
Chapter 2

Weak Convergence

2.1 Characteristic Functions

If α is a probability distribution on the line, its characteristic function is
defined by

φ(t) =

∫
exp[ i t x ] dα. (2.1)

The above definition makes sense. We write the integrand eitx as cos tx +
i sin tx and integrate each part to see that

|φ(t)| ≤ 1

for all real t.

Exercise 2.1. Calculate the characteristic functions for the following distri-
butions:

1. α is the degenerate distribution δa with probability one at the point a.

2. α is the binomial distribution with probabilities

pk = Prob[X = k] =

(
n

k

)
pk(1− p)n−k

for 0 ≤ k ≤ n.
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Theorem 2.1. The characteristic function φ(t) of any probability distribu-
tion is a uniformly continuous function of t that is positive definite, i.e. for
any n complex numbers ξ1, · · · , ξn and real numbers t1, · · · , tn

n∑
i,j=1

φ(ti − tj) ξi ξ̄j ≥ 0.

Proof. Let us note that

n∑
i,j=1

φ(ti − tj) ξi ξ̄j =
∑n

i,j=1 ξi ξ̄j
∫

exp[ i(ti − tj)x] dα

=
∫ ∣∣ ∑n

j=1 ξj exp[i tj x]
∣∣2 dα ≥ 0.

To prove uniform continuity we see that

|φ(t)− φ(s)| ≤
∫
| exp[ i(t− s) x ]− 1| dP

which tends to 0 by the bounded convergence theorem if |t− s| → 0.

The characteristic function of course carries some information about the
distribution α. In particular if

∫ |x| dα < ∞, then φ(·) is continuously dif-
ferentiable and φ′(0) = i

∫
x dα.

Exercise 2.2. Prove it!

Warning: The converse need not be true. φ(·) can be continuously differ-
entiable but

∫ |x| dP could be ∞.

Exercise 2.3. Construct a counterexample along the following lines. Take a
discrete distribution, symmetric around 0 with

α{n} = α{−n} = p(n) ' 1

n2 log n
.

Then show that
∑

n
(1−cos nt)
n2 logn

is a continuously differentiable function of t.

Exercise 2.4. The story with higher moments mr =
∫
xr dα is similar. If any

of them, say mr exists, then φ(·) is r times continuously differentiable and
φ(r)(0) = irmr. The converse is false for odd r, but true for even r by an
application of Fatou’s lemma.
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The next question is how to recover the distribution function F (x) from
φ(t). If we go back to the Fourier inversion formula, see for instance [2], we
can ‘guess’, using the fundamental theorem of calculus and Fubini’s theorem,
that

F ′(x) =
1

2π

∫ ∞

−∞
exp[−i t x ]φ(t) dt

and therefore

F (b)− F (a) = 1
2π

∫ b

a
dx

∫ ∞
−∞ exp[−i t x ]φ(t) dt

= 1
2π

∫ ∞
−∞ φ(t) dt

∫ b
a

exp[−i t x ] dx

= 1
2π

∫ ∞
−∞ φ(t) exp[− i t b ]−exp[− i t a ]

− i t
dt

= limT→∞ 1
2π

∫ T

−T φ(t) exp[− i t b ]−exp[− i t a ]
− i t

dt.

We will in fact prove the final relation, which is a principal value integral,
provided a and b are points of continuity of F . We compute the right hand
side as

lim
T→∞

1

2π

∫ T

−T

exp[− i t b ]− exp[− i t a ]

− i t dt

∫
exp[ i t x ] dα

= limT→∞ 1
2π

∫
dα

∫ T

−T
exp[i t (x−b) ]−exp[i t (x−a) ]

− i t
dt

= limT→∞ 1
2π

∫
dα

∫ T

−T
sin t (x−a)−sin t (x−b)

t
dt

= 1
2

∫
[sign(x− a)− sign(x− b)] dα

= F (b)− F (a)

provided a and b are continuity points. We have applied Fubini’s theorem
and the bounded convergence theorem to take the limit as T → ∞. Note
that the Dirichlet integral

u(t, z) =

∫ T

0

sin tz

t
dt

satisfies supT,z |u(T, z)| ≤ C and

lim
T→∞

u(T, z) =


1 if z > 0

−1 if z < 0

0 if z = 0.
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As a consequence we conclude that the distribution function and hence α is
determined uniquely by the characteristic function.

