
Chapter 2

Real Market Securities

So far, we have kept everything at a rather abstract level, remaining com-
fortably in the realm of theoretical economics. Let’s look quickly at the
real-world assets this theory is supposed to describe.

2.1 The basic assets

2.1.1 Stocks

A share of stock represents ownership of a piece of a corporation, called
equity. Its value comes fundamentally from the real economic worth
of the underlying operation over its whole future lifetime. Since this is
very difficult to determine with any accuracy, the stock price is rather
determined by what other people are willing to pay for it. This price
fluctuates as popular opinion changes, and as news is revealed about the
company and the environment.

The “efficient-market hypothesis” says that all information that any-
one has about the value of the stock is reflected in the instantaneous
stock price (for a popular account, see Malkiel). That is, if everyone be-
lieves the price will go up later, they will start buying now and it will go
up now. The main reason the price changes in the future is because of
the random arrival of new information. Thus a random-walk model is
the most logical for the motion of stock prices.

Note, however, that the fact that the changes in price themselves are
unpredictable does not necessarily mean that their statistical properties
are completely unpredictable. We may not be able to tell whether a stock
will go up or down in the next half-hour (if we could do that consistently,

25



26 Mathematics in Finance, Jan 11-12, 1999 Robert Almgren

we could become very rich very quickly), but we may be able to guess,
based on observation of past history, what the approximate size of mo-
tion we expect over a half-hour, over a day, or over a few months. It is
this consistency that our mathematical techniques are based on. Thus,
in our binomial tree models, we assumed we could decided in advance
what the set of possible paths was, though we had no idea and no opinion
about which one would actually be chosen.

Of course, statistical consistency is possible only when no one is in a
position to influence the statistic being measured. It is now possible to
buy contracts on volatility itself, and it is possible that the existence and
active trading of these products may change the behavior of the volatility
used to model options.

2.1.2 Bonds and interest rates

A bond is a commitment to pay back a fixed amount of money at a fixed
future date. Assuming the party making the commitment is reliable, the
present value of this committment depends on the interest rate assumed
to hold between now and the payment date. If interest rates rise, then
bond prices fall.

In the last section, we assumed the existence of a single interest rate
r , constant in time, at which we could borrow or lend money. But as
anyone who has a credit card, a mortgage, a money market account, and
a savings account knows, there is a wide variety of interest rates in the
market.

Furthermore, interest rates change, in response to Alan Greenspan’s
intervention or to market forces as with stocks. (My mortgage rate jumped
up a quarter-point when Pat Buchanan won the 1996 New Hampshire Re-
publican primary.)

In the context of pricing options on stocks, our answers to both these
questions are influenced by the fact that stock motions are much more
volatile than interest rate motions, so the time scales of interest in op-
tion pricing are short compared to the times characterizing interest rate
changes.

The interest rate that is usually used for the r in our formulas is a
short-term rate, called the overnight rate, at which large institutions with
impeccable credit can lend to each other. Because of the disparity of time
scales, the value of r generally does not have a very large influence on
the computed option value.
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The dynamics of long-term interest rates, and the pricing of deriva-
tives on them, are an extremely interesting and mathematically challeng-
ing area, which we will hear a little more about later in the course.

Another active area of much current research is the determination of
spreads on corporate bonds, that is, the additional interest required to
convince someone to lend to a company that has a nonnegligible risk of
going bankrupt and being unable to repay.

2.1.3 Foreign exchange

All sorts of national currencies fluctuate against each other in response,
as with stocks, to investors’ assessment of the relative desirablility of
holding money in one country or another. Derivative contracts on foreign
exchange can be priced using similar techniques as for derivatives on
stocks. One difference is that account must be taken of the interest that
can be earned by holding the foreign currentcy in comparison to the
domestic.

2.2 Derivatives

Almost any contract that human imagination can invent is probably being
bought and sold somewhere on the planet at this very moment. Let us
focus our attention right now on the simplest, most important, and most
widely traded derivative contracts.

2.2.1 Forwards and futures

A forward contract is an agreement to buy a specific asset for a specified
price, the strike price or delivery price, on a specified future expiration
date. There is no optionality on either side: both parties are obligated to
exchange cash and the asset when that date arrives, unless they sell the
contract to someone else before then. A futures contract is a highly stan-
dardized version of a forward contract that can be traded on a exchange.

