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Chapter 1

Introduction and overview

1.1 What is fixed income analysis?

This book develops and studies techniques and models that are helpful in the analysis of fixed

income securities. It is difficult to give a clear-cut and universally accepted definition of the term

“fixed income security.” Certainly, the class of fixed income securities includes securities where the

issuer promises one or several fixed, predetermined payments at given points in time. This is the

case for standard deposit arrangements and bonds. However, we will also consider several related

securities as being fixed income securities, although the payoffs of such a security are typically not

fixed and known at the time where the investor purchases the security, but depend on the future

development in some particular interest rate or the price of some basic fixed income security. In this

broader sense of the term, the many different interest rate and bond derivatives are also considered

fixed income securities, e.g. options and futures on bonds or interest rates, caps and floors, swaps

and swaptions.

The prices of many fixed income securities are often expressed in terms of various interest

rates and yields so understanding fixed income pricing is equivalent to understanding interest rate

behavior. The key concept in the analysis of fixed income securities and interest rate behavior is

really the term structure of interest rates. The interest rate on a loan will normally depend

on the maturity of the loan, and on the bond markets there will often be differences between the

yields on short-term bonds and long-term bonds. Loosely, the term structure of interest rates is

defined as the dependence between interest rates and maturities. We will be more concrete later

on.

We split the overall analysis into two parts which are clearly related to each other. The first

part focuses on the economics of the term structure of interest rates in the sense that the aim is to

explore the relations between interest rates and other macroeconomic variables such as aggregate

consumption, production, inflation, and money supply. This will help us understand the level of

bond prices and interest rates and the shape of the term structure of interest rates at a given point

in time and it will give us some tools for understanding and studying the reactions of interest

rates and prices to macroeconomic news and shocks. The second part of the analysis focuses

on developing tools and models for the pricing and risk management of the many different fixed

income securities. Such models are used in all modern financial institutions that trade fixed income

securities or are otherwise concerned with the dynamics of interest rates.

In this introductory chapter we will first introduce some basic concepts and terminology and

1
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discuss how the term structure of interest rates can be represented in various equivalent ways.

In Section 1.3 we take a closer look at the bond and money markets across the world. Among

other things we will discuss the size of different markets, the distinction between domestic and

international markets, and who the issuers of bonds are. Section 1.4 briefly introduces some fixed

income derivatives. Finally, a detailed outline of the rest of the book is given in Section 1.5.

1.2 Basic bond market terminology

The simplest fixed income securities are bonds. A bond is nothing but a tradable loan agree-

ment. The issuer sells a contract promising the holder a predetermined payment schedule. Bonds

are issued by governments, private and public corporations, and financial institutions. Most bonds

are subsequently traded at organized exchanges or over-the-counter (OTC). Bond investors include

pension funds and other financial institutions, the central banks, corporations, and households.

Bonds are traded with various maturities and with various types of payment schedule. Many loan

agreements of a maturity of less than one year are made in the so-called money markets. Below,

we will focus on some basic concepts and terminology.

1.2.1 Bond types

It is important to distinguish zero-coupon bonds and coupon bonds. A zero-coupon bond is

the simplest possible bond. It promises a single payment at a single future date, the maturity date

of the bond. Bonds which promise more than one payment when issued are referred to as coupon

bonds. We will assume throughout that the face value of any bond is equal to 1 (dollar) unless

stated otherwise. Suppose that at some date t a zero-coupon bond with maturity T ≥ t is traded

in the financial markets at a price of BTt . This price reflects the market discount factor for sure

time T payments. If many zero-coupon bonds with different maturities are traded, we can form

the function T 7→ BTt , which we call the market discount function prevailing at time t. Note

that Btt = 1, since the value of getting 1 dollar right away is 1 dollar, of course. Presumably, all

investors will prefer getting 1 dollar at some time T rather than at a later time S. Therefore, the

discount function should be decreasing, i.e.

1 ≥ BTt ≥ BSt ≥ 0, T < S. (1.1)

A coupon bond has multiple payment dates, which we will generally denote by T1, T2, . . . , Tn.

Without loss of generality we assume that T1 < T2 < · · · < Tn. The payment at date Ti is denoted

by Yi. For almost all traded coupon bonds the payments occur at regular intervals so that, for all i,

Ti+1 − Ti = δ for some fixed δ. If we measure time in years, typical bonds have δ ∈ {0.25, 0.5, 1}
corresponding to quarterly, semi-annual, or annual payments. The size of each of the payments is

determined by the face value, the coupon rate, and the amortization principle of the bond. The

face value is also known as the par value or principal of the bond, and the coupon rate is also

called the nominal rate or stated interest rate. In many cases, the coupon rate is quoted as an

annual rate even when payments occur more frequently. If a bond with a payment frequency of δ

has a quoted coupon rate of R, this means that the periodic coupon rate is δR.

Most coupon bonds are so-called bullet bonds or straight-coupon bonds where all the payments

before the final payment are equal to the product of the coupon rate and the face value. The final
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payment at the maturity date is the sum of the same interest rate payment and the face value. If

R denotes the periodic coupon rate, the payments per unit of face value are therefore

Yi =







R, i = 1, . . . , n− 1

1 +R, i = n
(1.2)

Of course for R = 0 we are back to the zero-coupon bond.