Exercise 2.5. Prove that if two distribution functions agree on the set of
points at which they are both continuous, they agree everywhere.

Besides those in Exercise 2.1, some additional examples of probability
distributions and the corresponding characteristic functuions are given below.

1. The Poisson distribution of ‘rare events’, with rate λ, has probabilities
P [X = r] = e−λ λ

r

r!
for r ≥ 0. Its characteristic function is

φ(t) = exp[λ(eit − 1)].

2. The geometric distribution, the distribution of the number of unsuc-
cessful attempts preceeding a success has P [X = r] = pqr for r ≥ 0.Its
characteristic function is

φ(t) = p(1− qeit)−1.

3. The negative binomial distribution, the probabilty distribution of the
number of accumulated failures before k successes, with P [X = r] =(
k+r−1
r

)
pkqr has the characteristic function is

φ(t) = pk(1− qeit)−k.

We now turn to some common continuous distributions, in fact given by
‘densities’ f(x) i.e the distribution functions are given by F (x) =

∫ x

−∞ f(y) dy

1. The ‘uniform ’ distribution with density f(x) = 1
b−a , a ≤ x ≤ b has

characteristic function

φ(t) =
eitb − eita
it(b− a) .

In particular for the case of a symmetric interval [−a, a],

φ(t) =
sin at

at
.
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2. The gamma distribution with density f(x) = cp

Γ(p)
e−cxxp−1, x ≥ 0 has

the characteristic function

φ(t) = (1− it

c
)−p.

where c > 0 is any constant. A special case of the gamma distribution
is the exponential distribution, that corresponds to c = p = 1 with
density f(x) = e−x for x ≥ 0. Its characteristic function is given by

φ(t) = [1− it]−1.

3. The two sided exponential with density f(x) = 1
2
e−|x| has characteristic

function

φ(t) =
1

1 + t2
.

4. The Cauchy distribution with density f(x) = 1
π

1
1+x2 has the character-

istic function

φ(t) = e−|t |.

5. The normal or Gaussian distribution with mean µ and variance σ2,

which has a density of 1√
2πσ

e−
(x−µ)2

2σ2 has the characteristic function given
by

φ(t) = eitµ−
σ2t2

2 .

In general if X is a random variable which has distribution α and a
characteristic function φ(t), the distribution β of aX + b, can be written
as β(A) = α [x : ax + b ∈ A] and its characteristic function ψ(t) can be
expressed as ψ(t) = eitaφ(bt). In particular the characteristic function of −X
is φ(−t) = φ(t). Therefore the distribution of X is symmetric around x = 0
if and only if φ(t) is real for all t.
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2.2 Moment Generating Functions

If α is a probability distribution on R, for any integer k ≥ 1, the moment
mk of α is defined as

mk =

∫
xkdα. (2.2)

Or equivalently the k-th moment of a random variable X is

mk = E[Xk] (2.3)

By convention one takes m0 = 1 even if P [X = 0] > 0. We should note
that if k is odd, in order for mk to be defined we must have E[|X|k] =∫ |x|kdα <∞. Given a distribution α, either all the moments exist, or they
exist only for 0 ≤ k ≤ k0 for some k0. It could happen that k0 = 0 as
is the case with the Cauchy distribution. If we know all the moments of a
distribution α, we know the expectations

∫
p(x)dα for every polynomial p(·).

Since polynomials p(·) can be used to approximate (by Stone-Weierstrass
theorem) any continuous function, one might hope that, from the moments,
one can recover the distribution α. This is not as staright forward as one
would hope. If we take a bounded continuous function, like sin x we can find
a sequence of polynomials pn(x) that converges to sin x. But to conclude
that ∫

sin xdα = lim
n→∞

∫
pn(x)dα

we need to control the contribution to the integral from large values of x,
which is the role of the dominated convergence theorem. If we define p∗(x) =
supn |pn(x)| it would be a big help if

∫
p∗(x)dα were finite. But the degrees

of the polynomials pn have to increase indefinitely with n because sin x is a
transcendental function. Therefore p∗(·) must grow faster than a polynomial
at ∞ and the condition

∫
p∗(x)dα <∞ may not hold.

