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Institut für Theoretische Physik
ETH Zürich
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Chapter 1

Markets, Basic Statistics, Date and
Time Management

As the story of the seven years of plenty followed by seven
years of famine in the Old Testament shows, volatile earning
streams were an issue long before today’s money was known.

Markus Lusser, President of the Swiss National Bank.

1.1 Introduction

In this Chapter we present methods, algorithms and tools to investigate the distributional prop-
erties of financial market data by data summaries, charts and hypothesis testing.

Our main interest concerns statistical tools for the analysis of stock market data and foreign
exchange market data. The tools which we present in the following allow to investigate properties
of market data ranging from low resolutions, like monthly economic market data, via intermediate
resolutions, like daily financial market data, to even higher resolutions, like tick-by-tick high
frequency financial market data. Looking to the intra-day data, the “homogeneity” of time
series data recorded at low frequencies disappears and many new structures in the financial time
series are becoming evident. They demonstrated the complexity of the returns and volatilities
of high frequency financial market data.

There was a long way coming to this insight starting from the Efficient Market Hypothesis
which states that at any given time, security prices fully reflect all available information. The
implications of the efficient market hypothesis are truly profound. Most individuals that buy
and sell securities (stocks in particular), do so under the assumption that the securities they are
buying are worth more than the price that they are paying, while securities that they are selling
are worth less than the selling price. But if markets are efficient and current prices fully reflect
all information, then buying and selling securities in an attempt to outperform the market will
effectively be a game of chance rather than skill.

The Efficient Market Hypothesis evolved in the 1960s from the PhD thesis of Eugene Fama [28]
(1963). Fama persuasively made the argument that in an active market that includes many well-
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informed and intelligent investors, securities will be appropriately priced and reflect all available
information. If a market is efficient, no information or analysis can be expected to result in
outperformance of an appropriate benchmark.

Thus the Efficient Market Hypothesis favors that price movements follow a Random Walk and
will not exhibit any patterns or trends and that past price movements cannot be used to predict
future price movements. Much of the theory on these subjects can be traced back to the French
mathematician Louis Bachelier [2], (1900), whose PhD thesis titled “The Theory of Speculation”
included some remarkably insights and commentary. Bachelier came to the conclusion that
“The mathematical expectation of the speculator is zero” and he described this condition as a
“fair game”. Unfortunately, his insights were so far ahead of the times that they went largely
unnoticed for over 50 years until his paper was rediscovered and eventually translated into
English and published in 1964.

In reality, markets are neither perfectly efficient nor completely inefficient. All markets are ef-
ficient to a certain extent, some more so than others. Rather than being an issue of black or
white, market efficiency is more a matter of shades of gray. In markets with substantial impair-
ments of efficiency, more knowledgeable investors can strive to outperform less knowledgeable
ones. Government bond markets for instance, are considered to be extremely efficient. Most
researchers consider large capitalization stocks to also be very efficient, while small capitaliza-
tion stocks and international stocks are considered by some to be less efficient. Real estate and
venture capital, which don’t have fluid and continuous markets, are considered to be less efficient
because different participants may have varying amounts and quality of information.

Benoit Mandelbrot [46] and Robert Engle [27] belong to the firsts finding evidence against
efficient markets. Their research opened the insight in many aspects of financial markets includ-
ing scaling behavior, fractal properties, fat tailed distribution functions of returns, clustering of
volatilities, long memory behavior of the autocorrelation function of the volatilities, heteroskedas-
tic properties of the time series, etc. These are some of the topics under current investigation
for which we need powerful statistical tools.

In Section 1.2 we briefly present economic and financial markets as centers of commerce and
introduce today’s economic and financial market movers: Industrial and business market movers,
consumer market movers, monetary and financial market movers, global market movers and
event driven market movers. After this we look at the investment environment in finance
for international market investments. This includes the cash and money market instruments,
equities, bonds, currencies and derivative instruments. A closer look is done onto the foreign
exchange market. We discuss the functions of market participants and information vendors.
Then we introduce definitions to characterize the data, this concerns the prices, the change
of prices, the volatility, the spread, the tick frequency, the volatility ratio, and the directional
change frequency.

In Section 1.3 we give a brief introduction into probability theory as a repetition for subjects like
probability, random variables, and statistical inference.

Section 1.4 is devoted to investigate distributional properties. We put special emphasize on the
Gaussian distribution, the Stable distribution, and the Hyperbolic distribution, which are often
used as standard models in the analysis and modelling process of financial market data. We
discuss the use of quantile-quantile plots and discuss how to plot distribution functions to make
the tail behavior more explicit from a graphical point of view. We also investigate how to fit
empirical data to distribution functions.
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Section 1.5 is dedicated to investigations of correlations and dependencies from several points of
view. We learn how to preprocess high frequency financial market data and how to de-seasonalize
and de-volatilize the data. We further investigate negative first-order autocorrelation function of
returns, the long memory behavior of volatilities, the lagged correlation of volatilities of different
time resolutions, the Taylor and Machina effects, and multi-fractal structures.

In Section 1.6 we present methods for hypothesis testing. We briefly outline the steps involved
in a test procedure and discuss some selected properties of hypothesis testing. Especially we
introduce several statistical tests, including Kolmogorov-Smirnov’s goodness-of-fit tests, the runs
test, and Spearman’s and Kendall’s rank correlation tests.

Section 1.7 is devoted to the management of calendar functionalities. We introduce the Grego-
rian calendar and related to it Julian day and minute counters. Further topics include handling
day-count-conventions and holiday calendars. It is also shown how clock changes by changing
time zones. Finally we give the rules and functions to manage daylight saving times.

Finally, in the Appendix we summarize some software aspects dealing with time series notations,
importing and reading data from files, accessing builtin data sets, and summarizing the software
package implemented under Splus for this lecture.
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1.2 Economic and Financial Markets

The primary role of the capital market is allocation of ownership of
the economy’s capital stock. In general terms, the ideal is a market in which
prices provide accurate signals for resource allocation: that is, a market
in which firms can make production investment decisions, and investors can
choose among the securities that represent ownership of firms’ activities
under the assumption that security prices at any time “fully reflect” all
available information.

Eugene F. Fama

Introduction

Markets are centers of commerce and have three separate points of origin.

• The first point concerns rural fairs. A typical cultivator fed his family and paid the landlord
and the moneylender from his chief crop. He had sidelines that provided salable products,
and he had needs that he could not satisfy at home. It was then convenient for him to go
to a market where many could meet to sell and buy.

• The second point was in service to the landlords. Rent, essentially, was paid in grain; even
when it was translated into money, sales of grain were necessary to supply the cultivator
with funds to meet his dues. Payment of rent was a one-way transaction, imposed by
the landlord. In turn, the landlord used the rents to maintain his warriors, clients, and
artisans, and this led to the growth of towns as centers of trade and production. An urban
class developed with a standard of life enabling its members to cater to each other as well
as to the landlords and officials.

• The third point, and most influential, origin of markets was in international trade. From
early times, merchant adventurers (the Phoenicians, the Arabs) risked their lives and their
capital in carrying the products of one region to another. The importance of international
trade for the development of the market system was precisely that it was carried on by third
parties. Within a settled country, commercial dealings were restrained by considerations
of rights, obligations, and proper behavior.

Throughout history the relations between the trader and the producer have changed with the
development of technique and with changes in the economic power of the parties. The 19th
century was the heyday of the import-export merchant. Traders from a metropolitan country
could establish themselves in a foreign center, become experts on its needs and possibilities,
and deal with a great variety of producers and customers, on a relatively small scale with each.
With the growth of giant corporations, the scope of the merchant narrowed; his functions were
largely taken over by the sales departments of the industrial concerns. Nowadays, there exist
international fairs and exchanges at which industrial products are available, a grand and glorified
version of the village market; the business, however, consists in placing orders rather than buying
on the spot and carrying merchandise home.

What does todays economic and financial market moves? The movers are expressed in form of
Industrial and Business Market Indicators, Consumer Market Indexes, Monetary and Financial
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Market Numbers, Global Market Indicators and unusual events which are the driving forces for
the economic and financial markets. In the following we briefly introduce these forces from the
US economy point of view [23]. Most of the indicators, indexes and rates are available in form
of time series data. We will use these numbers in several examples throughout this chapter.

Industrial and Business Market Movers

The industrial and business market movers are the Gross Domestic Product which describes
the total money value of all final goods and services produced during a given time period
(quarterly/annualy), the Industrial Production Index which counts monthly changes in the total
physical output of factories, mines, gas and electric utilities, the Durable Goods which describes
the monthly dollar value of all goods produced that have a useful life of at least three years, the
Capacity Utilization which measures the operation of the nation’s factories as a percentage of
their theoretical full capacity or maximum rate, the Unit Labor Cost which is the cost involved
in assembling a product depending on the workers’ wages and labor productivity, the Producer
Price Index which measures the rate of change in wholesale prices of domestically produced
goods, the Unemployment Rate which counts the number of unemployed expressed as a percent-
age of the total labor force, the Business Failures and Business Starts which counts the number
of companies that go out of business and the number of new businesses launched.

Consumer Market Movers

The major industrial factors concerning the consumers include the Consumer Price Index, a
measure for the change in consumer prices for a fixed basket of goods and services bought by
households, the Personal Income is a measure for the money earned by those at work, the
Consumer Confidence Index reflects consumers’ attitudes toward the economy, the job market,
and their own financial situation, the Consumer Installment Index sums the total of all loans to
consumers for financing the purchase of goods and services and for refinancing existing loans,
Auto Salescount the total number of domestically made cars and trucks sold during a given
period, the Retail Sales are the total money amount of all sales in retail stores, and the Housing
Starts count the total number of new single-family homes on which work has begun.

Monetary and Financial Market Movers

We are aware of the importance of interest rates. We see the effect of changing rates on money
market accounts, on CDs - Certificates of Deposit, and on home and business mortgages. But
not only interest rates move monetary and financial markets, there are further important market
movers like Yield Curves, Federal Reserve Data, Fed Funds, Money Supply, Inflation, Leading
Economic Indicators, Dow Jones Index, S&P500 Index, among others. The most frequently
quoted interest rate measures in the US are the government securities related to Treasury Bills
and Treasury Notes. Other instruments are the Treasury Bonds which are the long term debt
instruments sold by the government, the Prime Rate which is the interest rate commercial banks
charge their most credit worthy customers, the Discount Rate which is the interest rate that the
Federal Reserve charges member banks for loans, the Federal Funds Rate which is the interest
rate charged by banks with excess reserves on deposit at a Federal Reserve district bank to
those banks which need overnight loans in order to meet reserve requirements, the Municipal
Bonds Index which tracks the rates on securities issued by state and local government and their
agencies.
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Global Market Movers

Global market movers are economic events, taking place in foreign countries, but affecting do-
mestic issues. These include Oil Prices, Decisions of the Group of Seven G7, members are the
seven largest capitalist nations, Global Stock Markets, Balance of Trade, the difference between
imports and exports of merchandize, Foreign Exchange Rates, the Value of the US Dollar which
represents the price of the US Dollar in the foreign exchange market vis-a-vis other nations’
currencies, Eurodollarswhich are deposits denominated in US Dollars located in banks outside
USA and not subject to US banking regulations.

Event Driven Market Movers

Unexpected events can also play the role of market movers. These may include world political
events, corporate problems, wars, financial scandals, and others.

Data Sources: Monthly Economical and Financial Indicators

For the US economy and some European and Far-East economies economical and financial
indicators are available for downloading on the Internet. Contributors to historical data sets
include for example

• www.bea.doc.gov - The Bureau of Economic Analysis
BEA is an agency of the Department of Commerce. BEA produces and disseminates eco-
nomic accounts statistics that provide government, businesses, households, and individuals
with a comprehensive, up-to-date picture of economic activity. BEA presents basic infor-
mation on such key issues as U.S. economic growth, regional economic development, and
the US’ position in the world economy.

• www.bls.gov - The Bureau of Labor Statistics
BLS is the principal fact-finding agency for the Federal Government in the broad field of
labor economics and statistics. BLS presents data to the social and economic conditions
of the US, its workers, its workplaces, and the workers’ families.

• www.federalreserve.org - The Federal Reserve
The Fed is the central bank of the United States, founded 1913 to provide the US with
a safer, more flexible, and more stable monetary and financial system. Today the Fed
is conducting the US monetary policy, supervising and regulating banking institutions,
maintaining the stability of the financial system; and providing services to the government
and public.

• www.stls.frb.org - The Federal Reserve Bank of St. Louis
The Fed St. Louis is one of 12 local feds and maintains and provides the economic time
series data base of the Fed.

• www.nber.org - The National Bureau of Economic Research
NBER is a private nonprofit research organization dedicated to promoting a greater un-
derstanding of how the economy works. The research is conducted by more than 500
university professors around the US.
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Furthermore, EconoMagic, the provider of the “economic time series page” on the Internet site

• www.economagic.com

delivers all time series in a common format from the above mentioned contributors and others.
The Internet site is a comprehensive source of free, easily available economic time series data
useful for economic research. The site started in 1996 to give students easy access to large
amounts of data. Today there are more than 100,000 time series available for which data and
custom charts can be retrieved.

Example: Download of Economic Time Series Data - xmpImportEconomagic

Let us write a Splus function import.data.economagic() to download monthly economic and fi-
nancial indicators from EconoMagic’s Internet site. Use the DOS/UNIX versions of the programs
wget for the download and grep for matching and extracting the desired data records from the
transmitted “htm” file. The URL, from where to get the data records, is given in its full form as

http://www.economagic.com/em-cgi/data.exe/[Source]

where [Source] denotes the name of the source. See for examples the entries in the table below.
Save the downloaded data records in a *.csv (comma-separated) file for local use.

"import.data.economagic" <- function(file, source, query) {

# Download Data:

tmpfile <- tempfile(file); on.exit(unlink(tmpfile))

print("Starting Internet Download ...")

system(paste("bin\\wget -O ", file, " ", source, query, sep=""),

on.exit.status="stop", minimized=T)

print("Data successfully downloaded ...")

system(paste("bin\\cat ", file, " | bin\\grep ’^ [12][90].. [01].’ > ",

tmpfile, sep=""), on.exit.status="stop", minimized=T)

# Transform Data:

z <- read.table(tmpfile)

z <- data.frame(cbind(z[,1]*100+z[,2], z[,3:(length(names(z)))]))

# Save as Data Frame:

znames <- as.character(1:(length(names(z))-1))

names(z) <- c("DATE", znames)

write.table(z, file=file, dimnames.write="colnames")

# Return Result:

z }

Now let us try to download the time series for the Fed Funds:

> file <- "fedfunds+2.csv"

> source <- "http://www.economagic.com/em-cgi/data.exe/"

> query <- "fedstl/fedfunds+2"

> import.data.economagic(file, source, query)

[1] "Starting Internet Download ..."

[1] "Data successfully downloaded ..."

DATE 1 1 2

1 195407 0.80 NA NA

2 195408 1.22 5.0400 NA

. ... ... ... ..

12 195506 1.64 2.5200 NA

13 195507 1.68 0.4800 0.8800

.. ... ... ... ...

559 20011 5.98 -5.0400 0.5200

560 20012 5.49 -5.8800 -0.2400
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The most frequently requested data files from EconoMagic for the US economy include:

Source: DESCRIPTION:
---------------------------------------------------------------------------
var/leading-ind-long Index of Leading Economic Indicators
beana/t102l01 Real Gross Domestic Product
fedstl/pop Total U.S. Population
fedstl/trsp500 S&P 500 Total Return
fedstl/gnp Gross National Product in Current Dollars
fedstl/gdpdef GDP Implicit Price Deflator
beana/t102l02 Real Personal Consumption Expenditures
fedstl/pi Personal Income in Current Dollars
var/cpiu-long Consumer Price Index - All Urban Consumers
feddal/ru Unemployment Rate
fedstl/indpro Total Industrial Production Index
fedstl/m1sl M1 Money Supply
fedstl/m2sl M2 Money Supply
fedstl/m3sl M3 Money Supply
var/vel-gdp-per-m1 M1 Velocity
var/vel-gdp-per-m2 M2 Velocity
var/vel-gdp-per-m3 M3 Velocity
fedstl/exjpus+2 FX Rate: Japanese Yen to one US Dollar
fedstl/fedfunds+2 Federal Funds Rate
fedstl/mdiscrt+2 Discount Rate
fedbog/tcm30y+2 30-Year Treasury Constant Maturity Rate
fedstl/mprime+2 Bank Prime Loan Rate
fedstl/tb3ms+2 3-Month Treasury Bills - Secondary Market
fedstl/tb6ms+2 6-Month Treasury Bills - Secondary Market
fedbog/cm+2 30 Year Federal Home Loan Mortgages
var/west-texas-crude-long Price of West Texas Intermediate Crude
---------------------------------------------------------------------------

1.2.1 Investment Environments in Finance

In the management process of market investments, several international investment opportuni-
ties are available including Cash and Money Market Instruments, Equities, Bonds, Currencies
and Derivative Instruments (futures, options and swaps) [73].

Cash and Money Market Instruments

It is customary to define cash as funds placed in the Domestic Interbank Market or the Eu-
rocurrency Market. Wholesale Money Market Deposits, usually placed with a bank, but also
sometimes with non-bank participants, and negotiable Certificates of Deposit (CDs), also issued
by banks, are the major types of instruments. Eurocurrency Deposits are simply foreign deposits
held by a bank, e.g. US Dollar deposits held in the books of a bank in London.

Money market instruments are usually defined as those instruments that have a maturity of
one year or less. These include: Treasury Bills, which are short-term instruments issued by
governments, Bills of Exchange, Bankers’ Acceptances and Commercial Paper. Bills of Exchange
are acknowledgements of short-term debts issued by companies, and discounted in the money
markets. Banker’s Acceptances are similar but have a guarantee from a bank that payment will
be made. Commercial Paper is an unsecured promise from a substantial corporation to repay
the sum stated in the note, and traded in the Commercial Paper Market. Euro-Commercial
Paper is similar but is issued in a currency other than the domestic currency of the market in
which it is traded.
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The 10 biggest stock markets in the world The 10 biggest stock markets in the world
by market capitalization in 1998 by market capitalization in 1997

USD bn Companies USD bn Companies
NYSE 10.271.899,80 2669 NYSE 8.879.630,60 2626
Nasdaq 2.527.970,00 5068 Tokyo 2.160.584,80 1865
Tokyo 2.439.548,80 1890 London 1.996.225,10 2513
London 2.372.738,10 2423 Nasdaq 1.737.509,70 5487
Germany 1.093.961,90 3525 Germany 825.232,70 2696
Paris 991.483,80 1097 Paris 676.310,50 924
Switzerland 689.199,10 425 Switzerland 575.338,70 428
Amsterdam 603.182,20 356 Canada (To) 567.635,10 1420
Italy 569.731,80 243 Amsterdam 468.896,60 239
Canada (To) 543.394,00 1433 Hong Kong 413.322,60 658

� The size of the equity markets in 1997 and 1998 - capitalization and number of listed companies of the worlds
biggest stock markets. Source: International Federation of Stock Exchanges, www.fibv.com, (1999).

The cash instruments and the money market instruments are quoted in the market by their
yield. The markets for cash and money market instruments are characterized by over-the-
counter markets. The major participants are the banks, the treasury functions of the larger
corporations, institutional investors and the central banks of each country. In addition there is
a large body of brokers who intermediate between the parties.

Equity Markets: Shares

Equities, otherwise known as shares or stocks, are the perpetual capital of companies incor-
porated under various forms of statute in each country. Equities are claims upon the profits
and residual assets of a company. They are not debts owed by the company to the shareholder.
Moreover, the equities have the privilege of limited liability. Thus also the shareholder owns part
of the company, debtors of the company must look to the resources of the company for payment,
not individual shareholders. Unless, that is, the shareholders owe the company some unpaid
subscription on the shares. As a consequence, the shareholders rank last in the distribution of
the company’s assets in the event of bankruptcy or liquidation.

Ordinary shares are the most important element in the capital structure of individual companies,
and it is the ordinary shares that make up by far the largest proportion of shares traded on
any stock exchange. Holders of ordinary shares expect their dividends to grow in line with the
profitability of the company. Ordinary shareholders have rights to vote at meetings regarding
the appointment of directors, the payment of dividends and other matters as set out in the
company statute of each country.

The majority of stock exchanges around the world transact business on the exchange floor.
However, very important exceptions are the NASDAQ in New-York or the LSE in London with
trading fully based on computerized systems.

Bond Markets: Debts

Bonds are instruments evidencing debt with initial maturities in excess of one year, although
residual maturities may be very short as particular bonds approach maturity. Short-term bonds
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Announcements of international bonds and notes by currency

Quarterly totals, in billions of USD

0

60

120

180

1997 1998 1999

Total issuance

USD

EUR

JPY

0

60

120

180

1997 1998 1999

Excluding "home currency" issuers1,2

1
  Announced issues based on the nationality of the borrower.

 2
  i.e. US borrowers from USD issuance, euro-zone borrowers from euro

issuance and Japanese issuers from yen issuance.

Sources: Capital DATA; Euroclear;  Thompson Financial Services; BIS.

� Figure 1.2.1: The size of the bond market in 1997 until 1999 - total issuance by currency. Source: Bank of
International Settlements, www.bis.org, (1999a).

have initial maturities of between one and five years, medium-term bonds have initial maturities
between five and ten years and long-term bonds have initial maturities in excess of ten years.

The bond issuer is a borrower and the investor is a lender. Like all instruments evidencing debt,
bonds are claims on a stream of future cash flows. The details as to the amount and timing
of these payments are clearly established at the time of issue, and are set forth in the bond
indenture.

These cash flows will represent the payments required to fulfill the borrower’s commitments
under the loan. The bond may promise periodic payments, known as coupons, that are fixed
in amount and timing to cover interest, and one final payment at maturity in repayment of the
principal, the so-called redemption payment. Alternatively, the interest payments may be fixed
as to timing but variable as to amount, the amount being linked to a publicly available interest
rate benchmark such as the LIBOR, the London Interbank Offer Rate. Such bonds are known
as floating notes. The bonds may allow the principal amount to be converted into the equity
of the company at a predetermined price per share. Another structure may allow the interest
and/or principal to be paid in a different currency to that in which the bonds were issued.

As bonds are debt instruments, the creditworthiness of the issuer is a major influence on the
quality of the instrument. However, the maturity of the bond, the size of the interest payment,
its frequency, whether or not it is fixed for the life of the bond and the currency of denomination
of the total commitment are all important in making bonds attractive to investors.

There are two broad classifications of bond markets: the domestic bond market and the interna-
tional bond market. Domestic bonds are those bonds which are issued by borrowers domiciled
in the country, and denominated in the currency of the country where the bonds are traded.
International bonds are themselves divided into two broad groups: Eurobonds and foreign bonds.
Eurobonds are bonds simultaneously issued and traded in a number of countries in the world,
but denominated in a currency that is not the domestic currency of any of the countries con-
cerned. The foreign bond market is that segment of the bond market within a country where
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Announcements of international bonds and notes by sector and type*
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Sources: Bank of England; Capital DATA; Euroclear; ISMA; Thomson Financial Securities Data; BIS.

� Figure 1.2.2: The growth of the bond market from 1995 until 1999 - total issuance by sector and type.Source:
Bank of International Settlements, www.bis.org, (1999a).

non-resident borrowers issue bonds denominated in the currency of that country. Bond markets
are also classified according to the legal status of the issuer.

Usually the largest borrower in each market is the government. Consequently the government
bond market of each country is the cornerstone of the bond markets of that country. Given
the over-the-counter nature of the bond markets, the market makers are the major investment
banks in each of the major financial centers of the world. Consequently trading is conducted in
successive time zones, so that, like the foreign exchange market, the Eurobond market is a truly
global market conducting business 24 hours a day.

Foreign Exchange Market: Currencies

A major feature of modern portfolio management is that it is international in nature. When
buying or selling assets based in other countries, the investment manager is buying or selling
the currency of that country to an equal value of the investment. Thus international investment
gives rise to very substantial currency trading. In addition, once the foreign investments have
been purchased, the value of the investment is influenced by fluctuations in the exchange rate
between the foreign currency and the reporting currency of the investor.

In addition, currencies, in the form of foreign currency bank deposits, can be considered as risky
assets in their own right - the risk coming from fluctuations in the exchange rate rather than in
the value of the deposit.

A feature of currency trading is that, like bonds, there is no formal marketplace, the trades
being executed via the worldwide telephone system or through automated trading systems using
computer terminals to quote price and display settlement details. In addition, there is no single
source of regulation, in the same way as, say, a stock exchange will regulate transactions among
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Measures of global foreign exchange market activity
1

Average daily turnover in billions of US dollars

April 1989 April 1992 April 1995 April 1998

Total reported gross turnover 907 1,293 1,864 2,350

Adjustment for local double-counting
2 –189 –217 –293 –368

Total reported turnover net of local double-
counting (“net-gross”) 718 1,076 1,572 1,982

Adjustment for cross-border double-counting
2 –184 –291 –435 –540

Total reported “net-net” turnover 534 785 1,137 1,442
of which: cross-border transactions .. 392 611 772

Estimated gaps in reporting
3 56 35 53 58

Estimated global turnover 590 820 1,190 1,500

1  Data include spot transactions, outright forwards and foreign exchange swaps. Number of reporting countries in 1989: 21; 1992 and
1995: 26; and 1998: 43.   2  In principle made by halving positions vis-à-vis other local reporting dealers and other reporting dealers
abroad respectively.   3  Includes estimates for less than full coverage within individual reporting countries and for under-reporting of
activity between non-reporting countries.

� Figure 1.2.3: The growth of the foreign exchange market from 1989 until 1998 - global market activity. Source:
Bank of International Settlements, www.bis.org, (1999b).

its members. The foreign exchange markets in each country are generally regulated by the
central bank or the monetary authorities of that country.

The foreign exchange market, or often abbreviated as FX market, is global, with all the major
commercial banks of the world and the treasury departments of many companies participating.
In addition, central banks enter the market in the execution of their monetary and exchange
rate policies. There is also a system of brokers who act as intermediaries to supplement the
direct contact between participants. As the trading day processes, the center of activity moves
from one time zone to another, making it possible to trade, internationally 24 hours a day.

Foreign exchange transactions can be classified as spot, forward or swap transactions. Spot
transactions are those that require delivery of the currency within two working days of the
transaction rate. Forward transactions require delivery at some previously agreed point in
time, more than two working days hence, at a rate of exchange agreed when the transaction
is initiated. Swap transactions are the simultaneous combination of a spot transaction and a
forward transaction in the reverse direction for the same amount.

London is by far the most important center for the trading of foreign currencies. By far the
greatest proportion of currency trades, whether they be in the forward or spot market, involve
the US Dollar. This has been so for many years as the market practice is for currencies to be
traded against the US Dollar.

Derivative Markets

One of the major changes in the financial markets during the period since the 1970s has been the
development and growing use of so-called derivative instruments. These include forward con-
tracts, futures contracts, options and swaps. These instruments have been developed in relation
to a whole variety of underlying financial assets and are referred to as derivative instruments
because their value is dependent upon the value of some underlying asset. That is, the value of
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Currency distribution of global foreign exchange market activity
1

Percentage shares of daily turnover

April 1989 April 1992 April 1995 April 1998
US dollar 90 82 83 87

Deutsche mark
2 27 40 37 30

Japanese yen 27 23 24 21
Pound sterling 15 14 10 11
French franc 2 4 8 5
Swiss franc 10 9 7 7
Canadian dollar 1 3 3 4
Australian dollar 2 2 3 3
ECU and other EMS currencies 4 12 15 17
Other currencies 22 11 10 15
All currencies 200 200 200 200
1  Whenever reported on one side of transactions. The figures relate to reported “net-net” turnover, i.e. they are adjusted for both local and
cross-border double-counting, except in 1989, for which data are only available on a “gross-gross” basis.   2  Data for April 1989 exclude
domestic trading involving the Deutsche mark in Germany.

� Figure 1.2.4: The growth of the foreign exchange market from 1989 until 1999 - currency distribution. Source:
Bank of International Settlements, www.bis.org, (1999b).

the derivative instrument is derived from the value of the underlying asset. For example, equity
index futures and options have values derived from the underlying equity index.

Both futures and forward contracts are agreements to buy or sell a given quantity of a particular
asset for delivery at a specified future date but at a price agreed today. The difference is that
a futures contract is traded on a futures exchange as a standardized contract, subject to the
rules and regulations of the exchange. Forward contracts are not traded on an exchange, they
are therefore said to trade over-the-counter (OTC). The quantities of the underlying asset and
the contract terms are fully negotiable. Financial futures and forwards are traded on currencies,
equity indices, bonds and short-term interest rates.

Options and warrants can be broadly classified into calls and puts. Calls give the buyer the
right, but not the obligation, to buy a given quantity of the underlying asset, at a given price
(known as the exercise price or strike price), on or before a given future date (the maturity date
or expiry date). Puts give the buyer the right, but not the obligation, to sell a given quantity of
the underlying asset at a given price on or before a given date. The number of options exchanges
around the world has increased considerably in recent years. However, the growth in over-the-
counter options has also been dramatic. The market makers in these OTC instruments have
been the major commercial banks and investment banks. Not surprisingly, the greatest growth
has been in currency and interest rate options. However, recent years have also seen an increase
in equity and equity index OTC options.

Swaps are simply agreements between parties to swap the interest rate cash flows of particular
notional debt obligations. For example, party “A” may have a commitment to pay variable
rate interest on a loan, and party “B” may have a commitment to pay fixed rate interest on
a loan. Under a typical swap, “A” will pay the fixed interest commitment of “B”. In return
“B” will pay the variable interest of “A”. These swaps enable the parties to re-configure their
interest rate cash flow patterns to better match the pattern of revenue cash flows. Default risk is
minimized by not swapping the principal amount. The principal is only a notional amount that
acts as a reference point from which interest payments can be calculated. Such a transaction
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Markets for selected financial derivative instruments
Notional amounts outstanding at year-end

1993 1994 1995 1996 1997 1998

in billions of US dollars

Exchange-traded instruments 7,771.2 8,862.9 9,188.6 9,879.6 12,202.2 13,549.2
Interest rate futures 4,958.8 5,777.6 5,863.4 5,931.2 7,489.2 7,702.2
Interest rate options 2,362.4 2,623.6 2,741.8 3,277.8 3,639.9 4,602.8
Currency futures 34.7 40.1 38.3 50.3 51.9 38.1
Currency options 75.6 55.6 43.5 46.5 33.2 18.7
Stock market index futures 110.0 127.7 172.4 195.9 211.5 321.0
Stock market index options 229.7 238.4 329.3 378.0 776.5 866.5

OTC instruments1 8,474.6 11,303.2 17,712.6 25,453.1 29,035.0 50,997.0
Interest rate swaps 6,177.3 8,815.6 12,810.7 19,170.9 22,291.3 ..
Currency swaps2 899.6 914.8 1,197.4 1,559.6 1,823.6 ..
Interest rate options3 1,397.6 1,572.8 3,704.5 4,722.6 4,920.1 ..