The value of the forward contract at expiry is just the difference be-
tween the price of the underlying asset at that time and the strike price.
We write this as

forward contract: FT = ST − K
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Figure 2.1: The payoff function at expiration time of a futures or forward
contract with strike K, as a function of the asset price at that time. On
the left, the payoff to the person who is long the contract. On the right,
the payoff to the person who is short, obviously the negative of the long
position (since money is exchanged only between these two parties).

where FT is the value of the contract at time T , and ST is the market price
of the underlying at T . Indeed, forward and futures contracts are often
settled in cash rather than by actually exchanging the asset. This simple
payoff function is shown in Figure 2.1. (We shall use letters F , C , P , etc to
denote the price of specific derivatives such as forward contracts, calls,
puts, etc; these correspond to the V of Chapter 1.)

The real question is, what should be the current price F0 of a forward
contract? How much should you pay to sign up for this deal? Here we
have the simplest example of risk-neutral pricing. Suppose that S is the
price per ounce of gold. Suppose someone offers you a forward contract
to purchase one ounce of gold a time T from now for a price K. What
should you pay for this contract?

The first thing to figure out is whether the price of the contract de-
pends on what you think the price of gold will do in the interval between
now and T . You might think that the more likely the price is to rise,
the greater the present price F0 of the forward contract should be. But
our discussion in Chapter 1 should have convinced you that subjective
probabilities are often not important.

The real answer is found by duplicating the payoff. Suppose you
sell someone a forward contract for one ounce of gold. He gives you F0

cash now, where F0 is to be determined. At time T , he will give you an
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additional K cash, and you will be obliged to hand over one ounce of
gold. You want to guarantee that you can do this, without incurring any
risk because of possible motions of gold price between now and then.

The key is to buy the gold right now, and use bonds with guaranteed
interest payments to take up any slack. So go buy one ounce of gold at the
current price S0. Also, borrow Ke−rT dollars. At time T , your customer
gives you K dollars which you use to exactly pay off your loan, and you
give him the gold. The initial out-of-pocket cost to you of this strategy is
S0 −Ke−rT , and that is exactly the price you must demand from him:

F0 = S0 − K e−rT

If the forward contract is offered in the market at any different price
than this, you can make a sure profit by running this cycle one way or
the other.

In futures contracts, the delivery price is often determined so that no
money changes hands now; K = erTS0 so F0 = 0. The value K is the
“future” price of the asset. Thus the futures price of an asset is simply a
direct reflection of its present price, with slight modifications for interest
costs.

This analysis assumes that the asset does not generate any return for
the holder—a lump of gold, for example. If it is a stock that pays divi-
dends, or a foreign currency that can be invested in the foreign country,
then the above formula must be modified slightly.

2.2.2 Options

As its name implies, an option gives you, the holder, the choice whether
to execute a certain transaction or not. A call option gives you the right to
purchase a specified asset (from the counterparty : the person who sold
you the option) for a specified price K, the strike price, at some future
date or range of dates. A put option gives you the right to sell the asset
(to the counterparty) for a specified strike price K. Doing the purchase
or the sale is called exercising the option.

Options normally have an expiration date T beyond which they cease
to exist (“perpetual options” do exist). At the expiration date, the value
of the option is uniquely known as a function of the stock price on that
date, given by a payout function. For a call option, you will clearly choose
to exercise it if and only if S > K, in which case the value is S−K; in that
case the option is said to be in the money. If S < K at expiration, you
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Figure 2.2: The values at expiry of vanilla call and put options, for both
the long and the short side of the contract.

would lose money by purchasing the asset at price K (since you can get
it cheaper in the market), and the option expires worthless; it is out of
the money. A put option is exactly the converse.

We know the values CT and PT at the expiry time t = T in terms of
the underlying asset price ST at that time:

Call: CT = max
{
ST −K, 0

}
Put: PT = max

{
K − ST , 0

}
.

(Figure 2.2) Since the holder of the option always the freedom to tear it
up and throw it out the window, its value is never negative. The short
position is exactly opposite to the long position.

Options are distinguished among themselves by two properties: First,
whether you have net positive or negative exposure to motions of the
stock price. If the payout function has generally positive slope, you have
long or “bullish” exposure: you benefit if the price rises. The second
distinguishing factor is whether the exercise decision is yours or your
counterparties. If the optionality is on your side, then your payoff func-
tion has only convex corners.
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As outlined above, the most important purpose of “classical” financial
mathematics is to determine the “correct” present value for a security,
thus C0 and P0 for call and put options. Because the payoff functions in
Figure 2.2 are nonlinear, the reasoning is more subtle than for forward
contracts. We will need to use the full mechanisms of Chapter 1, together
with refinements for continuous time that we explore in Chapter 3.