In general, it is not true that moments determine the distribution. If
we look at it through characteristic functions, it is the problem of trying to
recover the function φ(t) from a knowledge of all of its derivatives at t = 0.
The Taylor series at t = 0 may not yield the function. Of course we have
more information in our hands, like positive definiteness etc. But still it is
likely that moments do not in general determine α. In fact here is how to
construct an example.
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We need nonnegative numbers {an}, {bn} : n ≥ 0, such that∑
n

ane
k n =

∑
n

bne
k n = mk

for every k ≥ 0. We can then replace them by { an

m0
}, { bn

m0
} : n ≥ 0 so that∑

k ak =
∑

k bk = 1 and the two probability distributions

P [X = en] = an, P [X = en] = bn

will have all their moments equal. Once we can find {cn} such that∑
n

cne
n z = 0 for z = 0, 1, · · ·

we can take an = max(cn, 0) and bn = max(−cn, 0) and we will have our
example. The goal then is to construct {cn} such that

∑
n ckz

n = 0 for
z = 1, e, e2, · · · . Borrowing from ideas in the theory of a complex variable,
(see Weierstrass factorization theorem, [1]) we define

C(z) = Π∞
n=1(1−

z

en
)

and expand C(z) =
∑
cnz

n. Since C(z) is an entire function, the coefficients
cn satisfy

∑
n |cn|ek n <∞ for every k.

There is in fact a positive result as well. If α is such that the moments
mk =

∫
xkdα do not grow too fast, then α is determined by mk.

Theorem 2.2. Let mk be such that
∑

km2k
a2k

(2k)!
<∞ for some a > 0. Then

there is atmost one distribution α such that
∫
xkdα = mk.

Proof. We want to determine the characteristic function φ(t) of α. First we
note that if α has moments mk satisfying our assumption, then∫

cosh(ax)dα =
∑
k

a2k

(2k)!
m2k <∞

by the monotone convergence theorem. In particular

ψ(u+ it) =

∫
e(u+it)xdα

is well define as an analytic function of z = u+ it in the strip |u| < a. From
the theory of functions of a complex variable we know that the function ψ(·)
is uniquely determined in the strip by its derivatives at 0, i.e. {mk}. In
particular φ(t) = ψ(0 + it) is determined as well
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2.3 Weak Convergence

One of the basic ideas in establishing Limit Theorems is the notion of weak
convergence of a sequence of probability distributions on the line R. Since
the role of a probability measure is to assign probabilities to sets, we should
expect that if two probability measures are to be close, then they should
assign for a given set, probabilities that are nearly equal. This suggets the
definition

d(P1, P2) = sup
A∈B
|P1(A)− P2(A)|

as the distance between two probability measures P1 and P2 on a measurable
space (Ω,B). This is too strong. If we take P1 and P2 to be degenerate
distributions with probability 1 concentrated at two points x1 and x2 on the
line one can see that, as soon as x1 6= x2, d(P1, P2) = 1, and the above
metric is not sensitive to how close the two points x1 and x2 are. It only
cares that they are unequal. The problem is not because of the supremum.
We can take A to be an interval [a, b] that includes x1 but omits x2 and
|P1(A) − P2(A)| = 1. On the other hand if the end points of the interval
are kept away from x1 or x2 the situation is not that bad. This leads to the
following definition.

Definition 2.1. A sequence αn of probability distributions on R is said to
converge weakly to a probability distribution α if,

lim
n→∞

αn[I] = α[I]

for any interval I = [a, b] such that the single point sets a and b have proba-
bility 0 under α.

One can state this equivalently in terms of the distribution functions
Fn(x) and F (x) corrresponding to the measures αn and α respectively.

