
Chapter 1

Measure Theory

1.1 Introduction.

The evolution of probability theory was based more on intuition rather than
mathematical axioms during its early development. In 1933, A. N. Kol-
mogorov [4] provided an axiomatic basis for probability theory and it is now
the universally accepted model. There are certain ‘non commutative’ ver-
sions that have their origins in quantum mechanics, see for instance K. R.
Parthasarathy[5], that are generalizations of the Kolmogorov Model. We
shall however use exclusively Kolmogorov’s framework.

The basic intuition in probability theory is the notion of randomness.
There are experiments whose results are not predicatable and can be deter-
mined only after performing it and then observing the outcome. The simplest
familiar examples are, the tossing of a fair coin, or the throwing of a balanced
die. In the first experiment the result could be either a head or a tail and
the throwing of a die could result in a score of any integer from 1 through 6.
These are experiments with only a finite number of alternate outcomes. It is
not difficult to imagine experiments that have countably or even uncountably
many alternatives as possible outcomes.

Abstractly then, there is a space Ω of all possible outcomes and each
individual outcome is represented as a point ω in that space Ω. Subsets of Ω
are called events and each of them corresponds to a collection of outcomes. If
the outcome ω is in the subset A, then the event A is said to have occurred.
For example in the case of a die the set A = {1, 3, 5} ⊂ Ω corresponds to
the event ‘an odd number shows up’. With this terminology it is clear that
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union of sets corresponds to ‘or’, intersection to ‘and’, and complementation
to ‘negation’.

One would expect that probabilities should be associated with each out-
come and there should be a ‘Probability Function’ f(ω) which is the proba-
bilty that ω occurs. In the case of coin tossing we may expect Ω = {H, T}
and

f(T ) = f(H) =
1

2
.

Or in the case of a die

f(1) = f(2) = · · · = f(6) =
1

6
.

Since ‘Probability’ is normalized so that certainty corresponds to a Proba-
bility of 1, one expects ∑

ω∈Ω

f(ω) = 1. (1.1)

If Ω is uncountable this is a mess. There is no reasonable way of adding
up an uncountable set of numbers each of which is 0. This suggests that
it may not be possible to start with probabilities associated with individual
outcomes and build a meaningful theory. The next best thing is to start with
the notion that probabilities are already defined for events. In such a case,
P (A) is defined for a class B of subsets A ⊂ Ω. The question that arises
naturally is what should B be and what properties should P (·) defined on B
have? It is natural to demand that the class B of sets for which probabilities
are to be defined satisfy the following properties:

The whole space Ω and the empty set Φ are in B. For any two sets A
and B in B, the sets A ∪ B and A ∩ B are again in B. If A ∈ B, then the
complement Ac is again in B. Any class of sets satisfying these properties is
called a field.

Definition 1.1. A ‘probability’ or more precisely ‘a finitely additive proba-
bility measure’ is a nonnegative set function P (·) defined for sets A ∈ B that
satisfies the following properties:

P (A) ≥ 0 for all A ∈ B, (1.2)

P (Ω) = 1 and P (Φ) = 0. (1.3)
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If A ∈ B and B ∈ B are disjoint then

P (A ∪ B) = P (A) + P (B). (1.4)

In particular

P (Ac) = 1− P (A) (1.5)

for all A ∈ B.
A condition which is some what more technical, but important from a

mathematical viewpoint is that of countable additivity. The class B, in
addition to being a field is assumed to be closed under countable union
(or equivalently, countable intersection); i.e. if An ∈ B for every n, then
A = ∪nAn ∈ B. Such a class is called a σ-field. The ‘probability’ itself is
presumed to be defined on a σ-field B.
Definition 1.2. A set function P defined on a σ-field is called a ‘countably
additive probability measure’ if in addition to satsfying equations (1.2), (1.3)
and (1.4), it satisfies the following countable additivity property: for any
sequence of pairwise disjoint sets An with A = ∪nAn

P (A) =
∑
n

P (An). (1.6)

Exercise 1.1. The limit of an increasing (or decreasing) sequence An of sets
is defined as its union ∪nAn (or the intersection ∩nAn). A monotone class
is defined as a class that is closed under monotone limits of an increasing or
decreasing sequence of sets. Show that a field B is a σ-field if and only if it
is a monotone class.

Exercise 1.2. Show that a finitely additive probability measure P (·) defined
on a σ-field B, is countably additive, i.e. satisfies equation (1.6), if and only
if it satisfies any the following two equivalent conditions.

If An is any nonincreasing sequence of sets in B and A = limnAn = ∩nAn
then

P (A) = lim
n
P (An).

If An is any nondecreasing sequence of sets in B and A = limnAn = ∪nAn
then

P (A) = lim
n
P (An).
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Exercise 1.3. If A,B ∈ B, and P is a finitely additive probability measure
show that P (A ∪ B) = P (A) + P (B)− P (A ∩B). How does this generalize
to P (∪nj=1Aj)?