Other bonds are so-called annuity bonds, which are constructed so that the total payment is

equal for all payment dates. Each payment is the sum of an interest payment and a partial repay-

ment of the face value. The outstanding debt and the interest payment are gradually decreasing

over the life of an annuity, so that the repayment increases over time. Let again R denote the

periodic coupon rate. Assuming a face value of one, the constant periodic payment is

Yi = Y ≡ R

1 − (1 +R)−n
, i = 1, . . . , n. (1.3)

The outstanding debt of the annuity immediately after the i’th payments is

Di = Y
1 − (1 +R)−(n−i)

R
,

the interest part of the i’th payment is

Ii = RDi−1 = R
1 − (1 +R)−(n−i+1)

1 − (1 +R)−n
,

and the repayment part of the i’th payment is

Xi = Y (1 +R)
−(n−i+1)

so that Xi + Ii = Yi.

Some bonds are so-called serial bonds where the face value is paid back in equal instalments.

The payment at a given payment date is then the sum of the instalment and the interest rate on

the outstanding debt. The interest rate payments, and hence the total payments, will therefore

decrease over the life of the bond. With a face value of one, each instalment or repayment is

Xi = 1/n, i = 1, . . . , n. Immediately after the i’th payment date, the outstanding debt must be

(n − i)/n = 1 − (i/n). The interest payment at Ti is therefore Ii = RDi−1 = R (1 − (i− 1)/n).

Consequently, the total payment at Ti must be

Yi = Xi + Ii =
1

n
+R

(

1 − i− 1

n

)

.

Finally, few bonds are perpetuities or consols that last forever and only pay interest, i.e. Yi = R,

i = 1, 2, . . . . The face value of a perpetuity is never repaid.

Most coupon bonds have a fixed coupon rate, but a small minority of bonds have coupon

rates that are reset periodically over the life of the bond. Such bonds are called floating rate bonds.

Typically, the coupon rate effective for the payment at the end of one period is set at the beginning

of the period at the current market interest rate for that period, e.g. to the 6-month interest rate

for a floating rate bond with semi-annual payments. We will look more closely at the valuation of

floating rate bonds in Section 1.2.5.
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A coupon bond can be seen as a portfolio of zero-coupon bonds, namely a portfolio of Y1 zero-

coupon bonds maturing at T1, Y2 zero-coupon bonds maturing at T2, etc. If all these zero-coupon

bonds are traded in the market, the price of the coupon bond at any time t must be

Bt =
∑

Ti>t

YiB
Ti

t , (1.4)

where the sum is over all future payment dates of the coupon bond. If this relation does not hold,

there will be a clear arbitrage opportunity in the market.

Example 1.1 Consider a bullet bond with a face value of 100, a coupon rate of 7%, annual

payments, and exactly three years to maturity. Suppose zero-coupon bonds are traded with face

values of 1 dollar and time-to-maturity of 1, 2, and 3 years, respectively. Assume that the prices

of these zero-coupon bonds are Bt+1
t = 0.94, Bt+2

t = 0.90, and Bt+3
t = 0.87. According to (1.4),

the price of the bullet bond must then be

Bt = 7 · 0.94 + 7 · 0.90 + 107 · 0.87 = 105.97.

If the price is lower than 105.97, riskfree profits can be locked in by buying the bullet bond and

selling 7 one-year, 7 two-year, and 107 three-year zero-coupon bonds. If the price of the bullet

bond is higher than 105.97, sell the bullet bond and buy 7 one-year, 7 two-year, and 107 three-year

zero-coupon bonds. 2

If not all the relevant zero-coupon bonds are traded, we cannot justify the relation (1.4) as a

result of the no-arbitrage principle. Still, it is a valuable relation. Suppose that an investor has

determined (from private or macro economic information) a discount function showing the value

she attributes to payments at different future points in time. Then she can value all sure cash

flows in a consistent way by substituting that discount function into (1.4).

The market prices of all bonds reflect a market discount function, which is the result of the

supply and demand for the bonds of all market participants. We can think of the market discount

function as a very complex average of the individual discount functions of the market participants.

In most markets only few zero-coupon bonds are traded, so that information about the discount

function must be inferred from market prices of coupon bonds. We discuss ways of doing that in

Chapter 2.

1.2.2 Bond yields and zero-coupon rates

Although discount factors provide full information about how to discount amounts back and

forth, it is pretty hard to relate to a 5-year discount factor of 0.7835. It is far easier to relate to the

information that the five-year interest rate is 5%. Interest rates are always quoted on an annual

basis, i.e. as some percentage per year. However, to apply and assess the magnitude of an interest

rate, we also need to know the compounding frequency of that rate. More frequent compounding

of a given interest rate per year results in higher “effective” interest rates. Furthermore, we need

to know at which time the interest rate is set or observed and for which period of time the interest

rate applies. First we consider spot rates which apply to a period beginning at the time the rate

is set. In the next subsection, we consider forward rates which apply to a future period of time.
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The yield of a bond is the discount rate which has the property that the present value of the

future payments discounted at that rate is equal to the current price of the bond. The convention in

many bond markets is to quote rates using annual compounding. For a coupon bond with current

price Bt and payments Y1, . . . , Yn at time T1, . . . , Tn, respectively, the annually compounded yield

is then the number ŷBt satisfying the equation

Bt =
∑

Ti>t

Yi
(
1 + ŷBt

)−(Ti−t)
. (1.5)

Note that the same discount rate is applied to all payments. In particular, for a zero-coupon bond

with a payment of 1 at time T , the annually compounded yield ŷTt at time t is such that

BTt = (1 + ŷTt )−(T−t) (1.6)

and, consequently,

ŷTt =
(
BTt
)−1/(T−t) − 1. (1.7)

We call ŷTt the zero-coupon yield, the zero-coupon rate, or the spot rate for date T . The

zero-coupon rates as a function of maturity is called the zero-coupon yield curve or simply

the yield curve. It is one way to express the term structure of interest rates. Due to the one-

to-one relationship between zero-coupon bond prices and zero-coupon rates, the discount function

T 7→ BTt and the zero-coupon yield curve T 7→ ŷTt carry exactly the same information.