Definition 2.2. A sequence αn of probability measures on the real line R
with distribution functions Fn(x) is said to converge weakly to a limiting
probability measure α with distribution function F (x) (in symbols αn ⇒ α or
Fn ⇒ F ) if

lim
n→∞

Fn(x) = F (x)

for every x that is a continuity point of F .
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Exercise 2.6. prove the equivalence of the two definitions.

Remark 2.1. One says that a sequence Xn of random variables converges
in law or in distribution to X if the distributions αn of Xn converges weakly
to the distribution α of X.

There are equivalent formulations in terms of expectations and charac-
teristic functions.

Theorem 2.3. (Lévy-Cramér continuity theorem) The following are
equivalent.

1. αn ⇒ α or Fn ⇒ F

2. For every bounded continuous function f(x) on R

lim
n→∞

∫
R

f(x) dαn =

∫
R

f(x) dα

3. If φn(t) and φ(t) are respectively the characteristic functions of αn and
α, for every real t,

lim
n→∞

φn(t) = φ(t)

Proof. We first prove (a ⇒ b). Let ε > 0 be arbitrary. Find continuity
points a and b of F such that a < b, F (a) ≤ ε and 1−F (b) ≤ ε. Since Fn(a)
and Fn(b) converge to F (a) and F (b), for n large enough, Fn(a) ≤ 2ε and
1−Fn(b) ≤ 2ε. Divide the interval [a, b] into a finite number N = Nδ of small
subintervals Ij = (aj, aj+1], 1 ≤ j ≤ N with a = a1 < a2 < · · · < aN+1 =
b such that all the end points {aj} are points of continuity of F and the
oscillation of the continuous function f in each Ij is less than a preassigned
number δ. Since any continuous function f is uniformly continuous in the
closed bounded (compact) interval [a, b], this is always possible for any given
δ > 0. Let h(x) =

∑N
j=1 χIjf(aj) be the simple function equal to f(aj) on Ij

and 0 outside ∪jIj = (a, b]. We have |f(x) − h(x)| ≤ δ on (a, b]. If f(x) is
bounded by M , then∣∣∣∣ ∫

f(x) dαn −
N∑
j=1

f(aj)[Fn(aj+1)− Fn(aj)]
∣∣∣∣ ≤ δ + 4Mε (2.4)
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and ∣∣∣∣ ∫
f(x) dα−

N∑
j=1

f(aj)[F (aj+1)− F (aj)]

∣∣∣∣ ≤ δ + 2Mε. (2.5)

Since limn→∞ Fn(aj) = F (aj) for every 1 ≤ j ≤ N , we conclude from equa-
tions (2.4), (2.5) and the triangle inequality that

lim sup
n→∞

∣∣∣∣ ∫
f(x) dαn −

∫
f(x) dα

∣∣∣∣ ≤ 2δ + 6Mε.

Since ε and δ are arbitrary small numbers we are done.

Because we can make the choice of f(x) = exp[i t x ] = cos tx+ i sin tx, which
for every t is a bounded and continuous function (b⇒ c) is trivial.

(c ⇒ a) is the hardest. It is carried out in several steps. Actually we will
prove a stronger version as a separate theorem.

Theorem 2.4. For each n ≥ 1, let φn(t) be the characteristic function of a
probability distribution αn. Assume that limn→∞ φn(t) = φ(t) exists for each
t and φ(t) is continuous at t = 0. Then φ(t) is the characteristic function of
some probability distribution α and αn ⇒ α.

Proof.

Step 1. Let r1, r2, · · · be an enumeration of the rational numbers. For each j
consider the sequence {Fn(rj) : n ≥ 1} where Fn is the distribution function
corresponding to φn(·). It is a sequence bounded by 1 and we can extract a
subsequence that converges. By the diagonalization process we can choose a
subseqence Gk = Fnk

such that

lim
k→∞

Gk(r) = br

exists for every rational number r. From the monotonicity of Fn in x we
conclude that if r1 < r2, then br1 ≤ br2 .