Exercise 1.4. If P is a finitely additive measure on a field F and A,B ∈ F ,
then |P (A) − P (B)| ≤ P (A∆B) where A∆B is the symmetric difference
(A ∩Bc) ∪ (Ac ∩B). In particular if B ⊂ A,

0 ≤ P (A)− P (B) ≤ P (A ∩Bc) ≤ P (Bc).

Exercise 1.5. If P is a countably additive probability measure, show that for
any sequence An ∈ B, P (∪∞n=1An) ≤

∑∞
n=1 P (An).

Although we would like our ‘probability’ to be a countably additive prob-
ability measure, on a σ- field B of subsets of a space Ω it is not clear that
there are plenty of such things. As a first small step show the following.

Exercise 1.6. If {ωn : n ≥ 1} are distinct points in Ω and pn ≥ 0 are numbers
with

∑
n pn = 1 then

P (A) =
∑

n:ωn∈A
pn

defines a countably additive probability measure on the σ-field of all subsets
of Ω. ( This is still cheating because the measure P lives on a countable set.)

Definition 1.3. A probability measure P on a field F is said to be countably
additive on F , if for any sequence An ∈ F with An ↓ Φ, we have P (An) ↓ 0.

Exercise 1.7. Given any class F of subsets of Ω there is a unique σ-field B
such that it is the smallest σ-field that contains F .

Definition 1.4. The σ-field in the above exercise is called the σ-field gener-
ated by F .
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1.2 Construction of Measures

The following theorem is important for the construction of countably additive
probability measures. A detailed proof of this theorem, as well as other
results on measure and integration, can be found in [7], [3] or in any one of
the many texts on real variables. In an effort to be complete we will sketch
the standard proof.

Theorem 1.1. (Caratheodory Extension Theorem). Any countably
additive probabilty measure P on a field F extends uniquely as a countably
additive probability measure to the σ-field B generated by F .

Proof. The proof proceeds along the following steps:

Step 1. Define an object P ∗ called the outer measure for all sets A.

P ∗(A) = inf
∪jAj⊃A

∑
j

P (Aj) (1.7)

where the infimum is taken over all countable collections {Aj} of sets from
F that cover A. Without loss of generality we can assume that {Aj} are
disjoint. (Replace Aj by (∩j−1

i=1A
c
i) ∩ Aj).

Step 2. Show that P ∗ has the following properties:

1. P ∗ is countably sub-additive, i.e.

P ∗(∪jAj) ≤
∑
j

P ∗(Aj).

2. For A ∈ F , P ∗(A) ≤ P (A). (Trivial)

3. For A ∈ F , P ∗(A) ≥ P (A). (Need to use the countable additivity of P
on F)

Step 3. Define a set E to be measurable if

P ∗(A) ≥ P ∗(A ∩E) + P ∗(A ∩Ec)

holds for all sets A, and establish the following properties for the class M
of measurable sets. The class of measurable setsM is a σ-field and P ∗ is a
countably additive measure on it.
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Step 4. Finally show thatM⊃ F . This implies that M⊃ B and P ∗ is an
extension of P from F to B.

Uniqueness is quite simple. Let P1 and P2 be two countably additive
probability measures on a σ-field B that agree on a field F ⊂ B. Let us
define A = {A : P1(A) = P2(A)}. Then A is a monotone class i.e., if An ∈ A
is increasing (decreasing) then ∪nAn (∩nAn) ∈ A. Uniqueness will follow
from the following fact left as an excercise.

Exercise 1.8. The smallest monotone class generated by a field is the same
as the σ-field generated by the field.

It now follows that A must contain the σ-field generated by F and that
proves uniqueness.

The extension Theorem does not quite solve the problem of constructing
countably additive probability measures. It reduces it to constructing them
on fields. The following theorem is important in the theory of Lebesgue inte-
grals and is very useful for the construction of countably additive probability
measures on the real line. The proof will again be only sketched. The natu-
ral σ-field on which to define a probability measure on the line is the Borel
σ-field. This is defined as the smallest σ-field containing all intervals and
includes in particular all open sets.

Let us consider the class of subsets of the real numbers, I = {Ia,b : −∞ ≤
a < b ≤ ∞} where Ia,b = {x : a < x ≤ b} if b < ∞, and Ia,∞ = {x : a <
x <∞}. In other words I is the collection of intervals that are left-open and
right-closed. The class of sets that are finite disjoint unions of members of I
is a field F , if the empty set is added to the class. If we are given a function
F (x) on the real line which is nondecreasing, continuous from the right and
satisfies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1,

we can define a finitely additive probability measure P by first defining

P (Ia,b) = F (b)− F (a)

for intervals and then extending it to F by defining it as the sum for disjoint
unions from I. Let us note that the Borel σ-field B on the real line is the
σ-field generated by F .
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Theorem 1.2. (Lebesgue). P is countably additive on F if and only if
F (x) is a right continuous function of x. Therefore for each right continu-
ous nondecreasing function F (x) with F (−∞) = 0 and F (∞) = 1 there is
a unique probability measure P on the Borel subsets of the line, such that
F (x) = P (I−∞,x). Conversely every countably additive probability measure
P on the Borel subsets of the line comes from some F . The correspondence
between P and F is one-to-one.