1 Data collected by ISDA. 2 Adjusted for reporting of both currencies; including cross-currency
interest rate swaps. 3 Caps, collars, floors and swaptions.

Sources: Futures Industry Association; ISDA; various futures and options exchanges; BIS calculations.
Table VII.5

� Figure 1.2.5: The growth of the derivatives market from 1993 until 1998 - notional amounts outstanding at end
of year. Bank of International Settlements, www.bis.org, (1999b).
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1 Exchanges referred to in this box: CBOE: Chicago Board Options Exchange; CBOT: Chicago Board of Trade; CME:
Chicago Mercantile Exchange; LIFFE: London International Financial Futures and Options Exchange; MATIF: Marché à
Terme International de France; SIMEX: Singapore International Monetary Exchange; TIFFE: Tokyo International Financial
Futures Exchange; TSE: Tokyo Stock Exchange.   2 Comparisons of activity between exchanges are usually made in terms
of numbers of contracts traded. A more accurate basis for comparison would be the aggregate value of transactions by
exchange, but such data are not widely available. The analysis in this box relies therefore on the aggregate turnover of
financial contracts (including options on single equities) and non-financial products (largely on commodities).

� Figure 1.2.6: The size of the derivatives market 1998 and 1999 - volumes on major exchanges. Bank of
International Settlements, www.bis.org, (1999a).
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may become desirable when the revenue cash flow patterns of borrowers change over time.
For example, “A” might have originally borrowed under floating rate instruments because the
assets thus financed were themselves earning variable incomes, but now holds assets where the
income is fixed. Agreeing to pay the fixed interest commitment of “B” in return for “B” paying
the variable commitment of “A” will reduce the interest rate risk experienced by both parties.
Swaps can relate to foreign currency interest rate flows as well as domestic currency cash flows.
Consequently, they can be used to manage currency risk as well as interest rate risk. Originally,
a bank acted as intermediary between the parties to a swap. Nowadays, the bank frequently acts
as the counterparty to one side, and holds (warehouses) the swap until a suitable alternative
counterparty can be found. The banks thus effectively become market makers. Although the
swaps market has grown dramatically over the last decade or so, swaps are not widely used in
portfolio management.

Data: Daily Financial Market Data

Historical daily financial market data for stock prices and indexes, foreign exchange rates, and
interest rates is available for downloading from the Internet. The following is a brief summary
from where and how to get this information

Stock Prices and Indexes from Yahoo:

The Financial Srvice from Yahoo allows for downloading daily stock market series

URL: http://chart.yahoo.com/table.csv?[Source]

--------------------------------------------------------------------------------

Symbol: Source: Column: Remarks:

----------------------------1----2----3---4-----5-----------------------------

OPEN HIGH LOW CLOSE VOLUME FORMAT: d-month-y

SYMBOL s=SYMBOL&a=D&b=M&c=Y&q=q &a=D StartDay &b=M StartMonth

&b=M StartMonth

&c=Y StartYear

Example: ---------------------------------------------------------------------

IBM s=IBM&a=1&b=1&c=1990&q=q IBM since 19900101

--------------------------------------------------------------------------------

The Blue Chips

Symbols of the DJIA Stocks:

--------------------------------------------------------------------------------

Alcoa AA American Express AXP AT&T T

Boeing BA Caterpillar CAT Citigroup C

Coca-Cola KO DuPont DD Eastman Kodak EK

Exxon Mobil XOM General Electric GE General Motors GM

Home Depot HD Honeywell HON Hewlett Packard HWP

IBM IBM Intel INTC Internat.Paper IP

J.P. Morgan JPM Johnson&Johnson JNJ McDonald’s MCD

Merck MRK Microsoft MSFT Minnesota Mining MMM

Philip Morris MO Procter&Gamble PG SBC Comm. SBC

United Technol. UTX Wal-Mart Stores WMT Walt Disney DIS

--------------------------------------------------------------------------------
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The High Technology Market - Symbols of the NASDAQ-100 Stocks:

---------------------------------------------------------------------------------

COMS ADPT ADCT ADLAC ADBE ALTR AMZN APCC AMGN APOL AAPL AMAT AMCC

ATHM ATML BBBY BGEN BMET BMCS BVSN CHIR CIEN CTAS CSCO CTXS CMGI

CNET CMCSK CPWR CMVT CEFT CNXT COST DELL DLTR EBAY DISH ERTS FISV

GMST GENZ GBLX MLHR ITWO IMNX INTC INTU JDSU KLAC LGTO LVLT LLTC

ERICY LCOS MXIM WCOM MCLD MEDI MFNX MCHP MSFT MOLX NTAP NETA NSOL

NXTL NXLK NWAC NOVL NTLI ORCL PCAR PHSY SPOT PMTC PAYX PSFT PMCS

QLGC QCOM QTRN RNWK RFMD SANM SDLI SEBL SIAL SSCC SPLS SBUX SUNW

SNPS TLAB USAI VRTS VISX VTSS VSTR XLNX YHOO

---------------------------------------------------------------------------------

Note, for the Company names see: www.nasdaq.com

Important US Indexes:

---------------------------------------------------------------------------------

Dow Jones Averages: 30 Industrials ^DJI 20 Transportation ^DJT

15 Utilities ^DJU 65 Composite ^DJA

New York Stock Exch: Volume in 000’s ^TV.N Composite ^NYA

Tick ^TIC.N ARMS ^STI.N

Nasdaq: Composite ^IXIC Volume in 000’s ^TV.O

Nat Market Comp. ^IXQ Nasdaq 100 ^NDX

Standard and Poor’s: 500 Index ^SPC 100 Index ^OEX

400 MidCap ^MID 600 SmallCap ^SML

Other U.S. Indices: AMEX Composite ^XAX AMEX Internet ^IIX

AMEX Networking ^NWX Indi 500 ^NDI

ISDEX ^IXY2 Major Market ^XMI

PacEx Technology ^PSE Phil Semiconductor ^SOXX

Russell 1000 ^RUI Russell 2000 ^RUT

Russell 3000 ^RUA TSC Internet ^DOT

Value Line ^VLIC Wilshir 5000 TOT ^TMW

Treasury Securities: 30-Year Bond ^TYX 10-Year Note ^TNX

5-Year Note ^FVX 13-Week Bill ^IRX

Commodities: Dow Jones Spot ^DJS Dow Jones Futures ^DJC

Phil Gold&Silver ^XAU

---------------------------------------------------------------------------------

Foreign Exchange Rates from the Federal Reserve Bank of Chicago:1

The Federal Reserve Bank of Chicago provides major FX rates for download:

URL: www.chicagofed.org/economicresearchanddata/data/prnfiles/foreignexchg/[Source]

--------------------------------------------------------------------------------

Source: Column: Remarks:

------------------1------2------3------4------5------6---- CURRENT DATA --------

forex_c.prn CAD DEM GBP JPY FRF USD FROM: 19940101

forex2_c.prn ITL ESP BEF SEK HKD TWD TO: most recent

forex3_c.prn CHF MXP SKW AUD NLG SGD FORMAT: m/d/y

forex4_c.prn ATS CHY DKK EUX FIM

forex5_c.prn HED INR MYR NOK

forex5_c.prn PTE ZAR SLR THB

----------------1------2------3------4------5------6---- HISTORICAL DATA -----

forex_h.prn CAD DEM GBP JPY FRF USD FROM: 19710101

forex2_h.prn ITL ESP BEF SEK HKD TWD TO: 19931231

forex3_h.prn CHF MXP SKW AUD NLG SGD

--------------------------------------------------------------------------------

1Historical and current data files are downloaded until end of the year 2000 and included into the fBasics

library. xmpImportFedchicago() provides an example for the download. Note, that the Splus function
import.data.fedchicago() is limited to update the (current) time series. Daily exchange rates for almost 100
currency pairs can also be downloaded from the Internet site: http://pacific.commerce.ubc.ca/xr/
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Selected Interest Rates from the Federal Reserve Bank Chicago:

The Federal Reserve Bank of Chicago provides major interest rates for download:
URL: http://www.frbchi.org/econinfo/finance/int-rates/[Source]

--------------------------------------------------------------------------------
Source: Column: Description:
----------------1----2/5--3/6--4/7---8----9-------------------------------------
bonds_cd.prn AAA BAA Moodys AAA/BAA Bond Yields
cert_cd.prn CD3 CD6 3M & 6M Certificates of Deposits
comm_cd.prn CP3 CP6 3M & 6M Commercial Paper Rates
const_cd.prn CM3M CM6M CM01 CM02 CM03 3M to 30Y Treasury Constant

CM05 CM07 CM10 CM30 Maturity Rates
euro_cd.prn EU03 EU06 3M & 6M Eurodollar Rate (London)
rates_cd.prn FF TB03 CM10 CM20 FedFunds, TBill, 10Y-30Y Treasury

CM30 DISC Rates, DiscountRate
tbill_cd.prn TB03 TB06 TBY 3M, 6M & 1Y TBill Rates
--------------------------------------------------------------------------------
Note: The time series start at 19940101 and have date format "m/d/y". Historical
files are named *_hd.txt. The series start at 1968 (cert), 1971 (comm), 1989
(bonds), 1971 (euro), 1961 (rates), 1960 (tbill), 1962 (const), respectively.

The 15 most liquid futures contracts:

Future Exchange Future Exchange Future Exchange
--------------------------------------------------------------------------------
S&P500 STOCK INDEX CME US TREASURY BONDS CBT 10Y TREASURY NOTES CBT
DAX30 STOCK INDEX EUREX EURODOLLAR IMM FTSE100 INDEX LIFFE
10Y EURO GVT BUND EUREX LONG GILT LIFFE DJ50 EURO STOXX EUREX
5Y TREASURY NOTES CBT CAC40 INDEX MATIF CRUDE OIL NYM
NATURAL GAS NYM NASDAQ100 CME JAPANESE YEN IMM
--------------------------------------------------------------------------------
CBT Chicago Board of Trade, CME Chicago Mercantile Exchange, EUREX European
Exchange Frankfurt/Zurich, IMM International Money Market at CME, LIFFE London
International Financial Futures and Options Exchange, MATIF Marche a Terme
International de France Paris, NYM New York Mercantile Exchange.
Source: Stocks and Commodities, March, 2000.

Example: Download of market data from Yahoo - xmpImportYahoo

As in the case of data download from the EconoMagic Internet site let us write a Splus function
import.data.yahoo() to download financial market time series from Yahoo’s Internet portal. The
URL from where to get the data records is given in its full form as

http://chart.yahoo.com/table.csv?=Symbol&a=DD&b=MM&c=CCYY&g=d&q=q&z=Symbol&x=.csv

where Symbol has to replaced by the symbol name of the instrument, and DD, MM, and CCYY by the
day, month and century/year when the time series should start. The Splus function reads:

"import.data.yahoo" <- function(file, source, query) {

# Download Data:

print("Starting Internet Download ...")

system(paste("bin\\wget -O ", file, " ", source, query, sep=""),

on.exit.status="stop", minimized=T)

print("Data successfully downloaded ...")

# Transform Data:

znames <- fields(scan(file=file, n=1, what="", sep="\n"))

z <- matrix(data=scan(file, what="", skip=1, sep=","), byrow=T,

ncol=length(znames))

z[,1] <- ymd2cymd(rev(dates(z[,1], format="d-mon-y", out.format="ymd",

century=2000)))
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# Save as Data Frame:

z <- data.frame(z)

names(z) <- znames

for( i in 2:length(znames) ) z[,i] <- rev(z[,i])

write.table(z, file=file, dimnames.write="colnames")

# Return Result:

z }

The output of the Splus function is a Splus dataframe, consisting of six columns including date,
open, high, low, close price, and volume. The date is delivered by Yahoo in the format ”d-mon-y”
the function ymd2cymd() converts it to standard ISO-8601 format2

"ymd2cymd" <- function(x) {

# Transfor Date:

output <- is.character(x)

x <- as.integer(as.character(x))

x <- (19+cumsum(1-sign(c(1,diff(x))))/2)*1000000 + x

if(output) x <- as.character(x)

# Return result:

x }

Now an example how to download US stock market indexes starting January 1st, 1970:

> indexes <- ("DJI", "SPC", "OEX", "IXIC", "NDX", "NYA" )

> for ( index in indexes ) {

symbol <- paste("^", index, sep="")

file <- paste(index, ".CSV", sep="")

source <- "http://chart.yahoo.com/table.csv?"

query <- paste("s=", symbol, "&a=1&b=1&c=1970&g=d&q=q&y=0&z=", symbol,

"&x=.csv",sep="")

> print(import.data.yahoo(file, source, query)) }

...

[1] "Starting Internet Download ..."

[1] "Data successfully downloaded ..."

Date Open High Low Close Volume

1 19700102 18.225 18.2875 18.20 18.2375 19100

2 19700105 18.30 18.4125 18.30 18.4125 21900

3 19700106 18.4125 18.45 18.3125 18.425 26900

. ... ... ... ... ... ...

7888 20010320 91.60 92.03 88.10 88.30 10101100

7889 20010321 88.45 91.60 87.75 89.08 11013000

7890 20010322 89.12 91 87.65 89.10 13328200

...

1.2.2 A Closer Look onto the FX Market

A foreign exchange market is one in which those who want to buy a certain currency in exchange
for another currency and those who want to move in the opposite direction are able to do business
with each other. The motives of those desiring to make such exchanges are various. Some are
concerned with the import or export of goods between one country and another, some with the
purchase and sale of services. Some wish to move capital from one area to the other, and others
try to make profits through speculations in fluctuating currency prices.

2For details on mananaging calendar dates we refer to section 1.7.
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Table :  Reuter’s FXFX page screen. The first column gives the time (for example, for the first line,
‘07:27 ’), the second column gives the name of the currency (‘DEM/USD’), the third column gives
the name of the bank subsidiary which publishes the quote given as a mnemonic (‘RABO’ for the
Rabobank), the fourth column gives the name of the bank (‘Rabobank’), the fifth column gives the
location of the bank as a mnemonic (‘UTR’ for Utrecht), the sixth and seventh column give the bid
price with 5 digits (‘1.6290’) and the two last digits of the ask price (‘00’), the last two columns
give the highest (‘1.6365’) and the lowest (‘1.6270’) quoted prices of the day

________________________________________________________________

0727 CCY PAGE NAME * REUTER SPOT RATES * CCY HI*EURO*LO FXFX
0727 DEM RABO RABOBANK UTR 1.6290/00 * DEM 1.6365 1.6270
0727 GBP MNBX MOSCOW LDN 1.5237/42 * GBP 1.5245 1.5207
0727 CHF UBZA U B S ZUR 1.3655/65 * CHF 1.3730 1.3630
0727 JPY IBJX I.B.J LDN 102.78/83 * JPY 103.02 102.70
0727 FRF BUEX UE CIC PAR 5.5620/30 * FRF 5.5835 5.5582
0726 NLG RABO RABOBANK UTR 1.8233/38 * NLG 1.8309 1.8220
0727 ITL BCIX B.C.I. MIL 1592.00/3.00 * ITL 1596.00 1591.25
0727 ECU NWNT NATWEST LDN 1.1807/12 * ECU 1.1820 1.1774
----------------------------------------------------------------
XAU SBZG 387.10/387.60 * ED3 4.43/ 4.56 * FED PREB * GOVA 3OY
XAG SBCM 5.52/ 5.53 * US30Y YTM 7.39 * 4.31- 4.31 * 86.14-15
________________________________________________________________

� Figure 1.2.7: High Frequency FX rates from Reuters foreign exchange screen - Source: D.M. Guillaume [38]
(1997).

In any organized market there must be intermediaries who are prepared to “quote a price”, in
this case a rate of exchange between two currencies. These intermediaries must move the price
quoted in such a way to permit them to make the supply of each currency equal to the demand
for it and thus to balance their books. In an important foreign exchange market the price quoted
is constantly on the move.

Market Participants and Information Vendors

Central Banks play two key roles in the FX and Money Markets: (i) market supervision, and (ii)
control over money supply and interest rates. Central banks intervene to smooth out fluctuations
in the markets for freely convertible currencies by using their stock of foreign currency reserves,
or by influencing interest rates through money market operations. Among the most active
central banks are the Federal Reserve, Deutsche Bundesbank, Bank of Japan, Bank of England,
Banque de France, and Swiss National Bank.

Commercial Banks provide integrated FX, deposits and payments facilities for customers. They
also make an active market in currencies and deposits amongst themselves. Banks acting as
market makers, continuously alter their prices so as to balance the supply and demand for each
currency within their own books.

Market Information Vendors: In London, there are over 500 banks from all over the world
involved in FX operations, but less than 50 of these are active market makers. This is still a
sufficiently large number to cause the market user a problem in deciding which of the major
dealing banks is quoting the best rate of exchange. One solution is provided by the market
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information vendors, who may not be considered market participants as such but nontheless
play a vital role in the whole process. Terminals supplied by Reuters, Bridge, and other vendors
show the latest “indication” rates being quoted by the major banks within a given time zone.

Interbank Brokers relay prices received from banks via a telecommunication network to other
banks and some large market users. These prices are not merely for indication purposes; they
are “live” rates at which the quoting banks must be prepared to deal, usually for an accepted
market amount. About 25% of all FX business is believed to be channeled through electronic
brokers.

Corporations and Institutions are the main end-users of the FX and money markets. Companies
use these markets to manage their cash flows in the same or different currencies. Institutional
investors, which manage a very large part of the domestic and international financial assets
outstanding, use the markets to manage their day-to-day liquidity, and the FX markets to
structure their portfolios across a range of currencies.

Traditionally banks take on currency risk, but corporate and institutional users of the FX
markets are normally concerned with covering or “hedging” their foreign currency exposures.
However, the distinction is blurred because some companies, and of course some investors as
well, are aggressive players in their own right and actively take positions in currencies. Many
of the large multinationals have set up their own in-house banks, complete with dealing rooms
and risk control departments.

High Frequency Data: Prices, Returns, Volatilities ...

Adequate analysis of the FX market data relies on an explicit definition of the variables under
study. These include the price, the change of price, the volatility and the spread3. Others
include the tick frequency, the volatility ratio, and the directional change frequency. An extensive
notation is given to make all the underlying parameters explicit [38].

The price

Definition 1: The price at time t, x(tj), is defined as

x(τj) ≡ [log pask(τj) + log pbit(τj)]/2, (1.1)

where τj is the sequence of the tick recording times which is unequally spaced. An alternative
notation is

x(ti) ≡ x(∆t, ti) ≡ [log pask(ti) + log pbit(ti)]/2, (1.2)

where ti is the sequence of the regular spaced in time data and ∆t is the time interval.

Definition 1 takes the average of the bid and ask price rather than either the bid or the ask
series as a better approximation of the transaction price. The reason for this is, that market
makers frequently skew the spread towards a more favorable price to offset their position, and
in that context, the bid (or ask) price acts as a dummy variable. Furthermore, the average of

3In contrast daily data usually include for prices: open, high, low, and close. Due to the 24h structure of the
FX market, the open and close prices are very close in time und usually taken at the late afternoon, London or
New York time, depending from where the data have their origin. So it may be preferable to use for the open
price the closing price from the previous day
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the logarithms of the bid and ask prices rather than the logarithm of the average is taken, since
the former quantity has the advantage of behaving asymmetrically when the price is inverted.

One important issue in the case of intra-daily data is the use of the right time-scale. Contrary
to daily and weekly data, tick-by-tick data are indeed irregularly spaced in time, τj . However,
most statistical analyses rely upon the use of data regularly spaced in time, ti. For obtaining
price values at a time ti within a data hole or in any interval between ticks we use the linear
interpolation between the previous price at τj−1 and next one at τj , with τj−1 < ti < τj . As
advocated in Müller et al. [48] (1990), linear interpolation is the appropriate method for interpo-
lating in a series with independent random increments for most types of analyses. An alternative
interpolation method might be to use the most recently published price as in Wasserfallen and
Zimmermann [72] (1985) although this introduces an in-evitable bias in the data. However, as
long as the data frequency is low enough, the results do not depend too much on the choice of
either method. Although regularly time spaced data are used in most of the definitions below,
irregularly time spaced data could alternatively be used by replacing ti by τj . Finally, in ad-
dition to these two time-scales, other time-scales have been proposed to model characteristics
of the intra-daily FX market such as the seasonality (Dacorogna et al. [15] (1993)), the het-
eroskedasticity (Zhou [78] (1993)) or both of them (Müller et al. [49] (1993); Guillaume et al.
[37] (1996)).

The Change of Price

Definition 2: The change of price at time ti, r(ti), is defined as

r(ti) ≡ r(∆t, ti) ≡ [x(ti)− x(ti −∆t)], (1.3)

where x(ti) is the sequence of equally spaced in time logarithmic price, and ∆t is the fixed time
interval (e.g. 10 minutes, 1 hour, 1 day, ...).

The change of the logaritmic price is often referred to as “return”. It is usually preferred to the
price itself as it is the variable of interest for traders maximizing short term investment returns.
Furthermore, its distribution is more symmetric than the distribution of the price. Finally, it is
usually advocated that contrary to the price process which is clearly non-stationary, the process
of the price changes should be stationary.

The Volatility

Definition 3: The volatility at time t, v(ti), is defined as

v(ti) ≡ v(∆t, S; ti) ≡
1
N

n∑
k=1

|r(∆t; ti−k)|, (1.4)

where S is the sample period on which the volatility is computed (for example 1 day or 1 year)
and n is a positive integer with S = n∆t . A usual example is the computation of the daily
volatility as the average daily volatility over one year (S = 1 year, n = 250 and ∆t = 1 day).

In Definition 3, the absolute value of the returns is preferred to the more usual squared value or
more generally to any power ε (ε ∈ R+

0 ) of |r(∆t; ti)|. This is because the former quantity better
captures the autocorrelation and the seasonality of the data (Taylor [68] (1988); Müller et al.
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Intra-day tick activity
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� Figure 1.2.8: Histograms of high frequency exchange rates properties: Hourly intra-day and intra-week distri-
bution of the absolute price change, the spread and the tick frequency. A sampling interval of Deltat = 1 hour is
chosen. The day is subdivided into 24 hours from 0:00 - 1:00 to 23:00 - 24:00 (GMT) and the week is subdivided
into 168 hours from Monday 0:00 - 1:00 to Sunday 23:00 - 24:00 (GMT) with index i. Each observation of the
analyzed variable is made in one of these hourly intervals and is assigned to the corresponding subsample with
the correct index i. The sample pattern is independent of bank holidays and daylight saving time. The currency
is the USDDEM. Source: D.M. Guillaume et al. [38] (1997).

27



[48] (1990); Granger and Ding [34] (1993)). This greater capacity to reflect the structure of the
data can also be easily derived from the non-existence of a fourth moment in the distribution of
the price changes.

The Spread

Definiton 4: The relative spread at time t, s(ti), is defined as

s(ti) ≡ log pask(ti)− log pbid(ti), (1.5)

The log spread at time t, log s(ti), is defined as

log s(ti) ≡ log(log pask(ti)− log pbid(ti)). (1.6)

In the above definition, the relative spread s(ti) is preferred to the nominal spread (pask(ti) −
pbid(ti)) since it is dimensionless and can therefore be directly compared between different cur-
rencies. The spread of the inverse rate (e.g. JPY per USD instead of USD per JPY) is simply
−s(ti), so that the variance of s(ti) is invariant under inversion of the rate.

The spread is indicative of the transaction and inventory costs of the market maker who is under
reputation consideration pressures. It is also affected by the degree of informational asymmetries
and competitiveness. Thus, the spread depends both on the cost structure of the quoting bank
and on the habits of the market. On the other side, it is the only source of cost for the traders
since intra-daily credit lines on the foreign exchange markets are free of interest.

The Tick Frequency

Definition 5: The tick frequency at time t, f(ti), is defined as

f(ti) ≡ f(S; ti) ≡
1
S

N(x(τj)|τj ∈ (ti − S, ti)), (1.7)

The log tick frequency at time t, log f(ti), is defined as

log f(ti) ≡ log f(S; ti), (1.8)

where N(x(τj)) is the counting function and S is the sample period on which the counting is
computed. The alternative log form has been found to be more relevant in Demos and Goodhart
(1992).

The tick frequency is sometimes taken as a proxy for the transaction volume on the markets. As
the name and location of the quoting banks are also given, the tick frequency is also sometimes
disaggregated by bank. However, equating tick frequency to transaction volume or using it as
a proxy for both volume and strength of bank presence suffers from the following problems:
First, although it takes only a few seconds to enter a price quotation in the terminal, if two
market makers happen to simultaneously enter quotes, only one quote will appear on the data
collectors screen; Second, during periods of high activity, some operators may be too busy to
enter the quote into the system; Third, a bank may use an automatic system to publish prices
to advertise itself on the market. Conversely, well-established banks might not need to publish
as many quotes on smaller markets; Fourth, the representation of the banks depends on the
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� Figure 1.2.9: Hourly intra-day and intra-week distribution of the volatility ratio and the directional change
frequency. The number of subintervals (per hour) is 10. The threshold value for the directional change frequency
is 0.0003. A sampling interval of Deltat = 1 hour is chosen. The day is subdivided into 24 hours from 0:00 - 1:00
to 23:00 - 24:00 (GMT) and the week is subdivided into 168 hours from Monday 0:00 - 1:00 to Sunday 23:00 -
24:00 (GMT) with index i. Each observation of the analyzed variable is made in one of these hourly intervals and
is assigned to the corresponding subsample with the correct index i. The sample pattern is independent of bank
holidays and daylight saving time. The currency is the USDDEM. Source: D.M. Guillaume et al. [38] (1997).

coverage of the market by data vendors such as Reuters or Bridge. This coverage is changing
and does not totally represent the whole market. For example, Asian market makers are not as
well covered by Reuters as the Europeans. Asian market makers are instead more inclined to
contribute to the more local financial news agencies such as Minex; Fifth, trading strategies of
big banks are highly decentralized by subsidiary. Even between the back office and the trading
room or within the trading room itself, different traders may have completely different strategies.

The Volatility Ratio

Definition 6: The volatility ratio at time t, Q(ti), is defined as

Q(ti) ≡ Q(∆t, n; ti) ≡
|Σn

k=1r(ti+k)|
Σn

k=1|r(ti+k)|
, (1.9)
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The volatility ratio defined above is simply a generalization of the variance ratio introduced in
Lo and MacKinlay (1988) and Poterba and Summers (1988) where the absolute value of the
price change instead of the variance is used as a measure of the volatility to take into account
the statistical properties of the data (see Definition 3). The ratio can take values between 1
when the price changes follow a pure trend and 0 when they behave purely randomly.

The volatility ratio has been used in a variety of applications, including the effect of structural
changes on prices, hypothesis testing in the empirical literature on the micro-structure of the
markets and the identification of the nature of news. However, Guillaume et al. [38] (1997)
stressed the potential to use of the volatility ratio as a general statistic to measure the trend-
following behavior of the price changes.

Directional Change Frequency

Definition 7: The directional change frequency at time t, d(ti), is defined as

d(ti) ≡ Q(∆t, n, rc; ti) ≡
1

n∆t
N(k|mk 6= mk−1, 1 < k ≤ n) (1.10)

where N(k) is the counting function, n∆t the sampling period on which the counting is per-
formed, mk indicates the mode, upwards or downwards, of the current trend and rc is a threshold
value used to compute the change of mode. The directional change frequency, d(ti), is sim-
ply the frequency of significant mode (mk) changes with respect to the latest extremum value
(maxk or mink) and a constant threshold value rc.

In contrast with the definition of the volatility where the time interval is the arbitrarily set
parameter and the amplitude of the change of price is the varying parameter, in the above
formulation, the time is varying and the threshold is fixed. Thus, the definition also takes into
account gradually occurring directional changes.

The directional change frequency is similar to the volatility ratio defined above in that they both
measure the trend-following behavior of the price changes and, as such, provide an alternative
measure of the risk. However, unlike the volatility ratio, it is based on a threshold which is a
measure of the risk quite natural to traders as put by one of them; “Although volatility can tell
us the general environment of the market, we are actually more interested in the timing of our
trades. The knowledge of whether prices are likely to move more than a certain threshold allows
us to decide when we need to close a position. The height of this threshold will vary according
to our attitude towards risk.” The use of thresholds and measures of trends is also very familiar
to technical traders and chartists.

Example: Intra-Day and Intra-Week Volatility Histograms - xmpXtsDailyWeeklyHists

Plot an intra-daily and an intra-weekly histogram of the volatility for minutely averaged DAX
Futures data collected during 1997. Use the Splus function xts.dwh(xts, from.date, to.date,

period, dolog, dodiff=T, deltat, doplot=T) Here xts is a list(t, x) of times and values as
input, where the values may be either a price, a log-price, or a return. Choose properly dolog

and dodiff flags: If xts are prices then dolog=T and dodiff=T, if xts are log-prices then dolog=F

and dodiff=T, if xts are log-returns then dolog=F and dodiff=F. from.date (CCYYMMDD) and
to.date cut out a proper part of the time series. Start on a Monday, so the weekly plot also starts on
a Monday. deltat is the width of the bins in minutes. period may be one of daily|weekly|both.
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# Settings:

options(object.size=5e8)

# Load Example Data File:

file <- xmp.file("fBasics", "dax1997m.csv")

z <- matrix(data=scan(file, sep=","), byrow=T, ncol=4)

xts <- list(t=z[,1], x=z[,2])

# Create Daily and Weekly Histograms:

result <- xts.dwh (xts, from.date=19970106, to.date=19971228,

period="both", dolog=T, dodiff=T, deltat=30, doplot=T)

This example program produces a graph for the volatility similar to that shown in Figure 1.2.6.

Notes and Comments

An excellent resource of recent information on financial markets are the annual and quarterly
reports from the “International Bank of Settlement” in Basel, available on www.bis.org. Another
important source are the publications of the “International Monetary Fund”, downloadable
from www.imf.org, with its Annual Report, the World Economic Outlook, and the International
Capital Markets Report. Especially, many of the tables and graphs presented in the text were
copied from these sources.