Options can be used to speculate, meaning to take on additional risk
in the hope of obtaining higher return. If you believe a certain stock is
sure to go up, you can of course purchase the stock and hold it. But
you can also purchase a call option on the stock for much less than the
stock itself. Your gains are much amplified if the stock goes up. But if
the stock closes the period below the strike price of the option (even if it
goes up later) everything you spent for the option is lost.

Options can be used for hedging pre-existing risk. Almost all home
mortgages are options on interest rates: you can refinance when you
choose if rates drop, but are protected from rises in rates.

Options come in several different varieties. The most important dis-
tinction is exactly when exercise is allowed. In Chapter 1, we have been
implicitly been talking about European options, which can be exercised
on exactly one future date T , not before and not after. These can be
valued in closed form, as we shall see later.

Most equity options are American options, meaning that they can be
exercised at any time (of the holder’s choice) before expiration. After
the expiration date, they are worthless. Typical lifetimes for options are
three, six, and nine months. Addition of the possibility of early exercise
makes an American option always at least as valuable as its European
counterpart. Pricing American options is more difficult than pricing Eu-
ropean options.

Ordinary calls and puts are called vanilla options to distinguish them
from the myriad kinds of exotic options with more complicated formulas.
For example, Bermudan options (between American and European) can
be exercised only on one of a set of prescribed dates before expiration.
Asian options pay a value at expiration that depends on the average value
of the asset price since the starting time. Lookback options pay a value
that depends on the maximum or the minimum of the asset price over
some specified period.

Barrier options change their value if the asset price crosses a specifed
level before expiration: down-and-out and up-and-out barriers become
valueless if the price reaches the threshhold; down-and-in and up-and-in
barriers are initially without value, but turn into standard options if the
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Figure 2.3: Call (circle) and put (stars) option values on Dell Computer
Corp, closing values on Friday, January 8, 1999. The lowest curve is
January expiration, middle is February, and top is May. The straight solid
lines are K − S and S −K.

price reaches the specified level before expiration.
Options and other derivatives are a way to trade risk between dif-

ferent participants in the market. Common sense—this can be backed
by classical economic theory based on Pareto optimality—suggests that
the more freedom people have to tailor their world, the better off they
are. Indeed, when you insure your house, you are transferring risk to the
insurance company. The probability and the cost of destruction do not
change, but the company has a more robust risk appetite than an individ-
ual (and in fact, the insurance company then redistributes the risk even
more widely).

Of course, freedom to trade risk, like freedom to do anything else,
can lead to problems. Recent well-publicized disasters (Orange County,
MetalGesellschaft, Long-Term Capital Management) have illustrated the
difficulty people can get themselves into in their search for profit.

Put-call parity: Options of different types satisfy certain relationships,
of which the most famous is put-call parity. Consider a European call
option, a European put option, and a futures contract on the same asset,
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all with the same strike K. It is clear by examining Figures 2.1 and 2.2
that at expiration, being long the call and short the put is equivalent to
being long the foward, so

C − P = F.

Therefore, these two portfolios must have the same value at earlier times
as well. Substituting the value of the forward contract, we have

C = P + S − Ke−rT

a time T before expiration. This formula is useful when the value of
either a call or a put has been determined and the other one is desired.

A real example: Figure 2.3 shows some actual call and put option values
(from the online Wall Street Journal). Note that the x-axis in this picture
is the strike price, not the stock price as in the other pictures (current
stock price in this example is S0 = 7713/16 = 77.8). Thus the call option
prices slope downwards: the less you want to be able to buy the asset
for, the more you have to pay for the option.

The solid lines in the graph are the payoff function: max{S − K,0}
for the call and max{K − S,0} for the put. Note that, as advertised, the
prices of the options that are near expiration lie very close to these lines.
An option with expiration in a specified month may be exercised until
the end of that month, so the January options have about three weeks
left.
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Chapter 3

The Black-Scholes Equation

Hopefully these practical details will have whetted your appetite to return
to the basic principles of no-arbitrage pricing, and to determine how to
find fair values for complicated objects such as options at times before
their expiration. To do this, we need to return to our tree, and figure out
how to take it to a continuum limit.