For some bonds and loans interest rates are quoted using semi-annually, quarterly, or monthly

compounding. An interest rate ofR per year compoundedm times a year, corresponds to a discount

factor of (1 + R/m)−m over a year. The annually compounded interest rate that corresponds to

an interest rate of R compounded m times a year is (1 +R/m)m− 1. This is sometimes called the

“effective” interest rate corresponding to the nominal interest rate R. This convention is typically

applied for interest rates set for loans at the international money markets, the most commonly

used being the LIBOR (London InterBank Offered Rate) rates that are fixed in London. The

compounding period equals the maturity of the loan with three, six, or twelve months as the most

frequently used maturities. If the quoted annualized rate for say a three-month loan is lt+0.25
t , it

means that the three-month interest rate is lt+0.25
t /4 = 0.25lt+0.25

t so that the present value of one

dollar paid three months from now is

Bt+0.25
t =

1

1 + 0.25 lt+0.25
t

Hence, the three-month rate is

lt+0.25
t =

1

0.25

(
1

Bt+0.25
t

− 1

)

.

More generally, the relations are

BTt =
1

1 + lTt (T − t)
(1.8)

and

lTt =
1

T − t

(
1

BTt
− 1

)

.

We shall use the term LIBOR rates for interest rates that are quoted in this way. Note that if we

had a full LIBOR rate curve T 7→ lTt , this would carry exactly the same definition as the discount
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function T 7→ BTt . Some fixed income securities provide payoffs that depend on future values of

LIBOR rates. In order to price such securities it is natural to model the dynamics of LIBOR rates

and this is exactly what is done in one class of models.

Increasing the compounding frequency m, the effective annual return of one dollar invested at

the interest rate R per year increases to eR, due to the mathematical result saying that

lim
m→∞

(

1 +
R

m

)m

= eR.

A nominal, continuously compounded interest rate R is equivalent to an annually compounded

interest rate of eR − 1 (which is bigger than R). Similarly, the zero-coupon bond price BTt is

related to the continuously compounded zero-coupon rate yTt by

BTt = e−y
T
t (T−t) (1.9)

so that

yTt = − 1

T − t
lnBTt . (1.10)

The function T 7→ yTt is also a zero-coupon yield curve that contains exactly the same information

as the discount function T 7→ BTt and also the same information as the annually compounded yield

curve T 7→ ŷTt (or the yield curve with any other compounding frequency). We have the following

relation between the continuously compounded and the annually compounded zero-coupon rates:

yTt = ln(1 + ŷTt ).

For mathematical convenience we will focus on the continuously compounded yields in most models.

1.2.3 Forward rates

While a zero-coupon or spot rate reflects the price on a loan between today and a given future

date, a forward rate reflects the price on a loan between two future dates. The annually com-

pounded relevant forward rate at time t for the period between time T and time S is denoted by

f̂T,St . Here, we have t ≤ T < S. This is the rate, which is appropriate at time t for discounting

between time T and S. We can think of discounting from time S back to time t by first discounting

from time S to time T and then discounting from time T to time t. We must therefore have that

(
1 + ŷSt

)−(S−t)
=
(
1 + ŷTt

)−(T−t)
(

1 + f̂T,St

)−(S−T )

, (1.11)

from which we find that

f̂T,St =
(1 + ŷTt )−(T−t)/(S−T )

(1 + ŷSt )−(S−t)/(S−T )
− 1.

We can also write (1.11) in terms of zero-coupon bond prices as

BSt = BTt

(

1 + f̂T,St

)−(S−T )

, (1.12)

so that the forward rate is given by

f̂T,St =

(
BTt
BSt

)1/(S−T )

− 1. (1.13)
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Note that since Btt = 1, we have

f̂ t,St =

(
Btt
BSt

)1/(S−t)

− 1 =
(
BSt
)−1/(S−t) − 1 = ŷSt ,

i.e. the forward rate for a period starting today equals the zero-coupon rate or spot rate for the

same period.

Again, we may use periodic compounding. For example, a six-month forward LIBOR rate of

LT,T+0.5
t valid for the period [T, T + 0.5] means that the discount factor is

BT+0.5
t = BTt

(

1 + 0.5LT,T+0.5
t

)−1

so that

LT,T+0.5
t =

1

0.5

(
BTt

BT+0.5
t

− 1

)

.

More generally, the time t forward LIBOR rate for the period [T, S] is given by

LT,St =
1

S − T

(
BTt
BSt

− 1

)

. (1.14)

If fT,St denotes the continuously compounded forward rate prevailing at time t for the period

between T and S, we must have that

BSt = BTt e
−fT,S

t (S−T ),

in analogy with (1.12). Consequently,

fT,St = − lnBSt − lnBTt
S − T

. (1.15)

Using (1.9), we get the following relation between zero-coupon rates and forward rates under

continuous compounding:

fT,St =
ySt (S − t) − yTt (T − t)

S − T
. (1.16)

In the following chapters, we shall often focus on forward rates for future periods of infinitesimal

length. The forward rate for an infinitesimal period starting at time T is simply referred to as

the forward rate for time T and is defined as fTt = limS→T f
T,S
t . The function T 7→ fTt is called

the term structure of forward rates or the forward rate curve. Letting S → T in the

expression (1.15), we get

fTt = −∂ lnBTt
∂T

= −∂B
T
t /∂T

BTt
, (1.17)

assuming that the discount function T 7→ BTt is differentiable. Conversely,

BTt = e−
∫

T
t
fu

t du. (1.18)

Note that a full term structure of forward rates T 7→ fTt contains the same information as the

discount function T 7→ BTt .

