 days.

The second step is to obtain %D(P t) which is done by smoothing %K(P t). There are several
different possibilities how to do it, we prefer to use a simple recursive EMA with the standard
time window of T = 3 days.

%D(P t) = λ%K(P t) + (1− λ)%D(P t−1). (2.137)

STOCHASTIC shows when the short term price movements become stronger or weaker.6 This
information will help us to decide whether an up or a down movement will dominate the current
movement. Thus we evaluate as our trading indicator the expression

5A more computational effective way to calculate %K can be obtained from a generalization of this indicator:
Evaluate the average of the high and low price from an EMA of prices and use for the the price range an EMA
derived from the volatility.

6Other short term oscillators are for example Williams %R or the Relative Strength Index.
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Trading Indicator 2:

STOCHASTIC(P t) = %K(P t)−%D(P t) .

Overbought/Oversold Indicator

In our case STOCHASTIC is designed to fluctuate between -1 and +1. We draw reference lines
at -60% and +60% levels to mark “overbought” and “oversold” areas. An oscillator becomes
overbought when it reaches a high level associated with tops in the past. Thus overbought
means too high, ready to turn down. The vice versa holds in the case of oversold. We fol-
low the suggestion of Alexander Elder: Do not buy when STOCHASTIC is overbought and do
not sell short when it is oversold. This rule filters out most bad trades. We use %D as our
overbought/oversold trading indicator.

Trading Indicator 3:

−0.60 < %D(P t) < +0.60 .

Trading Rules:

The trading signals to enter a new position are determined from the above mentioned trading
indicators. We enter a new long position, when one of the following two conditions is fulfilled.

Trading Rules 1 and 2:
ENTER LONG(t):

IF IF

POSITION(t-1) != +1 POSITION(t-1) != +1

MACD(t) > 0 MACD(t-1) < 0

STOCHASTIC(t-1) < 0 MACD(t) > 0

STOCHASTIC(t) > 0 STOCHASTIC(t) > 0

%D(t) < +0.6 &D(t) < +0.6

THEN THEN

POSITION(t) = +1 POSITION(t) = +1

ENDIF ENDIF

In a similar way we enter a new short position, if one of the following two conditions holds.

Trading Rules 3 and 4:
ENTER SHORT(t):

IF IF

POSITION(t-1) != -1 POSITION(t-1) != -1

MACD(t) < 0 MACD(t-1) > 0

STOCHASTIC(t-1) > 0 MACD(t) < 0

STOCHASTIC(t) < 0 TOCHASTIC(t) < 0

%D(t) > -0.6 %D(t) > -0.6

THEN THEN

POSITION(t) = -1 POSITION(t) = -1

ENDIF ENDIF
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Exit Points

Exit points give signals called “GO NEUTRAL” or “STOP LONG” and “STOP SHORT”. They
tell us when it is time to exit a long (buy) or short (sell) position. We have two different kinds
of exit signals:

• GO NEUTRAL when the long term trend reverses.

• STOP LONG or STOP SHORT when we get a signal from the stop loss order or from the
profit take order.

Long Term Trend Reversion

The long term trend reverses when the MACD trading indicator changes sign. At this moment
we “GO NEUTRAL” if we hold a long or a short trading position.

Trading Rule 5:

If we hold a long or a short trading position GO NEUTRAL when the
MACD indicator changes its sign.

Stop Loss Order

We use a very tight stop loss strategy to minimize losses and to protect paper profits. It is worth
to note, that a stop loss order limits the risk even though it does not always work. A stop is not
a perfect tool but it is the best defensive tool a trader has. The rules for the initial stop loss at
the entry point are the following:

• We place the stop price P stop
t the time t when we enter the trade at price P enter

t .

• We avoid all trades where a logical (percentual) stop Smax
t would expose more than 2%. The

maximum Smax
t of 2% belongs to the bid or ask price depending on the position at which we

enter the trade.

• We place our stop after entering a trade at the extreme Srange
t...t−T of the past T = 5 days’ range

but at maximum at Smax
t .

Elder suggests in his book T=2 days. We take the same range as in the calculation of %K, just
to simplify the calculations.