For the historical development of financial markets I borrowed from two books: The description
of the market movers was taken from the book Market Movers by M. Dunnan and J.J. Pack [23],
and the material on investment environments in finance was taken from the book International
Portfolio Management - A Modern Approach written by T.J. Watsham [73].

The FX spot market is a beautiful example for a 24h financial market. Therefore we did a closer
look on the FX market following the material presented in the paper From the birds eye to the
microscope: a survey of new stylized facts of the intra-daily foreign exchange markets published
by the Olsen & Associates Group in Zurich [38]. An extensive source of scientific investigations
of the FX market can be found in the Proceedings of the two conferences on “High frequency
Data in Finance” held in Zurich 1995 [53] and 1998 [54].

The financial time series which are available in the fBasics library were obtained from the
following Internet sites: www.economagic.com, www.fedchicago.com, charts.yahoo.com. For
importing data from the Bloomberg financial market data service Splus provides a function:
import.data.bloomberg(). We have written for the same task a function import.data.rte()
for the Reuters financial market data service doing the same job. So it becomes very easy to
import data into the Splus environment from databases and/or from the internet and/or from
professional data providers.
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1.3 Brief Repetition from Probability Theory

When you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot measure
it, when you cannot express it in numbers your knowledge is of a meager
and unsatisfactory kind: it may be the beginnings of knowledge, but you
have scarcely, in your thoughts, advanced to the stage of science.

William Thomson, Lord Kelvin

Introduction

For the investigation of financial market data we need some knowledge from probability theory.
There are several text books around which can serve for a first introduction. On the following
we give a brief repetition based on the book of W.J. Conover [?] and summarize the definitions
for probability, sample space, random variables, and some topics from statistical inference.

1.3.1 Probabilty - The Sample Space

Let us assume that we have a specified experiment in mind, such as “two fair dice are rolled”.
We may just validly consider more complicated experiments, and the same concepts introduced
below are applicable. Now we shall define the important terms sample space and points in the
sample space in connection with an experiment.

• The sample space is the collection of all possible different outcomes of an experiment.

• A point in the sample space is a possible outcome of an experiment.

• An event is any set of points in the sample space.

• If A is an event associated with an experiment, and if nA represents the number of items
A occurs in n independent repetitions of the experiment, then the probability of the event
A, denoted by P (A), is given by

P (A) = lim
n→∞

nA

n
(1.11)

which is read “the limit of the ratio of the number of times A occurs to the number of
times the experiment is repeated, as the number of repetitions approaches infinity”.

• A probability function is a function which assigns probabilities to the various events in the
sample space.

• If A and B are two events in a sample space S, then the event “both A and B occur”,
representing those points in the sample space that are in both A and B at the same time,
is called the joint event A and B, and is represented by P (AB).

• The conditional probability of A given B is the probability that A occurred given that B
occurred, and is given by

P (A|B) =
P (AB)
P (B)

, (1.12)
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where P (B) > 0. If P (B) = 0, P (A|B) is not defined.

• Two events A and B are independent if

P (A|B) = P (A)P (B). (1.13)

• Two experiments are independent if for every event A associated with one experiment and
every event B associated with the second experiments,

P (AB) = P (A)P (B). (1.14)

It is equivalent to define two experiments as independent if every event associated with
one experiment is independent of every associated with the other experiment.

• n experiments are mutually independent if for every set of n events, formed by considering
one event from each of the n experiments, the following equation is true:

P (A1A2 . . . An) = P (A1)P (A2) . . . P (An), (1.15)

where Ai represents an outcome of the ith experiment, for i = 1, 2, . . . , n.

1.3.2 Random Variables

Outcomes associated with an experiment may be numerical in nature, such as a score on an
examination, or non-numerical such as a choice. In order to analyze the results of an experiment
it is necessary to assign numbers to the points in the sample space. Any rules for assigning such
numbers is called a random variable.

• A random variable is a function which assigns real numbers to the points in the sample
space.

• The conditional probability of X given Y , written P (X = x|Y = y), is the probability that
the random variable X has assumed the value x, given that the random variable Y has
assumed the value y.

• The probability density function, PDF, of the random variable X, usually denoted by f(x),
is the function which gives the probability of X assuming the value x, for any real number
x. In other words

f(x) = P (X = x). (1.16)

• The cumulated distribution function, CDF, of a random variable X, usually denoted by
F (x), is the function which gives the probability of X being less than or equal to any real
number x. In other words

F (x) = P (X ≤ x) =
∑
t≤x

f(t), (1.17)

where the summation extends over all values of t that do not exceed x.

• Let X be a random variable. The binomial distribution is the probability distribution
represented by the probability function

f(x) = P (X = x) =
(

n

k

)
pxqn−x x = 0, 1, . . . , n, (1.18)
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where n is a positive integer, 0 ≤ p ≤ 1, and q = 1− p. (Note that we are using the usual
convention 0! = 1.) The distribution function is then

F (x) = P (X ≤ x) =
∑
t≤x

(
n

i

)
piqn−i, (1.19)

where the summation extends over all possible values of i less than or equal to x.4

• Let X be a random variable. The discrete uniform distribution is the probability distri-
bution represented by the probability function

f(x) =
1
N

x = 0, 1, . . . , N. (1.20)

Thus X may assume any integer value from 1 to N with equal probability, if X has the
discrete uniform probability function.

• The joint probability function f(x1, x2, . . . , xn) of the random variables X1, X2, . . . , Xn is
the probability of the joint occurrence of X1 = x1, X2 = x2, . . . , and Xn = xn. Stated
differently,

f(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn). (1.21)

• The joint distribution function F (x1, x2, . . . , xn) of the random variables X1, X2, . . . , Xn

is the probability of the joint occurrence of X1 ≤ x1, X2 ≤ x2, . . . , and Xn ≤ Xn. Stated
differently,

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). (1.22)

• The conditional probability function of X given Y , f(x, y), is

f(x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=

f(x, y)
f(y)

, (1.23)

where f(x, y) is the joint probability function of X and Y , and f(y) is the probability
function of Y itself.

• Let X1, X2, . . . , Xn be random variables with the respective probability functions f1(x1),
f2(x2), . . ., fn(xn), and with the joint probability function f(x1, x2, . . . , xn). Then X1,
X2, . . . , Xn are mutually independent if

f(x1, x2, . . . , xn) = f1(x1)f2(x2) . . . fn(xn) (1.24)

for all combinations of values of x1, x2, . . . , xn.

1.3.3 Some Properties of Random Variables

We have already discussed some of the properties associated with random variables, such as their
probability density function and their cumulated distribution function. The probability function
describes all of the properties of a random variable that are of interest, because the probability

4Example: An experiment consists of n independent trials where each trial may result in one of two outcomes
“up” or “down”, with probabilities p and q, respectively, such as with the tossing of a coin. Let X equal the total
number of “ups” in the n trials. Then X has the binomial distribution for integer x from 0 to n.
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function reveals the possible values the random variable may assume, and the probability asso-
ciated with each value. A similar statement may be made concerning the distribution function.
At times, however, it is inconvenient or confusing to present the entire probability function to
describe a random variable., and some sort of a “summary description” of the random variable
is needed. And so we shall introduce some other properties of random variables which may be
used to present a brief, but incomplete, description of the distribution of the random variable.

• The number xp, for a given value of p between 0 and 1, is called the pth quantile of the
random variable X, if P (X < xp) ≤ p and P (X > xp) ≤ 1− p.

• Let X be a random variable with the probability function f(x), and let u(X) be a real
valued function of X. Then the expected value of u(X), written E[u(X)], is

E[u(X)] =
∑

x

u(x)f(x), (1.25)

where the summation extends over all possible values of X. If the sum on the right hand
side is infinite, or does not exist, then we say that the expected value of u(X) does not
exist.

• Let X be a random variable with the probability density function f(x). The mean of X,
usually denoted by µ, is

µ = E[X] =
∑

x

xf(x). (1.26)

The mean, sometimes called “location parameter” marks a central point, a point of balance.

• Let X be random variable with mean µ and the probability function f(x). The variance
of X, usually denoted by σ2 or by Var(X), is

σ2 = E[(X − µ)2] = E[X2]− µ2 (1.27)

which is often a more useful form of the variance for computing purposes.

• Let X1, X2, . . . , Xn be random variables with the joint probability functions f1(x1), f2(x2),
. . ., fn(xn), and let u(X1, X2, . . . , Xn) be a real valued function of X1, X2, . . . , Xn. Then
the expected value of u(X1, X2, . . . , Xn) is

E[u(X1, X2, . . . , Xn)] =
∑

u(x1, x2, . . . , xn)f(x1, x2, . . . , xn), (1.28)

where the summation extends over all possible values of x1, x2, . . . , xn.

• Let X1 and X2 be two random variables with mean µ1 and µ2, probability functions f1(x1)
and f2(x2) respectively, and joint probability function f(x1, x2. The covariance of X1 and
X2 is

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)]. (1.29)

The definition of the expected value may be used to give

Cov[X1, X2] =
∑

(x1 − µ1)(x2 − µ2)f(x1, x2) = E[X1X2]− µ1µ2, (1.30)

where the summation extends over all x1 and x2. The last expression on the r.h.s. is often
easier to use then the previous one when calculating a covariance.
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• The correlation coefficient between two random variables is their covariance divided by the
product of their standard deviations. That is, the correlation coefficient, usually denoted
by ρ, between two random variables X1 and X2 is given by

ρ =
Cov[X1, X2]√
Var[X1]Var[X2]

. (1.31)

All of the random variables that we have introduced so far have one property in common;
their possible values can be listed. The list of possible values assumed by the binomial random
variable is 0, 1, 2, 3, 4, . . . , n − 1, n. No other values may be assumed by the binomial random
variable. The list of values that may be assumed by the discrete uniform random variable could
be written as 1, 2, 3, . . . , N . Similar lists could be made for each random variable introduced in
the previous definitions.

A way of stating that the possible values of a random variable may be listed, is to say that there
exists a one to one correspondence between the possible values of the random variable and some
or all of the positive integers. This means that to each possible value there corresponds one
and only one positive integer, and that positive integer does not correspond to more than one
possible value of the random variable. Random variables with this property are called discrete.
Now, in the following we like to introduce continuous random variables.

• A random variable X is discrete if there exists a one to one correspondence between the
possible values of X and some or all of the positive integers.

• A random variable X is continuous if no quantiles xp and xp′ of X are equal to each other,
where p is not equal to p′. Equivalently, a random variable X is continuous if P (X ≤ x)
equals P (X < x) for all numbers x.

1.3.4 Statistical Inference

Much of our knowledge concerning the world we live is the result of samples. Our process of
forming opinions may be placed within the framework of an investigation. Such an investigation
can be well defined by words like population, samples, statistics, and estimation.

• A sample from a finite population is a random sample if each of the possible samples was
equally likely to be obtained.

• A random sample of size n is a sequence of n independent and identically distributed, iid,
random variables X1, X2, . . . , Xn.

• A statistic is a function which assigns real numbers to the points of a sample space, where
the points of the sample space are possible values of some multivariate random variable.
In other words a statistic is a function of several random variables.

• The order statistic of rank k, X(k) is the statistic that takes as its value the kth smallest
element x(k) in each observation (x1, x2, . . . xn) of (X1, X2, . . . , Xn).

• Let (X1, X2, . . . , Xn) be a random sample. The empirical distribution function S(X) is a
function of x which equals the fraction of Xi’s which are less than or equal to x for each
x, −∞ < x < ∞.

• Let (X1, X2, . . . , Xn) be a random sample. The p-th sample quantile is that number Qp

which satisfies the two conditions:
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(a) The fraction of the Xi’s which are less than Qp is ≤ p.
(b) The fraction of the Xi’s which exceed Qp is ≤ 1− p.

• Let (X1, X2, . . . , Xn) be a random sample. The sample mean µ and the sample variance
σ2 are defined by

µ =
1
n

n∑
i=1

xi, σ2 =
1
n

n∑
i=1

(xi − µ)2. (1.32)

Notes and Comments

The brief repetition from probability theory I summarized from the wonderful book of Conover
Practical Nonparametric Statistics [11]. Conover presents a brief review of probability theory
and statistical inference and covers many test methods. The book includes a thorough collection
of statistics tables, hundreds of problems and references, detailed numerical examples for each
procedure, and an instant consultant chart to guide to the appropriate procedure. From its style,
the book is an introductory textbook but it can also be used as a “book of recipes”. For this
purpose each statistical method is described in a self-contained, clear-cut format accompanied
by many examples. The applications are drawn from many fields including economics.
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1.4 Distribution Functions in Finance

Much of the real world is controlled as much by the
“tails” of distributions as by means or averages:
by the exceptional, not the mean;
by the catastrophe, not the steady drip;
by the very rich, not the middle class.
We need to free ourselves from “average” thinking.

Philip Anderson, Nobel-prize-winning physicist.

Introduction

One of the most interesting questions in the investigation of financial time series concerns the
distributional form of the logarithmic returns. A first question may be: “Are the logarithmic
returns distributed according to a Gaussian, also called normal, distribution function?” If
this would not be the case, we may ask: “Where are the differences, and can we quantify
these differences?” Here are two typical examples for the PDF plot for two different financial
instruments, one from the FX futures market and the other from the Bond market.

-30.0 -20.0 -10.0 0.0 10.0 20.0 30.0
0.00

0.10

0.20

Gaussian
USD/DEM

-0.010 -0.005 0.0 0.005 0.010

0
1
0
0

2
0
0

3
0
0

••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••

••••••••••••••
••••••

••••
••
••
••
••
•
•
••
••
••
••
•
•
•
•
•
•
•
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•
•
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

empirical
normal

J Figure 1.4.1: Density plot of 5 minute increments of USD/DEM exchange rate futures. The lower curve is a
Gaussian with same mean and variance. Source: Cont et al. [12] (1997).
I Figure 1.4.2: Density plot for the logarithmic returns of zero coupon bonds with 5 years to maturity. Empirical
data and normal density have the same mean and variance. Source: Eberlein [26] (1999).

Typical examples of the empirical distribution of the logarithmic returns of asset prices show
pronounced deviations from the normal distribution function. The contrast with the “Gaus-
sian” is striking showing a leptokurtic character of the distribution function with pronounced
“heavy tails”. The value for the kurtosis usually supersedes significantly the value for the nor-
mal distribution function. These observations imply that under the assumption of a normal
distribution function we systematically underestimate the probability of large price fluctuations.
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J Figure 1.4.3: Log PDF of hourly returns for USD/DEM exchange rates, sampled over 10 years starting at
October 1, 1986. The dashed line represents a fit with a Gaussian distribution. Source: Dacorogna, (1997).
I Figure 1.4.4: Quantile-Quantile plot of 20 min returns for USD/DEM exchanges, sampled over one year starting
October 1, 1992. Source: Würtz et al. [74] (1995), data HFDF-I from Olsen & Associates[53] (1995).

This becomes an issue of utmost importance in financial risk management.

To make the behavior in the tails more explicit, from inspection by eye two procedures are very
helpful in this context: (i) look at the density function of the empirical returns on a logarithmic
scale in comparison to a fitted normal distribution function, and (ii) look on the quantile-quantile
plot of the empirical versus a normal distributed sample.

There are two distribution functions among others which found special interest in the analysis
of financial market data: The stable distribution, also sometimes called Lévy distribution, and
the generalized hyperbolic distribution.

Example: Logplot of Distribution Functions - xmpDistLogpdf

Let us write a Splus function logpdf() which returns histogram mid-breakpoints and histogram
counts of an empirical data set together with fitting points for the normal distribution with the
empirical sample mean and sample variance. Allow for an optional plot similar to figure 1.4.3 of the
PDF on a logarithmic scale.

"logpdf" <- function(x, n=50, doplot=T, ...) {
# Histogram Count & Break-Midpoints:

# Note on R: hist() has different arguments!
histogram <- hist(x, nclass="fd", probability=T, include.lowest=F, plot=F)
yh <- histogram$counts
xh <- histogram$breaks
xh <- xh[1:(length(xh)-1)] + diff(xh)/2
# Eliminate Zero-counts:
xh <- xh[yh>0]
yh <- log(yh[yh>0])
# Allow for an optional plot:
if (doplot) {plot(xh, yh, type="p", ...)}

# Compare with a Gaussian Fit:
xg <- seq(from=xh[1], to=xh[length(xh)], length=n)
yg <- log(dnorm(xg, mean(x), sqrt(var(x))))
# Allow for an optional plot:
if (doplot) {lines(xg, yg, col=6)}

# Return Result: Break-Midpoints and Counts
list(ebreaks=xh, ecounts=yh, gbreaks=xg, gcounts=yg)}
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Use this function to plot the logarithmic returns from the daily sampled NYSE composite index.
Discuss the deviations of the empirical data from the simulated normal distributed time series data.

x <- nyseres.dat

result <- logpdf(x, n=501,

xlab="log Return", ylab="log Empirical PDF",

xlim=c(-0.2,0.2), main="Log PDF NYSE Plot")

Example: QQplot of Distribution Functions - xmpDistQQgauss

Generate a quantile-quantile plot similar to figure 1.4.4 for the daily sampled NYSE composite
index dataset and compare the results to an artificial normal distributed time series of the same
length. Let us write a Splus functions qqgaus() for this purpose using the standard Splus functions
qqnorm() and qqline().

"qqgauss" <- function(x, span=5, ...){

# Standardized qqnorm():

y <- (x-mean(x)) / sqrt(var(x))

lim <- c(-span,span)

qqnorm(y[abs(y)<span], xlim=lim, ylim=lim, ...)

# Return Result: qqline()

qqline(y, col=6)}

x <- nyseres.dat

result <- qqgauss(x, main="QQ Plot")

Discuss the deviations of the empirical data from the simulated normal distributed time series data.

1.4.1 The Gaussian Distribution

First let us start, repeating the major properties of the Gaussian distribution function. It’s
just this distribution function most commonly encountered in financial modeling for example in
pricing and hedging of options or financial risk management. The Gaussian probability density
function, PDF, with mean µ and standard deviation σ is defined as

fG(x;µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
, (1.33)

and the Gaussian cumulated distribution function, CDF, is given by

FG(x;µ, σ) =
∫ x

−∞
du

1√
2πσ2

exp
(
−(u− µ)2

2σ2

)
. (1.34)

Moments, Characteristic Function and Cumulants

Moments of order n of the distribution f(x) are defined as the average of powers of x:

mn =
∫

dx xnf(x). (1.35)

41



Accordingly, the mean µ = m1 ist he first moment, while the variance is related to the second
moment, σ2 = m2−m2

1. The above definition is only meaningful if the integral converges, which
requires that f(x) decreases sufficiently rapidly for large |x|. From a theoretical point of view,
the moments are interesting: if they exist, their knowledge is often equivalent to the knowledge
of the distribution f(x) itself. In practice however, the high order moments are very hard to
determine satisfactorily: as n grows, larger and larger samples (or longer and longer time series)
are needed to keep a certain level of precision on mn: these high moments are thus in general
not adapted to describe empirical data.

For many computational purposes, it is convenient to introduce the characteristic function of
f(x), defined as its Fourier transform:

f̂(z) =
∫

dx eizxf(x). (1.36)

The function f(x) is itself related to its characteristic function through an inverse Fourier trans-
form:

f(x) =
1
2π

∫
dze−ixz f̂(z). (1.37)

Since f(x) is normalized, one always has f̂(0) = 1. The moments of f(x) can be obtained
through successive derivatives of the characteristic function at z = 0,

mn = (−i)n dn

dzn
f̂(z)|z=0. (1.38)

The cumulants cn of a distribution are defined as the successive derivatives of the logarithm of
its characteristic function:

cn = (−i)n dn

dzn
log f̂(z)|z=0. (1.39)

The cumulant cn is a polynomial combination of the moments mp with p ≤ n. For example
c2 = m2−m2

1 = σ2. It is often useful to normalize the cumulants by an appropriate power of the
variance, such that the resulting quantities are dimensionless. One thus defines the normalized
cumulants λn,

λn =
cn

σn
. (1.40)

One often uses the third and fourth normalized cumulants, called the skewness ς and kurtosis κ

ς = λ3 =
E(x− µ)3

σ3
, (1.41)

κ = λ4 =
E(x− µ)4

σ4
− 3. (1.42)
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The above definition of cumulants may look arbitrary, but these quantities have remarkable
properties. For example, the cumulants simply add when one sums independent random vari-
ables. Moreover a Gaussian distribution is characterized by the fact that all cumulants of order
larger than two are identically zero. Hence the cumulants, in particular κ, can be interpreted as
a measure of the distance between a given distribution f(x) and a Gaussian.

For µ = 0, all the odd moments of a Gaussian are zero while the even moments are given by
m2n = (2n − 1)(2n − 3) . . . σ2n = (2n − 1)!!σ2n. In particular, the kurtosis of a Gaussian is
zero. A Gaussian variable is peculiar because large deviations are extremely rare. The quantity
exp(−x2/2σ2) decays so fast for large x that deviations of a few times σ are nearly impossible.
For example, a Gaussian variable departs from its most probable value by more than 2σ only 5%
of the times, of more than 3σ in 0.2% of the times, while a fluctuation of 10σ has a probability
of less than 2× 10−23; in other words, it “never” happens.

Convolutions and the Central Limit Theorem

What is the distribution of the sum of two independent random variables? This sum can for
example represent the variation of prices of an asset between today and the day after tomorrow
X, which is the sum of the increment between today and tomorrow X1 and between tomorrow
and the day after tomorrow X2, both assumed to be random and independent.

Convolution: Let us consider X = X1 + X2 where X1 and X2 are two random variables,
independent, and distributed according to f1(x1) and f2(x2), respectively. The probability that
X is equal to x (within dx) is given by the sum over all possibilities of obtaining X = x (that is
all combinations of X1 = x1 and X2 = x2 such that x1 + x2 = x), weighted by their respective
probabilities. The variables X1 and X2 being independent, the joint probability that X1 = x1

and X2 = x− x1 is equal to f1(x1)f2(x− x1), from which one obtains:

f(x)|N=2 =
∫

dx′f1(x′)f2(x− x′). (1.43)

This equation defines the convolution between f1(x) and f2(x), which we shall write f = f1 ? f2.
The generalization to the sum of N independent random variables is immediate. One thus
understands how powerful is the hypothesis that the increments are iid, i.e., that f1 = f2 =
. . . = fN . Indeed, according to this hypothesis, one only needs to know the distribution of
increments over a unit time interval to reconstruct that of increments over an interval of length
N : it is simply obtained by convoluting the elementary distribution N times with itself.

Additivity of cumulants and of tail amplitudes: It is clear that the mean of the sum of two
random variables (independent or not) is equal to the sum of the individual means. The mean
is thus additive under convolution. Similarly, if the random variables are independent, one can
show that their variances (when they both exist) are also additive. More generally, all the
cumulants cn of two independent distributions simply add. This follows from the fact that since
the characteristic functions multiply, their logarithm add. The additivity of cumulants is then
a simple consequence of the linearity of derivation. The cumulants of a given law convoluted N
times with itself thus follow the simple rule cn,N = Ncn,1, where the {cn,1} are the cumulants
of the elementary distribution f1. Since the cumulant cn has the dimension of X to the power
n, its relative importance is best measured in terms of the normalized cumulants:
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λN
n =

cn,N

c
n/2
2,N

=
cn,1

c
n/2
2,1

N1−n/2. (1.44)

The normalized cumulants thus decay with N for n > 2; the higher the cumulant, the faster the
decay: λN

n ∝ N1−n/2. The kurtosis κ, defined above as the fourth normalized cumulant, thus
decreases as 1/N . This is basically the content of the Central Limit Theorem: when N is very
large, the cumulants of order > 2 become negligible. Therefore, the distribution of the sum is
only characterized by its first two cumulants (mean and variance): it is a Gaussian.

Central Limit Theorem: Thus the Gaussian Law is a “fixed point” of the convolution operation.
The fixed point is actually an attractor, in the sense that any distribution convoluted with
itself a large number of times finally converges towards a Gaussian law. Said differently, the
limit distribution of the sum of a large number of random variables is a Gaussian. The precise
formulation of this result is known as the central limit theorem:

Theorem: The Central Limit Theorem for identical distributions5 - Let X1, X2, . . . be mutually
independent random variables with a common distribution function F . Assume E(X) = 0, and
Var(X) = 1. As n →∞ the distribution of the normalized sum

Sn = (X1 + X2 + . . . + Xn)/
√

n (1.45)

tends to the Gaussian distribution with PDF e−x2/2/
√

2π.

Fitting a Distribution to Observed Data

The distribution parameters that make a distribution type best fit the available data can be
determined in several ways. The most common technique is to use maximum likelihood estima-
tors, MLEs. The parameters of the distribution are found that maximize the joint probability
density for the observed data. MLEs are very useful because for many distributions they provide
a quick way to arrive at the best-fitting parameters. In the case of a discrete distribution, MLEs
maximize the actual probability of that distribution being able to generate the observed data.

The maximum likelihood estimators of a distribution are the values of its parameters that
produce the maximum joint probability density for the observed data. In the case of a discrete
distribution, MLEs maximize the actual probability of that distribution being able to generate
the observed data. Consider a probability distribution type defined by a set of parameters θi.
The likelihood function L(θi) is proportional to the probability that a set of N data points xi

could be generated from the distribution with probability density f(x) and is given by

L(θi) = Πif(xi, θi). (1.46)

The result of the MLE procedure is then the set of θi values that maximizes L(θi). This set is
determined by taking the partial differentials of L(θi) with respect to the θi’s and setting them
to zero:

5For a proof of the CLT we refer to An Introduction to Probability Theoy and ts Applications, W. Feller, [29]
(1966). The Theorem (Lindeberg-Feller CLT) can be generalized to different distribution F1, F2, . . ..
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δL(θi)
δθi

= 0. (1.47)

For the Gaussian distribution function the MLE is determined by the mean µ and the standard
deviation σ of the observed data.

Example: Central Limit Theorem - xmpDistCLT

Let us investigate how fast the sum of Student-t distributed rvs, implemented in the Splus function
rt(), and the log-returns of the NYSE Composite index converge to a Gaussian distribution function.
Student’s t-distribution is defined as

f(x) =
Γ

(
ν+1
2

)
√

πνΓ
(

ν
2

) [
1 + (x2

ν
)
] ν+1

2

where ν denotes the number of freedoms. The distribution has mean zero and standard deviation
ν/(ν − 2) for ν > 2.

To aggregate the time series use the Splus functions apply() and matrix(). Also calculate the
skewness and the kurtosis under aggregation of the time series.

First let us write two Splus functions to evaluate the skewness() and kurtosis(). Allow for the
management of NA values in the time series:

"kurtosis" <- function(x, na.rm=F) {

if(na.rm) x <- x[!is.na(x)]

sum((x-mean(x))^4/var(x)^2)/length(x) - 3 }

"skewness" <- function(x, na.rm=F) {

if(na.rm) x <- x[!is.na(x)]

sum((x-mean(x))^3/sqrt(var(x))^3)/length(x) }

Note, that both are zero for a Gaussian PDF. Now let us investigate the CLT, to visualize the results
we use the functions logpdf() and qqgaus().

# Create an artificial time series with t-distributed innovations:

df <- 6

r <- rt(8390, df)

# Normalize the series:

r <- r/sqrt(df/(df-2))

# Consider two aggregation levels 2 and 10:

x <- apply(matrix(r, ncol=2), MARGIN=1, FUN=sum)/sqrt(2)

logpdf(x)

cat(" Skewness: ",skewness(x), " Kurtosis: ",kurtosis(x), "\n")

x <- apply(matrix(r, ncol=10), MARGIN=1, FUN=sum)/sqrt(10)

logpdf(x)

cat(" Skewness: ",skewness(x), " Kurtosis: ",kurtosis(x), "\n")

x <- apply(matrix(r, ncol=2), MARGIN=1, FUN=sum)/sqrt(2)

qqgauss(x, col=1)

x <- apply(matrix(r, ncol=n10), MARGIN=1, FUN=sum)/sqrt(10)

points(qqnorm(x, plot=F), col=6, pch=3)

# Now do the same for the 8390 NYSE residuals:

r <- nyseres.dat

# Normalize the series:

r <- (r-mean(r))/sqrt(var(r))

# ...
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Student-t df=6
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J Figure 1.4.5: The figure shows the aggregated log-returns of the NYSE Composite Index on 2 days and two
weeks (10 days) in comparison to an artificial random time series with t-distributed innovations with 6 degrees
of freedom.

The plots are displayed in figure 1.4.5, discuss the result. Results for the skewness and kurtosis for
the Student t-distributed artificial time series are

Student-t:

n = 2: Skewness: -0.0159 Kurtosis: 1.056

n = 10: Skewness: 0.0570 Kurtosis: 0.526

and for the NYSE Composite Index we obtain

NYSE:

n = 2: Skewness: -1.2651 Kurtosis: 25.166

n = 10: Skewness: -0.5137 Kurtosis: 5.393

1.4.2 The Stable Distributions: Fat Paretian Tails

Stable distributions are characterized being stable under convolution: in other words the sum
of two iid stable distributed variables is also stable distributed, with the same parameter α,
characterizing the distribution. In particular, the sum scales as N1/α and not as

√
N which is

the case of Gaussian random variables, which we reach in the limit α = 2.

Stable distributions thus appear naturally in the context of a “Generalized Central Limit Theo-
rem” because of this property under addition. The tails, often called “Pareto tails”, of a stable
PDF for α < 2 are much “fatter” than those of Gaussians, exhibiting power law behavior with
exponent 1 + α leading to an infinite variance.
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These observations led in the fifties and sixties Benoit Mandelbrot and others to propose stable
distributions as candidates for the PDF of price changes of financial assets. They observed that
stable distributions offer heavy tailed alternatives to Gaussians while still enabling a justification
of the model in terms of a generalized central limit theorem. Furthermore, their stability under
convolution gives rise to the scale invariance Mandelbrot [45] (1963) observed in daily returns
of cotton prices: if properly rescaled, the increments of scale Nτ will have the same distribution
as the increment at scale τ : fNτ (x) = 1

λfτ (x/λ), with λ = N1/α.

This realization of scale invariance, means that the price process x(t) is self-similar with a
self similarity exponent which is the inverse of the index of stability α. Exactly this kind
of self-similarity in market prices was first observed by Mandelbrot. Many following studies
have confirmed the presence of self-similarity and scale invariant properties in various financial
markets.

Definition of “stable”

As already mentioned above, an important property of normal or Gaussian random variables is
that the sum of any two is itself a normal random variable. One consequence of this is that if
X is normal, then for X1 and X2 independent copies of X and any positive constants a and b,
aX1 + bX2

d= cX + d, for some positive c and some d ∈ R. (The symbol d= means equality in
distribution, i.e. both expressions have the same probability law.) This can be seen by using
the addition rule for the sum of two independent normals: the mean of the sum is the sum of
the means and the variance of the sum is the sum of the variances.