Proof. The only difficult part is to establish the countable additivity of P on
F from the right continuity of F (·). Let Aj ∈ F and Aj ↓ Φ, the empty set.
Let us assume, P (Aj) ≥ δ > 0, for all j and then establish a contradiction.

Step 1. We take a large interval [−`, `] and replace Aj by Bj = Aj ∩ [−`, `].
Since |P (Aj) − P (Bj)| ≤ 1 − F (`) + F (−`), we can make the choice of `
large enough that P (Bj) ≥ δ

2
. In other words we can assumes without loss

of generality that P (Aj) ≥ δ
2

and Aj ⊂ [−`, `] for some fixed ` <∞.

Step 2. If
Aj = ∪kj

i=1Iaj,i,bj,i

use the right continuity of F to replace Aj by Bj which is again a union of
left open right closed intervals with the same right end points, but with left
end points moved ever so slightly to the right. Achieve this in such a way
that

P (Aj −Bj) ≤ δ

10.2j

for all j.

Step 3. Define Cj to be the closure of Bj , obtained by adding to it the left
end points of the intervals making up Bj . Let Ej = ∩ji=1Bi and Dj = ∩ji=1Ci.
Then, (i) the sequence Dj of sets is decreasing, (ii) each Dj is a closed
bounded set, (iii) since Aj ⊃ Dj and Aj ↓ Φ , it follows that Dj ↓ Φ. Because
Dj ⊃ Ej and P (Ej) ≥ δ

2
−∑

j P (Aj − Bj) ≥ 4
10δ

, each Dj is nonempty and
this violates the finite intersection property that every decreasing sequence of
bounded nonempty closed sets on the real line has a nonempty intersection,
i.e. has at least one common point.

The rest of the proof is left as an exercise.

The function F is called the distribution function corresponding to the
probability measure P .
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Example 1.1. Suppose x1, x2, · · · , xn, · · · is a sequence of points and we have
probabilities pn at these points then for the discrete measure

P (A) =
∑

n:xn∈A
pn

we have the distribution function

F (x) =
∑

n:xn≤ x

pn

that only increases by jumps, the jump at xn being pn. The points {xn}
themselves can be discrete like integers or dense like the rationals.

Example 1.2. If f(x) is a nonnegative integrable function with integral 1, i.e.∫ ∞
−∞ f(y)dy = 1 then F (x) =

∫ x

−∞ f(y)dy is a distribution function which
is continuous. In this case f is the density of the measure P and can be
calculated as f(x) = F ′(x).

There are (messy) examples of F that are continuous, but do not come from
any density. More on this later.

Exercise 1.9. Let us try to construct the Lebesgue measure on the rationals
Q ⊂ [0, 1]. We would like to have

P [Ia,b] = b− a
for all rational 0 ≤ a ≤ b ≤ 1. Show that it is impossible by showing that
P [{q}] = 0 for the set {q} containing the single rational q while P [Q] =
P [∪q∈Q{q}] = 1. Where does the earlier proof break down?

Once we have a countably additive probability measure P on a space
(Ω,Σ), we will call the triple (Ω,Σ, P ) a probabilty space.

1.3 Integration

An important notion is that of a random variable or a measurable function.

Definition 1.5. A random variable or measurable function is map f : Ω→
R, i.e. a real valued function f(ω) on Ω such that for every Borel set B ⊂ R,
f−1(B) = {ω : f(ω) ∈ B} is a measurable subset of Ω, i.e f−1(B) ∈ Σ.
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Exercise 1.10. It is enough to check the requirement for sets B ⊂ R that are
intervals or even just sets of the form (−∞, x] for −∞ < x <∞.

A function that is measurable and satisfies |f(ω)| ≤M all ω ∈ Ω for some
finite M is called a bounded measurable function.

The following statements are the essential steps in developing an integra-
tion theory.

Details can be found in any book on real variables.

1. If A ∈ Σ , the indicator function A, defined as

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

is bounded and measurable.

2. Sums, products, limits, compositions and reasonable elementary oper-
ations like min and max performed on measurable functions lead to
measurable functions.

3. If {Aj : 1 ≤ j ≤ n} is a finite disjoint partition of Ω into measurable
sets, the function f(ω) =

∑
j cj1Aj

(ω) is a measurable function and is
referred to as a ‘simple’ function.

4. Any bounded measurable function f is a uniform limit of simple func-
tions. To see this, if f is bounded by M , divide [−M,M ] into n subin-
tervals Ij of length 2M

n
with midpoints cj. Let

Aj = f−1(Ij) = {ω : f(ω) ∈ Ij}
and

fn =

n∑
j=1

cj1Aj
.

