
Chapter 5

Martingales.

5.1 Definitions and properties

The theory of martingales plays a very important ans ueful role in the study
of stochastic processes. A formal definition is given below.

Definition 5.1. Let (Ω,F , P ) be a probability space. A martingale se-
quence of length n is a chain X1, X2, · · · , Xn of random variables and corre-
sponding sub σ-fields F1,F2, · · · ,Fn that satisfy the following relations

1. Each Xi is an integrable random variable which is measurable with re-
spect to the corresponding σ-field Fi.

2. The σ-field Fi are increasing i.e. Fi ⊂ Fi+1 for every i.

3. For every i ∈ [1, 2, · · · , n− 1], we have the relation

Xi = E{Xi+1|Fi} a.e. P.

Remark 5.1. We can have an infinite martingale sequence {(Xi,Fi) : i ≥ 1}
which requires only that for every n, {(Xi,Fi) : 1 ≤ i ≤ n} be a martingale
sequence of length n. This is the same as conditions (i), (ii) and (iii) above
except that they have to be true for every i ≥ 1.
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Remark 5.2. From the properties of conditional expectations we see that
E{Xi} = E{Xi+1} for every i, and therfore E{Xi} = c for some c. We can
define F0 to be the trivial σ-field consisting of {Φ,Ω} and X0 = c. Then
{(Xi,Fi) : i ≥ 0} is a martingale sequence as well.

Remark 5.3. We can define Yi+1 = Xi+1−Xi so that Xj = c+
∑

1≤i≤j Yi and
property (iii) reduces to

E{Yi+1|Fi} = 0 a.e. P.

Such sequences are called martingale differences. If Yi is a sequence of in-
dependent random variables with mean 0, for each i, we can take Fi to
be the σ-field generated by the random variables {Yj : 1 ≤ j ≤ i} and
Xj = c +

∑
1≤i≤j Yi, will be a martingale relative to the σ-fields Fi.

Remark 5.4. We can generate martingale sequences by the following pro-
cedure. Given any increasing family of σ-fields {Fj}, and any integrable
random variable X on (Ω,F , P ), we take Xi = E{X|Fi} and it is easy to
check that {(Xi,Fi)} is a martingale sequence. Of course every finite mar-
tingale sequence is generated this way for we can always take X to be Xn ,
the last one. For infinite sequences this raises an important question that we
will answer later.

If one participates in a ‘fair ’ gambling game, the asset Xn of the player at
time n is supposed to be a martingale. One can take for Fn the σ-field of all
the results of the game through time n. The condition E[Xn+1−Xn|Fn] = 0
is the assertion that the game is neutral irrespective of past history.

A related notion is that of a super or sub-martingale. If, in the definition
of a martingale, we replace the equality in (iii) by an inequality we get super
or sub-martingales.

For a sub-martingale we demand the relation

(iiia) for every i,
Xi ≤ E{Xi+1|Fi} a.e. P.

while for a super-martingale the relation is

(iiib) for every i,
Xi ≥ E{Xi+1|Fi} a.e. P.
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Lemma 5.1. If {(Xi ,Fi)} is a martingale and ϕ is a convex (or concave)
function of one variable such that ϕ(Xn) is integrable for every n, then
{(ϕ(Xn),Fn)} is a sub (or super)-martingale.

Proof. An easy consequence of Jensen’s inequality (4.2) for conditional ex-
pectations.

Remark 5.5. A particular case is φ(x) = |x|p with 1 ≤ p < ∞. For any
martingale (Xn,Fn) and 1 ≤ p <∞, (|Xn|p,Fn) is a sub-martingale provided
E[|Xn|p] <∞
Theorem 5.2. (Doob’s inequality.) Suppose {Xj} is a martingale se-
quence of length n. Then

P

{
ω : sup

1≤j≤n
|Xj| ≥ `

}
≤ 1

`

∫
{sup1≤j≤n |Xj |≥`}

|Xn| dP ≤ 1

`

∫
|Xn| dP (5.1)

Proof. Let us define S(ω) = sup1≤j≤n |Xj(ω)|. Then

{ω : S(ω) ≥ `} = E = ∪jEj
is written as a disjoint union, where

Ej = {ω : |X1(ω)| < `, · · · , |Xj−1| < `, |Xj| ≥ `}.
We have

P (Ej) ≤ 1

`

∫
Ej

|Xj| dP ≤ 1

`

∫
Ej

|Xn| dP. (5.2)

The second inequality in (5.2) follows from the fact that |x| is a convex func-
tion of x, and therefore |Xj | is a sub-martingale. In particular E{|Xn||Fj} ≥
|Xj| a.e. P and Ej ∈ Fj. Summing up (5.2) over j = 1, · · · , n we obtain the
theorem.

Remark 5.6. We could have started with

P (Ej) ≤ 1

`p

∫
Ej

|Xj|p dP

and obtained for p ≥ 1

P (Ej) ≤ 1

`p

∫
Ej

|Xn|p dP. (5.3)

Compare it with (3.9) for p = 2.
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This simple inequality has various implications. For example

Corollary 5.3. (Doob’s Inequality.) Let {Xj : 1 ≤ j ≤ n} be a martin-
gale. Then if, as before, S(ω) = sup1≤j≤n |Xj(ω)| we have

E[Sp] ≤
(

p

p− 1

)p

E [ |Xn|p].

The proof is a consequence of the following fairly general lemma.

Lemma 5.4. Suppose X and Y are two nonnegative random variables on a
probability space such that for every ` ≥ 0,

P{Y ≥ `} ≤ 1

`

∫
Y≥`

X dP.

Then for every p > 1,∫
Y p dP ≤

(
p

p− 1

)p ∫
Xp dP.