Now, suppose X ∼ fG(x;µ, σ), then the terms on the left hand side above are fG(x; aµ, aσ) and
fG(x; bµ, bσ) respectively, while the right hand side is fG(x; cµ + d, cσ). By the addition rule
for independent normal random variables, one must have c2 = a2 + b2 and d = (a + b− c)µ. In
words, the equation aX1 + bX2

d= cX + d says that the shape of X is preserved (up to scale and
shift) under addition. This section is about the class of distributions with this property.

Definition: A random variable X is stable6or stable in the broad sense if for X1 and X2 inde-
pendent copies of X and any positive constants a and b,

aX1 + bX2
d= cX + d, (1.48)

for some positive c and some d ∈ R. The random variable is strictly stable or stable in the narrow
sense if the above equation holds with d = 0 for all choices of a and b. A random variable is
symmetric stable if it is stable and symmetrically distributed around 0, e.g. X

d= −X.

There are three cases where one can write down closed form expressions for the density and
verify directly that they are stable - Gaussian, Cauchy and Lévy distributions:

6The word stable is used because the shape is stable or unchanged under sums of the type (X). Some authors use

the phrase sum stable to emphasize the fact that (X) is about a sum and to distinguish between these distributions

and max-stable, min-stable and geometric stable distributions. Also, some older literature used slightly different

terms: stable was originally used for what we now call strictly stable, quasi-stable was reserved for what we now

call stable.
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fG(x;µ, σ) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
−∞ < x < ∞,

fC(x; γ, δ) = 1
π

γ
γ2+(x−δ)2

−∞ < x < ∞,

fL(x; γ, δ) =
√

γ
2π

1
(x−δ)3/2 exp

(
− γ

2(x−δ)

)
δ < x < ∞.

(1.49)

Other than the Gaussian distribution, the Cauchy distribution, the Lévy distribution (and also
the reflection of the Lévy distribution not considered here), there are no known closed form
expressions for general stable densities and it is unlikely that any other stable distributions have
closed forms for their densities. Zolotarev [80] (1986) showed that in a few cases stable densities
or distribution functions are expressible in terms of certain special functions. This may seem
to doom the use of stable models in practice, but recall that there is no closed formula for
the normal distribution function. There are tables and accurate computer algorithms for the
standard normal distribution function, and people routinely use those values in normal models.
We now have computer programs to compute quantities of interest for stable distributions, so
it became possible to use them in practical problems.

There are other equivalent definitions of stable random variables. Here is a variation of the
original definition, which some authors take as the definition of stable.

Theorem: X is stable if and only if for all n > 1, there exist constants cn > 0 and dn ∈ R such
that X1 + . . . Xn

d= cnX + dn, where X1, . . . , Xn are independent, identical copies of X. The
only possible choice for cn is cn = n1/α. X is strictly stable if and only if dn = 0 for all n.

Both, our definition of stable and the result above use distributional properties of X. While
useful, this does not give a concrete way of parameterizing stable distributions. The most
concrete way to describe all possible stable distributions is through the characteristic function:

Theorem: A random variable X is stable if and only if X
d= AZ + B, where 0 < α ≤ 2,

−1 ≤ β ≤ 1, A ≥ 0, B ∈ R and Z = Z(α, β) is a random variable with characteristic function

E[exp(iuZ)] =


exp

(
−|u|α[1 + iβ tan πα

2 (signu)(|u|1−α − 1)]
)

α 6= 1,

exp
(
−|u|[1 + iβ 2

π (signu) ln |u|]
)

α = 1.
(1.50)

The exact form of the characteristic function chosen here is to guarantee certain statistically
useful properties. The key idea is that α and β determine the shape of the distribution while A
is a scale and B is a shift.

While there are no explicit formulas for general stable densities, a lot is known about their
theoretical properties. The most basic fact is the following.

Theorem: All (non-degenerate) stable distributions are continuous distributions with an infinitely
differentiable density.

Stable densities are all unimodal (i.e. the PDF has exactly one maximum), but there is no known
formula for the location of the mode. Thus the mode of a Z(α, β) distribution, denoted by
m(α, β), has to be numerically computed. The figure shows the values of m(α, β). Furthermore,
By the symmetry property, m(α,−β) = −m(α, β) holds.
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A basic fact about stable distributions is the symmetry property.

Proposition: For any α and β, Z(α,−β) d= −Z(α, β).

First consider the case when β = 0. Then the PDF and CDF are symmetric around 0. As α
decreases, three things occur to the density: the peak gets higher, the region flanking the peak
gets lower, and the tails get heavier. If β > 0, then the distribution is skewed with the right
tail of the distribution heavier than the left tail; for large x > 0. When α = 2, the distribution
is a (non-standardized!) Gaussian distribution. Note, that tan(πα/2) = 0, so the characteristic
function is real and hence the distribution is always symmetric, no matter what the value of β.

Parameterization

A general stable distribution requires four parameters to describe: the stable index α, the
skewness β and a scale and a shift parameter. It is an historical fact that several different
parameterizations are used for stable distributions. We will use γ for the scale parameter and δ
for the location parameter, so that the four parameters will be (α, β, γ, δ). This avoids confusion
with the symbols µ and σ, which will be used exclusively for the mean and standard deviation.
We will always restrict the parameters to the range α ∈ (0; 2], β ∈ [−1, 1], γ ≥ 0, and δ ∈ R.

Definition: Parameterization 1 - A random variable X is S(α, β, γ, δ; 0) if

X
d= γZ + δ (1.51)

where Z = Z(α, β) is given by eqn. (1.50).

This is the most common parameterization in use, if one is primarily interested in a simple form
for the characteristic function and nice algebraic properties.

Definition: Parameterization 2 - A random variable X is S(α, β, γ, δ; 1) if

X
d=


γZ + (δ + βγ tan πα

2 ) α 6= 1,

γZ + (δ + β 2
πγ ln γ) α = 1,

(1.52)

where Z = Z(α, β) is given by eqn. (1.50).

This parameterization is favored for numerical work on stable distributions: it has the simplest
form for the characteristic function that is continuous in all parameters. It lets α and β determine
the shape of the distribution, while γ and δ determine scale and location in a familiar way.

Note that if β = 0, then the two parameterizations are identical, it is only when β 6= 0 that the
factor involving tan(πα/2) becomes an issue.

Since multiple parameterizations are used for stable distributions, it is perhaps worthwhile to ask
if there is another parameterization where the scale and location parameter are more meaningful.
A confusing issue with the standard scale is that as α ↑ 2, both S(α, β, γ, δ; 0) and S(α, β, γ, δ; 1)
distributions converge in distribution to a Gaussian distribution with standard deviation γ/

√
2,

not standard deviation γ. This is not an inherent property of stable distributions, simply
an artifact of the way the characteristic function is generally specified. The definition below
is one way to make the scale agree with the standard deviation in the Gaussian case. As
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for the location parameter, the shift of β tan(πα/2) built into the S(α, β; 0) parameterization
makes things continuous in all parameters, but so does any shift β tan(πα/2)+ (any continuous
function of α and β). Thus the location parameter is somewhat arbitrary in the S(α, β, γ, δ; 0)
parameterization. Modes are easily understood, every stable distribution has a mode, and every
user of the normal distribution is used to thinking of the location parameter as the mode. We
suggest doing the same for stable distributions.

Definition: Parameterization 3 - A random variable X is S(α, β, γ, δ; 2) if

X
d= α1/αγ(Z −m(α, β)) + δ, (1.53)

where Z = Z(α, β) is given by (X) and m(α, β) is the mode of Z.

While this parameterization complicates the characteristic function even more, it may be the
most intuitive parameterization for users in applied fields. The location parameter δ is always
the mode of an S(α, β, γ, δ; 2) density. In the Gaussian case (α = 2), γ is the standard deviation
and in the Cauchy case (α = 1, β = 0), γ is the standard scale parameter. The figure shows
stable densities in this parameterization. It also makes the normal distribution have the highest
mode with the mode height decreasing with α - this emphasizes the heavier tails as α decreases.

A stable distribution can be represented in any one of these or other parameterizations. In the
three parameterizations considered here, α and β are always the same, but the scale and location
parameters will have different values. The notation X ∼ S(α, β, γk, δk; k) for k = 0, 1, ) will be
shorthand for S(·) given by the three definitions above.

The parameters are related by

γ0 = γ1 = α−1/αγ2

δ0 =
{

δ1 + βγ1 tan πα
2 α 6= 1

δ1 + β 2
πγ1 ln γ1 α = 1

= δ2 − α−1/α γ2 m(α, β)

γ1 = γ0 = α−1/αγ2

δ1 =
{

δ0 − βγ0 tan πα
2

δ0 − β 2
πγ0 ln γ0

=
{

δ2 − α−1/αγ2(m(α, β) + β tan πα
2 α 6= 1

δ2 − γ2(m(1, β) + β 2
π ln γ2) α = 1

γ2 = α1/αγ0 = α1/αγ1

δ2 = δ0 + γ0m(α, β) =
{

δ1 + γ1(m(α, β) + β tan πα
2 ) α 6= 1

δ1 + γ1(m(1, β) + β 2
π ln γ1) α = 1

(1.54)

When the distribution is standardized, i.e. scale γ = 1, and location δ = 0, the symbol S(α, β; k)
will be used as an abbreviation. Finally, if no k is specified, we will always mean the S(α, β; 0)
distributions. It suffices to consider S(α, β; k) and then to use scaling for the other cases. The
abbreviation SαS is used as an abbreviation for symmetric α-stable distribution. In this case,
if a scale parameter is used, SαS(γ) = S(α, 0, γ, 0; 0) = S(α, 0, γ, 0; 1) = S(α, 0, α1/αγ, 0; 2).
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Tail Probabilities

When α = 2 the Gaussian distribution has well understood asymptotic tail properties. The tail
probabilities in the non-Gaussian cases are known asymptotically. The statement h(x) ∼ g(x)
as x →∞ will mean limx→∞ h(x)/g(x) = 1.

Theorem: Tail approximation. Let X ∼ S(α, β; 0) with 0 < α < 2, −1 < β ≤ q. Then as x →∞

P (X > x) ∼ cα(1 + β)x−α

f(x, α, β; 0) ∼ αcα(1 + β)x−(α+1),

(1.55)

where cα = Γ(α)(sinπα
2 )/π.

Generation of Random Numbers

In the general case, the following result of Chambers, Mallows and Stuck [9] (1976), gives
a method for simulating any stable random variate. Let Θ and W be independent with Θ
uniformly distributed on (−π

2 , π
2 ) and W exponentially distributed with mean 1.

When α 6= 1,

Z = c(α, β)
sinα(Θ + θ0)

(cosΘ)1/α

(
cos(Θ− α(Θ + θ0))

W

)(1−α)/α

∼ S(α, β; 0), (1.56)

where c(α, β) = (1 + (β tan πα
2 )2)1/(2α), and θ0 = α−1 arctan(β tan πα

2 ).

When α = 1,

Z =
(

1 + β
2
π

Θ
)
− β

2
π

ln

(
W cos Θ
1 + β 2

πΘ

)
∼ S(1, β; 0). (1.57)

It is easy to get Θ and W from independent uniform (0, 1) random variables U1 and U2: set
Θ = π(U1 − 1/2) and W = − lnU2. Using Z as above, γZ + δ ∼ S(α, β, γ, δ; 0); one can scale
and shift to get any S(α, β, γ, δ; k) distribution for k = 1, 2.

Numerical Approximations

The approach of J.H. McCulloch for symmetric distributions: A good numerical approximation
of the symmetric stable Levy distribution and density is quite difficult to achieve. Very recently
J.H. McCulloch [47] (1998) has developed an approximation that is accurate to an expected
log-density precision of 10−4 for α in the range [0.84,2.00]. His approximation renders accurate
maximum likelihood and/or posterior mode estimation with symmetric stable errors computa-
tionally tractable. The absolute precision of the distribution is 2.2 × 10−5 for α in the range
[0.92,2.00], while that for the density is 6.6× 10−5 in the same range.

His strategy was first to transform the x interval [0,∞] onto the more tractable interval [0,1] with
a tail index related transformation z = zα(x) = 1− (1 + aαx)−α. Since he was only attempting
to fit the symmetric stable distribution, it is sufficient to find an approximation for x ≥ 0. In
order to minimize the relative error in the upper tail, he fitted the complemented cumulated
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distribution function rather than the CDF itself. Then he exploited existing approximations to
the Cauchy and Gaussian PDFs by interpolating between the complements of these two functions
in the transformed space applying known series expansions. The residuals remained were fitted
by a quintic spline across z. The free spline parameters in turn were fit as a quintic polynomial
across α. Having fitted the CDF as a proper CDF, the PDF was obtained by analytically
differentiating the CDF approximation, with confidence that it integrated exactly to unity. We
have implemented his approach from a Fortran program into a S-plus function.

The approach of J.P. Nolan for general stable distributions: Nolan [51] (1999) derived expressions
in form of integrals based on the characteristic function (1.50) for standardized stable random
variables. These integrals can be numerically evaluated. The probability density and distribution
function are given by:

(a) When α 6= 1 and x > ζ

fS(x;α, β) = α(x−ζ)1/(α−1)

π|α−1|
∫ π

2
−θ0

V (θ0;α, β) exp
(
−(x− ζ)α/(α−1)V θ0;α, β)

)
dθ,

FS(x;α, β) = c1(α, β) + sign(1−α)
π

∫ π
2
−θ0

exp
(
−(x− ζ)α/(α−1)V (θ0;α, β)

)
dθ.

(1.58)

(b) When α 6= 1 and x = ζ

fS(ζ;α, β) = Γ(1+ 1
α

) cos(θ0)

π(1+ζ2)1/(2α) ,

FS(ζ;α, β) = 1
π

(
π
2 − θ0

)
.

(c) When α 6= 1 and x < ζ

fS(x;α, β) = fS(−x;α,−β),

FS(x;α, β) = 1− FS(−x;α,−β).

(d) When α = 1,

fS(x; 1, β) =

{
1
|2β|e

πα
2β
∫ π/2
−π/2 V (θ; 1, β) exp

(
−e

πα
2β V (θ; 1, β)

)
dθ β 6= 0

1
π(1+α2)

β = 0

FS(x; 1, β) =


1
π

∫ π/2
−π/2 V (θ; 1, β)dθ β > 0

1
2 + 1

π arctan(x) β = 0
1− FS(x;α,−β) β < 0

where

ζ = ζ(α, β) =
{
−β tan πα

2 α 6= 1
0 α = 0

θ0 = θ0(α, β) =
{

1
α arctan(β tan πα

2 ) α 6= 1
π
2 α = 0
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c1(α, β) =


1
π

(
π
2 − θ0

)
α < 1

0 α = 1
1 α > 1

V (θ;α, β) =

 (cos αθ0)(1/(α−1)
(

cos θ
sin α(θ0+θ)

)α/(α−1)
cos(αθ0+(α−1)θ)

cos θ α 6= 1
2
π

(
π/2+βθ

cos θ

)
exp

(
1
β ( 1

β(π/2+βθ) tan θ )
)

α = 1, β 6= 0

Example: Symmetric Stable Distribution - xmpDistSymstb

Let us apply Chambers eqn. (1.56) and write a random number generator for symmetric stable
distributed random deviates. For the case α = 1 just call the standard Splus function rcauchy():

"rsymstb" <- function(n, alpha) {

# Calculate uniform and exponential distributed random numbers:

theta <- pi * (runif(n)-1/2)

w <- -log(runif(n))

# Calculate Random Deviates:

if (alpha == 1){

result <- rcauchy(n) }

else {

result <- (sin(alpha*theta) / ((cos(theta))^(1/alpha))) *

( cos((1-alpha)*theta)/w)^((1-alpha)/alpha)}

# Return Result:

result

}

Then implement McCullochs Fortran routine and write Splus functions dsymstb() and psymstb()

to calculate the PDF and CDF of the symmetric stable distribution function:

"symstb" <- function (x, alpha) {

# Use Chmbers Fortran Routine:

result <- .Fortran("symstb",

as.double(x), # x-values

as.double(1:length(x)), # probability

as.double(1:length(x)), # density

as.integer(length(x)), # number of x-values

as.double(alpha) ) # index alpha

# Return Result:

list(p=result[[2]], d=result[[3]]) }

"dsymstb" <- function (x, alpha) {symstb(x, alpha)$d}

"psymstb" <- function (x, alpha) {symstb(x, alpha)$p}

Now apply these functions, generate sets each of 5000 rvs for α = 1.001, 1.999, and compare their his-
tograms with the Cauchy and Normal PDFs and CDFs; pcauchy(), dcauchy(), pnorm(), dnorm().
Generate also for α = 0.5, 1.5 rvs of the same size and compare their histograms with the symmetric
stable pdf, psymstb().

Example: Stable Distribution - xmpDistStable

Let us write a Splus function to calculate the PDF for the stable distribution function. Use the
integral approach from eqn. (1.58).

54



"dstable" <- function(x, alpha, beta=0, subdivisions=1000,
rel.tol=.Machine$double.eps^0.5) {
# Function - Return Stable PDF:

"fct" <- function(x, xarg, alpha, beta, varzeta, theta0, c2){
v <- (cos(alpha*theta0))^(1/(alpha-1)) *

(cos(x)/sin(alpha*(theta0+x)))^(alpha/(alpha-1)) *
cos(alpha*theta0+(alpha-1)*x)/cos(x)

g <- (xarg-varzeta)^(alpha/(alpha-1)) * v
c2 * g * exp(-g)}

# Start Calculation:
result <- rep(0,times=length(x))
varzeta <- -beta * tan(pi*alpha/2)
theta0 <- -(1/alpha) * atan(varzeta)
for ( i in 1:length(result) ) {

if (x[i] == varzeta){
result[i] <- gamma(1+1/alpha)*cos(theta0) /
(pi*(1+varzeta^2)^(1/(2*alpha)))}

if (x[i] > varzeta) {
c2 <- alpha/(pi*abs(alpha-1)*(x[i]-varzeta))
result[i] <- integrate(fct, lower=-theta0, upper=pi/2,
subdivisions=subdivisions, rel.tol=rel.tol,
xarg=x[i], alpha=alpha, beta=beta,
varzeta=varzeta, theta0=theta0, c2=c2)$integral}

if (x[i] < varzeta) {
c2 <- -alpha/(pi*abs(alpha-1)*(x[i]-varzeta))
result[i] <- integrate(fct, lower=theta0, upper=pi/2,
subdivisions=subdivisions, rel.tol=rel.tol,
xarg=-x[i], alpha=alpha, beta=-beta,
varzeta=-varzeta, theta0=-theta0, c2=c2)$integral}

}
# Return Result:

result}

1.4.3 The Hyperbolic Distributions: Semi-Fat Tails

The class of generalized hyperbolic distributions and its subclasses - the hyperbolic and the normal
inverse Gaussian distributions - possess semi-heavy tails, i.e their tails behave asymptotically
in an exponential form. Definition: The one dimensional generalized hyperbolic distribution is
defined by the following PDF

PGH(x;λ, α, β, δ, µ) = a(λ, α, β, δ, µ)(d2 + (x− µ)2)(λ−
1
2
)/2

×Kλ−1/2(α
√

δ2 + (x− µ)2) exp((β(x− µ))

with a(λ, α, β, δ, µ) = (α2−β2)λ/2

√
2πaλ−1/2δλKλ(δ

√
α2−β2)

,

(1.59)

where Kλ is a modified Bessel function and x ∈ R. The domain of variation of the parameters
is µ ∈ R and δ ≥ 0, |β| < α if λ > 0, δ > 0, |β| < α if λ = 0, or δ > 0, |β| ≤ α if λ < 0.

Different scale and location-invariant parameterizations of the generalized hyperbolic distribu-
tion have been proposed in literature.

2nd parameterization: ζ = δ
√

α2 − β2, % = β/α

3rd parameterization: ξ = (1 + ζ)−1/2, χ = ξ%

4th parameterization: α = αδ, β = βδ
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� Figure 1.4.9: Densities and log-densities of high frequency USDDEM exchange rate and S&P500 stock market
index. Source: Prause [59], (1999).

Note, that for the symmetric distributions β = β = % = χ = 0 holds.

Remark: The normal distribution is obtained as a limiting case of the generalized hyperbolic
distribution for δ →∞ and δ/α → σ2.

Various special cases are of interest. For λ = 1 we obtain hyperbolic distributions. Hyperbolic
distributions are characterized by their log-density being a hyperbola. For a Gaussian PDF the
log-density is a parabola, so one can expect to obtain a reasonable alternative for heavy tail
distributions. Since K1/2 = (π/2z)1/2e−z, fGH simplifies considerable.

Definition: For λ = 1 we obtain hyperbolic distributions (HYP)

fHY P (x;α, β, δ, µ) =

√
α2 − β2

2αδK1(δ
√

α2 − β2)
exp(−α

√
δ2 + (x− µ)2 + β(x− µ)). (1.60)

where x, λ ∈ R, 0 ≤ δ and |β| < α.

Again, the first two of the four parameters, namely α and β determine the shape of the distri-
bution, while the other two, δ and µ, are scale and location parameters.

With ξ = (1 + δ
√

α2 − β2)−1/2 and χ = ξβ/α one gets a parameterization fHY P (x;χ, ξ, δ, µ),
which has the advantage, that ξ and χ are invariant under transformations of scale and location.

The new invariant shape parameters vary in the triangle 0 ≤ |χ| < ξ < 1, which was therefore
called the shape triangle by Barndorff-Nielsen et al. (1985). For ξ → 0 the normal distribution
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is obtained as a limiting case; for ξ → 1 one gets the symmetric and asymmetric Laplace
distribution; and for |ξ| → 1 we will end up with an exponential distribution.

Definition: For λ = −1/2 we get the normal inverse Gaussian distribution with PDF

fNIG(x;α, β, δ, µ) =
αδ

π
exp(δ

√
α2 − β2 + β(x− µ))

K1(α
√

δ2 + (x− µ)2)√
δ2 + (x− µ)2

. (1.61)

where x, µ ∈ R, 0 ≤ δ, and 0 ≤ |β| ≤ α.

Characteristic Function

The characteristic function of the generalized hyperbolic distribution is given by

E[exp(iµz)] =
(

α2 − β2

α2 − (β + iz)2

)λ/2
Kλ(δ

√
α2 − (β + iz)2)

Kλ(δ
√

α2 − β2)
. (1.62)

Mean and Variance

The generalized hyperbolic distribution has the following mean and variance

E[X] = µ +
βδ√

α2 − β2

Kλ+1(ζ)
Kλ(ζ)

(1.63)

Var[X] = δ2

(
Kλ+1(ζ)
ζKλ+1(ζ)

+
β2

α2 − β2

[
Kλ+2(ζ)
Kλ(ζ)

−
K2

λ+1(ζ)
K2

λ(ζ)

])
(1.64)

where ζ = δ
√

α2 − β2. The term in round brackets of the Var (X) expression is scale- and
location invariant.

Example: Generalized Hyperbolic Distributions - xmpDistHyp & xmpDistNIG

xmpDistHyp: Let us write a S-plus functions for the evaluation of the hyperbolic distribution func-
tion. Use the polynomial approximators for the modifed Bessel functions as given in Abramowitz
[1] (1965), or in Press et al. [60], Numerical Recipes, (1992).

"dhyp" <- function(x, alpha, beta, delta=1, mu=0) {

# Density:

result <- (alpha^2-beta^2) / (2*alpha*xK1(delta*sqrt(alpha^2-beta^2))) *

exp(-alpha*sqrt(delta^2+(x-mu)^2)+beta*(x-mu))

# Return Result:

result}

"xK1" <- function(x) {

"xK1x" <- function(s){

if (s < 2){

if (s == 0) {

f <- 1 }

else {

t <- s/3.75
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I1 <- s * ( 0.5 +

0.87890594*t^2 + 0.51498869*t^4 + 0.15084934*t^6 +

0.02658733*t^8 + 0.00301532*t^10 + 0.00032411*t^12 )

h <- s/2

f <- ( s * log(h) * I1 + 1 +

0.15443144*h^2 - 0.67278579*h^4 - 0.18156897*h^6 +

0.01919402*h^8 - 0.00110404*h^10 - 0.00004686*h^12 )} }

else {

h <- 2/s

f <- sqrt(s)*exp(-s)* ( 1.25331414 +

0.23498619*h - 0.03655620*h^2 - 0.01504268*h^3 -

0.00780353*h^4 - 0.00325614*h^5 - 0.00068245*h^6 )}

f}

# Return Result:

sapply(x,xK1x)}

x <- seq(-4,4,0.1)

plot (x, dhyp(x, alpha=1, beta=0))

xmpDistNig: Let us write a Splus functions for the evaluation of the inverse Gaussian distribution
function.

"dnig" <- function(x, alpha, beta, delta=1, mu=0) {

# Density:

result <- (delta*exp(delta*sqrt(alpha^2-beta^2)+beta*(x-mu)) *

xK1(alpha* sqrt(delta*delta+(x-mu)^2)) / (delta^2+(x-mu)^2)/pi)

# Return Result:

result}

Let us write Splus functions ehyp(), enig() for the MLE of the distribution parameters. Use the
standard Splus optimization function nlminb().

"ehyp" <- function(x, alpha=1, beta=0, delta=1, mu=0, doplot=T,

span=seq(from=-10, to=10, by=0.1), ...) {

# Log-likelihood Function:

"ehypmle" <- function(x, y=x){

f <- -sum(log(dhyp(y, x[1], x[2], x[3], x[4])))

# Print Iteration Path:

cat("\nObjective: ",-f,"\n")

cat("Parameters: ",x, "\n")

f}

# Minimization:

r <- nlminb(start=c(alpha, beta, delta, mu), objective=ehypmle, y=x)

# Optional Plot:

if (doplot) { par(err=-1)

z <- density(s, n=100, ...)

plot(z$x, log(z$y), xlim=c(span[1],span[length(span)]),

type="b", xlab="x", ylab="log f(x)")

title("HYP: Parameter Estimation")

y <- dhyp(span, alpha=r$parameters[1],

beta=r$parameters[2], delta=r$parameters[3], mu=r$parameters[4])

lines(x=span, y=log(y), col=5) }

# Return Result:

list(parameters=r$parameters, objective=r$objective, message=r$message,

gradd.norm=r$grad.norm, evals=c(r$f.evals,r$g.evals)) }
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Notes and Comments

Chapter 1.4 was dedicated to the typical distribution functions appearing in the investigation
of financial market data.

The properties of Gaussian distributions and the “Central Limit Theorem” can be found in any
good textbook. Recently J.P. Bouchaud and M. Potter [8] (2000), both physicists, published the
book entitled “Theory of Financial Risk: From Statistical Physics to Risk Management” from
which we borrowed most of the material presented in section 1.4.1.

Stable distributions are also described in several textbooks and monographs including those
from Gnedenko and Kolmogorov (1954) and Feller (1971). Recent developments can be found
in the book of Samorodnitsky and Taqqu (1994). The material presented in section 1.4.2 was
taken from two papers written by Nolan 1998 and 1999. A book written by Nolan on stable
distributions will appear in Summer 2001.

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen (1977), and originally
applied to model grain size distributions of wind blown sands. The mathematical properties of
these distibutions are well-known, see Barndorff-Nielsen and Blaesild (1981). Recently gener-
alized hyperbolic distributions, respectively their sub-classes were proposed as a model for the
distribution of increments of financial price processes by Eberlein and Keller (1995), Rydberg
(1996), Barndorff-Nielsen (1999), Eberlein, Keller, and Prause (1997), and as limit distributions
of diffusions by Bibby and Soerensen (1997). A very extensive work on these distribution func-
tions in context with financial applications was presented by Prause (1999) in his PhD Thesis.
Most of the material presented here relies on his PhD thesis and on the papers of Eberlein,
Keller and Prause.
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1.5 Searching for Correlations and Dependencies

Independence of the logarithmic returns and especially of volatilities is often violated for finan-
cial time series. The standard Splus function acf() can be used in a first step to display the
autocorrelations, but there exist many other more sophisticated methods to search for correla-
tions in financial market data. These methods include the investigation of the very short-term
return correlations, the long memory behavior of volatility, the lagged correlations of fine and
coarse volatility, the Taylor and Machina effect, and the structure function in the context of
multi-fractal behavior.

In this Chapter we will investigate correlation and dependency structures as they can be seen in
the foreign exchange markets. However, high frequency financial market data show pronounced
seasonalities which have less to do with intrinsic correlations and dependencies of returns and
volatilities. They have their origin in the calendar effects of the markets, like local business
hours around the world, different “cultural” trading habitants, local holidays, daylight saving
time etc.. Thus we have to find methods to de-seasonalise and/or to de-volatilize the time series.

The most attractive concept is here to transform the data records from non-equidistant physical
time to an equidistant business related time which removes seasonalities from the original time
series. Such a concept applied to intra-daily data has its counterpart already in the management
of daily data, where it is quite usual to neglect weekend days and holidays in the time series and
just numbering the business days.

In the following we discuss several methods for the time management of intra-daily data records
and introduce algorithms for detecting, measuring and quantifying correlation and dependencies
in time series from financial market data. We implement functions which allow to investigate
these properties in a very convenient way and present examples from money and equity intra-day
markets.

1.5.1 Preprocessing High Frequency FX Data

As a starting point we will investigate the seasonalities of the intra-daily foreign exchange market
in the case of the USDDEM currency rate. The data cover a period of 12 months starting on
October 1992.7 The quoted prices and the returns for the first month are shown in figure 1.5.1
and 1.5.2, respectively. The seasonal effects in this time series are caused by the hour of the
day, the day of the week, bank holidays, daylight saving times, and the presence of the traders
with different habitants in the three major markets: Europe, America and Far East.

From the figure displaying the returns, we can already anticipate the daily and weekly patterns
which will appear in the volatilities and other quantities calculated from quoted bid and ask
prices. Seasonalities appear most significant in the autocorrelation function as well as in the

7This data set was provided by Olsen & Associates for the first HFDF Conference 1995 in Zürich.
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periodogram of the volatility. The autocorrelation function is shown in figure 1.5.3 for 20 minutes
lags over a period of 1 month. 1 hour corresponds to lag 3, 8 hours to lag 24, 1 day to lag 72, 1
week to 504, and 1 month to lag 2016. Weekly and daily seasonalities are visible in the form of
highly pronounced autocorrelation values (every 7th major peak) surrounded by six lower and
even negative minor peaks to the right and left of each major peak. The periodogram shown in
figure 1.5.4 gives a different view of the seasonalities. We have inverted the frequency scale to
get a time scale. This may be somewhat unusual, but it allows a direct comparison to the data
presented in the autocorrelation plot. The peaks from right to left belong to the weekly (lag
504), to a half week (lag 252), and to the daily seasonality (lag 72). Also finer structures can
easily be seen, belonging for example to multiples of eight hours, the length of a working day.