Applying (1.16), the relation between the infinitesimal forward rate and the spot rates can be

written as

fTt =
∂ [yTt (T − t)]

∂T
= yTt +

∂yTt
∂T

(T − t) (1.19)
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under the assumption of a differentiable term structure of spot rates T 7→ yTt . The forward rate

reflects the slope of the zero-coupon yield curve. In particular, the forward rate fTt and the zero-

coupon rate yTt will coincide if and only if the zero-coupon yield curve has a horizontal tangent

at T . Conversely, we see from (1.18) and (1.9) that

yTt =
1

T − t

∫ T

t

fut du, (1.20)

i.e. the zero-coupon rate is an average of the forward rates.

1.2.4 The term structure of interest rates in different disguises

We emphasize that discount factors, spot rates, and forward rates (with any compounding

frequency) are perfectly equivalent ways of expressing the same information. If a complete yield

curve of, say, quarterly compounded spot rates is given, we can compute the discount function and

spot rates and forward rates for any given period and with any given compounding frequency. If

a complete term structure of forward rates is known, we can compute discount functions and spot

rates, etc. Academics frequently apply continuous compounding since the mathematics involved

in many relevant computations is more elegant when exponentials are used, but continuously

compounded rates can easily be transformed to any other compounding frequency.

There are even more ways of representing the term structure of interest rates. Since most bonds

are bullet bonds, many traders and analysts are used to thinking in terms of yields of bullet bonds

rather than in terms of discount factors or zero-coupon rates. The par yield for a given maturity

is the coupon rate that causes a bullet bond of the given maturity to have a price equal to its face

value. Again we have to fix the coupon period of the bond. U.S. treasury bonds typically have

semi-annual coupons which are therefore often used when computing par yields. Given a discount

function T 7→ BTt , the n-year par yield is the value of c that solves the equation

2n∑

i=1

( c

2

)

Bt+0.5i
t +Bt+nt = 1.

It reflects the current market interest rate for an n-year bullet bond. The par yield is closely

related to the so-called swap rate, which is a key concept in the swap markets, cf. Section 6.5.

1.2.5 Floating rate bonds

Floating rate bonds have coupon rates that are reset periodically over the life of the bond.

We will consider the most common floating rate bond, which is a bullet bond, where the coupon

rate effective for the payment at the end of one period is set at the beginning of the period at the

current market interest rate for that period.

Assume again that the payment dates of the bond are T1 < · · · < Tn, where Ti − Ti−1 = δ

for all i. The annualized coupon rate valid for the period [Ti−1, Ti] is the δ-period market rate

at date Ti−1 computed with a compounding frequency of δ. We will denote this interest rate by

lTi

Ti−1
, although the rate is not necessarily a LIBOR rate, but can also be a Treasury rate. If the

face value of the bond is H, the payment at time Ti (i = 1, 2, . . . , n− 1) equals HδlTi

Ti−1
, while the

final payment at time Tn equals H(1 + δlTi

Ti−1
). If we define T0 = T1 − δ, the dates T0, T1, . . . , Tn−1

are often referred to as the reset dates of the bond.
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Let us look at the valuation of a floating rate bond. We will argue that immediately after each

reset date, the value of the bond will equal its face value. To see this, first note that immediately

after the last reset date Tn−1, the bond is equivalent to a zero-coupon bond with a coupon rate

equal to the market interest rate for the last coupon period. By definition of that market interest

rate, the time Tn−1 value of the bond will be exactly equal to the face value H. In mathematical

terms, the market discount factor to apply for the discounting of time Tn payments back to time

Tn−1 is (1 + δlTn

Tn−1
)−1, so the time Tn−1 value of a payment of H(1 + δlTn

Tn−1
) at time Tn is

precisely H. Immediately after the next-to-last reset date Tn−2, we know that we will receive a

payment of Hδl
Tn−1

Tn−2
at time Tn−1 and that the time Tn−1 value of the following payment (received

at Tn) equals H. We therefore have to discount the sum Hδl
Tn−1

Tn−2
+ H = H(1 + δl

Tn−1

Tn−2
) from

Tn−1 back to Tn−2. The discounted value is exactly H. Continuing this procedure, we get that

immediately after a reset of the coupon rate, the floating rate bond is valued at par. Note that

it is crucial for this result that the coupon rate is adjusted to the interest rate considered by the

market to be “fair.”

We can also derive the value of the floating rate bond between two payment dates. Suppose

we are interested in the value at some time t between T0 and Tn. Introduce the notation

i(t) = min {i ∈ {1, 2, . . . , n} : Ti > t} ,

so that Ti(t) is the nearest following payment date after time t. We know that the following payment

at time Ti(t) equals Hδl
Ti(t)

Ti(t)−1
and that the value at time Ti(t) of all the remaining payments will

equal H. The value of the bond at time t will then be

Bfl
t = H(1 + δl

Ti(t)

Ti(t)−1
)B

Ti(t)

t , T0 ≤ t < Tn. (1.21)

This expression also holds at payment dates t = Ti, where it results in H, which is the value

excluding the payment at that date.

Relatively few floating rate bonds are traded, but the results above are also very useful for the

analysis of interest rate swaps studied in Section 6.5.

1.3 Bond markets and money markets

This section will give an overview of the bond and money markets across the world. Let us

first look at some summary statistics of the size of the bond markets of the world. Table 1.1 gives

a ranking of the world bond markets according to the value of the bonds at the beginning of 2000.