Proof. Let us denote the tail probability by T (`) = P{Y ≥ `}. Then with
1
p

+ 1
q

= 1, i.e. (p− 1)q = p∫
Y p dP = −

∫ ∞

0

ypdT (y) = p

∫ ∞

0

yp−1T (y)dy (integrating by parts)

≤ p

∫ ∞

0

yp−1dy

y

∫
Y≥y

X dP (by assumption)

= p

∫
X

[ ∫ Y

0

yp−2dy

]
dP (by Fubini’s Theorem)

=
p

p− 1

∫
X Y p−1 dP

≤ p

p− 1

[∫
Xp dP

] 1
p
[∫

Y q(p−1) dP

] 1
q

(by Hölder’s inequality)

≤ p

p− 1

[∫
Xp dP

] 1
p
[∫

Y p dP

]1− 1
p
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This simplifies to ∫
Y p dP ≤

(
p

p− 1

)p ∫
Xp dP

provided
∫
Y p dP is finite. In general given Y , we can truncate it at level N

to get YN = min(Y,N) and for 0 < ` ≤ N ,

P{YN ≥ `} = P{Y ≥ `} ≤ 1

`

∫
Y≥`

X dP =
1

`

∫
YN≥`

X dP

with P{YN ≥ `} = 0 for ` > N . This gives us uniform bounds on
∫
Y p
N dP

and we can pass to the limit. So we have the strong implication that the
finiteness of

∫
Xp dP implies the finiteness of

∫
Y p dP .

Exercise 5.1. The result is false for p = 1. Construct a nonnegative martin-
gale Xn with E[Xn] ≡ 1 such that ξ = supnXn is not integrable. Consider
Ω = [0, 1], F is the Borel σ-field and P the Lebesgue measure. Suppose we
take Fn to be the σ-field generated by intervals with end points of the form
j
2n for some integer j. It corresponds to a partition with 2n sets. Consider
the random variables

Xn(x) =

{
2n for 0 ≤ x ≤ 2−n

0 for 2−n < x ≤ 1.

Check that it is a martingale and calculate
∫
ξ(x) dx. This is the ‘winning ’

strategy of doubling one’s bets until the losses are recouped.

Exercise 5.2. If Xn is a martingale such that the differences Yn = Xn−Xn−1

are all square integrable, show that for n 6= m, E [Yn Ym] = 0. Therefore

E[X2
n] = E[X0]

2 +

n∑
j=1

E [Y 2
j ].

If in addition, supnE[X2
n] < ∞, then show that there is a random variable

X such that

lim
n→∞

E [ |Xn −X|2] = 0.
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5.2 Martingale Convergence Theorems.

If Fn is an increasing family of σ-fields and Xn is a martingale sequence with
respect to Fn , one can always assume without loss of generality that the
full σ-field F is the smallest σ-field generated by ∪nFn . If for some p ≥ 1,
X ∈ Lp, and we define Xn = E [X|Fn ] then Xn is a martingale and by
Jensen’s inequality, supnE [ |Xn|p ] ≤ E [|X|p ]. We would like to prove

Theorem 5.5. For p ≥ 1, if X ∈ Lp , then limn→∞ ‖Xn −X‖p = 0.

Proof. Assume that X is a bounded function. Then by the properties of con-
ditional expectation supn supω |Xn| < ∞. In particular E [X2

n ] is uniformly
bounded. By Exercise 5.2, at the end of last section, limn→∞Xn = Y exists
in L2. By the properties of conditional expectations for A ∈ Fm,∫

A

Y dP = lim
n→∞

∫
A

Xn dP =

∫
A

X dP.

This is true for all A ∈ Fm for any m. Since F is generated by ∪mFm the
above relation is true for A ∈ F . As X and Y are F measurable we conclude
that X = Y a.e. P . See Exercise 4.1. For a sequence of functions that
are bounded uniformnly in n and ω convergence in Lp are all equivalent and
therefore convergence in L2 implies the convergence in Lp for any 1 ≤ p <∞.
If now X ∈ Lp for some 1 ≤ p < ∞, we can approximate it by X ′ ∈ L∞
so that ‖X ′ − X‖p < ε. Let us denote by X ′

n the conditional expectations
E [X ′|Fn ]. By the properties of conditional expectations ‖X ′

n − Xn‖p ≤ ε
for all n, and as we saw earlier ‖X ′

n − X ′‖p → 0 as n → ∞. It now follows
that

lim sup
n→∞
m→∞

‖Xn −Xm‖p ≤ 2ε

and as ε > 0 is arbitrary we are done.

In general, if we have a martingale {Xn }, we wish to know when it comes
from a random variable X ∈ Lp in the sense that Xn = E [X |Fn ].

Theorem 5.6. If for some p > 1, a martingale {Xn} is bounded in Lp, in
the sense that supn ‖Xn‖p <∞, then there is a random variable X ∈ Lp such
that Xn = E [X |Fn ] for n ≥ 1. In particular ‖Xn −X‖p → 0 as n→∞.
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Proof. Suppose ‖Xn‖p is uniformly bounded. For p > 1, since Lp is the dual
of Lq with 1

p
+ 1

q
= 1, bounded sets are weakly compact. See [7] or [3]. We

can therefore choose a subsequence Xnj
that converges weakly in Lp to a

limit in the weak topology. We call this limit X. Then consider A ∈ Fn for
some fixed n. The function 1A(·) ∈ Lq.∫

A

X dP =< 1A, X >= lim
j→∞

< 1A, Xnj
>= lim

j→∞

∫
A

Xnj
dP =

∫
A

Xn dP.

The last equality follows from the fact that {Xn} is a martingale, A ∈ Fn
and nj > n eventually. It now follows that Xn = E [X |Fn ]. We can now
apply the preceeding theorem.

Exercise 5.3. For p = 1 the result is false. Example 5.1 gives us at the same
time a counterexample of an L1 bounded martingale that does not converge
in L1 and so cannot be represented as Xn = E [X |Fn ].

We can show that the convergence in the preceeding theorems is also valid
almost everywhere.

Theorem 5.7. Let X ∈ Lp for some p ≥ 1. Then the martingale Xn =
E [X |Fn ] converges to X for almost all ω with respect to P .

Proof. From Hölder’s inequality ‖X‖1 ≤ ‖X‖p. Clearly it is sufficient to
prove the theorem for p = 1. Let us denote by M⊂ L1 the set of functions
X ∈ L1 for which the theorem is true. Clearly M is a linear subset of L1.
We will prove that it is closed in L1 and that it is dense in L1. If we denote
by Mn the space of Fn measurable functions in L1, then Mn is a closed
subspace of L1. By standard approximation theorems ∪nMn is dense in L1.
Since it is obvious thatM⊃Mn for every n, it follows that M is dense in
L1. Let Yj ∈ M ⊂ L1 and Yj → X in L1. Let us define Yn,j = E [Yj |Fn ].
With Xn = E [X |Fn ], by Doob’s inequality (5.1) and jensen’s inequlaity
(4.2),

P

{
sup

1≤n≤N
|Xn| ≥ `

}
≤ 1

`

∫
{ω:sup1≤n≤N |Xn|≥`}

|XN | dP

≤ 1

`
E [ |XN | ]

≤ 1

`
E [ |X| ]



156 CHAPTER 5. MARTINGALES.

and therefore Xn is almost surely a bounded sequence. Since we know that
Xn → X in L1, it suffices to show that

lim sup
n

Xn − lim inf
n

Xn = 0 a.e. P.