3.1 Refining the tree

In Section 1.2, we constructed a tree having N time steps. In the formu-
lation there, N could be any number. For the given N , we were free to
choose the 1

2(N + 1)(N + 2) stock values Sij that define the geometry of
the tree (we restrict ourselves to recombining trees). As long as S00 = S0,
the current stock price, we will come out with a value for the current
option price, which hopefully will match what we read in the newspaper.

Now, if the resulting value is to mean anything, it should not depend
on the detailed properties of the tree, which is after all our own invention.
At least, it should depend only on certain well-behaved properties of the
tree, which we can correlate with properties of the stock we can observe
in the real world.

Our overall strategy is the following: We are going to take N → ∞,
which means that our tree will be very closely sampled in time. As we do
so, the number of nodes in each level will also go to ∞, and we will make
sure that as they do, they sample price space more and more finely. That
is, the nodes will be closely spaced in both directions, and it is reasonable
to hope that in the limit, the node values Vij will converge to a smooth
function V(S, t).

35
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Figure 3.1: A tree with constant up and down ratios u and d.

This function will have terminal values V(S, T) = Λ(S), the payoff
function. The relationships between the values Vij at neighboring nodes
on tree will approach a partial differential equation (PDE) relating local
derivatives of V(S, t). Then we will solve the equation to obtain the single
value of interest V(S0,0), the current option price. Note that to obtain
a picture such as Figure 2.3, we will have to repeat this procedure for
each data point, each time taking a different payoff function (calls and
puts with different strikes). This PDE will be the celebrated Black-Scholes
equation, for which they got the Nobel prize.

In order to take the limitN →∞, we need to specify a regular structure
for our tree (it would make no sense to construct it differently for each
N). We need to specify a rule for determining the children Si+1,j and
Si+1,j+1 in terms of each parent node Sij . We shall do this by specifying
the up and down ratios u and d, rather than the differences:

Si+1,j = dSi,j, Si+1,j+1 = uSi,j.

The ratios u and dwill be the same everywhere on the tree. In our model,
therefore, in each time step the stock price can either gain a fixed per-
centage or lose a fixed percentage. Figure 3.1 shows a tree with constant
ratios.

You may believe that this is more plausible than fixed increments. For
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example, if the initial price is S0 = $100, we might believe a reasonable
motion is ±$5 in one time interval. If this stock should hit a succession
of “unlucky” moves, so that its price drops to $20, then the $5 intervals
will start to look very large; we may prefer to believe that in that case the
motions will become smaller in proportion.

It’s not very convincing to argue that one model is more plausible than
another, since none of it yet appears very plausible at all. Perhaps a more
convincing reason is that if we use constant increments, then for certain
combinations of the initial price, the increment, and the number of steps,
some of the prices on the leaves may become negative. Since a real stock
price never becomes negative (even if the company goes bankrupt with
lots of debt, the shareholders can just rip up their sharess), we will not
know how to evaluate our derivative value in that event.

We do this in the following way. First, let us require that the time
levels be equally spaced, with spacing k = T/N . Next, we pick a “spread”
h, and a “centering term” s, and we define the up and down ratios to be

u = exp
[
sk+ 1

2h
]

d = exp
[
sk− 1

2h
]
.

The reason for this choice is as follows:

• The ratio of the stock price at two successive nodes is

u
d
= eh,

so (u− d)/d ≈ h, and h deserves to be called the spread.

• The geometric mean of the stock price at two successive nodes is
√
ud = esk,

so the tree is “drifting” upwards at a fractional rate s per unit time.

Note that each of these parameters is independent of the other. Both of
them may depend on N and hence k.

Now, s has an action very similar to that of the interest rate r . Since
the interest rate played an important role in our pricing formula, we
might expect that the relationship between s and r will be important in
this model.

Indeed, we must respect the inequality constraint that gives a positive
pricing measure; here that requires

−1
2h < (r − s)k < 1

2h.
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But, as long as this constraint is satisfied, s will not make any difference
at all. We shall find that in the limit N →∞, the option price determined
on the tree is controlled entirely by h.

Now let us return to our pricing formulas of Section 1.1.6. Applying
(1.1) on our tree, with constant ratios S+/S0 = u and S−/S0 = d (and
T , k), we find the pricing probability

q = erk − d
u− d = e(r−s)k − e−h/2

eh/2 − e−h/2

the same at every node. Then we can directly apply the pricing formula
(1.3),

Vi,j = e−rk
(
qVi+1,j+1 + (1− q)Vi+1,j

)
(3.1)

(see Figure 3.2) one level at a time to compute Vij on the whole tree. It
only remains to see what happens as N →∞, so k→ 0.