De-Seasonalization of Time Series Data

These strong seasonalities are the major hints in a straightforward modelling and parameter
estimation in time series analysis. We know of several attempts to include the seasonalities
directly into the time series modelling process. However, a much more interesting way was
proposed by Dacorogna et al. [15] (1993) who introduced an operational time scale concept
based on market activity and volatility to remove the strong seasonalities. We simplify here
this very promising approach and consider a weekly averaged volatility based time scale which
accounts already for most observed effects. The first, and most simple idea would be to remove
weekends, from Friday evening 21:00 GMT to Sunday evening 19:00 GMT when there is almost
no trading activity. Another low trading period is during Japan’s lunch time between 3:00 and
4:30 GMT. This reduces in the autocorrelation the periodic structures per week from seven to
five succeeding peaks, but the daily seasonality still remains. Second, the use of tick-time as time
scale (as applied in some papers) is also not a satisfying way. One obtains a series of interfering
oscillating structures as demonstrated in figure 1.5.7. In the following we favor a third approach
a “volatility” measure as a number to derive an operational time scale: Highly volatile market
periods are enlarged and less volatile periods are shortened. To get a proper scheme to derive
such a time scale we rely on the scaling behavior of the time series over different time horizons.

The scaling behavior is a very striking effect of the foreign exchange market and also other
markets expressing a regular structure for the volatility. Considering the average absolute return
over individual data periods one finds a scaling power law which relates the mean volatility over
a given time interval ∆t to the size of this interval:

v(∆t, S; ti) =
(

∆t

∆T

) 1
E

. (1.65)

The power law is valid over several orders of magnitude in time. Its exponent 1/E seems to be
almost universal for free floating currencies and takes typically a value in between 0.55 and 0.6
displaying a significant deviation from a Gaussian random walk model which implies 1/E = 1/2.
As shown in figure 1.5.5 the scaling behavior is independent of the source of the data. The points
in the plot were derived from daily data from Knight Ridder and CSI, from hourly data from
Future Source and from tick-by-tick data from Reuters retrieved from the composed FXFX page
and directly from the RIC data records.8 The straight line in the figure 1.5.5 reflects the slope

8In the scaling power law two different kinds of errors appear. At the very long time intervals a block
bootstrapping approach was applied by Müller et al. [49] (1993) for the relatively short time series and thus the
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1995

0 504 1008 1512 2016
Weekly Averaged Upsilon Time [lags] (20 min)

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

A
ut

oc
or

re
la

tio
n

Autocorrelation of the absolute returns
USDDEM from Reuters FXFX Page 5.10.1992-26.9.1993

0 72 144 216 288 360 432 504 576
Weekly Averaged Upsilon Time [lags] (20 min)

0

0.004

0.008

0.012

0.016

S
tr

en
gt

h 
* 

10
00

Periodogram Analysis
USDDEM from Reuters FXFX Page 5.10.1992 - 26.9.1993

0 504 1008 1512 2016
Annual Theta Time [lags] (20 min)

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

A
ut

oc
or

re
la

tio
n

Autocorrelation of the absolute returns
USDDEM from Reuters FXFX Page 5.10.1992-26.9.1993

0 72 144 216 288 360 432 504 576
Annual Theta Time [lags] (20 min)

0

0.004

0.008

0.012

0.016

S
tr

en
gt

h 
* 

10
00

Periodogram Analysis
USDDEM from Reuters FXFX Page 5.10.1992 - 26.9.1993

� Figure 1.5.9: Autocorrelation function (left) and periodogram in υ-time (above) and in ϑ-time (below). Source:
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1/E = 0.58.9 Investigating the distribution of returns x(∆t; ti) on time intervals of ∆t = 5, 10, 20
minutes, 1, 3, and 8 hours, and 1 day one finds for the price changes a “leptokurtic” behavior,
increasing in strength with decreasing sampling interval. The QQ plot in figure 1.5.6. shows
impressively this behavior for 20 minutes data.

Armed with the scaling law behavior we can use the volatility as a measure to derive an opera-
tional time scale. We use the scaling power law in the following form:

∆t = const · v(∆tphys, S; ti)E . (1.66)

This means that we first calculate the mean volatility on an arbitrary sampling period S in
physical time for a statistical week to get the corresponding time intervals ∆t. The accumulated
time intervals are then normalized to the length of one week to get a proper measure for the
operational time. Interpolation at arbitrary timesteps (e.g. 1 minute, 20 minutes, etc.) gives us
the time mapping from physical time to operational time. This approach is illustrated in figure
1.5.8.

In the following we call this transformed time scale weekly averaged operational time scale or
simply υ-time, named “upsilon” time. It is clear that this simple time mapping from physical
time to operational time will not perfectly explain the effects of business holidays, daylight
saving times and the geographical effect of the three major markets. The approach introduced
by Dacorogna et al. [15] (1993) tried to capture more of these irregularities by considering the
activities of the European, American and Asian markets separately. Their time scale, called
ϑ-time, named theta-time, shows less pronounced weekly periodicities.

As a next step we compare the autocorrelation and the periodogram on both operational time
scales, the υ-time and ϑ-time.10 The autocorrelation shows in figure 1.5.9 an extremely long
memory effect. Volatilities calculated over 20 minutes intervals are correlated over more than
1 month (2016 lags). The difference in the correlation plots seems to be marginal. In the
periodogram als shown in figure 1.5.9 the huge weekly peak has now vanished and the heights
are reduced by almost two orders of magnitude. But we see an additional interesting feature.
On the ϑ-time scale we observe a splitting of the daily peak into three major substructures.
These substructures have their origin in the three different geographical financial markets with
different starting and ending dates for the use of daylight saving time.

We have shown that the idea of an operational time scale like the υ-time or ϑ-time is a useful
concept in reducing the seasonalities in financial market time series data.

Example: De-Seasonalization of intraday data - xmpXtsInterpolation, xmpXtsDeSeasonalisation

First some Notations and definitions: Usually, we preprocess tick-by-tick or time & sales data to the
resolution of one minute and call the time series a “minute-by-minute” time series, or because the
records appear not necessarily equidistant in time “variable minutes” time series. These data records
are used in form of a list list(t=xts$t,x=xts$x) with two elements “date/time” and “value”.

errors are of a statistical kind. At the very short time intervals in the case of Reuters FXFX data, the data points
and error bars were overtaken from figure 1 in the mentioned paper. Here, the error bars reflect an observational
uncertainty due to the spread between the bid and ask price, which becomes more and more important with
decreasing time intervals.

9There was not done a rigorous regression analysis including the statistical and observational errors.
10We thank Michel Dacorogna from Olsen & Associates in Zurich for providing us with their ϑ-time scale for

the USDDEM exchange rate.
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The date/time will be noted in the so-called ISO-8601 format as CCYYMMDDhhmm (or in the case
of daily data in its truncated form CCYYMMDD), where CC denotes the century, YY the two-digit
year, MM the month, DD the day, and hhmm the time in hours and minutes, e.g. 2000010100000
for the millenium change. In most cases we use for the name of the list xts; in the case of daily data
records sts. (Here, ts means time series, s simple day format, and x extension to minutes format.)
Usually, it is much more convenient not to use date/time records in the ISO-8601 Gregorian for-
mat, but rather in the “Julian Minutes Counts”, xjulian, (or “Julian Day Counts”, sjulian). The
format which just counts date/time in minutes starts at a given origin, usually January, 1st, 1960,
00:00. To convert date/time records from Gregorian ISO8601 to a Julian Counter and vice versa,
we have written the Splus functions xdate(), xjulian(), sdate(), and sjulian(). First inspect
these Splus functions which manage those date/time transformation. Furthermore, use the standard
Splus functions julian() and month.day.year().

Let us continue to introduce some utility functions for this kind of extended time series formats:
xts.get(file, multivariate=1, select=1) to read from a multicolumn data file,
xts.log(xts) to calculate log values,
xts.diff(xts) to calculate differences,
xts.cut(xts, from.date, to.date) to cut out a piece of the time series,
xts.interp(xts, from.date, to.date, deltat=1) to interpolate data records in tume.

Inspect the Splus function xts.map(xts, from.date, to.date, mean.deltat, alpha) to create
the time map for the weekly periodic upsilon time.

Inspect the Splus function xts.upsilon(xts, from.data, to.date, tmap) to interpolate and to
extract data records according to the time stamps listed in tmap.

To perform the de-seasonalization we als need a function to estimate the exponent α of the scaling
law. Inspect the Splus function scalinglaw() to plot on a double logarithmic graph the scaling
power law (spl) and to evaluate the scaling exponent (slope) and intercept from a L1 regression fit.
The standard Splus function l1fit() can be used. The function aggregates the data by powers of
two for 1, . . . , k.

De-Volatilization of Time Series Data

A different point of view takes the de-volatilization concept introduced by Bin Zhou [79] (1995).
He started from the following observations: In foreign exchange markets actual transaction prices
and trading volumes are not known to the public. The public instead sees only contributed quotes
from data vendors like Reuters or others. The quotes are a general indication of where exchange
rates stand. They do not necessarily represent the (exact) actual rate at which transactions
are being conducted. However, since a bank’s reputation and credibility as a market maker
emerges from favorable relations with other market participants, it is generally felt, that these
indicative prices closely match the true price experienced in the market. The differences between
the quotes and the real prices are not felt when analyzing daily prices because the daily price
change overwhelms the differences. However, when we are looking down to every tick, the
difference is not negligible any more. Bin Zhou, thus breaks quote changes into two parts:

∆Quote = ∆Price + ∆Noise , (1.67)

where the noise is the difference between the price and the quote. Several factors may contribute
to this noise: e.g. traders who want just have a quote on the screen but are not trading or the
quote may be delayed trough transmission of the data vendor.
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� Figure 1.5.10: dv-Series approach applied to DAX Futures Prices. The empirical time series consists of 84340
date points from a minute-by-minute data file with volume averaged time & sales prices. The data covers the
period from January 1992 until December 1999. Source: Würtz, unpublished results, (2000).
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When estimating historical volatility, we often come across with the well known phenomenon:
volatility estimates of the same period are different if we use different frequency data series.
Estimating monthly volatility, one usually gets a higher estimate using intraday data then when
using daily data. Traditional historical volatility estimates are the annualized sample standard
deviations of ∆Quotes. Annualizing ∆Noise in the case of high-frequency data blows up an
estimate dramatically.

Suppose the actual price is following a Brownian motion with a possible drift, and noises are
independent and identically distributed then the above equation can be rewritten as

S(t) = log(p(t)) = d(t) + B(τ(t)) + ε(t) , (1.68)

where S(t) is the logarithm of a quote at time t, B(·) is standard Brownian motion, d(t) is a
drift, τ(t) is a positive increment function, ε(t) is a mean zero random noise, independent of the
Brownian motion term. The variance of ∆Price is equal to ∆τ , which increases as time interval
increases. The return is defined by X(s, t) = S(t)− S(0) that has:

X(s, t) = µ(s, t) + σ(s, t)Zt + εt − εs , (1.69)

where Zt is a standard normal random variable and σ2(s, t) = τ(t)− τ(s). At tick-by-tick level,
µ(s, t) is very small compared to σ(s, t). Therefore, estimating σ(s, t), µ(s, t) is negligible. From
this approximation we find

E[X2(s, t)] = σ2(s, t) + 2η2 ,

E[X(u, s)X(s, t)] = −η2 ,
(1.70)

where η2 is the variance of the noise and u ≤ s ≤ t. Then we can derive an estimator of σ2(s, t)

σ2
est(s, t) = X2(s, t) + 2X(u, s)X(s, t) . (1.71)

If we have a sequence of observations from time a to time b, denoted as {S(ti), i = 1, . . . , n},
the variance of the price change ∆Price over the time [a, b] is the accumulation of the variance
of small changes. Therefore, the total variance of ∆Price over the time [a, b] can be estimated
by11

(τ(b)− τ(a))est =
n∑

i=1

[X2(ti−1, ti) + 2X(ti−2, ti−1)X(ti−1, ti)] . (1.72)

Notice that the estimator only assumes that the data S(t) comes in a sequence. There is no
need for equal space or frequency observations. One can use tick-by-tick data or hourly data in
the formula. Suppose the optimal frequency is k-ticks. Then we can estimate τ(b)− τ(a) using
every k-th tick. Starting at k different times, one can have k different estimators. The final
estimator can be constructed by averaging these k estimators.

11Here, it is assumed that data before time a are available.
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(τ(b)− τ(a))est =
1
k

n∑
i=1

[X2(ti−k, ti) + 2X(ti−2k, ti−k)X(ti−k, ti)] . (1.73)

This approach reduces the sample frequency through an approach by keeping the variance of
∆Price constant, therefore the name de-volatilization. This procedure removes volatility by
sampling data at different dates for different times. When the market is highly volatile more
data are sampled. Equivalently, the time is stretched. When the market is less volatile, less
data are sampled. Equivalently, the time is compressed. Although the result subsequence has
unequally space calendar date/time intervals, it produces an equally volatile time series. This
time series is called a de-volatilized time series, or dv-Series.

dv-Series Algorithm:

1. Take the first observation as the first value of the dv-series, i.e., r0 = S(t0);

2. Suppose τ values of dv-Series, r0, r1, . . . , rτ , have obtained at time tm, i.e., rτ = S(tm);

3. Start at time tm, estimate the variance of a price change over time [tm, tm+i] by eqn.
(1.73). If the variance is less than a predetermined value, say v, discard the observation
and estimate the variance of a price change over time [tm, tm+i]. Since the variance is an
increasing function of time interval, it eventually will reach the level v. Suppose at time
tm+k, the variance of the price change reached the threshold v, the observation S(tm+k) is
saved as the next value in the dv-Series. Therefore value k is defined as follows:
k = min{i; τ/tm+i)− τ(tm) ≥ v and |S(tm+1)− S(tm+i−1)| <

√
v}

and rτ+1 = S(tm+k).

4. Repeat step 3 until end of series {S(ti)} is reached.

The value of v (as k) needs to be predetermined. It should be large enough, so that there are
enough data to estimate the variance. A larger v gives a greater signal-to-noise ratio, but the
procedure takes less data. If the noise is well behaved, the v needs to be only 6 or 7 times greater
than the variance of the noise. However, in the foreign exchange market, the noise is small at
most times and is very big once in a while. In this case, v needs to be much bigger, than the
variance of the noise.

Example: De-Volatilization - xmpXtsDeVolatilization

Inspect the Splus function xts.dvs(xts, from.date, to.date, k, v) to perform a de-volatilization
of a minute-by-minute financial market time series. The function implements a Fortran routine for
the dv-Series algorithm to make the function fast.

Investigate a de-volatilized high frequency time series: Compare the PDF of the log-returns and the
ACF of the volatilities with a Gaussian random walk process. Where are the dependencies gone?
To answer this investigate the PDF and ACF of the length of the time intervals of the dv-Series.

Filtering and Outlier Detection

The foreign exchange market is a worldwide market with no business hours limitations. The bid
and ask offers of major financial institutions, the market makers, are conveyed to customers’
screens by large data suppliers such as for example Reuters, and the deals are negotiated over
the telephone or electronically. These quoted prices are not actual trading prices, although they
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are binding for serious financial institutions. A market maker quote as transmitted by the data
suppliers contains the bid price as a full number, but only the last two digits of the corresponding
ask price. The bid quotes are thus more reliable than the ask quotes, and we focus mainly on
these quotes. The next point concerns data filtering. The huge number of daily data records in
the order of a few thousands quotes per day, contains some rare but aberrant outliers, caused
by technical and human errors. Therefore, data filtering is absolutely necessary. Two types of
filtering errors can be made. The first type error arises due to including false quotes in the
analysis, i.e. the case of under-filtering. The second type is due to rejecting valid quotes, i.e.
the case of over-filtering, since it is not always possible to determine whether a quote is valid or
not. Moreover, some extreme price quotes might be valid in the sense of being serious market
maker quotes although nobody used them in a real transaction.

No filter can be perfect. Therefore, on should apply several different filters to the data and
compute the results. All the filters in use should yield similar (reliable) results. The sheer
quantity of tick-by-tick price quotes demands the use of an automated algorithm for filtering.
First a data parser should remove corrupted and/or misspecified data values. The resulting
raw time series of price records should then subsequently be filtered by (a real-time) filter which
rejects prices that are very unlikely to be serious quotes. In 1995 Dacorogna et al. [16] introduced
for this two variations of a FX real-time filter: the strong and the weak filter. Both share the
same algorithm and differ only in certain parameters. Here we present their FX data filters in a
slightly different form used in 1995 by Würtz [74] in an unpublished study concerned with data
quality issues and filtering of real time FX rates from the Telerate and Reuters feeds.

1) The bid price filter considers a quote to be valid if the following two conditions are fulfilled:

Xbid(ti) < xbid(ti′ ±min{RX , SXy(ti′) + TX(ti − ti′)1/E}, (1.74)

where Xbid(ti) is the logarithm of the i-th bid price being validated, and xbid(ti′) is the last valid
bid price. y(ti′) is the logarithmic spread of the last valid price. ti − ti′ is the time between
the validated price and the new price which has to be checked, expressed in units of days. 1/E
denotes the scaling exponent which is derived from the scaling behavior of the volatility. The
default price filter parameters for foreign exchange rates are:

R_X S_X T_X E

strong filter: 0.25 2.00 0.18 1.7

weak filter: 0.40 2.20 0.27 1.7

2) The spread filter considers a price to be valid if the bid/ask spread satisfies the following two
conditions:

Ymin < lnY (ti) < Ymax

lnY (ti) = ln y(ti′)±min{RY , SY + TY (ti − t
1/E
i′ },

(1.75)

where Y (ti) and y(ti′) are the logarithmic spread of the price to test and the already validated
spread of the price, respectively. The default spread filter parameters for foreign exchange rates
are:
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After Price/Spread Filtering

� Figure 1.5.11: The figure to the left shows for the USDTHB currency rate the value of the price (up-
per curve) and the return (lower curve) related to the first price value. To the right the rates after filtering the
data are presented. Source: Würtz [77], unpublished results (1997).

Y_min Y_max S_Y T_Y R_Y

strong filter: -9.20 -3.70 1.30 45.0 4.00

weak filter: -9.40 -3.20 1.50 75.0 5.50

We can also think of further filters, for example a Time Delay Filter which removes delayed data
records, a Contributor Filter which removes quotes from unreliable contributors, an Arbitrage
Filter which tests prices between two currency pairs and their crossrate, or a Confidence Filter
which gives confidence ratings for a given price based on the fractiles of the distribution.

For the major currencies the quoted prices from a Reuters screen are today rather “clean”
through a pre-filtering by Reuters itself. A few years ago much more erroneous records and
outliers could be detected in the transmitted data. However, in less quoted currencies a careful
filtering is still needed. This will be shown by the following two graphs of the Thailand Bhat
currency against the USD before and after filtering.

Example: High Frequency Data Filter - xmpXtsFXfilter

Inspect the Splus function fxfilter() to perform a price/spread filtering of high frequency finan-
cial foreign exchange rates. The function implements a Fortran routine fxfilter.f to achieve fast
execution times.

1.5.2 Correlations in Financial Time Series Data

In this section we investigate several aspects of correlations: The negative first-order autocor-
relation of the returns observed at short times, the long memory behavior of volatilities, lagged
correlations concerned with volatilities of different time resolutions, the Taylor and Machina
effects, and multi-fractal behavior.
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Negative first-order Autocorrelation of the Returns

In 1989 Goodhart [32] and two years later Goodhart and Figliuoli [33] were the first who reported
the existence of negative first order autocorrelation of the price changes at the highest trading
frequencies as shown in figure 1.5.12. They demonstrated that this negative autocorrelation is
not effected by the presence (or absence) of major news announcements. A first explanation
of this fact may be divergent opinions among traders. The conventional assumption that the
FX market is composed of homogeneous traders who would share the same views about the
effect of news, so that no correlation of the prices would be observed, or at most, a positive
autocorrelation. However, traders have diverging opinions about the impact of news on the
direction of prices. A second and complementary explanation for this negative autocorrelation,
as suggested 1993 by Bollerslev and Domowitz [6] and Flood [30], is the tendency of market
makers to skew the spread in a particular direction when they have order imbalances. A third
explanation is that even without order imbalances or diverging opinions on the price, certain
banks systematically publish higher bid/ask spreads than other. This could also cause the ask
(bid) prices to bounce back and forth between banks, an argument presented 1994 by Bollerslev
and Melvin [7].

Example: Short-Term Correlations - xmpCorACF

Investigate the extreme short-time ACF for the logarithmic returns of the USDDEM currency rates,
and the DAX Index and Bund Futures prices. Can we also find negative first-order autocorrelations
in the Futures and/or Bond Markets? Use the standard Splus function acf() to plot the ACF.

Long Memory Behavior of Volatility

The volatility of financial time series exhibits (in contrast to the logarithmic returns) in almost
every financial market a slow decaying autocorrelation function as it is shown for the USDDEM
exchange rate in figure 1.5.13. We talk of a long memory if the decay in the ACF is slower
than exponential, i.e. the correlation function decreases algebraically with increasing (integer)
lag τ . Thus it makes sense to investigate the decay on a double-logarithmic scale and to try to
estimate the decay exponent β.

ln ρτ = ln(const)− β ln(τ). (1.76)

Example: Long Memory ACF - xmpCorLongMemory

Use the Splus function lmacf(x, lag.max=50, ci=0.95, ...) to plot the ACF of the volatilities
on a double-logarithmic scale. Note that the function considers for the plot only positive values of
the ACF which are larger then a predefined confidence interval ci. In addition the function performs
with the standard Splus function l1fit() a linear regression which returns the intercept and slope
of the double logarithmic ACF.12

12The quantity 1− β/2 is also known as the Hurst exponent.
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Volatilities of Different Time Resolutions: Lagged Correlation

Müller et al. [?] (1995) have argued that the heterogeneous market properties associated with
fractal phenomena in the behavior of FX markets can explain why the perception of volatility
differs for market agents with different time horizons: Short term traders are constantly watching
the market; they re-evaluate the situation and execute transactions at a high frequency. Long-
term traders may look at the market only once a day or less frequently. A time grid in which
real traders watch the market is not strictly regular, of course. In a “lagged correlation study”,
we can investigate volatilities over different but regularly spaced grids.13

Lagged Correlation - the method: Analyzing the correlation between two time series, in our case
fine and coarse volatility, is a standard tool in empirical time series analysis. The correlation
coefficient is a straightforward, linear measure of the dependence of the two time series variables.
Lagged correlation, is a more powerful tool to investigate the relation between two time series
with a time varying shift. The correlation coefficient ρτ of one time series and another one shifted
by a time lag τ is measured and plotted against the value of the lag. In the case of negative lags
the second time series is shifted backwards. We obtain the auto-correlation function on both
the negative and the positive lag axis if we compute the lagged correlation function of a time
series with itself.

The formula for the lagged correlation between two empirical time series xi and yi is

ρτ (x, y) =
∑n−τ

i=1 (xi − x̂)(yi+τ − ŷ)√
(
∑n−τ

i=1 (xi − x̂)2)(
∑n−τ

i=1 (yi − ŷ)2)
, (1.77)

where

x̂ = 1
n−τ

∑n−τ
i=1 xi,

ŷ = 1
n−τ

∑n−τ
i=1 yi, for τ ≥ 0,

(1.78)

where the lag τ is an integer. The above definition does not cover the case of negative lags, but
this can be obtained through the following relation

ρ−τ (x, y) = ρτ (y, x). (1.79)

From these expressions we see, that lagged correlation reveals causal relations and information
flow structures. Thus, if a time series x is correlated (or anti-correlated) with a time series y not
simultaneously but with a positive lag, than we can conclude that time series x has a predictive
power on time series y. Behind this, there must be a mechanism that transmits information
from series x to series y. Further, Müller et al. [?] (19XX) argue, that if two time series are
generated on the basis of a synchronous information flow, we would have a symmetric LCF
ρ−τ = ρτ . The symmetry will be violated only by insignificantly small stochastic deviations. If
these deviations become significant, there is a asymmetry in the information flow and a causal
relation that requires an explanation.

13This section follows the paper Volatilities of different time resolutions - analyzing the dynamics of market
components by M.A. Müller et al., 1995
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The Taylor and Machina Effects

If xt is the log-return derived from time series of financial market prices, a simple decomposition
is given by

xt − µ = sign(xt − µ) |xt − µ|, (1.80)

where µ is the mean, sign(x) = 1 is the sign function, i.e. for positive x, −1 for negative x, 0 if
x = 0, and |x| is the absolute value of x. In the following we will concentrate on the temporal
properties of |xt − µ|θ for various values of θ, but particularly for θ = 1 and θ = 2. In this
context we want to investigate two properties, the so called Taylor and Machina Effect.

The Taylor Effect states the hypothesis that

ρ(1,1)
τ > ρ(θ,θ)

τ for any θ different from 1, (1.81)

and that xt − µ is long memory, so that ρ
(1,1)
τ declines slowly. The property ρ

(1,1)
τ > ρ

(2,2)
τ was

noted already by Taylor (1986) for a variety of speculative prices, which suggested the above
hypothesis.

In addition Machina Effect states the hypothesis that

ρ(δ,1)
τ > ρ(δ,θ)

τ for any θ different from 1 and any δ 6= 0. (1.82)

The Taylor effect was originally examined in Ding et al. (1993) in an investigation of the daily
S&P500 Price Index.

Example: Taylor Effect - xmpCorTaylorEffect

Investigate the Taylor effect. Use the Splus function teffect(x, deltas=NA, k.max=5, ymax=NA,

doplot=T, ...).

1.5.3 Multi-fractals: Finance and Turbulence

A closer look on the scaling behavior of high frequency financial market data gives evidence that
the log-return process x

(τ)
t cannot be described in terms of a unique scaling exponent, i.e. it

is not possible to find a real number h such that the statistical properties of the new random
variable x

(τ)
t /τh do not depend on τ . The scaling exponent h = 1/α gives us information on the

features of the underlying process. In the case of independent gaussian behavior of xt the scaling
exponent is 1/2. On the contrary, the data show that the probability distribution function of

x
(τ)
t /

√
Var(x(τ)

t ) changes with τ . This is an indication that xt is a dependent stochastic process
and it implies the presence of wild fluctuations. A way to show these features, which is standard
for the fully developed turbulence theory, is to study the structure functions:

Fq(τ) ≡ 〈|x(τ)
t |q〉. (1.83)
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I Figure 1.5.15: The first 10 lags of the autocorrelation function of |xt|δ as a function of the power δ for USDDEM
exchange rate. The first lag is on top, the 10th at the bottom. The maxima are shown by the bullet sign. The
returns are measured over 30 minutes in ϑ-time. The horizontal lines represent the 95% signifiance level of a
random walk. Source: Müller et al. 1996.
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In the simple case where xt is an independent random process, one has for a certain range of τ

Fq(τ) ∼ τhq (1.84)

where h < 1/2 in the stable case while the Gaussian behavior is recovered for h = 1/2. If the
structure function has the behavior in eqn. (1.84) we call the process self-affine, or uni-fractal.
We will show that a description in terms of “one” scaling exponent h is not unique.

Instead of eqn. (1.84) one has

Fq(τ) ∼ τ ξq , (1.85)

where ξq are called scaling exponents of order q. If ξq is not linear, the process is called multi-
affine or multi-fractal. The larger is the difference of ξq from the linear behavior in q the wilder
are the fluctuations and the correlations of returns. In this sense the deviation from a linear
shape for ξq gives an indication of the relevance of correlations.

In figure 1.5.16 the Fq(τ) for three different values of q is plotted. A multi-affine behavior
is exhibited by different slopes of 1

q log2(Fq) vs. log2(τ), at least for τ between 24 and 215.
For larger business lags a spurious behavior can arise because of the finite size of the data set
considered. In the insert the ξq estimated by standard linear regression of log2(Fq) vs. log2(τ)
are plotted for the values of τ mentioned before. We observe that the traditional stock market
theory (Brownian motion for returns), gives a reasonable agreement with ξq ' q/2 only for
q < 3, while for q > 6 one as ξq ' h̃q + b with h̃ = 0.256 and c = 0.811. Such a behavior
cannot be explained by a random walk model or other self-affine models and this effect is a clear
evidence of correlations present in the signal.

Long term correlations analysis: Let us consider the absolute returns series {|xt|}, which is
usually long range correlated. Let us introduce the generalized correlations

Cq(τ) = 〈|xi|q|xi+τ |q〉 − 〈|xi|q〉〈|xi+τ |q〉. (1.86)

We shall see that the above functions will be a powerful tool to study correlations of returns
with comparable size: small returns are more relevant at small q, while Cq(τ) is dominated by
large returns at large q. Let us suppose to have a long memory for the absolute returns series,
i.e. the correlations Cq(τ) approaches zero very slowly at increasing τ , i.e. Cq(τ) is a power-law:

Cq(τ) = τ−βq . (1.87)

If |xt|q is an uncorrelated process one has βq = 1, while βq less than 1 corresponds to long range
memory. Instead of directly computing correlations Cq(τ) of single returns we consider rescaled
sums of returns. This is a well established way, if one is interested only in long term analysis,
in order to drastically reduce statistical errors that can affect our quantities. Let us introduce
the generalized cumulative absolute returns

χt,q(τ) =
1
τ

τ−1∑
i=0

|xt+i|q (1.88)
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� Figure 1.5.16: Structure functions 1
g

log2 Fq(τ) versus log2τ for USDDEM exchange rates. The three plots
correspond to different values of q: 2.0 circles, 4.0 squares, and 6.0 crosses. The insert shows ξq versus q. Source:
Baviera, 1999

� Figure 1.5.17: log2δq versus log2τ . The three plots correspond to different values of q: 1.0 circles, 1.8 squares,
and 3.0 crosses. The insert shows βq versus q, the horizontal line shows the value βq = 1 corresponding to
independent variables. Source: Baviera, 1999
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and their variance

δq(τ) = 〈χt,q(τ)2〉 − 〈χt,q(τ)〉2. (1.89)

After some algebra, see Baviera (1999), one can show that Cq(τ) for large τ is a power-law with
exponent βq, then δq(τ) is a power-law with the same exponent. In other words the hypothesis
of long range memory for absolute returns (βq < 1), can be checked via the numerical analysis
of δq(τ).