By far the largest bond market is the U.S. market with a value of 14,595 billions of US dollars (i.e.

14,595,000,000,000 US dollars), followed by Japan, Canada, and a number of Western European

countries. It is also clear from the table that the size of the bond market relative to GDP varies

significantly across countries. According to Dimson, Marsh, and Staunton (2002, Fig. 2-2), the

bond market is larger than the stock market in Denmark, Germany, Italy, Belgium, and Japan.

The value of the U.S. bond market equals 88% of the U.S. stock market. (These observations are

based on data from the beginning of 2000.)

We can distinguish between national markets and international markets. In the national mar-

ket of a country, primarily bonds issued by domestic issuers and aimed at domestic investors are

traded, although some bonds issued by certain foreign governments or corporations or international
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Total value fraction bond value

Country (billion USD) of world to GDP

United States 14,595 47.0% 159%

Japan 5,669 18.3% 130%

Germany 3,131 10.1% 148%

Italy 1,374 4.4% 117%

France 1,227 4.0% 86%

United Kingdom 939 3.0% 65%

Canada 539 1.7% 85%

The Netherlands 458 1.5% 116%

Belgium 324 1.0% 131%

Spain 304 1.0% 51%

Switzerland 269 0.9% 104%

Denmark 264 0.9% 152%

South Korea 227 0.7% 56%

Brazil 209 0.7% 28%

Australia 198 0.6% 49%

Table 1.1: The 15 most valuable bond markets as of the beginning of the year 2000. Source: Table

2-2 in Dimson, Marsh, and Staunton (2002).

associations are often also traded. The bonds issued in a given national market must comply with

the regulation of that particular country. Bonds issued in the less regulated Eurobond market

are usually underwritten by an international syndicate and offered to investors in several coun-

tries simultaneously. Many Eurobonds are listed on one national exchange, often in Luxembourg

or London, but most of the trading in these bonds takes place OTC (over-the-counter). Other

Eurobonds are issued as a private placement with financial institutions. Eurobonds are typically

issued by international institutions, governments, or large multi-national corporations.

The Bank for International Settlements (BIS) publishes regularly statistics on financial markets

across the world. BIS distinguishes between domestic debt and international debt securities. The

term “debt securities” covers both bonds and money market contracts. The term “domestic”

means that the security is issued in the local currency by residents in that country and targeted

at resident investors. All other debt securities are classified by BIS as “international.” Based

on BIS statistics published in Bank for International Settlements (2004), henceforth referred to

as BIS (2004), Table 1.2 ranks domestic markets for debt securities according to the amounts

outstanding in June 2004. There are only small differences in the rankings of Table 1.1 and 1.2.

Table 1.3 lists the countries most active when it comes to issuing international debt securities.

The domestic markets are significantly larger than the international markets and international bond

markets are much larger than international money markets. European countries such as Germany,

United Kingdom, and the Netherlands are dominating both the international bond and money

markets, whereas U.S. based issuers are relatively inactive. This is also reflected by Table 1.4

which shows that the Euro is the most frequently used currency in the international markets for
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fraction of domestic market

Amounts outstanding fraction financial corporate

Country (billion USD) of world governments institutions issuers

United States 18,135 44.3% 29.1% 56.7% 14.1%

Japan 8,317 20.3% 76.3% 14.6% 9.1%

Italy 2,130 5.2% 64.7% 25.4% 10.0%

Germany 2,014 4.9% 51.4% 43.2% 5.4%

France 1,869 4.6% 56.0% 31.1% 12.8%

United Kingdom 1,416 3.5% 42.6% 28.0% 29.4%

Spain 709 1.7% 56.9% 24.1% 19.0%

Canada 685 1.7% 73.4% 14.1% 12.6%

The Netherlands 590 1.4% 44.2% 45.8% 10.1%

South Korea 488 1.2% 29.8% 39.4% 30.8%

China 442 1.1% 65.0% 32.2% 2.8%

Belgium 431 1.1% 72.6% 19.3% 8.0%

Denmark 369 0.9% 29.5% 65.4% 5.2%

Brazil 295 0.7% 80.6% 18.5% 0.9%

Australia 294 0.7% 28.0% 43.4% 28.6%

All countries 40,869 100.0% 48.6% 38.7% 12.8%

Table 1.2: The largest domestic markets for debt securities divided by issuer category as of June

2004. Source: Tables 16A-B in BIS (2004).

debt securities, but the U.S. dollar is also used very often.

The Tables 1.2 and 1.3 split up the different markets according to three categories of issuers:

governments, financial institutions, and corporate issuers. On average, close to 49% of the debt

securities traded in domestic markets are issued by governments, 39% by financial institutions,

and 13% by corporate issuers. In contrast, the international markets are dominated by financial

institutions who stand behind approximately 74% of the issues, 12% are issued by corporations,

10% by governments, and 4% by international organizations. Again, we see large difference across

countries. Let us look more closely at the different issuers and the type of debt securities they

typically issue.