These stop loss orders can be summarized as follows:7

Stop Strategy 1: enter long position

P enter
t = P ask

t

Srange
t =

P
high
t...t−T − P

low
t...t−T

P enter
t

Smax
t = 0.02
St = min(Srange

t , Smax
t ),

P stop
t = (1.0− St)P enter

t

7Again, from a computational point of view, it is more efficient to replace in the stop strategies the range by
an EMA of the volatility.
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Stop Strategy 2: enter short position

P enter
t = P bid

t

Srange
t =

P
high
t...t−T − P

low
t...t−T

P enter
t

Smax
t = 0.02
St = min(Srange

t , Smax
t ),

P stop
t = (1.0 + St)P enter

t

Here are some good reasons why 2% is a reasonable maximum loss value Smax
t :8

• Extensive testing has shown that the maximum amount a trader may lose on a single trade
without damaging his or her long-term prospects is 2% of his or her equity.

• The 2% rule puts a solid floor under the amount of damage the market can do to your account.
Even a string of five or or six losing trades will not cripple your prospects. In any case, if you
are trading to create the best track record, you will not wan’t to show more than 6% or 8%
monthly loss.

Protect Profit Order

The protect profit order is part of an improved stop loss strategy. As soon as prices start to
move in our favor we move in a first step the stop price in this direction.

Consider the time moving from t to t + τ . If we are in a long position then Pmax
t+τ denotes the

maximum bid price on this time interval. If we are in a short position then Pmin
t+τ denotes the

minimum ask price on this time interval.

Stop Strategy 3: long position

Pmax
t+τ = max(P enter

t , P bid
t+1, . . . , P

bid
t+τ )

P stop
t+τ = (1− St)Pmax

t+τ

Stop Strategy 4: short position

Pmin
t+τ = min(P enter

t , P ask
t+1 , . . . , P

ask
t+τ )

P stop
t+τ = (1− St)Pmin

t+τ

If we are moving beyond a “breakeven” point Sbreakeven
t (we use 0.5%, we start to protect

efficiently paper profits.9 Note, that paper profit in trading is real money, so one should treat
it with the same care as realized returns and apply the following, so called 50%-rule: Half the
paper profit is ours and half belongs to the market. We mark the highest hight reached in a long
trade or the lowest low reached in a short trade, and place our stop half-way between that point
and our entry point. The breakeven point and the 50%-rule are combined in the following way

8We made the same observation as described in the book of Alexander Elder. If we cut down the stop loss
value below 2% we observe usually an increase in the number of trades resulting in a very likely decrease of the
return.

9Elder suggests the following breakeven point: As a rule, prices have to move away from your entry point by
more than the average daily range before you move your stop to a breakeven level.
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Stop Strategy 5: long position

Sbreakeven = 0.005

Smax
t...t+τ =

Pmax
t...t+τ−P enter

t

P enter
t

P 50%−rule
t = (Pmax

t...t+τ + P enter
t )/2.

IF (Smax
t...t+τ > Sbreakeven AND P 50%−rule

t > P stop
t...t+τ )

P stop
t...t+τ = P 50%−rule

t

ELSE

P stop
t...t+τ = P stop

t...t+τ−1

(2.138)

Stop Strategy 6: short position

Sbreakeven = 0.005

Smin
t...t+τ =

Pmax
t...t+τ−P enter

t

P enter
t

P 50%−rule
t = (Pmin

t...t+τ + P enter
t )/2.

IF (Smin
t...t+τ > Sbreakeven AND P 50%−rule

t < P stop
t...t+τ )

P stop
t...t+τ = P 50%−rule

t

ELSE

P stop
t...t+τ = P stop

t...t+τ−1

(2.139)

The stop strategies can be summarized in form of the following

Trading Rule 6:

If we hold a long position and the current price (bid price) falls below the
stop price P stop

t then we close the position. If we hold a short position and
the current price (ask price) goes above the stop price P stop

t then we close
the position.

Implementation of the System

There are three essential ideas underlying this trading system:

• Use high frequency financial market data.

• Work on an operational volatility based time scale.

• Forecast the trading indicators.

From high frequency data we explore the underlying dynamics of the price formation process
from which we derive the operational time scale. Forecasting the trading indicators yields a
more reactive system accompanied with lower drawdowns and shorter loss strings.
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Using High Frequency Data

The use of high frequency data is a necessity in the design of intra-daily trading models. The
environment for our realtime trime system is based on a Reuters data feed together with a highly
sophisticated system for collecting archiving and validating hig frequency details. For details we
refer D. Würtz and R. Scnidrig (1995) and for more details to the PhD Thesis of R. Schnidrig
(1996).