If we write X = Yj + (X − Yj), then Xn = Yn,j + (Xn − Yn,j), and

lim sup
n

Xn − lim inf
n

Xn ≤ [lim sup
n

Yn,j − lim inf
n

Yn,j]

+ [lim sup
n

(Xn − Yn,j)− lim inf
n

(Xn − Yn,j)]
= lim sup

n
(Xn − Yn,j)− lim inf

n
(Xn − Yn,j)

≤ 2 sup
n
|Xn − Yn,j|.

Here we have used the fact that Yj ∈M for every j and hence

lim sup
n

Yn,j − lim inf
n

Yn,j = 0 a.e. P.

Finally

P

{
lim sup

n
Xn − lim inf

n
Xn ≥ ε

}
≤ P

{
sup
n
|Xn − Yn,j | ≥ ε

2

}
≤ 2

ε
E [ |X − Yj | ]

= 0

since the left hand side is independent of j and the term on the right on the
second line tends to 0 as j →∞.

The only case where the situation is unclear is when p = 1. If Xn is an
L1 bounded martingale, it is not clear that it comes from an X. If it did
arise from an X, then Xn would converge to it in L1 and in particular would
have to be uniformly integrable. The converse is also true.

Theorem 5.8. If Xn is a uniformly integrable martingale then there is ran-
dom variable X such that Xn = E [X |Fn ] , and then of course Xn → X in
L1.
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Proof. The uniform integrability of Xn implies the weak compactness in L1

and if X is any weak limit of Xn [see [7]], it is not difficult to show as in
Theorem 5.5, that Xn = E [X |Fn ] .

Remark 5.7. Note that for p > 1, a martingale Xn that is bounded in Lp is
uniformly integrable in Lp, i.e |Xn|p is uniformly integrable. This is false for
p = 1. The L1 bounded martingale that we constructed earlier in Exercise
5.1 as a counterexample, is not convergent ln L1 and therefore can not be
uniformly integrable. We will defer the analysis of L1 bounded martingales
to the next section.

5.3 Doob Decomposition Theorem.

The simplest example of a submartingale is a sequence of functions that is
non decreasing in n for every (almost all) ω. In some sense the simplest
example is also the most general. More precisely the decomposition theorem
of Doob asserts the following.

Theorem 5.9. (Doob decomposition theorem.) If {Xn : n ≥ 1} is a
sub-martingale on (Ω ,Fn , P ), then Xn can be written as Xn = Yn + An,
with the following properties:

1. (Yn ,Fn ) is a martingale.

2. An+1 ≥ An for almost all ω and for every n ≥ 1.

3. A1 ≡ 0.

4. For every n ≥ 2, An is Fn−1 measurable.

Xn determines Yn and An uniquely .

Proof. Let Xn be any sequence of integrable functions such that Xn is Fn
measurable, and is represented as Xn = Yn + An, with Yn and An satisfying
(1), (3) and (4). Then

An − An−1 = E [Xn −Xn−1 |Fn−1 ] (5.4)
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are uniquely determined. Since A1 = 0, all the An are uniquely determined as
well. Property (2) is then plainly equivalent to the submartingale property.
To establish the representation, we define An inductively by (5.4). It is
routine to verify that Yn = Xn−An is a martingale and the monotonicity of
An is a consequence of the submartingale property.

Remark 5.8. Actually, given any sequence of integrable functions {Xn : n ≥
1} such that Xn is Fn measurable, equation (5.4) along with A1 = 0 defines
Fn−1 measurable functions that are integrable, such that Xn = Yn +An and
(Yn,Fn) is a martingale. The decomposition is always unique. It is easy
to verify from (5.4) that {An} is increasing (or decreasing) if and only if
{Xn} is a super- (or sub-) maringale. Such a decomposition is called the
semi-martingale decomposition.

Remark 5.9. It is the demand that An be Fn−1 measurable that leads to
uniqueness. If we have to deal with continuous time this will become a
thorny issue.

We now return to the study of L1 bounded martingales. A nonnegative
martingale is clearly L1 bounded because E [ |Xn | ] = E [Xn ] = E [X1 ].
One easy way to generate L1 bounded martingales is to take the difference
of two nonneagtive martingales. We have the converse as well.

Theorem 5.10. Let Xn be an L1 bounded martingale. There are two non-
negative martingales Yn and Zn relative to the same σ-fields Fn, such that
Xn = Yn − Zn.

Proof. For each j and n ≥ j, we define

Yj,n = E [ |Xn | |Fj ].
By the submartingale property of |Xn |
Yj,n+1 − Yj,n = E[(|Xn+1| − |Xn|) |Fj ] = E[E[(|Xn+1| − |Xn|) |Fn ]|Fj] ≥ 0

almost surely. Yj,n is nonnegative and E[Yj,n ] = E[ |Xn | ] is bounded in n.
By the monotone convergence theorem, for each j, there exists some Yj in
L1 such that Yj,n → Yj in L1 as n → ∞. Since limits of martingales are
again martingales, and Yn,j is a martingale for n ≥ j, it follows that Yj is a
martingale. Moreover

Yj +Xj = lim
n→∞

E [ |Xn |+Xn |Fj ] ≥ 0
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and
Xj = (Yj +Xj)− Yj

does it!

We can always assume that our nonnegative martingale has its expecta-
tion equal to 1 because we can always multiply by a suitable constant. Here
is a way in which such martingales arise. Suppose we have a probability
space (Ω ,F , P ) and and an increasing family of sub σ-fields Fn of F that
generate F . Suppose Q is another probability measure on (Ω ,F ) which may
or may not be absolutely continuous with respect to P on F . Let us suppose
however that Q << P on each Fn , i.e. whenever A ∈ Fn and P (A) = 0, it
follows that Q(A) = 0. Then the sequence of Radon-Nikodym derivatives

Xn =
dQ

dP

∣∣∣∣
Fn

of Q with respect to P on Fn is a nonnegative martingale with expectation
1. It comes from an X, if and only if Q << P on F and this is the uniformly
integrable case. By Lebesgue decomposition we reduce our consideration to
the case when Q ⊥ P . Let us change the reference measure to P ′ = P+Q

2
.