Step 2. From the skeleton br we reconstruct a right continuous monotone
function G(x). We define

G(x) = inf
r>x

br.
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Clearly if x1 < x2, then G(x1) ≤ G(x2) and therefore G is nondecreasing. If
xn ↓ x, any r > x satisfies r > xn for sufficiently large n. This allows us to
conclude that G(x) = infnG(xn) for any sequence xn ↓ x, proving that G(x)
is right continuous.

Step 3. Next we show that at any continuity point x of G

lim
n→∞

Gn(x) = G(x).

Let r > x be a rational number. Then Gn(x) ≤ Gn(r) and Gn(r) → br as
n→∞. Hence

lim sup
n→∞

Gn(x) ≤ br.

This is true for every rational r > x, and therefore taking the infimum over
r > x

lim sup
n→∞

Gn(x) ≤ G(x).

Suppose now that we have y < x. Find a rational r such that y < r < x.

lim inf
n→∞

Gn(x) ≥ lim inf
n→∞

Gn(r) = br ≥ G(y).

As this is true for every y < x,

lim inf
n→∞

Gn(x) ≥ sup
y<x

G(y) = G(x− 0) = G(x)

the last step being a consequence of the assumption that x is a point of
continuity of G i.e. G(x− 0) = G(x).

Warning. This does not mean that G is necessarily a distribution function.
Consider Fn(x) = 0 for x < n and 1 for x ≥ n, which corresponds to
the distribution with the entire probability concentrated at n. In this case
limn→∞ Fn(x) = G(x) exists and G(x) ≡ 0, which is not a distribution
function.

Step 4. We will use the continuity at t = 0, of φ(t), to show that G is indeed
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a distribution function. If φ(t) is the characteristic function of α

1
2T

∫ T

−T φ(t) dt =
∫ [

1
2T

∫ T

−T exp[i t x ] dt
]
dα

=
∫

sinTx
Tx

dα

≤ ∫ ∣∣ sinTx
Tx

∣∣ dα
=

∫
|x|<`

∣∣ sinTx
Tx

∣∣ dα+
∫
|x|≥`

∣∣ sinTx
Tx

∣∣ dα
≤ α[|x| < `] + 1

T`
α[|x| ≥ `].

We have used Fubini’s theorem in the first line and the bounds | sinx| ≤
|x| and | sinx| ≤ 1 in the last line. We can rewrite this as

1− 1
2T

∫ T

−T φ(t) dt ≥ 1− α[|x| < `]− 1
T`
α[|x| ≥ `]

= α[|x| ≥ `]− 1
T`
α[|x| ≥ `]

=
(
1− 1

T`

)
α[|x| ≥ `]

≥ (
1− 1

T`

)
[1− F (`) + F (−`)]

Finally, if we pick ` = 2
T
,

[1− F (
2

T
) + F (− 2

T
)] ≤ 2

[
1− 1

2T

∫ T

−T
φ(t) dt

]
.

Since this inequality is valid for any distribution function F and its charac-
teristic function φ, we conclude that, for every k ≥ 1,

[1− Fnk
(
2

T
) + Fnk

(− 2

T
)] ≤ 2

[
1− 1

2T

∫ T

−T
φnk

(t) dt

]
. (2.6)

We can pick T such that ± 2
T

are continuity points of G. If we now pass to
the limit and use the bounded convergence theorem on the right hand side
of equation (2.6), we obtain

[1−G(
2

T
) +G(− 2

T
)] ≤ 2

[
1− 1

2T

∫ T

−T
φ(t) dt

]
.

Since φ(0) = 1 and φ is continuous at t = 0, by letting T → 0 in such a way
that ± 2

T
are continuity points of G, we conclude that

1−G(∞) +G(−∞) = 0

or G is indeed a distribution function
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Step 5. We now complete the rest of the proof, i.e. show that αn ⇒ α. We
have Gk = Fnk

⇒ G as well as ψk = φnk
→ φ. Therefore G must equal F

which has φ for its characteristic function. Since the argument works for any
subsequence of Fn, every subsequence of Fn will have a further subsequence
that converges weakly to the same limit F uniquely determined as the distri-
bution function whose characteristic function is φ(·). Consequently Fn ⇒ F
or αn ⇒ α.