Clearly fn is simple, supω |fn(ω)− f(ω)| ≤ M
n

, and we are done.

5. For simple functions f =
∑
cj1Aj

the integral
∫
f(ω)dP is defined to

be
∑

j cjP (Aj). It enjoys the following properties:

(a) If f and g are simple, so is any linear combination af + bg for real
constants a and b and∫

(af + bg)dP = a

∫
fdP + b

∫
gdP.
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(b) If f is simple so is |f | and | ∫ fdP | ≤ ∫ |f |dP ≤ supω |f(ω)|.

6. If fn is a sequence of simple functions converging to f uniformly, then
an =

∫
fndP is a Cauchy sequence of real numbers and therefore has a

limit a as n → ∞. The integral
∫
fdP of f is defined to be this limit

a. One can verify that a depends only on f and not on the sequence
fn chosen to approximate f .

7. Now the integral is defined for all bounded measurable functions and
enjoys the following properties.

(a) If f and g are bounded measurable functions and a, b are real
constants then the linear combination af + bg is again a bounded
measurable function, and∫

(af + bg)dP = a

∫
fdP + b

∫
gdP.

(b) If f is a bounded measurable function so is |f | and | ∫ fdP | ≤∫ |f |dP ≤ supω |f(ω)|.
(c) In fact a slightly stronger inequality is true. For any bounded

measurable f ,∫
|f |dP ≤ P ({ω : |f(ω)| > 0}) sup

ω
|f(ω)|

(d) If f is a bounded measurable function and A is a measurable set
one defines ∫

A

f(ω)dP =

∫
1A(ω)f(ω)dP

and we can write for any measurable set A,∫
fdP =

∫
A

fdP +

∫
Ac

fdP

In addition to uniform convergence there are other weaker notions of
convergence.
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Definition 1.6. A sequence fn functions is said to converge to a function f
everywhere or pointwise if

lim
n→∞

fn(ω) = f(ω)

for every ω ∈ Ω.

In dealing with sequences of functions on a space that has a measure
defined on it, often it does not matter if the sequence fails to converge on
a set of points that is insignificant. For example if we are dealing with the
Lebesgue measure on the interval [0, 1] and fn(x) = xn then fn(x) → 0 for
all x except x = 1. A single point, being an interval of length 0 should be
insignificant for the Lebesgue measure.

Definition 1.7. A sequence fn of measurable functions is said to converge
to a measurable function f almost everywhere or almost surely (usually ab-
breviated as a.e.) if there exists a measurable set N with P (N) = 0 such
that

lim
n→∞

fn(ω) = f(ω)

for every ω ∈ N c.

Note that almost everywhere convergence is always relative to a proba-
bility measure.

Another notion of convergence is the following:

Definition 1.8. A sequence fn of measurable functions is said to converge
to a measurable function f ‘in measure’ or ‘in probability’ if

lim
n→∞

P [ω : |fn(ω)− f(ω)| ≥ ε] = 0

for every ε > 0.

Let us examine these notions in the context of indicator functions of sets
fn(ω) = 1An(ω). As soon as A 6= B, supω |1A(ω) − 1B(ω)| = 1, so that
uniform convergence never really takes place. On the other hand one can
verify that 1An(ω)→ 1A(ω) for every ω if and only if the two sets

lim sup
n

An = ∩n ∪m≥n Am
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and
lim inf

n
An = ∪n ∩m≥n Am

both coincide with A. Finally 1An(ω)→ 1A(ω) in measure if and only if

lim
n→∞

P (An∆A) = 0

where for any two sets A and B the symmetric difference A∆B is defined as
A∆B = (A∩Bc)∪ (Ac ∩B) = A∪B ∩ (A∩B)c. It is the set of points that
belong to either set but not to both. For instance 1An → 0 in measure if and
only if P (An)→ 0.

Exercise 1.11. There is a difference between almost everywhere convergence
and convergence in measure. The first is really stronger. Consider the in-
terval [0, 1] and divide it successively into 2, 3, 4 · · · parts and enumerate the
intervals in succession. That is, I1 = [0, 1

2
], I2 = [1

2
, 1], I3 = [0, 1

3
], I4 = [1

3
, 2

3
],

I5 = [2
3
, 1], and so on. If fn(x) = 1In(x) it easy to check that fn tends to 0

in measure but not almost everywhere.

Exercise 1.12. But the following statement is true. If fn → f as n → ∞ in
measure, then there is a subsequence fnj

such that fnj
→ f almost every-

where as j →∞.

Exercise 1.13. If {An} is a sequene of measurable sets, then in order that
lim supn→∞An = Φ, it is necessary and sufficient that

lim
n→∞

P [∪∞m=nAm] = 0

In particular it is sufficient that
∑

n P [An] <∞. Is it necessary?