Government bonds are bonds issued by the government to finance and refinance the public

debt. In most countries, such bonds can be considered to be free of default risk, and interest rates

in the government bond market are then a benchmark against which the interest rates on other

bonds are measured. However, in some economically and politically unstable countries, the default

risk on government bonds cannot be ignored. In the U.S., government bonds are issued by the

Department of the Treasury and called Treasury securities. These securities are divided into three

categories: bills, notes, and bonds. Treasury bills (or simply T-bills) are short-term securities that

mature in one year or less from their issue date. T-bills are zero-coupon bonds since they have a

single payment equal to the face value. Treasury notes and bonds are coupon-bearing bullet bonds

with semi-annual payments. The only difference between notes and bonds is the time-to-maturity
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by residence of issuer by nationality of issuer

bonds, money bonds, money govern- financial corporate

Country total notes market total notes market ments institut. issuers

United States 3,214 3,169 45 3,196 3,118 78 0.1% 87.6% 12.3%

United Kingdom 1,446 1,285 160 1,241 1,141 100 0.3% 83.1% 16.6%

Germany 1,442 1,364 77 2,022 1,880 142 7.9% 88.1% 4.0%

The Netherlands 949 892 56 608 552 56 0.2% 89.9% 9.9%

France 763 727 37 778 743 36 2.5% 67.2% 30.3%

Cayman Islands 476 446 29 27 24 3 0.0% 100.0% 0.0%

Italy 455 452 3 585 565 20 31.0% 59.6% 9.4%

Spain 290 289 1 436 425 11 11.4% 82.4% 6.2%

Canada 282 279 3 269 266 3 32.0% 33.3% 34.7%

Australia 253 207 45 210 187 24 5.7% 87.3% 7.1%

Japan 133 132 1 284 267 17 1.4% 78.0% 20.6%

Belgium 114 97 17 256 237 19 28.0% 68.3% 3.7%

Int. organizations 517 513 3 517 513 3 NA NA NA

All countries 12,337 11,740 598 12,337 11,740 598 10.0% 73.7% 12.1%

Table 1.3: International debt securities by residence and nationality of issuer as of June 2004. The

numbers are amounts outstanding in billions of USD. The list includes countries that are in the

top 10 either by residence of issuer or nationality of issuer. Source: Tables 11, 12A-D, 14A-B,

15A-B in BIS (2004).

Currency bonds and notes money market

Euro 5,127 275

US dollar 4,709 182

Pound sterling 859 85

Yen 504 16

Swiss franc 200 17

Australian dollar 97 7

Canadian dollar 86 2

Hong Kong dollar 50 9

Other currencies 108 5

Total 11,740 598

Table 1.4: International debt securities by currency. The numbers are amounts outstanding in

billions of USD as of June 2004. Source: Tables 13A-B in BIS (2004).



1.3 Bond markets and money markets 13

when first issued. Treasury notes are issued with a time-to-maturity of 1-10 years, while Treasury

bonds mature in more than 10 years and up to 30 years from their issue date. The Treasury

sells two types of notes and bonds, fixed-principal and inflation-indexed. The fixed-principal type

promises given dollar payments in the future, whereas the dollar payments of the inflation-indexed

type are adjusted to reflect inflation in consumer prices.1 Finally, the U.S. Treasury also issue so-

called savings bonds to individuals and certain organizations, but these bonds are not subsequently

tradable.

While Treasury notes and bonds are issued as coupon bonds, the Treasury Department in-

troduced the so-called STRIPS program in 1985 that lets investors hold and trade the individual

interest and principal components of most Treasury notes and bonds as separate securities.2 These

separate securities, which are usually referred to as STRIPs, are zero-coupon bonds. Market par-

ticipants create STRIPs by separating the interest and principal parts of a Treasury note or bond.

For example, a 10-year Treasury note consists of 20 semi-annual interest payments and a principal

payment payable at maturity. When this security is “stripped”, each of the 20 interest payments

and the principal payment become separate securities and can be held and transferred separately.3

In some countries including the U.S., bonds issued by various public institutions, e.g. utility

companies, railway companies, export support funds, etc., are backed by the government, so that

the default risk on such bonds is the risk that the government defaults. In addition, some bonds

are issued by government-sponsored entities created to facilitate borrowing and reduce borrowing

costs for e.g. farmers, homeowners, and students. However, these bonds are typically not backed

by the government and are therefore exposed to the risk of default of the issuing organization.

Bonds may also be issued by local governments. In the U.S. such bonds are known as municipal

bonds.

In the United States, the United Kingdom, and some other countries, corporations will tra-

ditionally raise large amounts of capital by issuing bonds, so-called corporate bonds. In other

countries, e.g. Germany and Japan, corporations borrow funds primarily through bank loans, so

that the market for corporate bonds is very limited. For corporate bonds, investors cannot ignore

the possibility that the issuer defaults and cannot meet the obligations represented by the bonds.

Bond investors can either perform their own analysis of the creditworthiness of the issuer or rely

on the analysis of professional rating agencies such as Moody’s Investors Service or Standard &

Poor’s Corporation. These agencies designate letter codes to bond issuers both in the U.S. and in

other countries. Investors will typically treat bonds with the same rating as having (nearly) the

same default risk. Due to the default risk, corporate bonds are traded at lower prices than sim-

ilar (default-free) government bonds. The management of the issuing corporation can effectively

transfer wealth from bond-holders to equity-holders, e.g. by increasing dividends, taking on more

risky investment projects, or issuing new bonds with the same or even higher priority in case of

default. Corporate bonds are often issued with bond covenants or bond indentures that restrict

1The principal value of an inflation-indexed note or bond is adjusted before each payment date according to the

change in the consumer price index. Since the semi-annual interest payments are computed as the product of the

fixed coupon rate and the current principal, all the payments of an inflation-indexed note or bond are inflation-

adjusted.
2STRIPS is short for Separate Trading of Registered Interest and Principal of Securities.
3More information on Treasury securities can be found on the homepage of the Bureau of the Public Debt at the

Department of the Treasury, see www.publicdebt.treas.gov.
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management from implementing such actions.