Working on a Volatility Adjusted Time Scale

The operational υ-time scale is a volatility adjusted time scale on a weekly schedule. It conserves
inbeetween of 168 weekly chosen datapoints on the average a constant volatility. The datapoints
were derived from the scaling law. For the USDDEM exchange rate we calculated the following
time schedule:

Monday:

00:00 00:47 01:56 02:59 05:16 06:32 07:27 08:00 08:57 09:40 10:38 11:37 12:23 13:00

13:35 14:03 14:23 14:40 15:00 15:22 15:45 16:12 16:44 17:13 17:35 18:08 18:55 19:43

20:44 22:36

Tuesday:

00:13 01:18 02:31 04:26 05:23 06:20 07:17 07:36 08:09 08:59 09:53 10:55 11:54 12:34

13:01 13:26 13:48 14:08 14:21 14:33 14:47 15:07 15:36 16:04 16:21 16:38 17:13 17:55

18:37 19:22 20:18 21:27 23:22

Wednesday:

00:22 01:25 02:38 04:48 06:09 06:53 07:30 08:06 08:37 09:12 10:04 11:07 11:57 12:35

13:06 13:34 13:57 14:14 14:27 14:38 14:51 15:08 15:25 15:47 16:17 16:52 17:28 18:07

18:54 19:50 21:30 23:20

Thursday:

00:51 01:55 02:55 05:16 06:21 07:17 07:48 08:34 09:16 09:42 10:23 11:14 12:03 12:23

12:41 12:58 13:15 13:32 13:50 14:08 14:27 14:48 15:14 15:50 16:17 16:40 17:13 17:50

18:27 19:05 20:02 20:58 22:33 23:56

Friday:

00:41 02:00 04:07 05:50 06:34 07:16 08:00 08:34 09:06 09:43 10:38 11:35 12:05 12:21

12:36 12:52 13:08 13:24 13:40 13:56 14:12 14:26 14:39 14:53 15:08 15:25 15:44 16:06

16:33 17:01 17:31 18:03 18:49 19:55

Saturday/Sunday:

03:40 23:59 20:23 21:56 23:29

� Table: The table shows the weekly averaged operational “upsilon time” used as clock in the
trading system. The time intervals are based on 60 minutes in υ time. The time intervals were
derived from the scaling law of the volatility of the USDDEM currency relationship. All times are
given in GMT.

Forecasts of Trading Signals

The third important aspect is to include results of forecasts of trading indicators into the trading
recommendations. Traditional trading systems make use only of historical price data. For the
indicators considered so far, we now assume that the dynamic process which underlies the price
data may be a linear function over time for the next few timesteps:

P t = at + btt+ εt. (2.140)
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This requires an estimation â(P t) and b̂(P t) of the parameters at and bt. A corrected estimation
for the value â(P t) can be calculated from

â(P t) = EMAλ(P t) +
1− λ

λ
b̂(P t), (2.141)

where bt is the difference of two succeeding steps in claculating the EMA for the price:

bt = EMAλ(P t)− EMAλ(P t−1). (2.142)

This value will be evaluated from an exponential moving average

b̂(P t) := EMAλ(bt) = λbt + (1− λ)EMAλ(bt−1), (2.143)

which will be used as an estimate for the slope bt The forecasted price P̂t+T on a time horizon
T is then simply given by:

P̂t+T = ât + b̂tT. (2.144)

The MACD long term trend indicator is forecasted in the following way

MACD Forecast Correction

Estimate âmedium
t and b̂medium

t from a medium EMA (e.g. T = 12 days, same as in the

MACD calculation). Iterate a new EMA for the forecasted prices P̂ medium
t .

Estimate âlong
t and b̂long

t from a long EMA (e.g. T = 26 days, again the same as in the

MACD calculation). Again, iterate a new EMA for the forecasted prices P̂ long
t .

MACD LINE forecast: Subtract the new medium from the new long EMA based on
forecasted prices.

SIGNAL LINE forecast: Calculate a further new short EMA (e.g. with T = 9 days) of
the forecast corrected MACD LINE.

For the STOCHASTIC short term oscillator we make use of the new prices from the forecasts
of the MACD indicator. We take as the forecasted price simply the average value 1

2(P̂medium
t +

P̂ long
t ) =: P̂t.