Lemma 1.3. If fn → f almost everywhere then fn → f in measure.

Proof. fn → f outside N is equivalent to

∩n ∪m≥n [ω : |fm(ω)− f(ω)| ≥ ε] ⊂ N

for every ε > 0. In particular by countable additivity

P [ω : |fn(ω)− f(ω)| ≥ ε] ≤ P [∪m≥n[ω : |fm(ω)− f(ω)| ≥ ε]→ 0

as n→∞ and we are done.



1.3. INTEGRATION 19

Exercise 1.14. Countable additivity is important for this result. On a finitely
additive probability space it could be that fn → f everywhere and still
fn 6→ f in measure. In fact show that if every sequence fn → 0 that con-
verges everywhere also converges in probabilty, then the measure is countably
additive.

Theorem 1.4. (Bounded Convergence Theorem). If the sequence {fn}
of measurable functions is uniformly bounded and if fn → f in measure as
n→∞, then limn→∞

∫
fndP =

∫
fdP .

Proof. Since

|
∫
fndP −

∫
fdP | = |

∫
(fn − f)dP | ≤

∫
|fn − f |dP

we need only prove that if fn → 0 in measure and |fn| ≤M then
∫ |fn|dP →

0. To see this∫
|fn|dP =

∫
|fn|≤ε

|fn|dP +

∫
|fn|>ε

|fn|dP ≤ ε+MP [ω : |fn(ω)| > ε]

and taking limits

lim sup
n→∞

∫
|fn|dP ≤ ε

and since ε > 0 is arbitrary we are done.

The bounded convergence theorem is the essence of countable additivity.
Let us look at the example of fn(x) = xn on 0 ≤ x ≤ 1 with Lebesgue
measure. Clearly fn(x) → 0 a.e. and therefore in measure. While the
convergence is not uniform, 0 ≤ xn ≤ 1 for all n and x and so the bounded
convergence theorem applies. In fact∫ 1

0

xndx =
1

n+ 1
→ 0.

However if we replace xn by nxn, fn(x) still goes to 0 a.e., but the sequence
is no longer uniformly bounded and the integral does not go to 0.

We now proceed to define integrals of nonnegative measurable functions.
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Definition 1.9. If f is a nonnegative measurable function we define∫
fdP = {sup

∫
gdP : g bounded , 0 ≤ g ≤ f}.

An important result is

Theorem 1.5. (Fatou’s Lemma). If for each n ≥ 1, fn ≥ 0 is measurable
and fn → f in measure as n→∞ then∫

fdP ≤ lim inf
n→∞

∫
fndP.

Proof. Suppose g is bounded and satisfies 0 ≤ g ≤ f . Then the sequence
hn = fn ∧ g is uniformly bounded and

hn → h = f ∧ g = g.

Therefore, by the bounded convergence theorem,∫
gdP = lim

n→∞

∫
hndP.

Since
∫
hndP ≤

∫
fndP for every n it follows that∫

gdP ≤ lim inf
n→∞

∫
fndP.

As g satisfying 0 ≤ g ≤ f is arbitrary and we are done.

Corollary 1.6. (Monotone Convergence Theorem). If for a sequence
{fn} of nonnegative functions, we have fn ↑ f monotonically then∫

fndP →
∫
fdP as n→∞.

Proof. Obviously
∫
fndP ≤

∫
fdP and the other half follows from Fatou’s

lemma.
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Now we try to define integrals of arbitrary measurable functions. A non-
negative measurable function is said to be integrable if

∫
fdP < ∞. A

measurable function f is said to be integrable if |f | is integrable and we de-
fine

∫
fdP =

∫
f+dP − ∫

f−dP where f+ = f ∨ 0 and f− = −f ∧ 0 are the
positive and negative parts of f . The integral has the following properties.

1. It is linear. If f and g are integrable so is af + bg for any two real
constants and

∫
(af + bg)dP = a

∫
fdP + b

∫
gdP .

2. | ∫ fdP | ≤ ∫ |f |dP for every integrable f .

3. If f = 0 except on a set N of measure 0, then f is integrable and∫
fdP = 0. In particular if f = g almost everywhere then

∫
fdP =∫

gdP .

Theorem 1.7. (Jensen’s Inequality.) If φ(x) is a convex function of x
and f(ω) and φ(f(ω)) are integrable then∫

φ(f(ω))dP ≥ φ
( ∫

f(ω)dP
)
. (1.8)

Proof. We have seen the inequlity already for φ(x) = |x|. The proof is
quite simple. We note that any convex function φ can be represented as the
supremum of a collection of affine linear functions.

φ(x) = sup
(a,b)∈E

{ax+ b}. (1.9)

It is clear that if (a, b) ∈ E, then af(ω)+b ≤ φ(f(ω)) and on integration this
yields am + b ≤ E[φ(f(ω))] where m = E[f(ω)]. Since this is true for every
(a, b) ∈ E, in view of the represenattion (1.9), our theorem follows.