3.2 Continuum limit

We are almost done. In order to take the limit, we need only to specify
how s and h behave as k → 0. We shall choose s to be constant as k
decreases. As for h, we need it to go to zero along with k, so that our
mesh yields nearly continuous price motions.

We shall choose h to vary so that

k = λh2, λ constant as h→ 0.

(If you prefer, you can think of this as h = √
k/λ.) It is not clear that

this will be the right scaling. But if we do the computation with this
scaling, we can explore other scalings by considering λ to be very large
or very small. (For example, if you thought we should take k = ch, then
I would argue that that is equivalent to setting λ = ch, so we can do the
computation my way and then see what happens if λ is very small.)

Once we choose s and λ, our entire tree is therefore described by the
single parameter k. We can take the limit k → 0 and see what happens.
The result can be derived rigorously using methods of finite-difference
analysis. This theory says that, under assumptions we have made above
(principally, that 0 < q < 1 so that the method is stable),
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Figure 3.2: Expanding local values within one leaf of the tree.

The node values Vij approach a smooth function V(S, t) that
solves a partial differential equation. This PDE can be deter-
mined by replacing the node values by the limit function eval-
uated at the node points. The discrete relationship between
node values will then no longer be exactly satisfied. Expand-
ing everything in a local asymptotic series, and requiring that
the leading-order term vanish, gives the PDE.

In this case, we examine one leaf of the tree, that has the structure
shown in Figure 3.2. The vertical lengths of the segments are

h+ = (
u− 1

)
S

h− = (
1− d)S,

where S = Si,j , the vertical coordinate of point O.
Following the prescription of finite-difference analysis, we suppose

that the node values are given by samples of a smooth function, and we
make the local asymptotic expansions

Vi,j = V − kvt + 1
2k

2Vtt + · · ·
Vi+1,j = V − h−VS + 1

2h
2−VSS + · · ·

Vi+1,j+1 = V + h+VS + 1
2h

2+VSS + · · ·
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where values of V and derivatives that do not carry labels are evaluated
at point O.

Now all we have to do is plug these expansions into (3.1), expand
everything in powers of h, and see what the leading term in the error
is. We shall spare you the details (the easiest is to toss everything into
Mathematica) and just give the final result:

Vt + 1
8λ
S2VSS + r SVS − r V = 0.

Of course, as h→ 0, the values VN,j tend smoothly to the values V(S, T),
at expiration where the value is unambiguously known. This equation is
backwards parabolic except possibly for some awkwardness near S = 0,
so we have a completely defined problem for the option value: we solve
the PDE and extract the value V(S0,0).

Note that s has disappeared from the limiting PDE. What happens
is that q adjusts to exactly compensate for the drift term s. This fact
is the reflection of what we have seen several times so far: if a price
for a derivative can be obtained by arbitrage arguments, then it is of no
significance what you believe the asset will do.

The limiting procedure we have employed is a little opaque for two
reasons: first, because we have invoked results from finite difference
analysis, and second, because we have skimmed over all the algebra. A
simpler example may make the result clearer.

The pricing formula (3.1) essentially says that each node value Vi,j
is a sort of average of the two node values to its right. Of course q is
not exactly 1

2 , and there is the discount term e−rk, but essentially it is an

average. So suppose that r = 0 and q = 1
2 , and let us suppose that we

set s = 0. In such a case it is not too hard to convince yourself that the
result of this repeated averaging converges to a solution of the diffusion
equation when the grid is refined. That’s the essence of this result.

Now we can return to a question we raised earlier: how did we know
the scaling should be k ∼ λh2? We can answer this question by using
our knowledge of the diffusion equation:

1. If λ were extremely small, then the diffusion coefficient would be
very large. The solutions would quickly reduce to constants. But
option prices are demonstrably not constant functions.

2. If λ were extremely large, then the diffusion coefficient would be
extremely small. The PDE would be very close to a pure convective
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equation, and its solutions would be translated and scaled copies
of the terminal data. But option prices at times before expiry have
a different shape than the payoff function; they are smoothed, as if
by the action of a diffusive term.

Let us define a new parameter σ , the volatility, by

1
8λ

= 1
2 σ

2.

In other words, we specify that for a given k, our up and down steps
should be chosen so that

h = 2σ
√
k.

Then we can write the Black-Scholes equation in its standard form:

−Vt = 1
2σ

2 VSS + r SVS − rV in t < T . (3.2)

with

V(S, T) = Λ(S).