U.S. corporate bonds are typically issued with maturities of 10-30 years and are often callable

bonds, so that the issuer has the right to buy back the bonds on certain terms (at given points in

time and for a given price). Some corporate bonds are convertible bonds meaning that the bond-

holders may convert the bonds into stocks of the issuing corporation on predetermined terms.

Although most corporate bonds are listed on a national exchange, much of the trading in these

bonds is in the OTC market.

When commercial banks and other financial institutions issue bonds, the promised payments

are sometimes linked to the payments on a pool of loans that the issuing institution has provided

to households or firms. An important example is the class of mortgage-backed bonds which

constitutes a large part of some bond markets, e.g. in the U.S., Germany, Denmark, Sweden, and

Switzerland. A mortgage is a loan that can (partly) finance the borrower’s purchase of a given real

estate property, which is then used as collateral for the loan. Mortgages can be residential (family

houses, apartments, etc.) or non-residential (corporations, farms, etc.). The issuer of the loan

(the lender) is a financial institution. Typical mortgages have a maturity between 15 and 30 years

and are annuities in the sense that the total scheduled payment (interest plus repayment) at all

payment dates are identical. Fixed-rate mortgages have a fixed interest rate, while adjustable-rate

mortgages have an interest rate which is reset periodically according to some reference rate. A

characteristic feature of most mortgages is the prepayment option. At any payment date in the

life of the loan, the borrower has the right to pay off all or part of the outstanding debt. This

can occur due to a sale of the underlying real estate property, but can also occur after a drop in

market interest rates, since the borrower then have the chance to get a cheaper loan.

Mortgages are pooled either by the issuers or other institutions, who then issue mortgage-backed

securities that have an ownership interest in a given pool of mortgage loans. The most common

type of mortgage-backed securities is the so-called pass-through, where the pooling institution

simply collects the payments from borrowers with loans in a given pool and “passes through”

the cash flow to investors less some servicing and guaranteeing fees. Many pass-throughs have

payment schemes equal to the payment schemes of bonds, e.g. pass-throughs issued on the basis of

a pool of fixed-rate annuity mortgage loans have a payment schedule equal to that of annuity bond.

However, when borrowers in the pool prepay their mortgage, these prepayments are also passed

through to the security-holders, so that their payments will be different from annuities. In general,

owners of pass-through securities must take into account the risk that the mortgage borrowers in

the pool default on their loans. In the U.S. most pass-throughs are issued by three organizations

that guarantee the payments to the securities even if borrowers default. These organizations are

the Government National Mortgage Association (called “Ginnie Mae”), the Federal Home Loan

Mortgage Corporation (“Freddie Mac”), and the Federal National Mortgage Association (“Fannie

Mae”). Ginnie Mae pass-throughs are even guaranteed by the U.S. government, but the securities

issued by the two other institutions are also considered virtually free of default risk.

The money markets are dominated by financial institutions. The debt contracts issued in

the money market are mainly zero-coupon loans, which have a single repayment date. Financial

institutions borrow large amounts over short periods from each other by issuing certificates of

deposit, also known in the market as CDs. In the Euromarket, deposits are negotiated for various

terms and currencies, but most deposits are in U.S. dollars or Euro for a period of one, three, or
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six months. Interest rates set on deposits at the London interbank market are called LIBOR rates

(LIBOR is short for London Interbank offered rate).

To manage very short-term liquidity, financial institutions often agree on overnight loans, so-

called federal funds. The interest rate charged on such loans is called the Fed funds rate. The

Federal Reserve has a target Fed funds rate and buys and sells securities in open market operations

to manage the liquidity in the market, thereby also affecting the Fed funds rate. Banks may obtain

temporary credit directly from the Federal Reserve at the so-called “discount window”. The interest

rate charged by the Fed on such credit is called the federal discount rate, but since such borrowing

is quite uncommon nowadays, the federal discount rate serves more as a signaling device for the

targets of the Federal Reserve.

Large corporations, both financial corporations and others, often borrow short-term by issuing

so-called commercial papers. Another standard money market contract is a repurchase agreement

or simply repo. One party of this contract sells a certain asset, e.g. a short-term Treasury bill, to

the other party and promises to buy back that asset at a given future date at the market price at

that date. A repo is effectively a collateralized loan, where the underlying asset serves as collateral.

As central banks in other countries, the Federal Reserve in the U.S. participates actively in the

repo market to implement their monetary policy. The interest rate on repos is called the repo rate.

More details on U.S. bond markets can be found in e.g. Fabozzi (2000), while Batten, Fether-

ston, and Szilagyi (2004) contains detailed information on European bond and money markets.

1.4 Fixed income derivatives

A wide variety of fixed income derivatives are traded around the world. In this section we

provide a brief introduction to the markets for such securities. In the pricing models we develop

in later chapters we will look for prices of some of the most popular fixed income derivatives.

Chapter 6 contains more details on a number of fixed income derivatives, what cash flow they

offer, how the different derivatives are related, etc.

A forward is the simplest derivative. A forward contract is an agreement between two parties

on a given transaction at a given future point in time and at a price that is already fixed when

the agreement is made. For example, a forward on a bond is a contract where the parties agree to

trade a given bond at a future point in time for a price which is already fixed today. This fixed

price is usually set so that the value of the contract at the time of inception is equal to zero so

that no money changes hand before the delivery date. A closely related contract is the so-called

forward rate agreement (FRA). Here the two parties agree upon that one party will borrow

money from the other party over some period beginning at a given future date and the interest

rate for that loan is fixed already when this FRA is entered. In other words, the interest rate for

the future period is locked in. FRAs are quite popular instruments in the money markets.