Another important theorem is

Theorem 1.8. (The Dominated Convergence Theorem) If for some
sequence {fn} of measurable functions we have fn → f in measure and
|fn(ω)| ≤ g(ω) for all n and ω for some integrable function g, then

∫
fndP →∫

fdP as n→∞.
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Proof. g + fn and g − fn are nonnegative and converge in measure to g + f
and g − f respectively. By Fatou’s lemma

lim inf
n→∞

∫
(g + fn)dP ≥

∫
(g + f)dP

Since
∫
gdP is finite we can subtract it from both sides and get

lim inf
n→∞

∫
fndP ≥

∫
fdP.

Working the same way with g − fn yields

lim sup
n→∞

∫
fndP ≤

∫
fdP

and we are done.

Exercise 1.15. Take the unit interval with the Lebesgue measure and define
fn(x) = nα1[0, 1

n
](x). Clearly fn(x) → 0 for x 6= 0. On the other hand∫

fn(x)dx = nα−1 → 0 if and only if α < 1. What is g(x) = supn fn(x) and
when is g integrable?

If h(ω) = f(ω)+ ig(ω) is a complex valued measurable function with real
and imaginary parts f(ω) and g(ω) that are integrable we define∫

h(ω)dP =

∫
f(ω)dP + i

∫
g(ω)dP

Exercise 1.16. Show that for any complex function h(ω) = f(ω) + ig(ω)
with measurable f and g, |h(ω)| is integrable, if and only if |f | and |g| are
integrable and we then have∣∣∣∣∫ h(ω) dP

∣∣∣∣ ≤ ∫
|h(ω)| dP

1.4 Transformations

A measurable space (Ω,B) is a set Ω together with a σ-field B of subsets of
Ω.
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Definition 1.10. Given two measurable spaces (Ω1,B1) and (Ω2,B2), a map-
ping or a transformation from T : Ω1 → Ω2, i.e. a function ω2 = T (ω1) that
assigns for each point ω1 ∈ Ω1 a point ω2 = T (ω1) ∈ Ω2, is said to be
measurable if for every measurable set A ∈ B2, the inverse image

T−1(A) = {ω1 : T (ω1) ∈ A} ∈ B1.

Exercise 1.17. Show that, in the above definition, it is enough to verify the
property for A ∈ A where A is any class of sets that generates the σ-field B2.

If T is a measurable map from (Ω1,B1) into (Ω2,B2) and P is a probability
measure on (Ω1,B1), the induced probability measure Q on (Ω2,B2) is defined
by

Q(A) = P (T−1(A)) for A ∈ B2. (1.10)

Exercise 1.18. Verify that Q indeed does define a probability measure on
(Ω2,B2).

Q is called the induced measure and is denoted by Q = PT−1.

Theorem 1.9. If f : Ω2 → R is a real valued measurable function on Ω2,
then g(ω1) = f(T (ω1)) is a measurable real valued function on (Ω1,B1).
Moreover g is integrable with respect to P if and only if f is integrable with
respect to Q, and ∫

Ω2

f(ω2) dQ =

∫
Ω1

g(ω1) dP (1.11)

Proof. If f(ω2) = 1A(ω2) is the indicator function of a set A ∈ B2, the
claim in equation (1.11) is in fact the definition of measurability and the
induced measure. We see, by linearity, that the claim extends easily from
indicator functions to simple functions. By uniform limits, the claim can now
be extended to bounded measurable functions. Monotone limits then extend
it to nonnegative functions. By considering the positive and negative parts
separately we are done.
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A measurable trnasformation is just a generalization of the concept of a
random variable introduced in section 1.2. We can either think of a random
variable as special case of a measurable transformation where the target space
is the real line or think of a measurable transformation as a random variable
with values in an arbitrary target space. The induced measure Q = PT−1 is
called the distribution of the random variable F under P . In particular, if T
takes real values, Q is a probability distribution on R.

Exercise 1.19. When T is real valued show that∫
T (ω)dP =

∫
x dQ.

When F = (f1, f2, · · ·fn) takes values in Rn, the induced distribution Q
on Rn is called the joint distribution of the n random variables f1, f2 · · · , fn.

Exercise 1.20. If T1 is a measurable map from (Ω1,B1) into (Ω2,B2) and T2 is
a measurable map from (Ω2,B2) into (Ω3,B3), then show that T = T2 ◦ T1 is
a measurable map from (Ω1,B1) into (Ω3,B3). If P is a probability measure
on (Ω1,B1), then on (Ω3,B3), the two measures PT−1 and (PT−1

1 )T−1
2 are

identical.

1.5 Product Spaces

Given two sets Ω1 and Ω2 the Cartesian product Ω = Ω1 × Ω2 is the set of
pairs (ω1, ω2) with ω1 ∈ Ω1 and ω2 ∈ Ω2. If Ω1 and Ω2 come with σ-fields
B1 and B2 respectively, we can define a natural σ-field B on Ω as the σ-field
generated by sets (measurable rectangles) of the form A1 ×A2 with A1 ∈ B1

and A2 ∈ B2. This σ-field will be called the product σ-field.