STOCHASTIC Forecast Correction

Calculate from the P̂t prices a forecast corrected %̂K indicator. The formula is the same
as in the calculation of %K but using now forecasted high and low prices. The length
of the range of T = 5 days is again the same as in the case of the %K calculation.

The forecast corrected %̂D value is evaluated from the forecast corrected %̂K indicator
in the same way as %D. The decay length of T = 3 days for the EMA is again the same
as in the case of the %D calculation.

OVERBOUGHT/OVERSOLD Forecast Correction

Use the forecast corrected %̂D value.
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The forecasts of the trading indicators are done at every time step on our υ time scale. Then
we apply the following rule to evaluate forecast corrected trading rules:

General Forecast Correction Rule

If the indicator and its forecast result in the same decision we use the indicator itself.
If they are in contradicition we use the average value of the indicator and its forecast as
the new indicator.

This seems to us a very simple strategy for implementing forecasts of indicators into a trading
system. Further more sophisticated strategies can also be used and are under current investiga-
tion.

Parameter Selection

Parameter selection is one of the most important points in designing a trading system. Our aim
is not to find an optimal set of parameters for a given currency relationship. Instead we like to
find a set of identical parameters which leads to robust results for all currencies on all markets.

Therefore we have calculated only one “operational time scale” based on the most important
market concerning the US Dollar and German Mark relationship. This timescale is applied to all
our markets under consideration, even to the US/Japan market. We assume that this timescale is
in a first approximation appropriate enough for taking major trading positions during european
business times.

The MACD long term trend indicator should be also very robust. So we have selected as time
constants the values of 26-12-9 days suggested by Alexander Elder. We have mapped these
constants onto our operational υ time scale. For the short term oscillator we use a 5 day period
for the %K and a 3 day period for the %D STOCHASTIC. The time horizons are mapped
again onto our operational υ time scale. These numbers are very popular parameters which one
can find in almost every trading textbook [1]. For the overbought and oversold signals we draw
reference lines at -60% and 60% levels to mark the extreme areas. For the stop loss and profit
take orders we use the following parameters: 2% for the maximum stop loss value, 0.5% for the
breakeven point, and a 168 hours (5 days) window in υ time to calculate the range used by the
initial stop loss value. The time horizons in the case of forecasts have similar lengths as those
used for the evaluation of the indicators based on historical data points.

Portfolio Currency Management

International currencies can be considered as an asset class with members having risk-return
profiles that differ from each other and may be substantially uncorrelated. Like diversification
within other asset classes, currencies may provide opportunities to diversify the foreign exchange
portfolio of a currency manager.

Dynamical or tactical asset allocation is based upon the fact that expected revenues of the
individual traders (models) and their volatilities among each other would change over time and
therefore the optimal allocation should change. Thus each time when we get a new long or short
signal from a trading model a new portfolio allocation is reevaluated to usually generate higher
returns for the same level of risk.
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� Figure 2.6.1. The graph shows the performance of the trading system in comparison with the FX Ferrel Index
(solid.line). Considered are the case of a fixed leverage and a dynamical leverage with preference to high return
or to low risk, respectively.- Source: D. Würtz et al.

The usual approach to portfolio optimization is based on the mean variance portfolio approach
introduced by Markowitz. The objective function considers the (negative) returns together with
the risk evaluated from the covariance of the investments to be minimized. This has to be done
under the conditions that individual investments are restricted to fall within a predetermined
range and that their sum is limited by an upper bound. In addition a riskfree investment is
easily added. Other portfolio optimization approaches allow for the optimization of the Sharpe
ratio and may add penalty functions to lower drawdowns and to shorten loss strings. Further
preferences of an investor can simply be added to the objective function within this approach.
Here we present a first and very simple concept to improve risk-return profiles for currency
investments. As an example we track exponential moving averages of the covariance matrix of
the revenues of the individual traders. Whenever a new trading signal arrives, the objective
function optimizes by a steepest descent approach (starting from an equally leveraged portfolio)
the amount of individual currency investments. This is done by minimizing the deviation of the
risk calculated from the covariance matrix in relation to a predefined risk value. As a further
simplification at each optimization step no re-adjustment of the whole portfolio is performed,
only the investment of the trader from which the arrived trading signal is adapted.