The Radon-Nikodym derivative

X ′
n =

dQ

dP ′

∣∣∣∣
Fn

=
2Xn

1 +Xn

is uniformly integrable with respect to P ′ and X ′
n → X ′ a.e. P ′. From

the orthogonality P ⊥ Q we know that there are disjoint sets E,Ec with
P (E) = 1 and Q(Ec) = 1. Then

Q(A) = Q(A ∩ E) +Q(A ∩Ec) = Q(A ∩ Ec)

= 2P ′(A ∩Ec) =

∫
A

2 1E(ω)dP ′.

It is now seen that

X ′ =
dQ

dP ′

∣∣∣∣
F

=

{
2 a.e. Q

0 a.e. P

from which one concludes that

P

{
lim
n→∞

Xn = 0

}
= 1.
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Exercise 5.4. In order to establish that a nonnegative martingale has an
almost sure limit (which may not be an L1 limit) show that we can assume,
without loss of generality, that we are in the following situation.

Ω = ⊗∞
j=1R ; Fn = σ[x1, · · · , xn] ;Xj(ω) = xj

The existence of a Q such that

dQ

dP

∣∣∣∣
Fn

= xn

is essentially Kolmogorov’s consistency theorem (Theorem 3.5.) Now com-
plete the proof.

Remark 5.10. We shall give a more direct proof of almost sure convergence
of an L1 bounded martingale later on by means of the upcrossing inequality.

5.4 Stopping Times.

The notion of stopping times that we studied in the context of Markov Chains
is important again in the context of Martingales. In fact the concept of
stopping times is relevant whenever one has an ordered sequence of sub σ-
fields and is concerned about conditioning with respect to them.

Let (Ω,F) be a measurable space and {Ft : t ∈ T} be a family of sub σ-
fields. T is an ordred set usually a set of real numbers or integers of the form
T = {t : a ≤ t ≤ b} or {t : t ≥ a}. We will assume that T = {0, 1, 2, · · · , }
the set of non negative integers. The family Fn is assumed to be increasing
with n. In other words

Fm ⊂ Fn if m < n

An F measurable random variable τ(ω) mapping Ω → {0, 1, · · · ,∞} is
said to be a stopping time if for every n ≥ 0 the set {ω : τ(ω) ≤ n} ∈ Fn. A
stopping time may actually take the value ∞ on a nonempty subset of Ω.

The idea behind the definiton of a stopping time, as we saw in the study
of Markov chains is that the decision to stop at time n can be based only on
the information available upto that time.

Exercise 5.5. Show that the function τ(ω) ≡ k is a stopping time for any
admissible value of the constant k.
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Exercise 5.6. Show that if τ is a stopping time and f : T → T is a nonde-
creasing function that satisfies f(t) ≥ t for all t ∈ T , then τ ′(ω) = f(τ(ω))
is again a stopping time.

Exercise 5.7. Show that if τ1, τ2 are stopping times so are max (τ1, τ2) and
min (τ1, τ2). In particular any stopping time τ is an increasing limit of
bounded stopping times τn(ω) = min(τ(ω), n).

To every stopping time τ we associate a stopped σ-field Fτ ⊂ F defined
by

Fτ = {A : A ∈ F and A ∩ {ω : τ(ω) ≤ n} ∈ Fn for every n}. (5.5)

This should be thought of as the information available upto the stopping
time τ . In other words, events in Fτ correspond to questions that can be
answered with a yes or no, if we stop observing the process at time τ .

Exercise 5.8. Verify that for any stopping time τ , Fτ is indeed a sub σ-field
i.e. is closed under countable unions and complementations. If τ(ω) ≡ k
then Fτ ≡ Fk. If τ1 ≤ τ2 are stopping times Fτ1 ⊂ Fτ2 . Finally if τ is a
stopping time then it is Fτ measurable.

Exercise 5.9. If Xn(ω) is a sequence of measurable functions on (Ω,F) such
that for every n ∈ T , Xn is Fn measurable then on the set {ω : τ(ω) <
∞}, which is an Fτ measurable set, the function Xτ (ω) = Xτ(ω)(ω) is Fτ
measurable.

The following theorem called Doob’s optional stopping theorem is one of
the central facts in the theory of martingale sequences.

Theorem 5.11. (Optional Stopping Theorem.) Let {Xn : n ≥ 0} be
sequence of random variables defined on a probability space (Ω,F , P ), which
is a martingale sequence with respect to the filtration (Ω,Fn, P ) and 0 ≤ τ1 ≤
τ2 ≤ C be two bounded stopping times. Then

E [Xτ2 | Fτ1 ] = Xτ1 a.e.
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Proof. Since Fτ1 ⊂ Fτ2 ⊂ FC , it is sufficient to show that for any martingale
{Xn}

E [Xk |Fτ ] = Xτ a.e. (5.6)

provided τ is a stopping time bounded by the integer k. To see this we note
that in view of Exercise 4.9,

E[Xk|Fτ1] = E[E[Xk|Fτ2 ]|Fτ1]
and if (5.6) holds, then

E[Xτ2 |Fτ1] = Xτ1 a.e.

Let A ∈ Fτ . If we define Ej = {ω : τ(ω) = j}, then Ω = ∪k1Ej is
a disjoint union. Moreover A ∩ Ej ∈ Fj for every j = 1, · · · , k. By the
martingale property∫

A∩Ej

Xk dP =

∫
A∩Ej

Xj dP =

∫
A∩Ej

Xτ dP

and summing over j = 1, · · · , k gives∫
A

Xk dP =

∫
A

Xτ dP

for every A ∈ Fτ and we are done.

Remark 5.11. In particular if Xn is a martingale sequence and τ is a bounded
stopping time then E[Xτ ] = E[X0]. This property, obvious for constant
times, has now been extended to bounded stopping times. In a ‘fair’ game,
a policy to quit at an ‘opportune’ time, gives no advantage to the gambler
so long as he or she cannot foresee the future.