Exercise 1.21. Show that sets that are finite disjoint unions of measurable
rectangles constitute a field F .

Definition 1.11. The product σ-field B is the σ-field generaated by the field
F .
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Given two probability measures P1 and P2 on (Ω1,B1) and (Ω2,B2) re-
spectively we try to define on the product space (Ω,B) a probability measure
P by defining for a measurable rectangle A = A1 ×A2

P (A1 × A2) = P1(A1)× P2(A2)

and extending it to the field F of finite disjoint unions of measurable rect-
angles as the obvious sum.

Exercise 1.22. If E ∈ F has two representations as disjoint finite unions of
measurable rectangles

E = ∪i (Ai1 ×Ai2) = ∪j (Bj
1 × Bj

2)

then ∑
i

P1(A
i
1)× P2(A

i
2) =

∑
j

P1(B
j
1)× P2(B

j
2).

so that P (E) is well defined. P is a finitely additive probability measure on
F .

Lemma 1.10. The measure P is countably additive on the field F .

Proof. For any set E ∈ F let us define the section Eω2 as

Eω2 = {ω1 : (ω1, ω2) ∈ E}. (1.12)

Then P1(Eω2) is a measurable function of ω2 (is in fact a simple function)
and

P (E) =

∫
Ω2

P1(Eω2) dP2. (1.13)

Now let En ∈ F ↓ Φ, the empty set. Then it is easy to verify that En,ω2

defined by
En,ω2 = {ω1 : (ω1, ω2) ∈ En}

satisfies En,ω2 ↓ Φ for each ω2 ∈ Ω2. From the countable additivity of P1 we
conclude that P1(En,ω2) → 0 for each ω2 ∈ Ω2 and since, 0 ≤ P1(En,ω2) ≤ 1
for n ≥ 1, it follows from equation (1.13) and the bounded convergence
theorem that

P (En) =

∫
Ω2

P1(En,ω2) dP2 → 0

establishing the countable additivity of P on F .
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By an application of the Caratheodory extension theorem we conclude that
P extends uniquely as a countably additive measure to the σ-field B (product
σ-field) generated by F . We will call this the Product Measure P .

Corollary 1.11. For any A ∈ B if we denote by Aω1 and Aω2 the respective
sections

Aω1 = {ω2 : (ω1, ω2) ∈ A}
and

Aω2 = {ω1 : (ω1, ω2) ∈ A}
then the functions P1(Aω2) and P2(Aω1) are measurable and

P (A) =

∫
P1(Aω2)dP2 =

∫
P2(Aω1) dP1.

In particular for a measurable set A, P (A) = 0 if and only if for almost all
ω1 with respect to P1, the sections Aω1 have measure 0 or equivalently for
almost all ω2 with respect to P2, the sections Aω2 have measure 0.

Proof. The assertion is clearly valid if A is rectangle of the form A1 × A2

with A1 ∈ B1 and A2 ∈ B2. If A ∈ F , then it is a finite disjoint union of such
rectangles and the assertion is extended to such a set by simple addition.
Clearly, by the monotone convergence theorem, the class of sets for which
the assertion is valid is a monotone class and since it contains the field F it
also contains the σ-field B generated by the field F .

Warning. It is possible that a set A may not be measurable with respect
to the product σ-field, but nevertheless the sections Aω1 and Aω2 are all
measurable, P2(Aω1) and P1(Aω2) are measurable functions, but∫

P1(Aω2)dP2 6=
∫
P2(Aω1) dP1.

In fact there is a rather nasty example where P1(Aω2) is identically 1 whereas
P2(Aω1) is identically 0.

The next result concerns the equality of the double integral, (i.e. the
integral with respect to the product measure) and the repeated integrals in
any order.
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Theorem 1.12. (Fubini’s Theorem). Let f(ω) = f(ω1, ω2) be a measur-
able function of ω on (Ω,B). Then f can be considered as a function of ω2

for each fixed ω1 or the other way around. The functions gω1(·) and hω2(·)
defined respectively on Ω2 and Ω1 by

gω1(ω2) = hω2(ω1) = f(ω1, ω2)

are measurable for each ω1 and ω2. If f is integrable then the functions
gω1(ω2) and hω2(ω1) are integrable for almost all ω1 and ω2 respectively. Their
integrals

G(ω1) =

∫
Ω2

gω1(ω2) dP2

and

H(ω2) =

∫
Ω1

hω2(ω1) dP1

are measurable, finite almost everywhere and integrable with repect to P1 and
P2 respectively. Finally∫

f(ω1, ω2) dP =

∫
G(ω1)dP1 =

∫
H(ω2)dP2

Conversely for a nonnegative measurable function f if either G are H, which
are always measurable, has a finite integral so does the other and f is inte-
grable with its integral being equal to either of the repeated integrals, namely
integrals of G and H.