From the computational point of view this method is very attractive, since it allows an immedi-
ate availability of the optimized leverage factors after the new trading signal has arrived. Several
hundred portfolios can be tracked in realtime by using this approach. This approach was applied
to the four major currencies, USDDEM, USDJPY, USDCHF, and DEMJPY. Trading considers
investments into the “FX-Triangle” America (USD) - Europe (DEM/2, CHF/2) - Asia (JPY)
with 33% USDJPY 17% USDDEM, 17% USDCHF and 33% DEMJPY allocations. Since mid
of 1996, the portfolio program has calculated, in realtime, dynamically leveraged portfolio rec-
ommendations which realize two different investor preferences: The first portfolio is designed to
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achieve approximately the same return but with lower risk (average leverage factor 2.7 +/- 1.9,
maximum leverage factor 10) as compared to the fixed leveraged portfolio (leverage factor 3),
and the second portfolio tries to generate higher returns on the same risk level (average leverage
factor 3.7 +/- 2.5). The results are shown in the Figure comparing the results of the dynamically
leveraged portfolios with the fixed leveraged portfolio and the Ferrell Index benchmark. The
results are quite impressive.

Nevertheless, money management rules can be applied on top of the portfolio approach to protect
from large losses. These may be rules possibly formulated as: (1) never loose more than 5% per
month, (2) never loose more than 10% per quarter, and (3) drawdowns should not exceed 15%.
Furthermore, one can think about realizing paper profits at the end of a week or at the end of
a month, to achieve a more continuous return profile over time which is usually more attractive
to most of the investors.
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2.6 The fSeries Library

2.6.1 Summary of Splus Functions

The following section gives an overview over the Splus functions available in the fSeries Library.
The programs are grouped by their functionalities. A short description follows each Splus
function name.

ARIMA Time Series Analysis (2.1)

Standard Splus offers several functions for the investigation of ARIMA times series. In the heart
of these functions is the Gaussian Maximum Likelihood estimator for ARIMA process, whereas
for the simple AR process also other estimators are available.

arima.sim Simulates an univariate ARIMA time series

arima.mle Returns a list by MLE representing an univariate ARIMA model

arima.diag Computes diagnostics for an ARIMA model

arima.diag.plot Plots diagnostics for an ARIMA model

arima.filt Computes 1-step predictions and filtered values for an ARIMA model

arima.forecast Forecasts an univariate time series using an ARIMA model

ar.yw Fits an AR model using the Yule-Walker equations

ar.burg Fits an AR model using the Burg’s algorithm

ar.gm Computes robust generalized M-estimates of AR parameters

acf Estimates and plots autocovariance, ACF and/or PACF

acf.plot Plots autocovariance, ACF, PACF with inputs from acf or ar

The fSeries library adds the following functions:

trueacf Estimates and plots the true ACF and/or PACF

trueacf.plot Plots the true ACF and/or PACF

arma.roots Computes and plots the roots of an AR or MA polynomial

GARCH Time Series Analysis (2.2)

Splus offers a GARCH module which is not part of the standard Splus package. The author
has added two functions for simulation and estimation of APARCH processes. Functions for
diagnosis analysis and forecasting are still missing.
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garch.sim Simulates an univariate APARCH time series

garch.mle Returns a list by MLE representing an univariate APARCH model

Regression Modelling (2.3)

Standard Splus offers several functions for regression analysis with linear and additive models
and their generalizations:

lm Returns an object that represents a fit of a linear model

lm.object Represents the fit of a linear model

predict.lm Predicts new examples by a linear model

summary.lm Prints a summary report

glm Returns an object that represents a fit of generalized linear model

glm.object Represents the fit of a generalized linear model

predict.glm Predicts new examples by a linear model

summary.glm Prints a summary report

gam Returns an object that is a fit of a generalized additive model

gam.object Represents the fit of a generalized additive model

predict.gam Predicts new examples by a linear model

summary.gam Prints a summary report

ppr Returns an object that is a fit to a projection pursuit regression model

ppr.object Represents the fit of a projection pursuit regression model

predict.ppr Predicts new examples by a projection pursuit regression model

summary.ppr Prints a summary report

Note, that generic functions such as print and summary have methods to show the results of
the fit. Furthermore ppr was included from the R package modreg.