Exercise 5.10. The property extends to sub or super-martingales. For ex-
ample if Xn is a sub-martingale, then for any two bounded stopping times
τ1 ≤ τ2, we have

E [Xτ2 |Fτ1 ] ≥ Xτ1 a.e..

One cannot use the earlier proof directly, but one can reduce it to the mar-
tingale case by applying the Doob decomposition theorem.
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Exercise 5.11. Boundedness is important. Take X0 = 0 and

Xn = ξ1 + ξ2 · · ·+ ξn for n ≥ 1

where ξi are independent identically distributed random variables taking the
values ±1 with probability 1

2
. Let τ = inf{n : Xn = 1}. Then τ is a stopping

time, P [τ < ∞ ] = 1, but τ is not bounded. Xτ = 1 with probability 1 and
trivially E [Xτ ] = 1 6= 0.

Exercise 5.12. It does not mean that we can never consider stopping times
that are unbounded. Let τ be an unbounded stopping time. For every k,
τk = min(τ, k) is a bounded stopping time and E [Xτk ] = 0 for every k. As
k → ∞, τk ↑ τ and Xτk → Xτ . If we can establish uniform integrability of
Xτk we can pass to the limit. In particular if S(ω) = sup0≤n≤τ(ω) |Xn(ω)| is
integrable then supk |Xτk(ω)| ≤ S(ω) and therefore E [Xτ ] = 0.

Exercise 5.13. Use a similar argument to show that if

S(ω) = sup
0≤k≤τ2(ω)

|Xk(ω)|

is integrable, then for any τ1 ≤ τ2

E [Xτ2 |Fτ1 ] = Xτ1 a.e..

Exercise 5.14. The previous exercise needs the fact that if τn ↑ τ are stop-
pimg times, then

σ{∪nFτn} = Fτ .
Prove it.

Exercise 5.15. Let us go back to the earlier exercise (Exercise 5.11) where
we had

Xn = ξ1 + · · ·+ ξn

as a sum of n idependent random variables taking the values ±1 with prob-
ability 1

2
. Show that if τ is a stopping time with E[τ ] < ∞, then S(ω) =

sup1≤n≤τ(ω) |Xn(ω)| is square integrable and therefore E[Xτ ] = 0. [Hint: Use
the fact that X2

n − n is a martingale.]
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5.5 Upcrossing Inequality.

The following inequality due to Doob, that controls the oscillations of a
martingale sequence, is very useful for proving the almost sure convergence
of L1 bounded martingales directly. Let {Xj : 0 ≤ j ≤ n} be a martingale
sequence with n+1 terms. Let us take two real numbers a < b. An upcrossing
is a pair of terms Xk andXl, with k < l, for which Xk ≤ a < b ≤ Xl. Starting
from X0, we locate the first term that is at most a and then the first term
following it that is at least b. This is the first upcrossing. In our martingale
sequence there will be a certain number of completed upcrossings (of course
over disjoint intervals ) and then at the end we may be in the middle of
an upcrossing or may not even have started on one because we are still on
the way down from a level above b to one below a. In any case there will
be a certain number U(a, b) of completed upcrossings. Doob’s upcrossing
inequlity gives a uniform upper bound on the expected value of U(a, b) in
terms of E[|Xn|], i.e. one that does not depend otherwise on n.

Theorem 5.12. Doob’s upcrossing inequality For any n,

E[U(a, b)] ≤ 1

b− aE[a−Xn]
+ ≤ 1

b− a [|a|+ E
[|Xn|]

]
(5.7)

Proof. Let us define recursively

τ1 = n ∧ inf{k : Xk ≤ a}
τ2 = n ∧ inf{k : k ≥ τ1, Xk ≥ b}
· · · · · · ·
τ2k = n ∧ inf{k : k ≥ τ2k−1, Xk ≥ b}

τ2k+1 = n ∧ inf{k : k ≥ τ2k, Xk ≤ a}
· · · · · · ·

Since τk ≥ τk−1 + 1 , τn = n. Consider the quantity

D(ω) =
n∑
j=1

[Xτ2j
−Xτ2j−1

]

which could very well have lots of 0’s at the end. In any case the first few
terms correspond to upcrossings and each term is at least (b− a) and there
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are U(a, b) of them. Before the 0’s begin there may be at most one nonzero
term which is an incomplete upcrossing, i.e. when τ2`−1 < n = τ2` for some
`. It is then equal to (Xn−Xτ2l−1

) ≥ Xn−a for some l. If on the other hand
if we end in the middle of a downcrossing, i.e. τ2` < n = τ2`+1 there is no
incomplete upcrossing. Therefore

D(ω) ≥ (b− a)U(a, b) +Rn(ω)

with the remainder Rn(ω) satisfying

Rn(ω) = 0 if τ2` < n = τ2`+1

≥ (Xn − a) if τ2`−1 < n = τ2`

By the optional stopping theorem E[D(ω)] = 0. This gives the bound

E[U(a, b)] ≤ 1

b− aE
[− Rn(ω)

] ≤ 1

b− aE
[
(a−Xn)

+]
]

≤ 1

b− aE
[|a−Xn|

] ≤ 1

b− aE
[|a|+ |Xn|

]
.

Remark 5.12. In particular if Xn is an L1 bounded martingale, then the
number of upcrossings of any interval [a, b] is finite with Probability 1. From
Doob’s inequality, the sequence Xn is almost surely bounded. It now follows
by taking a countable number of intervals [a, b] with rational endpoints that
Xn has a limit almost surely. If Xn is uniformly integrable then the conver-
gence is in L1 and then Xn = E [X| Fn ]. If we have a uniform Lp bound
on Xn, then X ∈ Lp and Xn → X in Lp. All of our earlier results on the
convergence of martingales now follow.

Exercise 5.16. For the proof it is sufficient that we have a supermartingale.
In fact we can change signs and so a submartingale works just as well.