Exercise 2.7. How do you actually prove that if every subsequence of a se-
quence {Fn} has a further subsequence that converges to a common F then
Fn ⇒ F ?

Definition 2.3. A subset A of probability distributions on R is said to be
totally bounded if, given any sequence αn from A, there is subsequence that
converges weakly to some limiting probability distribution α.

Theorem 2.5. In order that a family A of probability distributions be totally
bounded it is necessary and sufficient that either of the following equivalent
conditions hold.

lim
`→∞

sup
α∈A

α[x : |x| ≥ `] = 0 (2.7)

lim
h→0

sup
α∈A

sup
|t|≤h
|1− φα(t)| = 0. (2.8)

Here φα(t) is the characteristic function of α.

The condition in equation (2.7) is often called the uniform tightness prop-
erty.

Proof. The proof is already contained in the details of the proof of the ear-
lier theorem. We can always choose a subsequence such that the distribution
functions converge at rationals and try to reconstruct the limiting distribu-
tion function from the limits at rationals. The crucial step is to prove that
the limit is a distribution function. Either of the two conditions (2.7) or (2.8)
will guarantee this. If condition (2.7) is violated it is straight forward to pick
a sequence from A for which the distribution functions have a limit which is
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not a distribution function. Then A cannot be totally bounded. Condition
(2.7) is therefore necessary. That a)⇒ b), is a consequence of the estimate

|1− φ(t)| ≤ ∫ | exp[ i t x ]− 1| dα
=

∫
|x|≤` | exp[ i t x ]− 1| dα+

∫
|x|>` | exp[ i t x ]− 1| dα

≤ |t|`+ 2α[x : |x| > `]

It is a well known principle in Fourier analysis that the regularity of φ(t) at
t = 0 is related to the decay rate of the tail probabilities.

Exercise 2.8. Compute
∫ |x|p dα in terms of the characteristic function φ(t)

for p in the range 0 < p < 2.

Hint: Look at the formula∫ ∞

−∞

1− cos tx

|t|p+1
dt = Cq|x|p

and use Fubini’s theorem.

We have the following result on the behavior of αn(A) for certain sets
whenever αn ⇒ α.

Theorem 2.6. Let αn ⇒ α on R. If C ⊂ R is closed set then

lim sup
n→∞

αn(C) ≤ α(C)

while for open sets G ⊂ R

lim inf
n→∞

αn(G) ≥ α(G)

If A ⊂ R is a continuity set of α i.e. α(∂A) = α(Ā− Ao) = 0, then

lim
n→∞

αn(A) = α(A)

Proof. The function d(x, C) = infy∈C |x − y| is a continuous and equals 0
precisely on C.

f(x) =
1

1 + d(x, C)
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is a continuous function bounded by 1, that is equal to 1 precisely on C and

fk(x) = [f(x)]k ↓ χ
C
(x)

as k →∞. For every k ≥ 1, we have

lim
n→∞

∫
fk(x) dαn =

∫
fk(x) dα

and therefore

lim sup
n→∞

αn(C) ≤ lim
n→∞

∫
fk(x) dαn =

∫
fk(x)dα.

Letting k →∞ we get

lim sup
n→∞

αn(C) ≤ α(C).

Taking complements we conclude that for any open set G ⊂ R

lim inf
n→∞

αn(G) ≥ α(G).

Combining the two parts, if A ⊂ R is a continuity set of α i.e. α(∂A) =
α(Ā− Ao) = 0, then

lim
n→∞

αn(A) = α(A).

We are now ready to prove the converse of Theorem 2.1 which is the hard
part of a theorem of Bochner that characterizes the characteristic functions
of probability distributions as continuous positive definite functions on R
normalized to be 1 at 0.

Theorem 2.7. (Bochner’s Theorem). If φ(t) is a positive definite func-
tion which is continuous at t = 0 and is normalized so that φ(0) = 1, then φ
is the characteristic function of some probability ditribution on R.