We have put the negative sign on Vt because this equation is backwards
parabolic: it is well-posed when final data, rather than initial, is given.

Let’s pause to think about what we have just derived. We have re-
stricted our attention to European-style derivatives (no early exercise)
with a finite upper time horizon at which the value is unambiguously
known. For that type of problem, our assertion is that the value of any
derivative security may be represented as a smooth function V(S, t) of
time and of possible future asset prices S, satisfying the same univer-
sal equation. Valuing a derivative then becomes a practical problem in
solving an initial-value problem for a parabolic PDE.

But there’s a catch. For this argument to make sense, we need the
result to be independent of the details of our discrete grid. But there
is one parameter σ remaining in the final equation. Clearly the option
value will depend on what value we pick for σ . We will see below that σ
is a measure of how much the stock price jumps around.

How do we know that more general formulas for our binomial tree
would not give us even more different results? We have only given a
plausibility argument that that does not happen: we constructed a model
with two parameters and showed that one of them didn’t matter. A full
answer to that question is most naturally given in terms of stochastic
calculus (though there may also be PDE proofs).
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3.3 Solution of the Black-Scholes equation

We will not go through in detail the manipulations by which one obtains
exact solutions to Equation (3.2); for sufficiently complicated problems
one can bring to bear all the tricks and techniques available for solving
parabolic equations in one dimension. We will only indicate the general
method of solution, and give the two most famous solutions.

The first fact to notice is that (3.2) is linear and has nonconstant co-
efficients. The first fact is wonderful; in fact linear equations are the rule
in finance rather than the exception.

The nonconstant coefficients are easily corrected. Since S appears
only in the combination S∂S , it is natural to change to a logarithmic vari-
able. Introduce new independent variables

x = log
S
Sref

, τ = σ2(T − t)

where Sref is any reference price, and we are reversing and rescaling time
only for convenience. Look for solutions in the form

V(S, t) = Vref u
(

log
S
Sref

, σ2(T − t)
)

where u(x,τ) is a new dependent function, and Vref is any convenient
scale for the option value. Then (3.2) becomes

uτ = 1
2uxx + βux − γu,

in which the coefficients are

β = r − 1
2σ

2

σ2 , γ = r
σ2 .

We can easily solve this equation using Green’s functions.
In particular, the most famous solutions are those for the vanilla Eu-

ropean call and put options. For a call with strike price K we have

C(S, t) = S N


 log(S/K)+

(
r + 1

2σ
2
)
(T − t)

σ
√
T − t




− K e−r(T−t) N


 log(S/K)+

(
r − 1

2σ
2
)
(T − t)

σ
√
T − t
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Figure 3.3: Comparison of the Black-Scholes formula with Dell call option
prices from the newspaper. Circles are the May data against which the
comparison is done. Volatility taken to be σ = 0.6.

where N(·) is the cumulative normal distribution. The put value can
be obtained by put-call parity. This formula is called the Black-Scholes
formula.

Figure 3.3 shows a comparison of the “theoretical” value given by
the Black-Scholes formula with the data from the Wall Street Journal for
Dell call options. The traded options are actually American, whereas
the explicit Black-Scholes formula applies only to European options. In
general, the possibility of early exercise increases the value of the option.
But for a call option on an asset that does not pay dividends (or whose
dividends can be neglected), exercise before expiry is never optimal and
the American value is equal to the European one.

To evaluate the formula, we need values for all the parameters. Some
are unambiguously known: S is the stock’s current price; K is the inde-
pendent variable, and r is the interest rate, typically 5 or 6 percent. I
adjusted the volatility σ to get a good fit. This graph is with σ = 0.6, a
rather large value since this is a volatile stock. With σ = 0.6, the size of
the expected changes in the course of one year are about σ2 = 36%.

Alternatively, we can recognize that the price given by our made-up
model is less convincing than the actual price quoted by the market. So
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Figure 3.4: Implied volatility for 5-month Dell calls.

we take the market prices as given, and determine the volatility indepen-
dently for each different strike price (and each different maturity date)
so as to reproduce that market price. This number is called the implied
volatility. Figure 3.4 shows the result.

In effect, we have traded one problem for another. We know the op-
tion value in terms of the volatility, but we still need a value for the latter.
Options are really ways to buy and sell volatility.

Although this data set does not show it very well, it is clear that the
volatility that the market uses is larger when the spot price and the strike
price are far apart. This is called the volatility smile and is present in
all options markets. It indicates that the market’s assessment of the
significance of large moves is greater than can be accounted for in the
framework of the continuous-time limit of a binomial model.