5.6 Martingale Transforms, Option Pricing.

If Xn is a martingale with respect to (Ω,Fn, P ) and Yn are the differences
Xn −Xn−1, a martingale transform X ′

n of Xn is given by the formula

X ′
n = X ′

n−1 + an−1Yn, for n ≥ 1
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where an−1 is Fn−1 measurable and has enough integrability assumptions to
make an−1Yn integrable. An elementary calculation shows that

E [X ′
n |Fn−1 ] = X ′

n−1

making X ′
n a martingale as well. X ′

n is called a martingale transform of Xn.
The interpretation is if we have a fair game, we can choose the size and side of
our bet at each stage based on the prior history and the game will continue to
be fair. It is important to note that Xn may be sums of independent random
vaiables with mean zero. But the independence of the increments may be
destroyed and X ′

n will in general no longer have the independent increments
property.

Exercise 5.17. Suppose Xn = ξ1 + · · ·+ξn, where ξj are independent random
variables taking the values ±1 with probability 1

2
. Let X ′

n be the martingale
transform given by

X ′
n =

n∑
j=1

aj−1(ω)ξj

where aj is Fj measurable, Fj being the σ-field generated by ξ1, · · · , ξj.
Calculate E

{
[X ′

n]
2
}
.

Suppose Xn is a sequence of nonnegative random variables that represent
the value of a security that is traded in the market place at a price that
is Xn for day n and changes overnight between day n and day n + 1 from
Xn to Xn+1. We could at the end of day n, based on any information Fn
that is available to us at the end of that day be either long or short on the
security. The quantity an(ω) is the number of shares that we choose to own
overnight between day n and day n+1 and that could be a function of all the
information available to us up to that point. Positive values of an represent
long positions and negative values represent short positions. Our gain or loss
overnight is given by an(Xn+1 − Xn) and the cumulative gain(loss) is the
transform

X ′
n −X ′

0 =
n∑
j=1

aj−1(Xj −Xj−1).

A contingent claim (European Option) is really a gamble or a bet based
on the value of XN at some terminal date N . The nature of the claim is that
there is function f(x) such that if the security trades on that day at a price
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x then the claim pays an amount of f(x). A call is an option to buy at a
certain price a and the payoff is f(x) = (x−a)+ whereas a put is an option
to sell at a fixed price a and therefore has a payoff function f(x) = (a−x)+.

Replicating a claim, if it is possible at all, is determining a0, a1, · · · , aN
and the initial value V0 such that the transform

VN = V0 +

N∑
j=1

aj(Xj+1 −Xj)

at time N equals the claim f(XN) under every conceivable behavior of the
price movements X1, X2, · · · , XN . If the claim can be exactly replicated
starting from an initial capital of V0, then V0 becomes the price of that
option. Anyone could sell the option at that price, use the proceeds as
capital and follow the strategy dictated by the coefficients a0, · · · , aN−1 and
have exactly enough to pay off the claim at time N . Here we are ignoring
transaction costs as well as interest rates. It is not always true that a claim
can be replicated.

Let us assume for simplicity that the stock prices are always some non-
negative integral multiples of some unit. The set of possible prices can then
be taken to be the set of nonnegative integers. Let us make a crucial assump-
tion that if the price on some day is x the price on the next day is x± 1. It
has to move up or down a notch. It cannot jump two or more steps or even
stay the same. When the stock price hits 0 we assume that the company
goes bankrupt and the stock stays at 0 for ever. In all other cases, from day
to day, it always moves either up or down a notch.

Let us value the claim f for one period. If the price at day N −1 is x 6= 0
and we have assets c on hand and invest in a shares we will end up on day
N , with either assets of c+ a and a claim of f(x+ 1) or assets of c− a with
a claim of f(x− 1). In order to make sure that we break even in either case,
we need

f(x+ 1) = c+ a ; f(x− 1) = c− a

and solving for a and c, we get

c(x) =
1

2
[f(x− 1) + f(x+ 1)] ; a(x) =

1

2
[f(x+ 1)− f(x− 1)]
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The value of the claim with one day left is

VN−1(x) =

{
1
2
[f(x− 1) + f(x+ 1)] if x ≥ 1

f(0) if x = 0

and we can proceed by iteration

Vj−1(x) =

{
1
2
[Vj(x− 1) + Vj(x+ 1)] if x ≥ 1

Vj(0) if x = 0

for j ≥ 1 till we arrive at the value V0(x) of the claim at time 0 and price x.
The corresponding values of a = aj−1(x) = 1

2
[Vj(x+ 1)− Vj(x− 1)] gives us

the number of shares to hold between day j − 1 and j if the current price at
time j − 1 equals x.

Remark 5.13. The important fact is that the value is determined by arbi-
trage and is unaffected by the actual movement of the price so long as it is
compatible with the model.

Remark 5.14. The value does not depend on any statistical assumptions on
the various probabilities of transitions of price levels between successive days.

Remark 5.15. However the value can be interpreted as the expected value

V0(x) = EPx

{
f(XN)

}
where Px is the random walk starting at x with probability 1

2
for transitions

up or down a level, which is absorbed at 0.

Remark 5.16. Px can be characterized as the unique probability distribution
of (X0, · · · , XN) such that Px[X0 = x] = 1, Px[|Xj−Xj−1| = 1|Xj−1 ≥ 1] = 1
for 1 ≤ j ≤ N and Xj is a martingale with respect to (Ω,Fj, Px) where Fj
is generated by X0, · · · , Xj.

Exercise 5.18. It is not necessary for the argument that the set of possible
price levels be equally spaced. If we make the assumption that for each price
level x > 0, the price on the following day can take only one of two possible
values h(x) > x and l(x) < x with a possible bankruptcy if the level 0 is
reached, a simlar analysis can be worked out. Carry it out.
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5.7 Martingales and Markov Chains.

One of the ways of specifying the joint distribution of a sequence X0, · · · , Xn

of random variables is to specify the distribution of X0 and for each j ≥ 1,
specify the conditional distribution of Xj given the σ-field Fj−1 generated by
X0, · · · , Xj−1. Equivalently instead of the conditional distributions one can
specify the conditional expectations E [f(Xj)|Fj−1] for 1 ≤ j ≤ n. Let us
write

hj−1(X0, · · · , Xj−1) = E [f(Xj)|Fj−1]− f(Xj−1)

so that, for 1 ≤ j ≤ n

E [{f(Xj)− f(Xj−1)− hj−1(X0, · · · , Xj−1)}|Fj−1] = 0

or

Zf
j = f(Xj)− f(X0)−

j∑
i=1

hi−1(X0, · · · , Xi−1)

is a martingale for every f . It is not difficult to see that the specification
of {hi} for each f is enough to determine all the successive conditional ex-
pectations and therefore the conditional distributions. If in addition the
initial distribution of X0 is specified then the distribution of X0, · · · , Xn is
completely determined.