Proof. The proof follows the standard pattern. It is a restatement of the
earlier corollary if f is the indicator function of a measurable set A. By
linearity it is true for simple functions and by passing to uniform limits, it is
true for bounded measurable functions f . By monotone limits it is true for
nonnegative functions and finally by taking the positive and negative parts
seperately it is true for any arbitrary integrable function f .

Warning. The following could happen. f is a measurable function that
takes both positive and negative values that is not integrable. Both the
repeated integrals exist and are unequal. The example is not hard.
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Exercise 1.23. Construct a measurable function f(x, y) which is not inte-
grable, on the product [0, 1]× [0, 1] of two copies of the unit interval with
Lebesgue measure, such that the repeated integrals make sense and are un-
equal, i.e. ∫ 1

0

dx

∫ 1

0

f(x, y) dy 6=
∫ 1

0

dy

∫ 1

0

f(x, y) dx

1.6 Distributions and Expectations

Let us recall that a triplet (Ω,B, P ) is a Probability Space, if Ω is a set, B is
a σ-field of subsets of Ω and P is a (countably additive) probability measure
on B. A random variable X is a real valued measurable function on (Ω,B).
Given such a function X it induces a probability distribution α on the Borel
subsets of the line α = PX−1. The distribution function F (x) corresponding
to α is obviously

F (x) = α((−∞, x]) = P [ω : X(ω) ≤ x ].

The measure α is called the distibution of X and F (x) is called the distribu-
tion function of X. If g is a measurable function of the real variable x, then
Y (ω) = g(X(ω)) is again a random variable and its distribution β = PY −1

can be obtained as β = α g−1 from α. The Expectation or mean of a random
variable is defined if it is integrable and

E[X] = EP [X] =

∫
X(ω) dP.

By the change of variables formula (Exercise 3.3) it can be obtained directly
from α as

E[X] =

∫
x dα.

Here we are taking advantage of the fact that on the real line x is a very
special real valued function. The value of the integral in this context is
referred to as the expectation or mean of α. Of course it exists if and only
if ∫

|x| dα <∞
and ∣∣∣∣∫ x dα

∣∣∣∣ ≤ ∫
|x| dα.
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Similarly

E(g(X)) =

∫
g(X(ω)) dP =

∫
g(x) dα

and anything concerning X can be calculated from α. The statement X is a
random variable with distribution α has to be interpreted in the sense that
somewhere in the background there is a Probability Space and a random
variable X on it, which has α for its distribution. Usually only α matters
and the underlying (Ω,B, P ) never emerges from the background and in a
pinch we can always say Ω is the real line, B are the Borel sets , P is nothing
but α and the random variable X(x) = x.

Some other related quantities are

V ar(X) = σ2(X) = E[X2]− [E[X]]2. (1.14)

V ar(X) is called the variance of X.

Exercise 1.24. Show that if it is defined V ar(X) is always nonnegative and
V ar(X) = 0 if and only if for some value a, which is necessarily equal to
E[X], P [X = a] = 1.

Some what more generally we can consider a measurable mapping X =
(X1, · · · , Xn) of a probability space (Ω,B, P ) into Rn as a vector of n random
variablesX1(ω), X2(ω), · · · , Xn(ω). These are caled random vectors or vector
valued random variables and the induced distribution α = PX−1 on Rn is
called the distribution of X or the joint distribution of (X1, · · · , Xn). If we
denote by πi the coordinate maps (x1, · · · , xn)→ xi from Rn → R, then

αi = απ−1
i = PX−1

i

are called the marginals of α.
The covariance between two random variables X and Y is defined as

Cov(X, Y ) = E[(X − E(X))(Y −E(Y ))] = E[XY ]− E[X]E[Y ]. (1.15)

Exercise 1.25. If X1, · · · , Xn are n random variables the matrix

Ci,j = Cov(Xi, Xj)

is called the covariance matrix. Show that it is a symmetric positive semi-
definite matrix. Is every positive semi-definite matrix the covariance matrix
of some random vector?
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Exercise 1.26. The Riemann-Stieljes integral uses the distribution function
directly to define

∫ ∞
−∞ g(x)dF (x) where g is a bounded continuous function

and F is a distribution function. It is defined as limit as N →∞ of sums

N∑
j=0

g(xj)[F (aNj+1)− F (aNj )]

where −∞ < aN0 < aN1 < · · · < aNN < aNN+1 < ∞ is a partition of the finite
interval [aN0 , a

N
N+1] and the limit is taken in such a way that aN0 → −∞,

aNN+1 → +∞ and the oscillation of g in any [aNj , a
N
j+1] goes to 0. Show that

if P is the measure corresponding to F then∫ ∞

−∞
g(x)dF (x) =

∫
R

g(x)dP.