Figure 1.5.17 shows that the variance δq(τ) is affected by small statistical errors, and this confirms
the persistence of a long range memory for a τ larger than 24 and up to 215. The exponent βq

can be estimated by standard regression methods. We notice in the insert that the random walk
model behavior is remarkably different from the one observed in the USDDEM exchange rates
for q < 3. This implies the presence of strong correlations, while one has βq = 1 for large values
of q, i.e. big fluctuations are practically independent. An intuitive meaning of the previous
results is the following: Using different q values one selects different sizes of the fluctuations.
Therefore the non trivial shape of βq is an indication of the existence of long term anomalies.

Notes and Comments

Chapter 1.5 summarizes material on the investigation of correlation and dependency structures
in financial market data. An extensive source of material on these topics are the Proceeding
from the “International Conference on High Frequency Data in Finance” held 1995 and 1998 in
Zurich. In these proceedings one can also find many further references.

The first section 1.5.1 is dedicated to preprocessing high frequency data. The material concerned
with operational time and the de-seasonalisation of high frequency time series data can be found
in the papers published by the Olsen Group and a paper written by Schnidrig and Würtz. The
de-volatilization concept is presented along the paper of Zhou. The algorithms for filtering and
outlier detection were borrowed from publications from the Olsen Group and from Würtz.

Correlations in financial time series are investigated in section 1.5.2. The overview about the
negative first-order correlations follows the paper From the Bird’s eye to the Microscope: a
Survey of New Stylized Facts of the Intra-Daily Foreign Exchange Markets from the Olsen group
published in 1997 [38]. The lagged correlations, concerned with volatilities of different time
resolutions, were introduced and discussed along the results presented in the paper Volatilities
of Different Time Resolutions - Analyzing the Dynamics of Market Components written in 1996
by Müller et al. [50] from the Olsen group. Describing the Taylor and Machina effect we followed
the paper on “Some Properties of Absolute Return - An Alternative Measure of Risk” written
in 1993 by Granger and Ding [?].

The interplay between finance and turbulence, as presented in section 1.5.3 was borrowed from
the paper “Weak Efficiency and Information in Foreign Exchange Markets” written by Baviera
in 1999 [5]. In this context we also like to mention the article “Turbulent Cascades in Foreign
Exchange Markets” published in Nature 1996 by S. Ghashghaie et al. [31].

The Splus functions for the de-seasonalization, de-volatilization, and filtering of high frequency
data, as well as the Splus functions to investigate correlations and dependencies were written
by Würtz and included in the fBasics library.
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1.6 Hypothesis Testing

Statistical inference has many forms. The form that has received much attention by the develop-
ers and users of nonparametric methods is hypothesis testing. Hypothesis testing is the process
of inferring from a sample whether or not to accept a certain statement about the population.
The statement itself is called the hypothesis. An hypothesis is tested on the basis of the evi-
dence contained in the sample. The hypothesis is either rejected, meaning the evidence from the
sample casts enough doubt on the hypothesis for us to say with some degree of confidence that
the hypothesis is false, or else the hypothesis is accepted, simply meaning that it is not rejected.

A test of a particular hypothesis may be very simple to perform. We may observe a set of data
related to the hypothesis, or a set of data not related to the hypothesis, or perhaps no data at
all, and arrive at a decision to accept or reject the hypothesis, although that decision may be of
doubtful value. However, the type of hypothesis test we shall discuss is more properly called a
statistical hypothesis test, and the test procedure is well defined.

Here is a brief outline of the steps involved in such a test:

1. The hypotheses are stated in terms of the population.

2. A test statistic is selected.

3. A rule is made, in terms of possible values of the test statistic, for deciding whether to
accept or reject the hypothesis.

4. On the basis of a random sample from the population, the test statistic is evaluated, and
a decision is made to accept or reject the hypothesis.

In the process of hypothesis testing we make use of the following definitions:

• The hypothesis is simple if the assumption that the hypothesis is true leads to only one
probability function defined on the sample space.

• The hypothesis is composite if the assumption that the hypothesis is true leads to two or
more probability functions defined on the sample space.

• A test statistic is a statistic used to help make the decision in a hypothesis test.

• The critical region is the set of all points in the sample space which result in the decision
to reject the null hypothesis.

• A type I error is the error of rejecting a true null hypothesis.

• A type II error is the error of accepting a false null hypothesis.

• The level of significance, or α, is the maximum probability of rejecting a true null hypoth-
esis.

• The power, denoted by 1− β, is the probability of rejecting a false null hypothesis.

• The critical level α̂ is the smallest significance level at which the null hypothesis would be
rejected for the given observation.
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Some Properties of Hypothesis Testing

Once the hypotheses are formulated, there are usually several hypothesis tests available for
testing the null hypothesis. In order to select one of these tests, one has to consider several
properties of the tests: “Are the assumptions of the selected test valid assumptions in my
experiment?” For example in most parametric tests one of the stated assumptions that the
random variable being examined has a Gaussian distribution. The use of a test in a situation
where the assumptions of the test are not valid is dangerous for two reasons. First, the data may
result in rejection of the null hypothesis not because the data indicate that the null hypothesis
is false, but because the data indicate that one of the assumptions of the test in invalid. The
second danger is that sometimes the data indicate strongly that the null hypothesis is false, and
a false assumption in the model is also affecting the data, but these two effects neutralize each
other in the test, so that the test reveals nothing and the null hypothesis is accepted.

From among the tests that are appropriate, the best test may be selected on the basis of other
properties. These properties are as follows

1. The test should be unbiased.

2. The test should be consistent.

3. The test should be more efficient in some sense than the other tests.

Sometimes we are content if one or two of the three criteria are met. Only rarely are all three met.
To become more precise we will now briefly discuss the terms unbiased, consistent, efficiency,
and the power of the test.

• An unbiased test is a test in which the probability of rejecting the null hypothesis H0 when
H0 is false is always greater than or equal to the probability of rejecting H0 when H0 is
true.

• A sequence of tests is consistent against all alternatives in the class H1 if the power of
the tests approaches 1 as the sample size approaches infinity, for each fixed alternative
possible under H1. The level of significance of each test in the sequence is assumed to be
as close as possible to but not exceeding some constant α > 0.

• Let T1 and T2 represent two tests that test the same H0 against the same H1, with the
critical regions of the same size α, and with the same values of β. The relative efficiency
of T1 to T2 is the ratio n2/n1, where n1 and n2 are the sample sizes of the tests T1 and T2

respectively.

• Let n1 and n2 be the sample sizes required for two tests T1 and T2 to have the same power
under the same level of significance. If α and β remain fixed, then the limit of n2/n1, as
n1 approaches infinity, is called the asymptotic relative efficiency (ARE) of the first test
to the second test, if that limit is independent of α and β.

• A test is conservative if the actual level of significance is smaller than the stated level of
significance.

1.6.1 Goodness-of-Fit Tests

A test for goodness-of-fit usually involves examining a random sample from some unknown
distribution in order to test the null hypothesis that the unknown distribution function is in fact
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a known, specified function. That is, the null hypothesis specifies some distribution function
F ?(x). A random sample X is then drawn from some population, and is compared with F ?(x)
in some way to see if it is reasonable to say that F ?(x) is the true distribution function of the
random sample.

One logical way of comparing the random sample with F ?(x) is by means of the empirical distri-
bution function S(x). So we can compare the distribution function S(x) with the hypothesized
distribution function F ?(x) to see if there is a good agreement. If there is no good agreement,
then we may reject the null hypothesis and conclude that the true but unknown distribution
function, F (x), is in fact not given by the function F ?(x) in the null hypothesis.

But what sort of test statistic can we use as a measure of the discrepancy between S(x) and
F ?(x)? One of the simplest measure is the largest distance between the two graphs S(x) and
F ?(x), measured in a vertical direction. This is the statistic suggested by Kolmogorov (1933).
Statistics like the mentioned one, that are functions of the vertical distance between S(x) and
F ?(x) are considered to be Kolmogorov-type statistics. Statistics which are functions of the
vertical distance between two empirical distribution functions are of the Smirnov-type.

The Kolmogorov Goodness-of-Fit Test

Data:
The data consist of a random sample X1, X2, . . . , Xn of size n associated with some
unknown distribution function, denoted by F (x).

Assumptions:
1) The sample is random sample,
2) if the hypothesized distribution function, F ?(x) in H0, is continous the test is
exact, otherwise the test is conservative.

Hypothesis:
Let F ?(x) be a completely specified hypotesized distribution function. The hypoth-
esis can be stated as follows:14

H0: F (x) = F ?(x) for all x from −∞ to ∞
H1: F (x) 6= F ?(x) for at least one value of x

Test Statistic:
Let S(x) be the empirical distribution function based on the random sample X1, X2,
. . . , Xn. The test statistic T will be the greatest (denoted by “sup” for suprenum)
vertical distance between S(x) and F ?(x): T = supx |F ?(x) − S(x)|. Reject H0 at
the level of significance α if the test statistic T exceeds the 1− α quantile.

Tests for two independent samples are useful in situations where two samples are drawn, one from
each of two possibly different populations, and the experimenter wishes to determine whether
the two distribution functions associated with the two populations are identical or not.

The Smirnov (1939) test is a two sample version of the Kolmogorov test presented above, and
is sometimes called the Kolmogorov-Smirnov two-sample test, while the Kolmogorov test is
sometimes called Kolmogorov-Smirnov one-sample test.

14The here presented version of the test is the two sided test version. The hypotheses for the one sided versions
of the test are: H0: F (x) ≥ F ?(x) for all x from −∞, H1: F (x) < F ?(x) for at least one value of x; or H0:
F (x) ≤ F ?(x) for all x from −∞, H1: F (x) > F ?(x) for at least one value of x. For these one-sided versions of
the test we refer to the book of W.J. Conover.
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The Smirnov Goodness-of-Fit Test

Data:
The data consist of two independent random samples, one of size n, X1, X2, . . . Xn,
and the other of size m, Y1, Y2, . . . Yn. Let F (x) and G(x) represent their respective,
unknown distribution functions.

Assumptions:
1) The samples are random samples,
2) the two samples are mutually independent,
3) the measurement is at least ordinal.
4) For this test to be exact the random variables are assumed to be continuous. If
the random variables are discrete, the test is still valid, but becomes conservative.

Hypothesis:
The hypothesis can be stated as follows:15

H0: F (x) = G(x) for all x from −∞ to ∞
H1: F (x) 6= G(x) for at least one value of x

Test Statistic:
Let S1(x) be the empirical distribution function based on the random sample X1, X2,
. . . , Xn, and let S2(x) be the empirical distribution function based on the random
sample Y1, Y2, . . . , Ym. The test statistic T will be the greatest vertical distance
between the two empirical distribution functions: T = supx |S1(x) − S2(x)|. Reject
H0 at the level of significance α if the test statistic T exceeds the 1− α quantile.

Examples: Goodness-of-Fit Tests - xmpTestKsgof1 ... xmpTestKsgof3

xmpTestKsgof1: Use the standard Splus function16 ks.gof(x) to estimate with which degree of
accuracy a large random sample of Students t-distributed variables approaches the Gaussian dis-
tribution with increasing number of freedoms. (Student’s t is a real valued distribution symmetric
about 0. The t-distribution approaches the Gaussian distribution as the degrees of freedom go to
infinity. Plot the t- and Gaussian distribution for a comparison by eye and calculate the KS statistic
and its 1− α quantile, the p-value:

# Settings:

x <- seq(-4, 4, length=1000)

df <- c(2, 4, 8, 16, 32, 64)

statistic <- p.value <- rep(0, times=length(df))

# Test and Plot PDF for Different Degrees of Freedom:

for (i in 1:length(df)) {

plot(dnorm(x), type="l")

lines(dt(x,df[i]), col=8)

result <- ks.gof(x=rt(10000, df[i]), y=NULL, distribution="normal")

statistic[i] <- result$statistic

p.value[i] <- result$p.value }

# Print Results:

cbind.data.frame(df, statistic, p.value)

15The here presented version of the test is the two sided test version. The hypotheses for the one sided versions
of the test are: H0: F (x) ≤ G(x) for all x from −∞, H1: F (x) > G(x) for at least one value of x; or H0:
F (x) ≥ G(x) for all x from −∞, H1: F (x) < G(x) for at least one value of x. For these one-sided versions of the
test we refer to the book of W.J. Conover.

16The R-Package ctest from H.Hornik provides a R function ks.test() which integrates the Kolmogorov-
Smirnov-tests.
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The result will be:

df statistic p.value

1 2 0.275360103800698300 0.000000000000000e+000

2 4 0.059271162972763910 1.489301820046562e-093

3 8 0.024726458027317440 4.543339717431392e-015

4 16 0.011105690744257630 7.491881286850343e-003

5 32 0.008260579714133964 5.000000000000000e-001

6 64 0.005834467103922436 5.000000000000000e-001

xmpTestKsgof2: Investigate how aggregated log-returns of the NYSE stock market index approach
the Gaussian distribution function. Take the last 4096 observations from the time series and use
the matrix(x, byrow=T, ncol=2k̂) command to aggregate the time series by factors of 2, 4, 8, ...,
128. Calculate averages for the p-values and the kurtosis values over the different aggregated time
series with different starting points (e.g. for k=2 one obtains 4 time series):

# Read the First 8192 Records from NYSE Residuals

# and calculate log-Prices:

x <- cumsum(scan("csv\\nyseres.csv")[1:2^13])

# Settings:

x.length <- x.kurtosis <- x.statistic <- x.pvalue <- rep(NA, times=8)

statistic.gof <- function(x) ks.gof(x)$statistic

pvalue.gof <- function(x) ks.gof(x)$p.value

# Aggregate in Powers of Two and

for ( i in 1:8 ){

ncol <- 2^(i-1)

x.length[i] <- length(x)/ncol

if (i == 1) {

cat ("\nAggregation level: ", i)

x.aggregated <- diff(x)

x.kurtosis[i] <- kurtosis(x.aggregated)

ksgof <- ks.gof(x.aggregated)

x.statistic[i] <- ksgof$statistic

x.pvalue[i] <- ksgof$p.value }

if (i >= 2) {

cat(" ",i)

x.aggregated <- apply(matrix(x, byrow=T, ncol=ncol), MARGIN=2, FUN=diff)

x.kurtosis[i] <- mean(apply(x.aggregated, MARGIN=2, FUN=kurtosis))

x.statistic[i] <- mean(apply(x.aggregated, MARGIN=2, FUN=statistic.gof))

x.pvalue[i] <- mean(apply(x.aggregated, MARGIN=2, FUN=pvalue.gof)) } }

cat("\n\n")

# Output Result as data.frame:

cbind.data.frame(x.length, x.kurtosis, x.statistic, x.pvalue)

The result will be:

x.length x.kurtosis x.statistic x.pvalue

1 8192 52.0489638681475500 0.06091719499866693 6.838179587686540e-081

2 4096 26.6159403388654600 0.05163083540317270 1.310304580878602e-021

3 2048 14.6212287235242200 0.04194011164755204 3.250204709723970e-007

4 1024 9.2957487662853440 0.04857215699503483 2.700871288142208e-004

5 512 5.6972314454352640 0.06172803217903847 2.184812649299860e-003

6 256 3.0441509892529550 0.06283450833681589 3.914494003942872e-002

7 128 1.6847076797203760 0.07707636085808399 2.701126686943184e-001

8 64 0.4831549913602689 0.08203286104564493 4.578567676032478e-001
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xmpTestKsgof3: Cut the time series of the NYSE stock market index into 4 parts and investigate
if the four subsamples have the same distribution function. Use the ks.gof(x,y) command and
calculate the p.values. Repeat the same investigation with a resampled time series, use for resam-
pling the standard Splus function sample(x):

# Settings:

x <- scan("csv\\nyseres.csv")

x <- matrix(x[1:(4*trunc(length(x)/4))], ncol=4)

s <- matrix(sample(x)[1:(4*trunc(length(x)/4))], ncol=4) # resampled

# Write a "compare" function:

compare <- function(x,n) {

k <- 0

i <- j <- statistic <- p.value <- rep(NA,time=n*(n-1)/2)

for ( ii in 1:(n-1) ) {

for ( jj in (ii+1):n ) {

k <- k + 1

ksgof <- ks.gof(x[,ii],x[,jj])

i[k] <- ii

j[k] <- jj

statistic[k] <- ksgof$statistic

p.value[k] <- ksgof$p.value }}

# Print the Result:

cbind.data.frame(i, j, statistic, p.value)}

# Compare subsets of the NYSE time series:

compare(x, 4)

# Compare subsets of the resampled NYSE time series:

compare(s, 4)

The result will be for the empirical data:

i j statistic p.value

1 1 2 0.07534573199809258 1.244083518725514e-005

2 1 3 0.06294706723891275 4.508056362317880e-004

3 1 4 0.05722460658082978 1.921176198543817e-003

4 2 3 0.04244158321411540 4.309209344425024e-002

5 2 4 0.09442060085836910 3.051795681718872e-007

6 3 4 0.05960896518836434 1.067713488137945e-003

The result will be for the resampled data:

i j statistic p.value

1 1 2 0.02193609918931805 0.6756791313368099

2 1 3 0.02861230329041486 0.3432019332868576

3 1 4 0.02479732951835956 0.5217503147842388

4 2 3 0.02098235574630425 0.7272527508593505

5 2 4 0.01764425369575584 0.8868779237459915

6 3 4 0.01335240820219360 0.9893910060897374

(Note, the output prints the full number of double precision digits. Use the Splus function options(digits=5)

to reduce the accuracy in printing e.g. to 5 significant digits.)

1.6.2 Randomness and Runs Test

In the investigation of financial market data one important question is: “Are the logarithmic
returns or their residuals obtained from a time series model independently distributed, or are

84



there structures existent in the dynamical process. Several statistical tests are available to test
a sequence of observations for randomness and correlations or more general for dependencies.

In statistics, any sequence of like observations, bounded by observations of a different kind, is
called a run. The number of observations in the run is called the length of the run. Suppose a
coin is tossed twenty times and the results H (heads) or T (tails) are recorded in the order in
which they occur, as follows.

T HHHHHH T H T H TT HHH T H T H

The series begins with a run of tails of length 1, followed by a run of heads of length 6, followed
by another run of length 1, and so on. In all, there are six runs of tails and six runs of heads. In
fact, with only two kinds of observations as we have with H and T , the number of runs of the
one kind will always be within one run of the number of runs of the other kind, because each
run of the one kind is preceded and followed by a run of the other kind, except at the beginning
or end of the sequence.

In a sequence of two kinds of observations, the total number of runs may be used as measure
of the randomness of the sequence; too many runs may indicate that each observation tends to
follow, and be followed by, and observation of the other kind, while too few runs might indicate
a tendency for like observation to follow like observations. In either case the sequence would
indicate that the process generating the sequence was not random. i.e. the elements of the
sequence were not iid.

The Runs Test for Randomness:

Data:
The data consist of a sequence of observations, taken in order of occurrence. The
observations are of two types or can be reduced to data of two types denoted by H
(head) and T (tail) in this presentation. Let n denote the number of H’s and m the
number of T ’s in the observed sequence.

Assumptions:
The only assumption is that the observations be recordable as either one type (H)
or the other (T ).

Hypothesis:
The hypothesis can be stated as follows:

H0: The process which generates the sequence is a random process.
H1: The random variables in the sequence are either dependent on other
random variables in the sequence, or are distributed differently from one
another.

Test Statistic:
The test statistic T equals the total number of runs of like elements in the sequence
of observations. Obtain the quantiles wp of T under the assumption that H0 is true.
Use a two-tailed critical region, and reject H0 at the level α if T > w1−α/2 or if
T < wα/2. The exact distribution17 of the number of runs is for r even

P (T = r |H0 is true) =
2( n−1

r/2−1)(
m−1

r/2−1)
(n+m

n )
17It is interesting to note that the physicist E. Ising was deriving the probabilities in his paper Beitrag zur

Theorie des Ferromagnetismus, Zeitschrift für Physik 31, 253-258, 1925
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and for r odd

P (T = r |H0 is true) =
( n−1

r/2−1/2)(
m−1

r/2−3/2)+( n−1
r/2−3/2)(

m−1
r/2−1/2)

(n+m
2 )

Example: Runs Tests - xmpTestRuns

xmpTestRuns: Use the Splus function runs.test()18 and ivestigate the log-returns of the NYSE
stock market index. Dichomotize the NYSE index log-returns by the mean to remove zeros in the
investigation:

runs.test(x=scan("csv\\general\\nyseres.csv"))

The result will be:

Removed 68 zero(es)

Runs test

data: x

Standard Normal = -0.812, p-value = 0.4168

1.6.3 Measures of Rank Correlation

A measure of correlation is a random variable which is used in situations where the data consist
of pairs of numbers, (X1, Y1), (X2, Y2), . . . (Xn, Yn). A measure for X and Y should satisfy the
following requirements in order to be acceptable.

• The measure of correlation should assume only values between -1 and +1.

• If the larger values of X tend to be paired with the larger values of Y , and hence the
smaller values of X and Y tend to be paired together, then the measure of correlation
should be positive and close to +1.0 if the tendency is strong. Then we would speak of a
positive correlation between X and Y .

• If the larger values of X tend to be paired with the smaller values of Y and vice versa, then
the measure of correlation should be negative and close to -1.0 if the tendency is strong.
Then we say that X and Y are negatively correlated.

• If the values of X appear to be randomly paired with the values of Y , the measure of
correlation should be fairly close to zero. This should be the case when X and Y are
independent, and possibly some cases where X and Y are not independent. We then say
that X and Y are uncorrelated, or have no correlation, or have correlation zero.

The most commonly used measure of correlation is Pearson’s (1900) product moment correlation
coefficient, denoted by r and defined as

r =
Σn

i=1(Xi − µX)(Yi − µY )

(Σn
i=1(Xi − µX)2Σn

i=1(Yi − µY )2)1/2
(1.90)

18This function is part of the R-Package tseries provided by A. Tripletti.
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where µX and µY are the sample means of X and Y . Dividing the numerator and denominator
by n, then r may be easily remembered as the sample covariance in the numerator, and the
product of the two sample standard deviations in the denominator.

In addition to r, many other measures of correlation have been invented which satisfy the above
requirements for acceptability. The measures of correlation we will use in the following tests
are functions of only the ranks assigned to the observations, Spearmans [66] Rho (1904) and
Kendall’s Tau (1938).

Spearman’s Rho Test

Data:
The data may consist of a bivariate random sample of size n, (X1, Y1), (X2, Y2),
. . . (Xn, Yn). Let R(Xi) be the rank of Xi as compared with the other values of
X, for i = 1, 2, . . . , n. That is R(Xi) = 1 if Xi is the smallest of X1, X2, . . . Xn;
R(Xi) = 2 if Xi is the second smallest; and so on, with rank n being assigned to
the largest of the Xi. Similarly, let R(Yi) equal i = 1, 2, . . . , n, or n depending on
the relative magnitude of Yi compared with Y1, Y2, . . . Yn, for each i. In case of ties,
assign to each tied value the average of the ranks that would have been assigned if
there had been no ties.

Assumptions:
The measure of correlation as given by Spearman is usually designated by ρ (rho)
and, if there are no ties, is defined as ρ = 1− 6Σn

n=1[R(Xi)−R(Yi)]
2

n(n2−1)
= 1− 6T

n(n2−1)
, where

T represents the entire sum in the numerator. If there exists ties the evaluation
of ρ becomes more elaborate and we refer to the book of W.J. Conover. If there
are no ties in the data, Spearman’s ρ is merely what one obtains by replacing the
observations by their ranks and then computing Pearson’s r on the ranks.

Hypothesis:
The Spearman rank correlation coefficient is often used as a test statistic to test for
independence between two random variables. Actually Spearman’s ρ is insensitive to
some types of dependence, so it is better to be specific as to what types of dependence
may be detected. The hypothesis takes the following form:

H0: The Xi and Yi are mutually independent.
H1: Either i) there is a tendency for the larger values of X to be paired
with the larger values of Y , or ii) there is a tendency for the smaller values
of X to be paired with the larger values of Y .

The alternative hypothesis states the existence of correlation between X and Y , so
that a null hypothesis of “no correlation between X and Y ” would be more accurate
than the statement of independence between X and Y . Nevertheless, we shall persist
in using the null hypothesis of independence because it is in widespread usage and
it is easier to interpret.

Test Statistic:
Spearman’s ρ may be used as a test statistic. For n greater than 30 the approximate
quantiles of ρ may be obtained from wp

∼= xp√
n−1

where xp is the p-th quantile of the
standard normal distribution.

The next measure of correlations resembles Spearman’s ρ in that it is based on the order (ranks)
of the observations rather than the numbers themselves, and the distribution of the measure does
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not depend on the distribution of X and Y if X and Y are independent and continuous. The chief
advantage of Kendall’s τ is that its distribution approaches the normal distribution quite rapidly
so that the normal approximation is better for Kendall’s τ than it is for Spearman’s ρ, when
the null hypothesis of independence between X and Y is true. Another advantage of Kendall’s
τ is its direct and simple interpretation in terms of probabilities of observing concordant and
discordant pairs.

Kendall’s Tau Test

Data:
The data may consist of a bivariate random sample of size n, (X1, Y1), (X2, Y2),
. . . (Xn, Yn). Two pairs of observations are called concordant if both members of one
pair of observations are larger than their respective members of the other pair of
observation. Let Nc denote the number of concordant pairs of observations, out of
the

(
n
2

)
total possible pairs. A pair of observations is called discordant if the two

numbers in one pair or observations differ in opposite directions (one negative and
one positive) from the respective members in the other observation. Pairs with ties
between respective members are neither concordant nor discordant. Because the n
observations may be paired

(
n

2=n(n−1)/2

)
different ways, the number of concordant

pairs Nc plus the number of discordant pairs Nd plus the number of pairs with ties
should add up to n(n− 1)/2.

Assumptions:
The measure of correlation proposed by Kendall (1938) is τ = Nc−Nd

n(n−1)/2 . If all pairs
are concordant, Kendall’s τ equals +1. If all pairs are discordant, the value is -1.

Hypothesis:
Kendall’s τ can be used to test the null hypothesis of independence between X and
Y as described with Spearman’s ρ.

Test Statistic:
Some arithmetic may be saved, however by using Nc−Nd as a test statistic, without
dividing by n(n−1)/2 to obtain τ . Therefore we use T as the Kendall’s test statistic,
where T is defined as T = Nc − Nd. Quantiles of T are give approximately by

wp
∼= xp

√
n(n−1)(2n+5)

18 for n greater than 40, where xp is from the standard normal
distribution. If T exceeds the 1 − α quantile reject H0 in favor of the alternative
of positive correlation, at level α. Values of T less than the α quantile lead to
acceptance of the alternative of negative correlation.

Remark: The exact distribution of ρ and τ are quite simple to obtain in principle, although in
practice the procedure is most tedious for even moderate sized n. The exact distributions are
found under the assumption that Xi and Yi are iid. Then each of the n! arrangements of the
ranks of the Xi’s paired with the ranks of the Yi’s is equally likely. The distribution functions
are obtained simply by counting the number of arrangements that give a particular value of ρ,
or τ and by dividing that number by n! to get the probability of that value of ρ, or τ . A form
of the central limit theorem is applied to obtain large sample approximate distributions.
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Example: Rank Correlation Tests - xmpTestCorrelations

Use the standard Splus function19 cor.test() to investigate correlations between yesterdays and
todays log-returns and volatilities of the NYSE stock market index. Compare the results with those
obtained from a resampled time series.

# Settings:

x <- scan("csv\\nyseres.csv")

lag <- 1

# Correlation Tests for log-returns:

cor.test(x[1:(length(x)-lag)], x[(1+lag):length(x)], method="spearman")

cor.test(x[1:(length(x)-lag)], x[(1+lag):length(x)], method="kendall")

# Compare with resampled Series:

x <- sample(x)

cor.test(x[1:(length(x)-lag)], x[(1+lag):length(x)], method="spearman")

cor.test(x[1:(length(x)-lag)], x[(1+lag):length(x)], method="kendall")

The results will be:

Log-Returns:

Spearman’s rank correlation

data: x[1:(length(x) - lag)] and x[(1 + lag):length(x)]

normal-z = 15.2843, p-value = 0

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.1668848867918694

Kendall’s rank correlation tau

data: x[1:(length(x) - lag)] and x[(1 + lag):length(x)]

normal-z = 15.5928, p-value = 0

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.1135188898103444

Resampled Log-returns:

Spearman’s rank correlation

data: x[1:(length(x) - lag)] and x[(1 + lag):length(x)]

normal-z = 0.9513, p-value = 0.3415

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.01038652590516307

Kendall’s rank correlation tau

data: x[1:(length(x) - lag)] and x[(1 + lag):length(x)]

normal-z = 0.9637, p-value = 0.3352

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.007015852275611504

19The R-Package ctest provided by H .Hornik provides a R function cor.test() which integrates Pearson’s,
Spearman’s and Kendall’s correlation tests.

89



Notes and Comments

In this Chapter on hypothesis testing, discussing the goodness-of-fit tests, the runs test, and the
rank correlation tests, we followed as in Chpater 1.3 very close the book of C.W. Conover [11],
Practical Nonparametric Statistics.

The goodness-of-fit test ks.gof(), and the correlation test cor.test(), including Pearson’s,
Spearman’s and Kendall’s tests, are part of the standard Splus software package. The ctest
R-package provided by H. Hornik implements the mentioned tests for R users. The routines
are available in the fBasics library, but they are not active in the Splus version. For the runs
test we have implemented in the fbasics library Trapletti’s implementation of the runs test
available through his tseries R-package.