If for each j and f , the corresponding hj−1(X0, · · · , Xj−1) is a function
hj−1(Xj−1) of Xj−1 only, then the distribution of (X0, · · · , Xn) is Markov
and the transition probabilities are seen to be given by the relation

hj−1(Xj−1) = E
[
[f(Xj)− f(Xj−1)]|Fj−1

]
=

∫
[f(y)− f(Xj−1)]πj−1,j(Xj−1, dy).

In the case of a stationary Markov chain the relationship is

hj−1(Xj−1) = h(Xj−1) = E
[
[f(Xj)− f(Xj−1)]|Fj−1

]
=

∫
[f(y)− f(Xj−1)]π(Xj−1, dy).

If we introduce the linear transformation (transition operator)

(Π f)(x) =

∫
f(y)π(x, dy) (5.8)
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then
h(x) = ([Π− I]f)(x).

Remark 5.17. In the case of a Markov chain on a countable state space

(Πf)(x) =
∑
y

π(x, y)f(y)

and
h(x) = [Π− I](x) =

∑
y

[f(y)− f(x)]π(x, y).

Remark 5.18. The measure Px on the space (Ω,F) of sequences {xj : j ≥
0} from the state space X, that corresponds to the Markov Process with
transition probability π(x, dy), and initial state x, can be characterized as
the unique measure on (Ω,F) such that

Px

{
ω : x0 = x

}
= 1

and for every bounded measurable function f defined on the state space X

f(xn)− f(x0)−
n∑
j=1

h(xj−1)

is a martingale with respect to (Ω,Fn, Px) where

h(x) =

∫
X

[f(y)− f(x)]π(x, dy).

Let A ⊂ X be a measurable subset and let τA = inf{n ≥ 0 : xn ∈ A} be
the first entrance time into A. It is easy to see that τA is a stopping time. It
need not always be true that Px{τA <∞} = 1. But UA(x) = Px{τA <∞} is
a well defined measurable function of x, that satisfies 0 ≤ U(x) ≤ 1 for all x
and is the exit probability from the set Ac. By its very definition UA(x) ≡ 1
on A and if x /∈ A, by the Markov property,

UA(x) = π(x,A) +

∫
Ac

UA(y)π(x, dy) =

∫
X

UA(y)π(x, dy).
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In other words UA satisfies 0 ≤ UA ≤ 1 and is a solution of

(Π− I)V = 0 on Ac

V = 1 on A (5.9)

Theorem 5.13. Among all nonnegative solutions V of the equation (5.9)
UA(x) = Px{τA < ∞} is the smallest. If UA(x) = 1, then any bounded
solution of the equation

(Π− I)V = 0 on Ac

V = f on A (5.10)

is equal to

V (x) = EPx
{
f(xτA)

}
. (5.11)

In particular if UA(x) = 1 for all x /∈ A, then any bounded solution V of
equation (5.10) is unique and is given by the formula (5.11).

Proof. First we establish that any nonnegative solution V of (5.10) dominates
UA. Let us replace V by W = min(V, 1). Then 0 ≤ W ≤ 1 everywhere,
W (x) = 1 for x ∈ A and for x /∈ A,

(ΠW )(x) =

∫
X

W (y)π(x, dy) ≤
∫
X

V (y)π(x, dy) = V (x).

Since ΠW ≤ 1 as well we conclude that ΠW ≤W on Ac. On the otherhand
it is obvious that ΠW ≤ 1 = W on A. Since we have shown that ΠW ≤ W
everywhere it follows that {W (xn)} is a supermartingale with with repect to
(Ω,Fn, Px). In particular for any bounded stopping time τ

EPx
{
W (xτ )

} ≤ EPx
{
W (x0)

}
= W (x).

While we cannot take τ = τA (since τA may not be bounded), we can always
take τ = τN = min(τA, N) to conclude

EPx
{
W (xτN )

} ≤ EPx
{
W (x0)

}
= W (x).
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Let us let N → ∞. On the set {ω : τA(ω) < ∞}, τN ↑ τA and W (xτN ) →
W (xτA) = 1. Since W is nonnegative and bounded,

W (x) ≥ lim sup
N→∞

EPx
{
W (xτN )

} ≥ lim sup
N→∞

∫
τA<∞

W (xτN )dPx

= Px{τA <∞} = UA(x).

Since V (x) ≥W (x) it follows that V (x) ≥ UA(x).
For a bounded solution V of (5.10), let us define h = (Π− I)V which will

be a function vanishing on Ac. We know that

V (xn)− V (x0)−
n∑
j=1

h(xj−1)

is a martingale with rsepect to (Ω,Fn, Px) and let us use the stopping theorem
with τN = min(τA, N). Since h(xj−1) = 0 for j ≤ τA, we obtain

V (x) = EPx
{
V (xτN )

}
.

If we now make the assumption that UA(x) = Px{τA <∞} = 1, let N →∞
and use the bounded convergence theorem it is easy to see that

V (x) = EPx
{
f(xτA)

}
which proves (5.11) and the rest of the theorem.

Such arguments are powerful tools for the study of qualitative proper-
ties of Markov chains. Solutions to equations of the type [Π − I]V = f are
often easily constructed. They can be used to produce martingales, sub-
martingales or supermartingales that have certain behavior and that in turn
implies certain qualitative behavior of the Markov chain. We will now see
several illustrations of this method.

Example 5.1. Consider the symmetric simple random walk in one dimension.

We know from recurrence that the random walk exits the interval (−R,R)
in a finite time. But we want to get some estimates on the exit time τR.
Consider the function u(x) = cosλx. The function f(x) = [Πu](x) can be
calculated and

f(x) =
1

2
[cos λ(x− 1) + cosλ(x+ 1)]

= cosλ cosλx

= cosλ u(x).
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If λ < π
2R

, then cosλx ≥ cosλR > 0 in [−R,R]. Consider Zn = eσn cos λxn
with σ = − log cosλ .

EPx
{
Zn|Fn−1

}
= eσ nf(xn−1) = eσ n cosλ cosλxn−1 = Zn−1.