Proof. The proof depends on constructing approximations φn(t) which are in
fact characteristic functions and satisfy φn(t)→ φ(t) as n→∞. Then we can
apply the preceeding theorem and the probability measures corresponding to
φn will have a weak limit which will have φ for its characteristic function.
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Step 1. Let us establish a few elementary properties of positive definite
functions.

1) If φ(t) is a positive definite function so is φ(t)exp[ i t a ] for any real a.
The proof is elementary and requires just direct verification.

2) If φj(t) are positive definite for each j then so is any linear combination
φ(t) =

∑
j wjφj(t) with nonnegative weights wj. If each φj(t) is normalized

with φj(0) = 1 and
∑

j wj = 1, then of of course φ(0) = 1 as well.

3) If φ is positive definite then φ satisfies φ(0) ≥ 0, φ(−t) = φ(t) and
|φ(t)| ≤ φ(0) for all t.

We use the fact that the matrix {φ(ti − tj) : 1 ≤ i, j ≤ n} is Hermitian
positive definite for any n real numbers t1, · · · , tn. The first assertion follows
from the the positivity of φ(0)|z|2, the second is a consequence of the Hermi-
tian property and if we take n = 2 with t1 = t and t2 = 0 as a consequence
of the positive definiteness of the 2× 2 matrix we get |φ(t)|2 ≤ |φ(0)|2

4) For any s, t we have |φ(t)− φ(s)|2 ≤ 4φ(0)|φ(0)− φ(t− s)|
We use the positive definiteness of the 3× 3 matrix

1 φ(t− s) φ(t)

φ(t− s) 1 φ(s)

φ(t) φ(s) 1



which is {φ(ti − tj)} with t1 = t, t2 = s and t3 = 0. In particular the
determinant has to be nonnegative.

0 ≤ 1 + φ(s)φ(t− s)φ(t) + φ(s)φ(t− s)φ(t)− |φ(s)|2
−|φ(t)|2 − |φ(t− s)|2

= 1− |φ(s)− φ(t)|2 − |φ(t− s)|2 − φ(t)φ(s)(1− φ(t− s))
−φ(t)φ(s)(1− φ(t− s))

≤ 1− |φ(s)− φ(t)|2 − |φ(t− s)|2 + 2|1− φ(t− s)|
Or

|φ(s)− φ(t)|2 ≤ 1− |φ(s− t)|2 + 2|1− φ(t− s)|
≤ 4|1− φ(s− t)|
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5) It now follows from 4) that if a positive definite function is continuous
at t = 0, it is continuous everywhere (in fact uniformly continuous).

Step 2. First we show that if φ(t) is a positive definite function which is
continuous on R and is absolutely integrable, then

f(x) =
1

2π

∫ ∞

−∞
exp[− i t x ]φ(t) dt ≥ 0

is a continuous function and ∫ ∞

−∞
f(x)dx = 1.

Moreover the function

F (x) =

∫ x

−∞
f(y) dy

defines a distribution function with characteristic function

φ(t) =

∫ ∞

−∞
exp[i t x ]f(x) dx. (2.9)

If φ is integrable on (−∞,∞), then f(x) is clearly bounded and contin-
uous. To see that it is nonnegative we write

f(x) = lim
T→∞

1

2π

∫ T

−T

(
1− |t|

T

)
e− i t xφ(t) dt (2.10)

= lim
T→∞

1

2πT

∫ T

0

∫ T

0

e− i (t−s) xφ(t− s) dt ds (2.11)

= lim
T→∞

1

2πT

∫ T

0

∫ T

0

e− i t x ei s xφ(t− s) dt ds (2.12)

≥ 0.