There are many tests in use which allow to test for the hypothesis that the data under inves-
tigation are Gaussian distributed. These tests include: Omnibus Moments Test for Normality,
Geary’s Test, Studentized Range Test, D’Agostino’s D-Statistic Test, Kuiper V-Statistic Mod-
ified Test, Watson U2-Statistic Modified Test, Durbin’s Exact Test, Anderson-Darling Statis-
tic Modified Test, Cramer-Von Mises W2-Statistic Test, Kolmogorov-Smirnov D-Statistic Test,
Kolmogorov-Smirnov D-Statistic (Lilliefors Critical Values), Chi-Square Test (Equal Probabil-
ity Classes), Shapiro-Francia W’ Test for Large Samples. The Algorithms for these tests are
available in form of FORTRAN routines written by P. Johnson (1994). We have interfaced these
routines into a Splus function gofnorm.test(). For an example we refer to xmpTestGofnorm.
Furthermore the fBasics library provides an additional implementation of the runs test based
on a Fortran routine written by Filliben, available through the DATAPAC software package.
The different versions of run.test() are distinguished in the argument “method”, which can
take on one of the two values “fast” (Trapletti) or “extended” (Filliben), see also the exam-
ple xmpTestRunsExt. For measuring dependencies we have also implemented the BDS Test,
bds.test() based on a C program written by B. LeBaron. This Splus function makes also
use from the R-implementation of the test procedure available through Trapletti’s tseries
R-package. For an example we refer to look on the example program xmpTestBds.
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1.7 Calculating and Managing Calendar Dates

Dates in Calendar are Closer Than They Appear!
Albert Einstein

The statistical investigation of financial market data requires powerful date and time tools.
Even more, the huge datasets with intraday or high frequency data contributed from all over
the world require efficient tools to manage data with frequencies in the range of hours and
minutes. Although, the R and Splus date tools, available in the chron and date software
package, already

• allow to transform dates from the Gregorian calendar to Julian day numbers and vice
versa,

• allow basic date and time management functions, and

• allow the handling of different date formats,

the most tasks from applications in finance cannot properly fulfilled. The tools don’t take care
for any day count conventions as usually used in finance, e.g. for the pricing of bonds, for closing
days in banks and exchanges caused by holidays, for time zones and daylight saving time used on
the European and American continent. This is the starting point to write R and Splus functions
providing additional date/time functionality. In contrast to R and Splus we follow here the
recommendations of the ISO-8061 standard to format dates and times. As a side effect, this also
excludes the danger of misunderstandings in writing dates according to different customs like in
the US or Europe.

First we introduce briefly the Gregorian Calendar, discuss the question what is the correct
way to write dates, introduce the ISO-8061 standard date format, and present algorithms for
transforming dates between Gregorian Calendar dates and Julian Day Numbers, for calculating
the day of the week and to determine if a year is a leap year or not. A function is also introduced
which allows to transform dates written in different date format to the ISO-8601 standard. Then
we present algorithms to calculate day differences and year fractions for the most common day
count conventions in use.

A further section is dedicated to holiday calendars. First we consider ecclesiastical holidays and
present an algorithm to calculate the date of Easter. In addition to this functionality we present
the rules to calculate the dates of other feasts related to Easter, like for example Good Friday
or Pentecote. Also the rules for the evaluation of many other ecclesiastical feasts are supported.
In the case of public or federal holidays, the holidays are varying from country to country. We
list the names of the holidays in Switzerland and in the G7 countries. Some of the holidays
are fixed other vary from year to year. For this we present formulas to solve for rules like “last
Monday in May” (Memorial Day) or many others. The functions we provide allow to define
special holiday calendars, for example the NYSE Holiday Calendar.

We also discuss questions arising from time zones and daylight saving time, DS. Time zones
definitions and the dates together with rules for starting and ending of summertime periods are
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taken from the implementations of time zones and daylight saving times in the UNIX operating
system. We provide a function which allows to synchronize financial market data between local
time and Universal Time Coordinated, UTC. These functions support time zones and daylight
saving time rules for the major financial markets, i.e. the markets in Switzerland and in the G7
countries.20

1.7.1 The Gregorian Calendar

A calendar is a system of organizing units of time for the purpose of reckoning time over extended
periods. By convention, the day is the smallest calendrical unit of time; the measurement of
fractions of a day is classified as timekeeping. The generality of this definition is due to the di-
versity of methods that have been used in creating calendars. Although some calendars replicate
astronomical cycles according to fixed rules, others are based on abstract, perpetually repeating
cycles of no astronomical significance. Some calendars are regulated by astronomical obser-
vations, some carefully and redundantly enumerate every unit, and some contain ambiguities
and discontinuities. Some calendars are codified in written laws; others are transmitted by oral
tradition. From L.E. Doggett [22] (1992).

Todays calendar commonly in use is the Gregorian Calendar. It was proposed by Aloysius Lilius,
a physician from Naples, and adopted by Pope Gregory XIII in accordance with instructions
from the Council of Trent (1545-1563). It was decreed in a papal bull in February 1582.

In the Gregorian calendar, the tropical year (the time the earth needs to turn around the
sun) is approximated as 365 97/400 days, i.e. 365.2425 days. The approximation 365 97/400 is
achieved by having 97 leap years every 400 years. A year becomes a leap year when the following
conditions are fulfilled:

• Every year divisible by 4 is a leap year.
However, every year

• divisible by 100 is not a leap year.
However, every year

• divisible by 400 is a leap year after all.

So, for example, 1900 and 2100 are not leap years, but 2000 is a leap year.

Italy and other Catholic countries and local regions introduced already 1582/83 or shortly after
the Gregorian Calendar. But Protestant countries were reluctant to change, and the Greek
orthodox countries didn’t change until the start of this century. Here are some further dates for
the introduction of the Gregorian calender in Switzerland and the G7 countries:

Switzerland finally joined 1701 when the Protestant Cantons joined.
Great Britain and Dominions (including what is now the USA) followed 1752.
Prussia joined 1610 and finally the rest of Germany joined in 1700 with the Protestant States.
France finally joined when Alsace joined 1682 and Lorraine 1760, respectively.
Canada followed the changes in Great Britain or France.
For Japan different authorities claim the years 1873, 1893 or 1919.

Further and more precise information about the Gregorian Calendar is collected in an article
written by C. Toendering [70] (1998).

20In addition, the appendix summarizes information about the chronological objects available in Splus.
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What is the Correct Way to Write Dates?

The answer to this question depends on what you mean by ”correct”. Different countries have dif-
ferent customs. Most countries use a day-month-year format, such as: 25.12.1998, 25/12/1998,
25-12-1998, or 25.XII.1998. In the US a month-day-year format is common: 12/25/1998, or
12-25-1998. Furthermore, the first two digits of the year are frequently omitted: 25.12.98,
12/25/98, or 98-12-25. This confusion leads to misunderstandings. What is 02-03-04? To
most people it is 2 Mar 2004; to an American it is 3 Feb 2004.

To introduce an unique description we will introduce simple date and time functions based
on the international standard ISO-8601 [41]. This standard defines formats for the numerical
representation of dates, times and dates/times combinations. For dates ISO-8061 mandates a
year-month-day format, which we use for example in the following form:

19981205

It is exactly this kind of format interpreted as CCYYMMDD, where CC denotes the century, YY the
two-digit year, MM the month and DD the day. Note, that leading zeros are written for one-digit
years, months and days. Writing dates in this way has many advantages. E.g., one gets rid
of the Y2K problem, since the century is explicitly specified or sorting tools can easily applied
to date vectors since the individual date strings are ordered in a descending resolution from
centuries to days.

ISO-8601 Standard Date Format

Würtz [75](1999) has implemented this concept into functions which support the ISO-8601
standard as a date format of choice. We will see that this allows a more compact handling of
calendar dates and is free of the peculiarities mentioned above in comparison to the format used
in other date functions implemented in Splus.

1.7.2 Julian Day and Minutes Counters

Date conversions make heavily use of the Julian Day Number which goes back to the French
scholar Joseph Justus Scaliger (1540-1609). Astronomers use the Julian day number to assign
a unique number to every day since 1 January 4713 BC. This is the so-called Julian Day (JD).
JD 0 designates the 24 hours from noon UTC on January 1, 4713 BC to noon UTC on January
2, 4713 BC. This means that at noon UTC on January 1, AD 2000, JD 2,451,545 will start.

However, in many other fields the term ”Julian Day Number” may refer to any numbering of
days. NASA, for example, uses the term to denote the number of days since January 1 of
the current year. We use in, as in many other statistical software packages, 19960101 as the
(optional) origin of our day counting. This has also the side effect to bring the numbers into a
more manageable numeric range.

The following formulas allow to convert a date in ISO-8601 date format to a Julian Day Number
and vice versa.

# FROM ISO-8601 DATE TO JULIAN DAY NUMBER:

# ISODATE AS: year*10000 + month*100 + day

year <- ISODATE %/% 10000
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month <- (ISODATE - year*10000) %/% 100

day <- ISODATE - year*10000 - month*100

a <- (14-month) %/% 12

y <- year + 4800 - a

m <- month + 12*a -3

JDN <- day + (153*m+2)%/%5 + y*365 + y%/%4 - y%/%100 + y%/%400 - 32045

# FROM JULIAN DAY NUMBER TO ISO-8601 DATE:

a <- JDN + 32045

b <- (4*(a+36524))%/%146097 - 1

c <- a - (b*146097)%/%4

d <-(4*(c+365))%/%1461 - 1

e <- c -(1461*d)%/%4

m <- (5*(e-1)+2)%/%153

day <- e - (153*m+2)%/%5

month <- m + 3 - 12*(m%/%10)

year <- b*100 + d - 4800 +m%/%10

ISODATE <- year*10000 + month*100 + day

For January 1, 1960 we obtain JDN=2436935 and ISODATE=19600101.

To calculate the day of the week for a given month, day and year the following formulas can be
used:

# DAY OF THE WEEK:

a <- (14-month)%/%12

y <- year - a

m <- month + 12*a - 2

sday.of.week <- (day+y+y%/%4 - y%/%100 + y%/%400 + (31*m)%/%12)%/%7

For the decision if a year is a leap year or not we can use the following formula:

# LEAP YEAR:

sleap.year <- year %% 4 == 0 & (year %% 100 != 0 | year %% 400 == 0)

In the formulas written above the divisions ”%/%" are integer divisions, in which remainders
are discarded; "%%" means all we want is the remainder, i.e. the modulo function. In this
expression sleap.year() is of type Boolean and takes the value ”false” F or ”true” T. The value
of sday.of.week() is 0 for a Sunday, 1 for a Monday, 2 for a Tuesday, etc.

Example: Standard Date Format - xmpCalFormat

Inspect the Splus function sjulian (sdates, origin=19600101) to convert ISO-8601 dates to Ju-
lian Day Numbers. The arguments of the function are sdate - a vector of dates in ISO-8601 date
format CCYYMMDD, origin - offset date specified in ISO-8601 date format, i.e. the starting point for
the Julian Day Number counting. The default date for the origin is January 1, 1960. The returned
value will be a vector of Julian Day Numbers.

Inspect the Splus function sdate (julians, origin=19600101) to convert Julian Day Numbers to
ISO-8601 dates. The arguments of the function are julians - a vector of Julian Day Numbers,
origin - offset date specified in standard ISO-8601 format, i.e. the starting point for the Julian Day
Number counting. The default date for the origin is January 1, 1960. The returned value will be
a vector of dates in ISO-8601 date format.
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Inspect the Splus function sday.of.week (sdates) which returns the day of week for ISO-8601
dates. The argument of the function is sdates - a vector of ISO-8601 dates CCYYMMDD. The returned
value will be a vector of the days of the week, characterized with numbers between 0 and 6 to specify
the associated days, 0 refers to a Sunday, 1 to a Monday, etc.

Inspect the Splus function sleap.year (sdates) which tests for leap years from ISO-8601 dates.
The argument of the function is sdates - a vector of ISO-8601 dates CCYYMMDD. The returned value
will be a vector of boolean values true or false depending if the ISO-8601 dates fall in a leap year or
not.

The s in front of each function name just remembers us, that the ISO-8601 simple day standard
is used.

How to Transform Dates to ISO-8601 Date Format

As already mentioned in the introduction dates can be read and printed in many different date
formats, e.g. 11/8/73, 8-Nov-1973, November 8, 1972, etc. Such dates we call “fdates” (from
formatted dates) and we will add for them new functionality which makes not necessary to
specify the many different formats from input dates.

Example: Dates Transformation - xmpCalTransformation

Inspect the Splus function fjulian (fdates, origin=19600101, order="mdy", century=19) which
converts formatted Gregorian Calendar dates to a Julian Day Number. The arguments of the func-
tion are fdates - a vector of formatted Gregorian Calendar dates, origin - an optionable origin
specified in ISO-8601 date format. The default value for the origin is January 1, 1960, order - defines
the representation of the date, default is ”mdy” (month, day, year). The argument century is used
for 2-digit years, by default the value is 19. The return value will be a vector of Julian Day Numbers.

For the function fjulian() make use of the C-program written by T. Therneau [69] (1991)
which reads and transforms different date formats. The order argument allows to specify in
which order the date is given; i.e. the default ”mdy” expects the month first, followed by the
day and finally the year. All combinations of m, d and y are allowed. If the years are written by
the last 2-digits only, the argument century allows to complete to the full year string, e.g. 78
becomes 1978, if the default century=19 is used.

The following dates together with the ordering “mdy” are valid examples for January 4, 1969.

1/4/69, 01/04/69, ..., Jan 4 1969

ISO-8601 Date/Time Format for Intra-daily and High Frequency Data

Dealing with intra-daily or high frequency financial market data we need a time extension to
the “sdate” format, in the following called “xdate”, with a resolution beyond days taking care
for intra-daily time counting, i.e. hours and minutes.21 For this we use the date/time format as
CCYYMMDDhhmm, where CC, YY, MM, and DD are the same as in the case of the ISO-8601 standard
date format, but additionally hh denotes the hour and mm the minute of the considered date/time

21Note that in most financial applications we do not consider a time resolution of seconds as relevant, because
the contributed time stamps of the data providers, like Reuters, only consists of hours and minutes.)
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string. hh and mm are related by definition to Universal Time Coordinated, UTC. The origin is
given by an ISO-8601 date, always assuming 00:00 UTC which is not especially included in the
origin argument. For example a valid date is written as: 199906101510, i.e. June 10, 1990 at
15:10 UTC. The following functions are managing these ISO-8601date/time formats.

Example: Date/Time Management - xmpCalManagement

Inspect the Splus function xjulian(xdates, origin=19600101) which converts ISO-8601 dates/times
to Julian Minute Numbers. The arguments of the function are xdate - a vector of dates/times in
standard ISO-8601 date/time format CCYYMMDDhhmm, origin - offset date specified in ISO-8601 date
format, i.e. the starting point for the Julian Minute Numbers counting. The default date for the
origin is January 1, 1960. The return value will be a vector of Julian Day Numbers.

Inspect the Splus function xdate(xjulians, origin=19600101) which converts Julian Minute Num-
bers to ISO-8601 dates/times. The arguments of the function are xjulians - a vector of Julian
Minute Numbers, origin - offset date specified in ISO-8601 date format, i.e. the starting point for
the Julian Minute Numbers counting. The default date for the origin is January 1, 1960. The
return value will be a vector of dates in ISO-8601 date format.

Inspect the Splus function xday.of.week(xdates) which returns the day of week for ISO-8601
dates/times. The argument of the function is xdates - a vector of ISO-8601 dates/times CCYYMMDDhhmm.
The return value will be a vector of the days of the week, characterized by numbers between 0 and
6 to specify the associated days, 0 refers to a Sunday, 1 to a Monday, etc.

Inspect the Splus function xleap.year(xdates) which tests for leap years from ISO-8601 dates/times.
The argument of the function is xdates - a vector of ISO-8601 dates/times CCYYMMDDhhmm. The re-
turn value will be a vector of boolean values true or false depending if the ISO-8601 dates/times fall
in a leap year or not.

Note, that the “Julian Minute Number” is just a natural extension of the “Julian Day Number”
counting scheme. In the first case we count minutes and in the second we count days with
respect to an offset date specified by origin. The offset time is always fixed to 00:00.

1.7.3 Day-Count-Conventions

With the provided tools one can easily convert between many calendar date formats and Julian
Day Numbers which also allow to set a predefined origin. However in Finance, day differences,
are usually evaluated according to some “day-count-conventions”. The following lists the most
important of these conventions:

• A60, Act/360: Count actual number of days and divide by 360 days per year.

• A65, Act/365: Count actual number of days and divide by 365 days per year.

• AJP, Act/365(leap): Count actual number of days, ignoring February 29, and divide by 365 days per year.

• AA, Act/Act: Count actual number of days and divide by actual number of days in the year. If the time
period spans more than one calendar year, then day count = Sum (actual days in time period in year i /
actual days in year i).

• I65: Count actual number of days, and divide the portion of days falling in a non-leap year by 365 and the
portion of days falling in a leap year by 366.
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• BIS: If the first date day1 equals 31 (that is, day1 falls on the 31st of the month), change day1 to 30. If
the last date day2 equals 31 and the first date day1 equals 30, change day2 to 30. Then count days using
standard 3036x formula and divide by 360 days per year.

• BPS: Make same changes as in BIS. Also, if the first date day1 is the last day of February, change day1 to
30. Then count days using standard 3036x formula and divide by 360 days per year.

• BSI: Make same changes as in BPS, but do the February adjustment only if the instrument has a coupon
on the last day of February. Then count days using standard 3036x formula and divide by 360 days per
year.

• B60: If the first date day1 equals 31 (that is, day1 falls on the 31st of the month), change day1 to 30. If
the last date day2 equals 31, change day2 to 30. Then count days using standard 3036x formula and divide
by 360 days per year.

• B65: If the first date day1 equals 31 (that is, day1 falls on the 31st of the month), change day1 to 30. If
the last date day2 equals 31, change day2 to 30. Then count days using standard 3036x formula and divide
by 365 days per year.

Day Differences and Year Fractions

The 3036x convention counts day differences as

# 3086x convention counts

dcc.3086x <- (360*(year2-year1)) + (12*(month2-month1)) + (day2-day1)

where the earliest date is (month1, day1, year1) and the latest date is (month2, day2, year2).

Example: Day Count Convention - xmpCalDayCounts

Inspect the Splus function day.count.fraction(from.sdate, to.sdate, rule) which allows to
calculate the number of days and the corresponding year fraction according to the specified day-
count-convention. The arguments of the function are: from.sdate - the starting date, to.sdate - the
end date of the time range, rule - the day count convention rule. Implement the following rules: Act,
Act/360, Act/365, Act/365(leap), BondBasis, Bond, 30, EuroBondBasis, Eurobond, 30E. The return
value is a list with the the number of days covering the period and the associated day count fraction.

1.7.4 Holiday Calendars

Holidays may have two origins, ecclesiastical and public/federal.

Ecclesiastical Holidays

The ecclesiastical calendars of Christian churches are based on cycles of moveable and immove-
able feasts. Christmas, December 25, is the principal immoveable feast. Easter is the principal
moveable feast, and dates of most other moveable feasts are determined with respect to Easter.
However, the moveable feasts of the Advent and Epiphany seasons are Sundays reckoned from
Christmas and the Feast of the Epiphany, respectively.
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How to Calculate the Date of Easter?

In the Gregorian Calendar, the date of Easter is evaluated by a complex procedure whose
detailed explanation goes beyond this paper. The reason that the calculation is so complicate
is, because the date of Easter is linked to (an inaccurate version of) the Hebrew calendar. But
nevertheless a short answer to the question “When is Easter?” is the following: Easter Sunday
is the first Sunday after the first full moon after vernal equinox. For the long answer we refer to
C. Toendering [70] (1998).

The following algorithm for computing the date of Easter is based on the algorithm of Oudin
[55] (1940). It is valid for any Gregorian Calendar year. All variables are integers and the
remainders of all divisions are dropped. The final date is given by the ISO-8601 date formatted
variable EASTER.

# Calculating Easter:

C <- year%/%100

N <- year - 19*(year%/%19)

K <- (C-17)%/%25

I <- C - C%/%4 - (C-K)%/%3 + 19*N + 15

I <- I - 30*(I%/%30)

I <- I - (I%/%28)*(1-(I%/%28)*(29%/%(I+1))*((21-N)/11))

J <- year + year%/%4 + I + 2 - C + C%/%4

J <- J - 7*(J%/%7)

L <- I - J

month <- 3 + (L+40)%/%44

day <- L + 28 - 31*(month%/%4)

EASTER <- year*1000 + month*100 + day

Feasts Related to Easter are:

Ash Wednesday 46 days before Easter
Palm Sunday 7 days before Easter
Good Friday 2 days before Easter
Rogation Sunday 35 days after Easter
Ascension 39 days after Easter
Pentecost 49 days after Easter
Trinity Sunday 56 days after Easter
Corpus Christi 60 days after Easter

Sundays in Advent are determined in the following straightforward method:

First Sunday of Advent the Sunday on or after 27 November
Second Sunday of Advent the Sunday on or after 4 December
3rd Sunday of Advent the Sunday on or after 11 December
4th Sunday of Advent the Sunday on or after 18 December

Other Feasts that are listed by the Ecclesiastical Calendar are:

Epiphany on 6 January
Presentation of the Lord on 2 February
Annunciation usually on 25 March
Transfiguration of the Lord on 6 August
Assumption of Mary on 15 August
Birth of Virgin Mary on 8 September
Celebration of the Holy Cross on 14 September
Mass of the Archangels on 29 September
All Saints’ on 1 November
All Souls’ on 2 November
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Other holidays which are relevant for the holiday calendarium are:

Easter Monday 1 day after Easter
Pentecote Monday 1 day after Pentecote
Boxing Day on 25 December

Holidays in Switzerland and G7 Countries

Public and federal holidays include some of the ecclesiastical holidays, e.g. like Easter and
Christmas, and usually national holidays, e.g. like Labour Day, Independance Day. It is also
difficult to specify a holiday calendar for a country, since almost in every country rules on local
holidays in cities and states exist. Therefore, we concentrate on holidays celebrated in the major
financial market centers in Switzerland and the G7 countries; these include: In Europe Zurich,
London, Frankfurt, Paris, Milano, iin Northamerica New York, Chicago, Toronto, Montreal, and
in Far East Tokyo and Osaka.

The first table gives a summary in which countries New Year’s Day, Good Friday, Easter, Easter
Monday, Labor Day on May 1, Pontecote, Pontecote Monday, Christmas Day and Boxing Day
are celebrated as public or federal holidays:

Feasts Date CH/DE GB FR IT US/CA JP
-------------------------------------------------------------
New Year’s Day 1 Jan X X X X X X
Good Friday X X
Easter Sunday X X X X
Easter Monday X X X X
Labor Day 1 May X X X
Pontecost Sunday X X
Pentecost Monday X X
Christmas Day 25 Dec X X X X X
Boxing Day 26 Dec X X X X
-------------------------------------------------------------

The next tables give city/country specific information on additional feasts. Rules are also
provided what happens when a public or federal holiday falls on a Saturday or Sunday.

Zurich/Switzerland:

Additional Feasts Date
-------------------------------------------------
Berchtold’s Day 2 Jan
Sechselaeuten 3rd Monday in April *
Ascension 39 days after Easter
Confederation Day 1 Aug
Knabenschiessen 2nd Saturday to Monday in Sep
-------------------------------------------------
* 1 week later if it coincides with Easter Monday

London/UK:

Additional Feasts Date
-------------------------------------------------
May Day Bank Holiday 1st Monday in May
Bank Holiday Last Monday in May
Summer Bank Holiday Last Monday in August
-------------------------------------------------
New Year’s Eve, 31 December 1999 will be a public
holiday. Holidays falling on a weekend are cele-
brated on the Monday following.
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Frankfurt/Germany:
Additional Feasts Date
-------------------------------------------------
Ascension 39 days after Easter
Corpus Christi 60 days after Easter
Day of German Unity 3 Oct
Christmas Eve * 22 Dec
New Year’s Eve * 31 Dec
-------------------------------------------------
* Government closed, half day for shops.

Paris/France:
Additional Feasts Date
-------------------------------------------------
Fete de la Victoire 1945 8 May
Ascension 39 days after Easter
Bastille Day 14 Jul
Assumption Virgin Mary 15 Aug
All Saints Day 1 Nov
Armistice Day 11 Nov
-------------------------------------------------

Milano/Italy:
Additional Feasts Date
-------------------------------------------------
Epiphany 6 Jan
Liberation Day 25 Apr
Anniversary of the Republic Sunday nearest 2 Jun
Assumption of Virgin Mary 15 Aug
All Saints Day 1 Nov
WWI Victory Anniversary * Sunday nearest 4 Nov
St Amrose (Milano local) 7 Dec
Immaculate Conception 8 Dec
-------------------------------------------------
* Sunday is a holiday anyway, but holiday pay
rules apply.

NewYork-Chicago/USA:
Additional Feasts Date
-------------------------------------------------
New Year’s Day 1 Jan
Inauguration Day * 20 Jan
Martin Luther King Jr Day 3rd Monday in January
Lincoln’s Birthday 12 Feb
Washington’s Birthday 3rd Monday in February
Memorial Day Last Monday in May
Independence Day 4 July
Labor Day 1st Monday in September
Columbus Day 2nd Monday in October
Election Day Tuesday on or after 2 November
Veterans’ Day 11 November
Thanksgiving 4th Thursday in November
Christmas Day 25 December
-------------------------------------------------
Holidays occuring on a Saturday are observed on
the preceding Friday, those on a Sunday on the
Monday following.

Additional Feasts in Chicago/IL
-------------------------------------------------
Casimir Pulaski’s Birthday 1st Monday in March
Good Friday 2 days before Easter
-------------------------------------------------
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Toronto-Montreal/Canada:
Additional Feasts Date
-------------------------------------------------
Victoria Day Monday on or preceding 24 May
Canada Day * 1 Jul
Civic or Provincial Holiday 1st Monday in Aug
Labor Day 1st Monday in Sep
Thanksgiving Day 2nd Monday in Oct
Remembrance Day (Govt offices \& banks only)11 Nov
-------------------------------------------------
* When these days fall on a Sunday, the next
working day is considered a holiday.

Tokyo-Osaka/Japan:
Feasts Date
-------------------------------------------------
New Year’s Day (Gantan) 1 Jan
Bank Holiday 2 Jan
Bank Holiday 3 Jan
Coming of Age Day (Seijin-no-hi) 15 Jan
Nat. Foundation Day (Kenkoku-kinen-no-hi) 11 Feb
Vernal Equinox (Shunbun-no-hi) *
Greenery Day (Midori-no-hi) 29 Apr
Constitution Memorial Day (Kenpou-kinen-bi) 3 May
Holiday for a Nation (Kokumin-no-kyujitu)** 4 May
Children’s Day (Kodomo-no-hi) 5 May
Marine Day (Umi-no-hi) 20 Jul
Respect for the Aged Day (Keirou-no-hi) 15 Sep
Autumnal Equinox (Shuubun-no-hi)*** 23/24 Sep
Health and Sports Day (Taiiku-no-hi) 10 Oct
National Culture Day (Bunka-no-hi) 3 Nov
Thanksgiving Day (Kinrou-kansha-no-hi) 23 Nov
Emperor’s Birthday (Tennou-tanjyou-bi) 23 Nov
Bank Holiday 31 Dec
-------------------------------------------------
* 21 March in 1999, 20 March in 2000. Observed on
a Monday if it falls on a Sunday. There are no
moveable feasts other than the Equinoxes which
obviously depend on the lunar ephemeris.
** If it falls between Monday and Friday.
*** 23 September in both 1999 and 2000.
Holidays falling on a Sunday are observed on the
Monday following except for the Bank Holidays
associated with the New Year.

How to Calculate ”n-th nday in month”?

With the help of the sday.of.week() function we are able to calculate dates such as “The third
Monday in January”. Using the notation nday=0 ... nday=6 for a Sunday through Saturday,
the most generic formula is then:

# Date In Month that is an Nday ON OR AFTER date (month,day,year):

on.or.after <- day + (nday-day.of.week(month, day, year))%%7

# Date In Month that is an Nday ON OR BEFORE date (month,day,year):

on.or.before <- day - (-(nday-day.of.week(month, day, year)))%%7

These lead to quick formula for the date finding the first, second, third, fourth and fifth occur-
rence of a Sunday, Monday, etc., in any particular month:
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# nth (1st, 2nd, 3rd, 4th or 5th) occurrence of a Nday:

nth.of.nday <- nth*7 - 6 + (nday-sday.of.week(month, nth*7-6, year))%%7

In order to find, for example, the ”last nday in a month”, we can proceed as follows

# nd = Number of the last nday in month

# Last nday:

last.of.nday <- nd - (day.of.week(month, nd, year)-N)%%7

Example: What date is the last Monday in May, 1996? Answer, the last Monday in May, 1996,
is May 27.

How to Create Holiday Calendars?

For calculating holidays we will implement a Splus function.

Example: Holiday Calendar - xmpCalHolidays

Inspect holiday.calendar(holiday.names, from.sdate, to.sdate), the Splus function, which
gives the date(s) in ISO-8601 format for holidays. The arguments of the function are holiday.names,
a string vector with the names of the holidays, from.sdate, the starting ISO-8601 date, to.sdate,
the end date for the period for which the holidays are requested.

The returned value will be a vector of strings with the holiday names falling into the specified time
range.

The elements listed in the argument holidayCalendar can be taken from the following list:

AllSaints AllSouls Annunciation

Ascension AshWednesday AssumptionOfMary

BirthOfVirginMary BoxingDay CelebrationOfHolyCross

ChristmasDay ChristTheKing CorpusChristi

Easter EasterMonday Epiphany

FirstAdvent FourthAdvent GoodFriday

MassOfArchangels NewYearsDay PalmSunday

Pentecost PentecoteMonday PresentationOfLord

Quinquagesima RogationSunday SecondAdvent

Septuagesima SolemnityOfMary ThirdAdvent

TransfigurationOfLord TrinitySunday USColumbusDay

USGeneralElectionDay USIndependenceDay USLaborDay

USMemorialDay USMLKingsBirthday USThanksgivingDay

USVeteransDay USWashingtonsBirthday

An example for the calculation of the NYSE holiday Calendar for the years 1999 and 2000 can
be created as follows.

# NYSE Holiday Calendarium

NYSEHolidayCalendar <- c("NewYearsDay", "USMLKingsBirthday",

"USWashingtonsBirthday", "GoodFriday", "USMemorialDay",

"USIndependenceDay", "USLaborDay’’, "USThanksgivingDay",

"ChristmasDay")

holiday.calendar(NYSEholidayCalendar, 19990101, 20001231)
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This is based on the rules of the Bord of Exchange22 that New York Stock Exchange will not
be open for business on the following days:

New Year’s Day, Martin Luther King’s Birthday, Washington’s Birthday, Good Friday, Memorial
Day, Independence Day, Labor Day, Thanksgiving Day, Christmas Day.

Time Zones

For the statistical analysis of intra-day and high frequency financial market data it is necessary
to take into account the different time zones, TZ, in which the worldwide markets act. The
problem with time zones is that a simple time zone map cannot really tell what time it is
someplace, because Daylight Saving Time, DST, screws everything up. Not only do some places
(countries, states) observe it while others in the same time zone don’t, many places “spring
forward” and “fall back” at different times of the year. The UNIX computer operating system
stores rules about who switches when. From theses files we have extracted the rules according
to which Daylight Saving Time is organized in Switzerland and the G7 countries.