If τR is the exit time from the interval (−R,R), for any N , we have

EPx
{
ZτR∧N

}
= EPx

{
Z0

}
= cos λx.

Since σ > 0 and cosλx ≥ cosλR > 0 for x ∈ [−R,R], if R is an integer, we
can claim that

EP0
{
eσ [τR∧N ]

} ≤ cosλx

cos λR
.

Since the estimate is uniform we can let N →∞ to get the estimate

EP0
{
eσ τR

} ≤ cos λx

cosλR
.

Exercise 5.19. Can you prove equality above? What is range of validity of
the equality? Is EPx

{
eστR

}
<∞ for all σ > 0?

Example 5.2. Let us make life slightly more complicated by taking a Markov
chain in Zd with transition probabilities

π(x, y) =

{
1
2d

+ δ(x, y) if |x− y| = 1

0 if |x− y| 6= 0

so that we have slightly perturbed the random walk with perhaps even a
possible bias.

Exact calculations like in Eaxmple 5.1 are of course no longer possible.
Let us try to estimate again the exit time from a ball of radius R. For σ > 0
consider the function

F (x) = exp[σ
d∑
i=1

|xi|]

defined on Zd. We can get an estimate of the form

(ΠF )(x1, · · · , xd) ≥ θF (x1, · · · , xd)
for some choices of σ > 0 and θ > 1 that may depend on R. Now proceed as
in Example 5.1.
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Example 5.3. We can use these methods to show that the random walk is
transient in dimension d ≥ 3.

For 0 < α < d − 2 consider the function V (x) = 1
|x|α for x 6= 0 with

V (0) = 1. An approximate calculation of (ΠV )(x) yields, for sufficiently
large |x| (i.e |x| ≥ L for some L), the estimate

(ΠV )(x)− V (x) ≤ 0

If we start initially from an x with |x| > L and take τL to be the first
entrance time into the ball of radius L, one gets by the stopping theorem,
the inequality

EPx
{
V (xτL∧N )

} ≤ V (x).

If τL ≤ N , then |xτL | ≤ L. In any case V (xτL∧N ) ≥ 0. Therefore,

Px
{
τL ≤ N

} ≤ V (x)

inf |y|≤L V (y)

valid uniformly in N . Letting N →∞

Px
{
τL <∞

} ≤ V (x)

inf |y|≤L V (y)
.

If we let |x| → ∞, keeping L fixed, we see the transience. Note that recur-
rence implies that Px

{
τL <∞

}
= 1 for all x. The proof of transience really

only required a function V defined for large |x|, that was strictly positive for
each x, went to 0 as |x| → ∞ and had the property (ΠV )(x) ≤ V (x) for
large values of |x|.
Example 5.4. We will now show that the random walk is recurrent in d = 2.

This is harder because the recurrence of random walk in d = 2 is right
on the border. We want to construct a function V (x)→∞ as |x| → ∞ that
satisfies (ΠV )(x) ≤ V (x) for large |x|. If we succeed, then we can estimate
by a stopping argument the probability that the chain starting from a point
x in the annulus ` < |x| < L exits at the outer circle before getting inside
the inner circle.

Px
{
τL < τ`

} ≤ V (x)

inf |y|≥L V (y)
.

We also have for every L,

Px
{
τL <∞

}
= 1.
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This proves that Px
{
τ` < ∞

}
= 1 thereby proving recurrence. The natural

candidate is F (x) = log |x| for x 6= 0. A computation yields

(ΠF )(x)− F (x) ≤ C

|x|4

which does not quite make it. On the other hand if U(x) = |x|−1, for large
values of |x|,

(ΠU)(x)− U(x) ≥ c

|x|3
for some c > 0. The choice of V (x) = F (x)−CU(x) = log x− C

|x| works with
any C > 0.

Example 5.5. We can use these methods for proving positive recurrence as
well.

Suppose X is a countable set and we can find V ≥ 0, a finite set F and
a constant C ≥ 0 such that

(ΠV )(x)− V (x) ≤
{
−1 for x /∈ F
C for x ∈ F

Let us let U = ΠV − V , and we have

−V (x) ≤ EPx
{
V (xn)− V (x)

}
= EPx

{ n∑
j=1

U(xj−1)
}

≤ EPx
{ n∑
j=1

C 1F (xj−1)−
n∑
j=1

1F c(xj−1)

= −EPx
{ n∑
j=1

[1− (1 + C)1F (xj−1)]
}

= −n + (1 + C)

n∑
j=1

∑
y∈F

πn(x, y)

= −n + o(n) as n→∞.
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if the process is not positive recurrent. This is a contradiction.
For instance if X = Z, the integers, and we have a little bit of bias

towards the origin in the random walk

π(x, x+ 1)− π(x, x− 1) ≥ a

|x| if x ≤ −`

π(x, x− 1)− π(x, x+ 1) ≥ a

|x| if x ≥ `

with V (x) = x2, for x ≥ `

(ΠV )(x) ≤ (x+ 1)21

2
(1− a

|x|) + (x− 1)21

2
(1 +

a

|x|)
= x2 + 1− 2a

If a > 1
2
, we can multiply V by a constant and it works.

Exercise 5.20. What happens when

π(x, x+ 1)− π(x, x− 1) = − 1

2x

for |x| ≥ 10? (See Exercise 4.16)

Example 5.6. Let us return to our example of a branching process Example
4.4. We see from the relation

E[Xn+1|Fn] = mXn

that Xn

mn is a martingale. If m < 1 we saw before quite easily that the
population becomes extinct. If m = 1, Xn is a martingale. Since it is
nonnegative it is L1 bounded and must have an almost sure limit as n →
∞. Since the population is an integer, this means that the size eventually
stabilizes. The limit can only be 0 because the population cannot stabilize
at any other size. If m > 1 there is a probability 0 < q < 1 such that
P [Xn → 0|X0 = 1] = q, We can show that with probability 1− q, Xn →∞.
To see this consider the function u(x) = qx. In the notation of Example 4.4

E[qXn+1 |Fn] = [
∑

qjpj]
Xn

= [P (q)]Xn

= qXn
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so that qXn is a non negative martingale. It then has an almost sure limit,
which can only be 0 or 1. If q is the probabbility that it is 1 i.e that Xn → 0,
then 1− q is the probability that it is 0, i.e. that Xn →∞.
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