3.4 Dynamic hedging

It is important to remember why there exists a formula for the price at
all. The reason is that there exists a strategy of buying and selling the
underlying stock and borrowing/loaning cash at a risk-free rate, that ex-
actly duplicates the option payout. If it were impossible to carry out this
strategy for some reason (for example, the exchange on which the stock is



Robert Almgren Mathematics in Finance, Jan 11-12, 1999 45

traded closes earlier than the option exchange) then mathematical theory
says nothing about the price of the option.

We discussed dynamic hedging in the discrete-time context in Chap-
ter 1: the strategy was that you should hold ∆ units of the stock, where
∆ depended on what node you had reached in the evolution. As time
evolved, and the price moved along its finite set of possible paths, you
adjusted your holding with every change.

The exact value of ∆ was given in (1.4): ∆ = (V2 − V1)/(S2 − S1). On
the tree, subscripts 1 and 2 refer to two children of the same node, at
the same time. Therefore, in the continuum limit, this ratio approaches
the first S-derivative of V in the neighborhood of the nodes in question.
Thus

∆ = ∂V
∂S
.

As on the discrete tree, you have to solve the entire problem before you
can find the initial value of ∆.

As time evolves, the stock price will change as well. Unless the param-
eters of the problem change, the function V(S, t) will remain the same.
But we must continuously adjust our hedge holdings to equal the value
of ∂V/∂S wherever we are on the tree at that time.

3.5 American options

All the analysis we have done so far is for European options. At each
step, we have determined the arbitrage-free option value based on our
holding it until the next time level.

If the option is American, then we have another possibility to con-
sider. For each value of S and t, there is a payoff function Λ(S, t) that
tells us how much we can get by exercising the option now. (For vanilla
puts and calls, and many others, Λ is independent of t.) Certainly the
value of the option can never be less than Λ, since we can exercise and
get that amount. What do we do if the value predicted by the binomial
formula is less than the value of early exercise?

Answer: in the discrete tree computation, we replace the no-arbitrage
pricing value by the value of early exercise, if the latter is larger than the
former. Then keep working backwards on the tree, applying this strategy
at every node; values ”upstream” from the node at which you exercised
will feel the effect of the increase of value due to exercise. Note that the
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first level of the iteration is exactly as before, since the terminal value is
exactly the exercise value.

This may seem like not a valid strategy. You may have doubts along
the lines of “But if I exercise the option at some time, then for all future
times it is worthless.” So shouldn’t the “downstream” nodes be set to
zero? It seems like an impossible problem.

The resolution of these conceptual difficulties is to keep in mind the
original meaning of a “price”. When we say that “the price at node (i, j) is
Vi,j ,” we literally mean that that is the market price in that circumstance.
If you waited until time i, and if the price at that time were Sj , then if
someone walked up to you and offered an option deal at price Vi,j , you
would comfortably buy or sell the option at that price. If you exercise
your option, that does not affect the price at which you would buy another
one.

In the continuous-time limit, the parabolic equation (3.2) becomes a
parabolic variational inequality. It becomes the pair of inequalities

−Vt ≥ 1
2σ

2 VSS + r SVS − rV and V(S, t) ≥ Λ(S, t)

combined with the condition that at each point (S, t), either V = Λ, or
the Black-Scholes equation is satisfied (with equality). This condition
arises from the requirement that V(S, t) must be the smallest value that
satisfies both of the inequality constraints.

As a consequence of these conditions, the (S, t)-plane is divided into
two regions: the “exercise region,” in which the most optimal strategy
is to exercise the option, so V(S, t) = Λ(S, t), and the “free region,” in
which it is better to hold the option, so that Eq. (3.2) holds. The curve
dividing one region from the other is called the exercise boundary, which
tells you when you should exercise in terms of the underlying price.

The presence of the free boundary transforms what was a simple lin-
ear PDE with explicit solutions into a horrible nonlinear problem. This
free boundary problem is equivalent to the one-dimensional Stefan prob-
lem, and some techniques from that problem can be applied. In addition,
there is a rich variety of asymptotic and approximate solution methods.

One saving grace, which we invoked above, is that early exercise is
never optimal for a call on an asset that does not yield dividends. The
reason is that you will wind up with the same asset at time T whether you
exercise now or at the last minute, and by exercising at the last moment
you can continue to earn interest on the money you are saving to pay the
exercise price.