Daylight Saving Time

Daylight Saving Time, or Summer Time as it is known in Britain, was invented by William
Willett (1857-1915), who was a London builder living in Kent. In 1907 he circulated a pamphlet
to many Members of Parliament, town councils, businesses and other organizations, he outlined
that for nearly half the year the sun shines upon the land for several hours each day while we
are asleep, and is rapidly nearing the horizon, having already passed its western limit, when we
reach home from work before it is over.

In April, 1916, Daylight Saving Time was introduced as a wartime measure of economy, not only
in Britain but, within a week or so, in nearly all countries. Most countries abandoned Daylight
Saving Time after the war had finished , most reintroduced it eventually, and some even began
to keep it throughout the year.

Daylight Saving Time in Europe:

DST can best be observed studying the railway schedules from ”Trans Europe Express”, TEE
trains. The countries where TEE trains were running used Middle European Time (one hour
ahead of Greenwich Mean Time) as the standard time. But during the summer periods they
introduced Daylight Saving Time or Summertime which was two hours ahead of GMT. How-
ever, introduction was not simultaneously but gradually and starting/ending times became not
standardized from the beginning.

Italy was the first country that introduced DST in 1966 followed by Spain in 1974. France
started in 1975. In 1977 Belgium, Luxembourg and the Netherlands joined France with at that
time a fixed rule: first Sunday in April until last Sunday in September. In 1981 this rule was
replaced by: last Sunday in March until last Sunday in September (and was modified again in

22The Board has also determined that, when any holiday observed by the Exchange falls on a Saturday, the
Exchange will not be open for business on the preceding Friday and when any holiday observed by the Exchange
falls on a Sunday, the Exchange will not be open for business on the succeeding Monday, unless unusual business
conditions exist, such as the ending of a monthly or the yearly accounting period.
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1996). This rule was joined in 1978 by Spain, in 1979 by Italy and Germany and in 1981 by
Austria and 1982 by Switzerland.

In 1968 to 1971 Great Britain, where DST was introduced already in April 1916, tried the
experiment of keeping BST - to be called British Standard Time - throughout the year, largely
for commercial reasons because Britain would then conform to the time kept by other European
Countries. This was not good for the school children of Scotland as it meant they had to always
go to School in the dark. The experiment was abandoned in 1972, Britain has kept GMT in
winter and BST in summer.

Daylight-saving time in Europe is nowadays regulated by EC Council Directive. The Seventh
Directive regulated the period from 1994 to 1997, and the Eight Directive regulates the period
from 1998 until 2001. Daylight Saving Time in Europe starts at 01:00 UTC on the last Sunday in
March (add 1 hour) and ends at 01:00 UTC on the last Sunday in September (subtract 1 hour).
Exceptions are UK and Eire where it ends at 01:00 UTC on the fourth Sunday in October.

Daylight Saving Time in North-America:

DST in USA was established by he Standard Time Act of March 19, 1918 but it became a local
matter. The Uniform Time Act of 1966 provided standardization in the dates of beginning and
end of daylight time but allowed for local exemptions from its observance. The act provided
that Daylight Saving Time begins on the last Sunday in April and ends on the last Sunday in
October, with the changeover to occur at 2 a.m. local time.

During the ”energy crisis” years, Congress enacted earlier starting dates for Daylight Saving
Time. In 1974, DST began on January 6, and in 1975 it began on February 23. After those
two years the starting date reverted back to the last Sunday in April. In 1986, a law was passed
permanently shifting the starting date of Daylight Saving Time to the first Sunday in April,
beginning in 1987. The ending date of DST has not been subject to such changes, and has
remained the last Sunday in October.

Canada is completely on a regular schedule. Since 1946 Daylight Saving Time starts on the last
Sunday in April, but is starting since 1987 on the first Sunday in April. Since 1957 the clocks
go back to standard time on the last Sunday in October.

Daylight Saving Time in Far East:

In Japan DST is not observed, the whole year follows ”Japan Standard Time”.

DST Tables and Rules for Switzerland and G7 Countries

To transform the information from all over the world to a common time, i.e. one has to be
aware of the different time schedules for the beginning and ending of daylight saving periods in
the different countries worldwide. In the following we give the tables and rules for specifying
Daylight Saving Time for Switzerland and the G7 countries. The rules apply after 1960 and
are referenced for the major financial market places London, Frankfurt, Paris, Zurich, Milano
in Europe, New York, Chicago, Montreal and Toronto in North-America as well as Tokyo and
Osaka in the Far East.
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United Kingdom: GBLondon GMTOFF +0
FROM TO IN ON AT SAVE OUT ON AT SAVE
1960 Apr 10 2:00 1:00 - Oct Sun>=1 2:00 0:00
1961 1963 Mar lastSun 2:00 1:00 - Oct Sun>=23 2:00 0:00
1964 1967 Mar Sun>=19 2:00 1:00 - Oct Sun>=23 2:00 0:00
1968 1971 No DST
1972 1980 Mar Sun>=16 2:00 1:00 - Oct Sun>=23 2:00 0:00
1981 1989 Mar lastSun 1:00 1:00 - Oct Sun>=23 1:00 0:00
1990 1995 Mar lastSun 1:00 1:00 - Oct Sun>=23 1:00 0:00
1996 max Mar lastSun 1:00 1:00 - Oct lastSun 1:00 0:00

Germany: DEFrankfurt GMTOFF +1
FROM TO IN ON AT SAVE OUT ON AT SAVE
1960 1980 no DST
1981 1995 Mar lastSun 2:00 1:00 - Sep lastSun 2:00 0:00
1996 max Mar lastSun 2:00 1:00 - Oct lastSun 2:00 0:00

France: FRParis GMTOFF +1
FROM TO IN ON AT SAVE OUT ON AT SAVE
1960 1974 No DST
1975 Mar 20 2:00 1:00 - Sep 22 2:00 0:00
1976 Mar 28 2:00 1:00 - Sep lastSun 2:00 0:00
1977 Apr Sun>=1 2:00 1:00 - Sep lastSun 2:00 0:00
1978 Apr Sun>=1 2:00 1:00 - Oct 1 2:00 0:00
1979 1980 Apr Sun>=1 2:00 1:00 - Sep lastSun 2:00 0:00
1981 1995 Mar lastSun 2:00 1:00 - Sep lastSun 2:00 0:00
1996 max Mar lastSun 2:00 1:00 - Oct lastSun 2:00 0:00

Italy: ITMilano GMTOFF +1
FROM TO IN ON AT SAVE out ON AT SAVE
1960 1965 No DST\\
1966 1968 May Sun>=22 0:00 1:00 - Sep Sun>=22 0:00 0:00
1969 Jun 1 0:00 1:00 - Sep Sun>=22 0:00 0:00
1970 May 31 0:00 1:00 - Sep lastSun 0:00 0:00
1971 May Sun>=22 0:00 1:00 - Sep lastSun 1:00 0:00
1972 May Sun>=22 0:00 1:00 - Oct 1 0:00 0:00
1973 Jun 3 0:00 1:00 - Sep lastSun 0:00 0:00
1974 May 26 0:00 1:00 - Sep lastSun 0:00 0:00
1975 Jun 1 0:00 1:00 - Sep lastSun 0:00 0:00
1976 May 30 0:00 1:00 - Sep lastSun 0:00 0:00
1977 May Sun>=22 0:00 1:00 - Sep lastSun 0:00 0:00
1978 May Sun>=22 0:00 1:00 - Oct 1 0:00 0:00
1979 May Sun>=22 0:00 1:00 - Sep 30 0:00 0:00
1980 No DST
1981 1995 Mar lastSun 2:00 1:00 - Sep lastSun 2:00 0:00
1996 max Mar lastSun 2:00 1:00 - Oct lastSun 2:00 0:00

Switzerland: CHZurich GMTOFF +1
FROM TO IN ON AT SAVE OUT ON AT SAVE
1960 1981 No DST
1982 1995 Mar lastSun 2:00 1:00 - Sep lastSun 2:00 0:00
1996 max Mar lastSun 2:00 1:00 - Oct lastSun 2:00 0:00

USA: USNewYork GMTOFF -5 / USChicago GMTOFF -6
FROM TO IN ON AT SAVE OUT ON AT SAVE
1960 1966 No DST
1967 1973 Apr lastSun 2:00 1:00 - Oct lastSun 2:00 0:00
1974 Jan 6 2:00 1:00 - Oct lastSun 2:00 0:00
1975 Feb 23 2:00 1:00 - Oct lastSun 2:00 0:00
1976 1986 Apr lastSun 2:00 1:00 - Oct lastSun 2:00 0:00
1987 max Apr Sun>=1 2:00 1:00 - Oct lastSun 2:00 0:00

Canada: CAMontreal/CAToronto GMTOFF -5
FROM TO IN ON AT SAVE OUT ON AT SAVE
1960 1986 Apr lastSun 2:00 1:00 - Oct lastSun 2:00 0:00
1987 max Apr Sun>=1 2:00 1:00 - Oct lastSun 2:00 0:00

Japan: JPTokyo/JPOsaka GMTOFF +9
FROM TO IN ON AT SAVE out ON AT SAVE
1960 max No DST
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How to Calculate UTC from Local Time

UTC time is used today as a simple way to get the whole world onto the same clock, i.e. one
uses one clock instead of many local clocks. To do this one has to set the clock at a single
location and define that to be the reference. We select UTC, “Universal Time Coordinated” as
our reference.

The world is cut into 24 time zones, every 15 degrees of longitude. There are 12 in the Eastern
hemisphere and 12 in the Western. Since the earth spins 360 degrees in 24 hours, 15 degree
increments represent one hour of time difference.

In order to simplify the conversion, every timezone across the world is assigned a time zone
designator (TZD) to use in the conversion calculation. The zone designators in the Western
Hemisphere are positive while the zone designators in the Eastern Hemisphere are negative.

The formula for conversion is as follows:

Universal Time Coordinated = Local Mean Time + Time Zone Designator

UTC = LMT + TZD, so

LMT = UTC - TZD

Example: 1800 UTC = ? for US Eastern Standard Time

EST has TZD = +5

LMT = 1800 - (+5)

LMT = 1300 or (1pm)

Example: 1200 Local US Pacific Standard time = ?

GMT PST has TZD = +9

UTC = LMT + TZD

UTC = 1200 + (+9)

UTC = 2100 or (9 pm)

In addition one has to take Daylight Saving Time into account. If LMT is observing Daylight
Saving Time the Time Zone Designator will usually be one less than normal. So during Eastern
Daylight Saving Time the TZD is +4, but during Standard Time the TZD is +5. So if EST has
a T ZD of +5 then EDT has a TZD of +4, etc.

We have implemented the information from the tables above in a Splus function which allows to
transform dates/times in ISO-8601 standard format according to a given Time Zone Designator
and Daylight Saving Time schedule to UTC.

Example: Universal Time Coordinated - xmpCalUTC

Inspect the Splus function utcdate (xdates, rule="CHZurich") which calculates UTC in ISO-
8601 date/time format from local date(s)/time(s) in ISO-8601 date/time format according to the
specified rule. The supported rules will be CHZurich, GBLondon, DEFrankfurt, FRParis, ITMilano,
USNewYork, USChicago, CAMontreal, CAToronto, JPTokyo and JPOsaka. Note, the earliest date
to which these rules will apply is January, 1, 1960, 00:00 UTC.

Exercises

Write a function nMonths(initialDate,N) which returns a date N Months ahead from the initialDate.
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Write a function nYears(initialDate,N) which returns a date N Years ahead from the initialDate.

Write a function is.businessDay(actualDate,financialCenter) which returns T if the date is a
business day at the specified financial center. financialCenter defines the financial center in which
holidays are taken into account.

Write a function nBusinessDays(initialDate,N,financialCenter) which returns a date N busi-
ness days from an initial date at the specified financial center.

Write a function adjustDate(initialDate,financialCenter,BDA) which returns an adjusted date
according to a given convention and financial center. BDA defines the way the initial date is adjusted
in case it is not a valid business day for the specified financial center. The valid Business Day Adjust-
ments are: Forward: the date is moved forward until it is a business day, ModifiedForward: the date
is moved forward until it is a business day, unless it falls in the next month. In this case it is moved
backwards. Backward: the date is moved backward until it is a business day, ModifiedBackward:
the date is moved backward until it is a business day, unless it falls in the previous month. In this
case it is moved forward.

Write a function nextIMMDate(initialDate) which returns the next IMM settlement date on or
following the initial date. This function returns the third Wednesday of March, June, September or
December on or following the initial date.

Notes and Comments

In this chapter on calculating and managing calendar dates I collected most of the material
from the internet: ISO-8601 date format, Gregorian/Julian calendar conversion, day count
conventions, holiday calendars, time zones, daylight saving times.
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1.8 The fbasics Library

1.8.1 Summary of Splus Functions

The following section gives an overview over the Splus functions available in the fBasics Library.
The programs are grouped by their functionalities. A short description follows each Splus
function name. Sometimes there are small flags in front of the description. in these cases a F
or a C denotes that the function interfaces a Fortran or a C program, respectively. If there is
a SR in front, it says that the function is a standard Splus function, but for R-programmers
there is also a R-package available which supports this functionality. Not all Splus functions are
running under R. The main reasons are, that Splus and R functions called by the routines have
not always the same arguments, or sometimes a used function is not available in R. A R-version
of the fBasics library is currently in work and will overcome these problems.

Economic and Financial Markets

Splus offers the function import.data.bloomberg() to import data from from a Bloomberg feed or
database respectively. We have added further functions to download data from the internet and
from a Reuters Datafeed.

import.data.economagic Downloads a data file from EconoMagic

import.data.yahoo Downloads a data file from Yahoo

import.data.fedchicago Downloads a data file from Fed Chicago

import.data.rte Downloads data from a Reuters Feed via RTE

Distribution Functions in Finance

Splus comes with functions for calculating Density, cumulative probability, quantiles and random
generation for several kinds of distribution distribution functions. The most prominent is the fam-
ily of functions dnorm(), pnorm(), qnorm() and rnorm() for the normal or Gaussian distribution
function. For stable distributions, which play also an important role in financial market data anla-
ysis, only the function rstab() is available to calculate random deviates. Thus we have added the
following functions:

dsymstb Return symmetric stable pdf, call to symstb

psymstb Return symmetric stable cdf, call to symstb

rsymstb Return symmetric stable rvs

dstable Return stable pdf

dhyp Return hyperbolic pdf
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phyp Return hyperbolic cdf

rhyp Return hyperbolic rvs

ehyp Estimate (MLE) parameters for hyperbolic density

dnig Return normal inverse Gaussian pdf

pnig Return normal inverse Gaussian cdf

rnig Return normal inverse Gaussian rvs

enig Estimate (MLE) parameters for normal inverse Gaussian

In addition to mean() and var() we have written two functions to evaluate the next two higher
moments, the skewness and kurtosis, and a function which returns a basic statistics summary.
For distributional plots we have added two versions to plot the densities on logarithmic and double
logarithmic scales. Additionally you will find an alternative function for QQ plots and and a function
to display the scaling law behavior under temporal aggregation:

kurtosis Return a number which is the kurtosis of the data

skewness Return a number which is the skewness of the data

basstats Return a basic statistics summary

logpdf Return a pdf plot on a lin-log scale

loglogpdf Return a pdf plot on a log-log scale

qqgauss Return a Gaussian Quantile-Quantile plot

scalinglaw Evaluate and display a scaling law

Searching for Correlations and Dependencies

To make correlations and dependencies in time series visible we have added functions to estimate
and/or to plot the partial autocorrelation function, the long memory ACF, the Taylor effect and
the mutual information:

pacf Estimate and plot partial ACF

lmacf Estimate and plot long memory ACF

teffect Estimate and plot Taylor effect

mutinf Estimate and plot mutual information

Hypothesis Testing

Under S-plus the ks.gof() performs a Kolmogorov-Smirnov goodness-of-fit test and cor.test() per-
forms correlation tests including Pearson’s Cor, Spearman’s Rho, and Kendall’s Tau. We have added
functions for goodness-of-fit-tests against normality, for runs tests and for the BDS test:

gofnorm.test Goodness-of-fit tests against normality

runs.test Perform a runs

bds.test Perform a BDS dependency test

High Frequency Time Series Handling

To support the analysis of high frequency data we have written several routines to read (get), to
take the logarithm of prices (log), to differentiate (diff), to cut out a piece from a series (cut), to
interpolate (interp), to de-seasonalize (map, upsilon) and to de-volatilize (dvs) a time series with
time stamps given in the ISO 8601 format:

xts.get Read a CSV file with high frequency data

xts.log Calculate logarithms for xts time series values

xts.diff Differentiate xts time series values with lag=1

xts.cut Cut a piece out of a xts time series
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xts.interp Create an interpolated time series

xts.map Create a volatility adjusted time-map

xts.upsilon Interpolate a time series in upsilon time

xts.dvs Create a de-volatilized time series

xts.dwh Create intra-daily and intra-weekly histograms

xts.fxfilter Filter a high frequency FX time series

Date and Time Management

For the date and time management of high frequency time series we contributed to the library to
calculate Julian day (sjulian) or Julian minute counts (xjulian) from Gregorian dates (sdate) or
dates/times (xdate) and vice versa. Further management routines include functions to calculate
the day of the week, decide whether a date is a leap year or not, calculate the difference and year
fractions between two dates, manages a holiday calendar and UTC dates/times:

sjulian Calculate Julian day counts from ISO-8601 Gregorian dates

sdate Calculate ISO-8601 Gregorian dates from Julian day counts

sday.of.week Calculate the day of the week from IDO-8601 Gregorian dates

sleap.year Decide whether ISO-8601 Gregorian dates are leap years or not

fjulian Transform different formatted dates to a Julian day count

xjulian Calculate Julian minutes counts from ISO-8601 Gregorian dates/times

xdate Calculate ISO-8601 Gregorian dates/times from Julian minute counts

xday.of.week Calculate the day of the week from IDO-8601 Gregorian dates/times

xleap.year Decide whether ISO-8601 Gregorian date/times are leap years or not

day.count.frac Calculate the difference in days and year fraction between two dates

on.or.after Calculate date in "month" that is an "nday"

on.or.before Calculate date in "month" that is an "nday"

nth.of.nday Calculate the "nth" ocurrance of a "nday"

last.of.nday Calculate the last "nday" in "year,month"

holiday.calendar Calculate year by year the dates for a list of holidays

utcdates Transform ISO-8601 dates/times from local to UTC

1.8.2 List of Splus Datasets:

Financial Market Data Sets:

fdax97m.csv

fdax9710.csv 1 min prices for Dax Futures in October 1997

nyseres.csv log returns of the NYSE composite Index

Other Data Sets

bdstest.csv Data set to test the bds.test function

mutinfo.csv Data set to test the mutinf.tes function
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1.8.3 List of Splus Examples

Example: Chapter: Description:

xmpImportEconomagic 1.2.1 Import Data from www.economagic.com

xmpImportYahoo 1.2.1 Import Data from www.yahoo.com

xmpDistLogplot 1.4.1 Plot df on a Logarithmic Scale

xmpDistQQplot 1.4.1 Create a Gaussian QQplot

xmpDistCLT 1.4.1 Explore Central Limit Theorem

xmpDistSymstb 1.4.2 Investigate Symmetric Stable df

xmpDistStable 1.4.2 Investigate Stable def

xmpDistHyp 1.4.3 Investigate Generalized Hyperbolic df

xmpDistNIG 1.4.3 Investigate Normal Inverse Gaussian df

xmpXtsInterpolation 1.5.1 Interpolate a High Frequency Time Series

xmpXtsDeSeasonalization 1.5.1 De-seasonalize a High Frequency Time Series

xmpXtsDeVolatilization 1.5.1 De-volatilize a High Frequency Time Series

xmpXtsFXfilter 1.5.1 Filter a High Frequency FX Time Series

xmpCorACF 1.5.2 Plot Short Term Autocorrelation Function

xmpCorLongMemory 1.5.2 Plot Long Memory Correlation of Volatility

xmpCorLaggedCF 1.5.2 Plot Lagged Correlation Function

xmpCorTaylorEffect 1.5.2 Plot Taylor effect

xmpTestKSGoF 1.6.1 Perform a Kolmogorov-Smirnov Goodness-of-Fit test

xmpTestRuns 1.6.1 Perform a Runs Test

xmpTestCorrelations 1.6.2 Perform a Rank Correlation Test

xmpCalSdates 1.7.1 Express Date in Standard ISO-8601 Date Format

xmpCalFdates 1.7.1 Transform Date/Time to or from ISO-8601 Date Format

xmpCalXdates 1.7.1 Express Date/Time using Extended ISO-8601 Date Format

xmpCalDayCounts 1.7.1 Calculate Day Counts and Year Fractions

xmpCalHolidays 1.7.1 Create a Holiday Calendar

xmpCalUTC 1.7.1 Convert local Time to Universal Time Coordinated

1.8.4 Handling Time Series under Splus

Time Series Notations

Throughout all S-plus functions we consider a time series as an object providing at least two
informations: The first is the date/time vector, and the remaining vector(s) are one or more
market data vectors, including for example prices, returns, volatilities, volumes, contributors or
other information.

Under Splus time series can be handled as objects rts, cts and its. In the fBasics Library sts
and xts objects are not yet implemented to handle standard date and extended date/time time
series. This is planned for the future. Now, the date records we use are made of vectors or lists
with elements following the ISO-8601 standard, i.e. daily time stamps are given as CCYYMMDD,
where CC denotes the century (e.g. 19), YY the two-digit year (e.g. 99), MM the month of the year
(e.g. 03 for March), and DD for the day of the month (e.g. 08). For intra-daily or high frequency
minute-by-minute data the date records are extended to (truncated) ISO-8601 date/time records
CCYYMMDDhhmm, where the last four digits denote hours hh and minutes mm, (e.g. 0915 for 9:15
am).
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Importing Data from csv Files

The time series we have selected for the examples are stored in .csv files, where the first column
vector lists the date/time, and the remaining the other time series information. Thus each
row belongs to one individual time step. We expect that the vectors are ordered according to
increasing time, i.e. new records are appended at the end to the existing data file. Note, that
.csv files can also be easily handled by Microsoft’s Excel spreadsheets.

To load a time series file we can use the scan() function to scan the data file:

Example: Scan a time series file - xmpFileScan

The standard Splus function scan(file="", what=numeric(), n=<<see below>>, sep=<<see below>>,

...) allows to read records from a data file.

Here file is a character string giving the name of the file to be scanned. what denotes a vector of
mode numeric, character, or complex, or a list of vectors of these modes. Objects of mode logical

are not allowed. If what is a numeric, character, or complex vector, scan will interpret all fields on
the file as data of the same mode as that object. So, what=character() or what="" causes scan to
read data as character fields. If what is missing, scan will interpret all fields as numeric. n gives
the maximum number of items. sep is a field separator, if omitted, any amount of white space can
separate fields.

The function returns a list or vector like the what argument if it is present, and a numeric vector if
what is omitted.

Reading Data from Data Frame Files

However, in most cases it is very convenient to store financial market data in Splus data frames.
To read an entire data frame directly, the external file will normally have a special form.

• The first line of the file should have a name for each variable in the data frame.

• Each additional line of the file has its first item a row label and the values for each variable.

If the file has one fewer item in its first line than in its second, this arrangement is presumed
to be in force. By default numeric items (except row labels) are read as numeric variables and
non-numeric variables. This can be changed if necessary. The function read.table() can then
be used to read the data frame directly.

Example: Read data from a data frame file - xmpFileRead

The standard Splus function read.table(file, header=<<see below>>, sep, row.names, col.names,

as.is=F, skip=0) allows to read data from a data frame file.

Here file is a character string naming the text file from which to read the data. header is a logical
flag: if TRUE, then the first line of the file is used as the variable names of the resulting data frame.
The default is FALSE. sep denotes the field separator. row.names holds optional specification of the
row names for the data frame and col.names holds optional names for the variables. If missing,
the header information, if any, is used. as.is allows control over conversions to factor objects.
na.strings is a character vector; when character data is converted to factor data the strings in
na.strings will be excluded from the levels of the factor, so that if any of the character data were one
of the strings in na.strings the corresponding element of the factor would be NA. Also, in a numeric
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column, these strings will be converted to NA. skip counts the number of lines in the file to skip
before reading data.

The function returns a data frame with as many rows as the file has lines (or one less if header==T)
and as many variables as the file has fields (or one less if one variable was used for row names).
Fields are initially read in as character data. If all the items in a field are numeric, the corresponding
variable is numeric. Otherwise, it is a factor (unordered), except as controlled by the as.is argument.
All lines must have the same number of fields (except the header, which can have one less if the first
field is to be used for row names).

Accessing Builtin Datasets

Many Datasets are supplied with the packages provided here and Splus. Unlike Splus these
datasets have to be loaded explicitely, using the function data(). To see the list of data sets
provided in our packages use data() and load one of these, use, data("datasetname"). This
will load an object of the same name, usually a data frame.

1.8.5 Handling Date/Time under Splus

ISO8601 Date/Time Representations

This appendix describes part of the ISO8601 standard for numerical date/time interchange
format. The standard defines formats for numerical representation of dates, times and date/time
combinations. Local time and Coordinated Universal Time (UTC) are supported. Dates are
for the Gregorian calendar. Times are given in 24 hour format. All date and time formats are
represented with the largest units given first, i.e., from left to right the ranking is year, month,
week, day, hour, minute, second. Any particular date/time format is a subset of these possible
values, and the standard lists various permissible subsets. A calendar date is identified by a
given day in a given month in a given year. An ordinal date is identified by a given day in a
given year. A week is identified by its number in a given year. A week begins with a Monday,
and the first week of a year is the one which includes the first Thursday, or equivalently the one
which includes January 4. Midnight may be expressed as either 00:00:00 or 24:00:00. Unless
otherwise stated, all values are fixed width, with leading zeros used when necessary to pad out
a value. Many formats can be given in either a basic format or an extended format, where
the extended format has additional separation characters between values. Some formats require
alphabetic letters, which should be upper case, although lower case may be used if upper case
is not available.

In the following, the date/time 14 February 1993, 13:10:30 (ten minutes and thirty seconds past
one pm) is used to demonstrate formats. The ordinal day number is 045 and the week number
is 06. The day number within the week is 7.

Calendar Date Formats

19930214 or 1993-02-14 (complete representation)

199302 or 1993-02 (reduced precision representation)

1993

19

930214 or 93-02-14 (truncated, current century assumed)

Ordinal Date Formats
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1993045 or 1993-045 (complete representation)

93045 or 93-045

Local Time of Day

131030 or 13:10:30 (complete representation)

1310 or 13:10 (reduced precision)

13

Coordinated Universal Time (UTC)

A time can be expressed in UTC by appending the symbol Z without spaces to any of the local
time or fractional local time formats given above. The relationship of a local time to UTC
can be expressed by appending a time zone indicator without spaces to the right-hand side of
the local time representation, which must include hours. E.g., the indicator for New Zealand
summer time (13 hours ahead of UTC), can be expressed as:

+1300 or +13:00

+13

Omitting the minutes implies a lower precision for the time zone value, and is independent of
the precision of the time value to which the zone is attached. Time zones behind UTC use the
”-” sign. The standard implies (but does not state explicitly) that the extended zone format
(”13:00”) is used with extended format times, and the basic zone format (”1300”) with basic
format times.

Combined Date/Time Formats

The symbol ”T” is used to separate the date and time parts of the combined representation.
This may be omitted by mutual consent of those interchanging data, if ambiguity can be avoided.
The complete representation is as follows

19930214T131030 or 1993-02-14T13:10:30

or

19930214131030

The date and/or time components independently obey the rules already given in the sections
above, with the restriction that the date format should not be truncated on the right (i.e.,
represented with lower precision) and the time format should not be truncated on the left (i.e.,
no leading hyphens).

Chronological Objects in Splus

There are three classes of chronological objects: times, dates and chron. A times object
represents elapsed time (in days) while dates and chron objects represent dates, that is, time from
a specified origin. The difference between dates and chron objects is that the latter represents
time-of-day in addition to dates. A chron object inherits from dates, and dates objects inherit
from times. All chronological objects have a format attribute that stores the output formatting
style for dates and times of day. The variety of styles and conventions are illustrated int article
Chronological Objects in S by David A. James and Daryl Pregibon [42] (1992).
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1.8.6 Exercises

Chapter 1.4

Exercise: Location of Mode for Stable DF

Write a Splus function mstable() which allows to calculate the mode of the stabe DF. Produce a
graph similar to that of figure 1.4.6

Exercise: Tails of Symmetric Stable DF

The Splus function symstb() implements McCulloch’s approach for symmetric stable distributions
and uses in the tails first order tail approximation. Improve the absolute precision of the distribution
and density by using higher tail approximations.

Exercise: Stable PDF

Write a Splus function pstable() that calculates as in the case of the density dstable() the prob-
ability of a stable distribution.

Exercise: Generalized Hyperbolic DF

Write Splus functions rgh(), dgh(), and pgj() that calculate random deviates, density and proba-
bility function for the generalized hyperbolic df. Implement the core of the function in C or Fortran.

Exercise: Periodogram Analysis

Write a Splus function periodogram.analysis() which allows to analyse the periodogram of a time
series. Produce a graph with an inverted frequency axis similar to that of figure 1.5.4.

Exercise: Lagged Correlation

Write a Splus function lcf() which allows to investigate the lagged correlation between two empirical
time series. Produce a graph as shown in figure 1.5.14.

Exercise: Machina Effect

Write a Splus function machina.effect() which allows to investigate the Machina effect and creates
a graph similar to that of the Taylor effect.

Exercise: Structure Factor

Write a Splus function structure.factor() which allows to investigate the structure factor and
which produces graphs similar to figures 1.5.16 and 1.5.17.

Exercise: Day Count Conventions

Add to the Splus function day.count.fraction() the not yet implemented day count rules; see
Chapter 1.7.3.

Exercise: Local Mean Time

Write a Splus function lmtdate() which calculates Local Mean Time (LMT) in ISO-8601 date/time
format from UTC date(s)/time(s) in ISO-8601 date/time format. Use the same rules as implemented
in the Splus function utcdate().
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Notes and Comments

In this section we summarized special information about the fBasics Library. We gave a
summary of functions, of datasets and examples.

In addition we gave some information how to handle time series and chronological objects under
Splus, how to represent ISO-8601 dates and times, and how to work with UTC.
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