The R/Splus package mda contains MARS functions written by Hastie and Tibshirani (1995).
These functions were coded from scratch, and did not use any of Friedman’s original MARS code.
The authors claim, that one obtains quite similar results to Friedman’s program, but not exactly
the same results. Friedman’s Anova decomposition is not implemented nor are categorical
predictors handled properly. The mda package is included in the fSeries distribution.

mars Returns an object that represents a fit of a MARS model

predict.mars Predicts new examples by a MARS model

summary.mars Prints a summary report

There is another R/Splus package polymars available written by kooperberg and Stone to per-
form a stepwise regression using piecewise linear splines. Also this package is included in the
fSeries distribution.

polymars Returns an object that represents a fit of a POLYMARS model

predict.polymars Predicts new examples by a PLYMARS model

summary.polymars Prints a summary report

Neural Networks (2.4)

The R/Splus package nnet written by Ripley and added to the fSeries distribution provides
functions for the analysis with a feedforward connectionist network. A quasi-Newton optimizer,
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written in C, is used to train the net. The nnet package is also included in the fSeries
distribution.

nnet Fits a single-hidden-layer NN, possibly with skip-layer connections

predict.nnet Predicts new examples by a trained neural net

summary.nnet Prints a summary report

nnet.hess Evaluates the Hessian of the specified neural network

Trading Indicators (2.5)

The fSeries Library provides the major trading indicators to perform a “technical analysis” on
stocks or other financial instruments.

ema Calculates Exponential Moving Average

bias Calculates EMA-bias

roc Calculates Rate of Change

osc Calculates EMA-Oscillator

mom Calculates Momentum

macd Calculates MACD

cds Calculates MACD Signal Line

cdo Calculates MACD Oscillator

vohl Calculates High/Low Volatility

vor Calculates Volatility Ratio

fpk Calculates fast percent K (\%K)

fpd Calculates fast percent D (\%D)

spd Calculates slow percent D (\%D)

apd Calculates averaged \%D

wpr Calculates Williams \%R

rsi Calculates Relative Strength Index

2.6.2 List of Splus Datasets

nyseres.csv log returns of NYSE Composite index values

bmwres.csv log returns of BMW stock prices

usrecession.csv Recession data for the US economy

pacificstocks.csv Stock Indexes for the Pacific Markets

2.6.3 List of Splus Examples

The material presented is illustrated by several Splus examples In the following we give a full
list of all examples together with a short description:

xmpArimaSimulation Simulating ARIMA time series processe

xmpArimaTrueAcf Calculating the true ACF of ARMA time series

xmpArimaRoots Computing the roots of AR and MA polynomials

xmpArimaIdentificationa Identifying an ARMA time series process

xmpArimaEstimation Estimating the parameters of an ARMA process

xmpArimaSelectiona Selecting a proper ARMA time series model

xmpArimaDiagnostics Performing a diagnostic check for an estimate ARMA model

xmpArimaForecasting Forecasting the next steps in an ARMA time series process

xmpGarchInnovSim Simulating an GARCH time series process

xmpAparchSim Simulating an GARCH time series process

xmpGarchMLE Estimating the parameters of an APARCH process

xmpRegRecessionGLM Fitting US Recession Data by the GLM approach
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xmpRegRecessionGAM Fitting US Recession Data by the GAM approach

xmpRegRecessionPPR Fitting US Recession Data by the PPR approach

xmpRegRecessionPOLYMARS Fitting US Recession Data by the POLYMARS approach

xmpRegRecessionGLM Fitting US Recession Data by the NNET approach

2.6.4 Implemeted Software Packages

The fSeries was written by the author implementing beside his own functions additional func-
tions and routines written by others and interfacing to other Splus packages.

tseries:

The functions from the R package tseries support time series analysis with emphasis on
non-linear, non-stationary, and financial modelling. Most of the programs were written by
A. Trapletti. We have implemented the garch() functions from this package into the fSeries
library under the name ngarch() to circumvent double notations with the S+GARCH function
having the same name.

The source is available from:
http://cran.r-project.org/src/contrib/PACKAGES.html

splusTS:

SPLUSTS is a collection of Splus functions for time series analysis provided by Meeker (1998).
The goal of this package is to better integrate the Splus analytical and graphical tools and
provide a simpler interface for doing Box-Jenkins type ARMA/ARIMA modelling and analysis.
We borrowed the functions ... and have them integrated into the fSeries Library. Only a
compiled version for MS Windows is abvailable,not the source code.

The program is available from:
http://www.public.iastate.edu/ stat451/splusts/splusts.html

mda:

The functions from the R package mda support flexible discriminant analysis (FDA), mixture dis-
criminant analysis (MDA), multivariate additive regression splines (MARS), and additive spline
models by adaptive backfitting (BRUTO). Authors of the software are Hastie and Tibshirani,
for the R port Leisch, Hornik and Ripley.