We can use the dominated convergence theorem to prove equation (2.10),
a change of variables to show equation (2.11) and finally a Riemann sum
approximation to the integral and the positive definiteness of φ to show that
the quantity in (2.12) is nonnegative. It remains to show the relation (2.9).
Let us define

fσ(x) = f(x) exp[−σ
2x2

2
]
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and calculate for t ∈ R, using Fubini’s theorem

∫ ∞

−∞
ei t xfσ(x) dx =

∫ ∞

−∞
ei t xf(x) exp[−σ

2x2

2
] dx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
ei t xφ(s)e−i s x exp[−σ

2x2

2
] ds dx

=

∫ ∞

−∞
φ(s)

1√
2πσ

exp[−(t− s)2

2σ2
] ds. (2.13)

If we take t = 0 in equation (2.13), we get∫ ∞

−∞
fσ(x) dx =

∫ ∞

−∞
φ(s)

1√
2πσ

exp[− s2

2σ2
] ds ≤ 1. (2.14)

Now we let σ → 0. Since fσ ≥ 0 and tends to f as σ → 0, from Fa-
tous’s lemma and equation (2.14), it follows that f is integarable and in fact∫ ∞
−∞ f(x)dx ≤ 1. Now we let σ → 0 in equation (2.13). Since fσ(x)e

itx is
dominated by the integrable function f , there is no problem with the left
hand side. On the other hand the limit as σ → 0 is easily calculated on the
right hand side of equation (2.13)∫ ∞

−∞
eitxf(x)dx = lim

σ→0

∫ ∞

−∞
φ(s)

1√
2πσ

exp[−(s− t)2

2σ2
] ds

= lim
σ→0

∫ ∞

−∞
φ(t+ σs)

1√
2π

exp[−s
2

2
] ds

= φ(t)

proving equation (2.9).

Step 3. If φ(t) is a positive definite function which is continuous, so is
φ(t) exp[ i t y ] for every y and for σ > 0, as well as the convex combination

φσ(t) =
∫ ∞
−∞ φ(t) exp[ i t y ] 1√

2πσ
exp[− y2

2σ2 ] dy

= φ(t) exp[−σ2t2

2
].

The previous step is applicable to φσ(t) which is clearly integrable on R and
by letting σ → 0 we conclude by Theorem 2.3. that φ is a characteristic
function as well.
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Remark 2.2. There is a Fourier Series analog involving distributions on a
finite interval, say S = [0, 2π). The right end point is omitted on purpose,
because the distribution should be thought of as being on [0, 2π] with 0 and
2π identified. If α is a distribution on S the characteristic function is defined
as

φ(n) =

∫
ei n xdα

for integral values n ∈ Z. There is a uniqueness theorem, and a Bochner
type theorem involving an analogous definition of positive definiteness. The
proof is nearly the same.

Exercise 2.9. If αn ⇒ α it is not always true that
∫
x dαn →

∫
x dα be-

cause while x is a continuous function it is not bounded. Construct a simple
counterexample. On the positive side, let f(x) be a continuous function that
is not necessarily bounded. Assume that there exists a positive continuous
function g(x) satisfying

lim
|x|→∞

|f(x)|
g(x)

= 0

and

sup
n

∫
g(x) dαn ≤ C <∞.

Then show that

lim
n→∞

∫
f(x) dαn =

∫
f(x) dα

In particular if
∫ |x|k dαn remains bounded, then

∫
xj dαn →

∫
xj dα for

1 ≤ j ≤ k − 1.

Exercise 2.10. On the other hand if αn ⇒ α and g : R → R is a continuos
function then the distribution βn of g under αn defined as

βn[A] = αn[x : g(x) ∈ A]

converges weakly to β the corresponding distribution of g under α.

Exercise 2.11. If gn(x) is a sequence of continuous functions such that

sup
n,x
|gn(x)| ≤ C <∞ and lim

n→∞
gn(x) = g(x)

uniformly on every bounded interval, then whenever αn ⇒ α it follows that

lim
n→∞

gn(x)dαn =

∫
g(x)dα.
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Can you onstruct an example to show that even if gn, g are continuous just
the pointwise convergence limn→∞ gn(x) = g(x) is not enough.

Exercise 2.12. If a sequence {fn(ω)} of random variables on a measure space
are such that fn → f in measure, then show that the sequence of distributions
αn of fn on R converges weakly to the distribution α of f . Give an example
to show that the converse is not true in general. However, if f is equal to a
constant c with probability 1, or equivalently α is degenerate at some point c,
then αn ⇒ α = δc implies the convrgence in probability of fn to the constant
function c.