Chapter 4

Stochastic Models

The time has come to be a little more explicit about exactly what we
mean by these binomial trees. We have seen that the nature of the model
we construct, in particular the value of σ associated with the branches
on our trees, has an important effect on the final computed value of
the option. So we need some idea what feature of the real world this
corresponds to.

Now, for the first time, let us introduce probabilities and expected
motions. Suppose that our belief about the future motion of the asset
price is that it will move on the binomial grid we have laid down. Suppose
now that we imagine that at each juncture, it has probability p to take
the upwards branch, probability 1 − p to move downwards. We didn’t
need the value of p to determine our option values—we were completely
covered no matter which way it went—but we need it to give a “physical”
description of what is happening.

Under this model, the price executes a random walk. Its probability
distribution at any time can readily be computed. In the continuum limit,
on our tree with proportional increments, this distribution is a lognor-
mal distribution, meaning that its logarithm is normally distributed (a
Gaussian). Financial models were one of the first areas of application of
random walks; Bachelier (1900) proposed the Gaussian distribution for
asset price movements.

The expected value of the price under this distribution is controlled
by the probability p, and by the “drift” of the tree, s. We know that
neither of these parameters matters for the option value.

But the variance of the distribution is, to a large extent, independent
of the drift terms (as long as the total growth is not too large). In the

47
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continuum limit, this variance approaches a finite value which is precisely
our parameter λ or σ (this convergence requires that p → 1

2 as h,k → 0;

if p does not go to 1
2 then the stock motion is unboundedly rapid in the

limit).
The motion of the asset price S(t) then acquires a probabilistic in-

terpretation. It may be written as a stochastic differential equation which
for the simplest case of lognormal distribution has the form

dS = µ S dt + σ S dX,

where dX is the infinitesimal increment of a pure Brownian motion. The
coefficient µ is an expected drift term which eventually disappears from
the model via a change of measure. The option pricing model is con-
structed with the same philosophy as on the binomial tree: a hedging
portfolio is constructed that (by use of Ito’s lemma) must grow at a risk-
free rate.

The description based on stochastic calculus is more general: for ex-
ample, σ can depend on S and t. This is one way to describe the volatility
smile; it is equivalent to writing σ(S, t) in the Black-Scholes PDE (3.2).
Stochastic differential equations with more general forms are essential
for modeling interest rate products.

The mathematics of stochastic analysis is so elegant that it tends
to lend an air of inevitability to its conclusions. Indeed, the Central
Limit Theorem says that whenever a process grows by accumulating suf-
ficiently many uncorrelated small increments, its statistics must be lo-
cally Gaussian. But there is plenty of evidence from financial markets
that statistics are not Gaussian (the volatility smile, for example), so one
must always be on one’s guard.
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Sources and further reading

The classic no-arbitrage theory of Chapter 1 is the first chapter or two of
Dothan, Duffie, and Pliska, and most of the rest of this material can be found
there as well. The binomial model for stock price motion, and option pricing on
a binomial tree, is straight out of Cox & Rubinstein. Baxter & Rennie and Neftci
are also good introductions to the basic theory. Chriss has a great deal of detail
on various advanced binomial trees, such as implied volatility trees. Wilmott
is an introduction to everything. Taleb gives a highly entertaining account of
how these models are used in practice.

For a good general introduction to the various kinds of derivative securities
and markets, see Hull. For background information on the economic funda-
mentals of markets, see Houthakker and Williamson. Malkiel gives a popular
treatment of the efficient market theory.

Wilmott, Howison, & Dewynne is a good introduction to PDE methods in
derivative pricing. The convergence theory for finite-difference approximations
can be found in any basic book, such as Smith or Morton & Mayers. Kwok has
wide coverage of PDE, Monte Carlo, and other methods, for options and for
interest rates. For an overview of recent research activity, see the conference
proceedings volumes by Dempster & Pliska and Rogers & Talay.

We have only touched on the use of stochastic processes to model financial
derivatives (because of its technical difficulty). But that is a huge, important and
fruitful area of modeling. Øksendal is a good introduction. For readers who are
already familiar with stochastic analysis, Karatzas & Shreve, and Lamberton &
Lapeyre give a good overview of the applications to finance.

There is growing appreciation of the importance of non-Gaussian distribu-
tions in financial markets, and practical pricing methods are beginning to be
developed. Mandelbrot collects some of his seminal work in the field; Bouchaud
and Potters give an excellent modern account of the data, theories and models.
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