The source is available from:
http://cran.r-project.org/src/contrib/PACKAGES.html

modreg:

The functions from the R package modreg support projection pursuit regression analysis. Author
of the underlying Fortran software is Friedman, for the R port Ripley.
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The source is available from:
http://cran.r-project.org/src/contrib/PACKAGES.html

polymars:

The functions from the S/R package polymars support polychotomous regression based on
Multivariate Adaptive Regression Splines, (MARS). Authors are Kooperberg and O’Connor, for
the R port Masarotto.

The source is available from:
http://cran.r-project.org/src/contrib/PACKAGES.html

nnet:

The functions from the R package nnet support projection pursuit regression analysis. Author
of the software and for the R port is Ripley.

The source is available from:
http://cran.r-project.org/src/contrib/PACKAGES.html

2.6.5 Other Software Packages of Interest

mars 3.5

The Fortran MARS 3.5 software package written by Friedman which implements the original
MARS algorithm is no longer available for a free download from the Internet. MARS is now
offered as a commercial software product by Salford Systems. Salford has enhanced the original
code with several new features and capabilities in collaboration with Friedman.

The source is available from:
www.salford-systems.com.

SNNS

SNNS, Stuttgart Neural Network Simulator, the is a software simulator for neural networks on
PCs and Unix workstations developed at the University of Stuttgart. The goal of the SNNS
project is to create an efficient and flexible simulation environment for research on and appli-
cation of neural networks. The SNNS simulator consists of two main components: 1) simulator
kernel written in C and 2) graphical user interface under the Window System X11. The simula-
tor kernel operates on the internal network data structures of the neural nets and performs all
operations of learning (optimization) and recall. It can also be used without the other parts as a
C program embedded in custom applications. This makes its interesting to integrate the software
under Splus or R. SNNS can be extended by the user with user defined activation functions, out-
put functions, site functions and learning procedures, which are written as simple C programs
and linked to the simulator kernel. Currently the following network architectures and learn-
ing procedures are included: Backpropagation for feedforward networks, Counterpropagation,
Quickprop, Backpercolation, RProp, Generalized radial basis functions (RBF), ART1, ART2,
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ARTMAP, Cascade Correlation, Recurrent Cascade Correlation, Dynamic LVQ, Backpropa-
gation through time (for recurrent networks), Quickprop through time (for recurrent networks),
Self-organizing maps (Kohonen maps), TDNN (time-delay networks) with Backpropagation, Jor-
dan networks, Elman networks and extended hierarchical Elman networks, Associative Memory.
The X11 graphical user interface XGUI, built on top of the kernel, gives a 2D and a 3D graphi-
cal representation of the neural networks and controls the kernel during the simulation run. In
addition, the 2D user interface has an integrated network editor which can be used to directly
create, manipulate and visualize neural nets in various ways.

The package is available from:
http://www-ra.informatik.uni-tuebingen.de/SNNS/.
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[18] deGroot C., Würtz D., Forecasting Time Series with Connectionist Nets: Applications in
Statistics, Signal Processing and Economics, in: Lecture Notes in AI 604, edts. F. Belli and
F.J. Radermacher, Springer, 1992.

[19] Dennis J.E, More J.J., Quasi-Newton Methods, Motivation and Theory. SIAM Rev. 19,
4689, 1977.

[20] Dennis J.E., Mei H.H.W., Two New Unconstrained Optimization Algorithms which use
Function and Gradient Values, J. Optim. Theory Applic. 28, 453482, 1979.

[21] Dennis J.E., Gay D.M., Welsch R.E., Algorithm 573 An Adaptive Nonlinear Least-Squares
Algorithm, ACM Transactions on Mathematical Software 7, 369383, 1981.

[22] Dwinnell W., Exploring MARS: An Alternative to Neural Networks, ?, 21-24, 2000.

[23] Eckmann J.P., Ruelle D., Ergodic Theory of Chaos and Strange Attractors, Revue of Modern
Physics 57, 617, 1985.

[24] Elder A., Trading for a Living, Kogan Page Ltd., London, 1993.

[25] Embrechts P., Dacorogna M.M., Somorodnitzky G., Mïller U.A., How heavy are the tails of
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