As a forward contract, a futures contract is an agreement upon a specified future transaction,

e.g. a trade of a given security. The special feature of a future is that changes in its value are settled

continuously throughout the life of the contract (usually once every trading day). This so-called

marking-to-market ensures that the value of the contract (i.e. the value of the future payments)

is zero immediately following a settlement. This procedure makes it practically possible to trade

futures at organized exchanges, since there is no need to keep track of when the futures position
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was originally taken. Futures on government bonds are traded at many leading exchanges. A very

popular exchange-traded derivative is the so-called Eurodollar futures, which is basically the

futures equivalent of a forward rate agreement.

An option gives the holder the right to make some specified future transaction at terms that

are already fixed. A call option gives the holder the right to buy a given security at a given price at

or before a given date. Conversely, a put option gives the holder the right to sell a given security.

If the option gives the right to make the transaction at only one given date, the option is said

to be European-style. If the right can be exercised at any point in time up to some given date,

the option is said to be American-style. Both European- and American-style options are traded.

Options on government bonds are traded at several exchanges and also on the OTC-markets. In

addition, many bonds are issued with “embedded” options. For example, many mortgage-backed

bonds and corporate bonds are callable, in the sense that the issuer has the right to buy back the

bond at a pre-specified price. To value such bonds, we must be able to value the option element.

Various interest rate options are also traded in the fixed income markets. The most popular are

caps and floors. A cap is designed to protect an investor who has borrowed funds on a floating

interest rate basis against the risk of paying very high interest rates. Therefore the cap basically

gives you the right to borrow at some given rate. A cap can be seen as a portfolio of interest

rate call options. Conversely, a floor is designed to protect an investor who has lent funds on a

floating rate basis against receiving very low interest rates. A floor is a portfolio of interest rate

put options. Various exotic versions of caps and floors are also quite popular.

An swap is an exchange of two cash flow streams that are determined by certain interest rates.

In the simplest and most common interest rate swap, a plain vanilla swap, two parties exchange a

stream of fixed interest rate payments and a stream of floating interest rate payments. There are

also currency swaps where streams of payments in different currencies are exchanged. In addition,

many exotic swaps with special features are widely used. The international OTC swap markets

are enormous, both in terms of transactions and outstanding contracts.

A swaption is an option on a swap, i.e. it gives the holder the right, but not the obligation, to

enter into a specific swap with pre-specified terms at or before a given future date. Both European-

and American-style swaptions are traded.

The Bank for International Settlements (BIS) also publishes statistics on derivative trading

around the world. Table 1.5 provide some interesting statistics on the size of derivatives markets

at organized exchanges. The markets for interest rate derivatives are much larger than the markets

for currency- or equity-linked derivatives. The option markets generally dominate futures markets

measured by the amounts outstanding, but ranked according to turnover futures markets are larger

than options markets.

The BIS statistics also contain information about the size of OTC markets for derivatives.

BIS estimates that in June 2004 the total amount outstanding on OTC derivative markets was

220,058 billions of US dollars, of which single-currency interest rate derivatives account for 164,626

billions, currency derivatives account for 26,997 billions, equity-linked derivatives for 4,521 billions,

commodity contracts for 1,270 billions, while the remaining 22,644 billions cannot be split into any

of these categories, cf. Table 19 in BIS (2004). Table 1.6 shows how the interest rate derivatives

market can be disaggregated according to instrument and maturity. Approximately 38% of these

OTC-traded interest rate derivatives are denominated in Euro, 35% in US dollars, 13% in yen, and
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Instruments/ Futures Options

Location Amount outstanding Turnover Amount outstanding Turnover

All markets 17,662 213,455 31,330 75,023

Interest rate 17,024 202,064 28,335 63,548

Currency 84 1,565 37 120

Equity index 553 9,827 2,958 11,355

North America 9,778 122,516 18,120 49,278

Europe 5,534 77,737 12,975 19,693

Asia-Pacific 2,201 11,781 170 5,786

Other markets 149 1,421 66 266

Table 1.5: Derivatives traded on organized exchanges. All amounts are in billions of US dollars.

The amount outstanding is of September 2004, while the turnover figures are for the third quarter

of 2004. Source: Table 23A in BIS (2004).

Maturity in years
Contracts total ≤ 1 1–5 ≥ 5

All interest rate 164,626 57,157 66,093 41,376

Forward rate agreements 13,144

Swaps 127,570
49,397 56,042 35,275

Options 23,912 7,760 10,052 6,101

Table 1.6: Amounts outstanding (billions of US dollars) on OTC single-currency interest rate

derivatives as of June 2004. Source: Tables 21A and 21C in BIS (2004).

7% in pound sterling, cf. Table 21B in BIS (2004).

1.5 An overview of the book

We want to understand the dynamics of interest rates and the prices of fixed income securities.

The key element in our analysis will be the term structure of interest rates. The cleanest picture

of the link between interest rates and maturities is given by a zero-coupon yield curve. Since only

few zero-coupon bonds are traded, we have to extract an estimate of the zero-coupon yield curve

from prices of the traded coupon bonds. We will discuss methods for doing that in Chapter 2.

Since future values of most relevant variables are uncertain, we have to model the behavior of

uncertain variables or objects over time. This is done in terms of stochastic processes. A stochastic

process is basically a collection of random variables, namely one random variable for each of the

points in time at which we are interested in the value of this object. To understand and work with

modern fixed income models therefore requires some knowledge about stochastic processes, their

properties, and how to do relevant calculations involving stochastic processes. Chapter 3 provides

the information about stochastic processes that is needed for our purposes.

This book focuses on the pricing of fixed income securities. However, the pricing of fixed
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income securities follows the same general principles as the pricing of all other financial assets.

Chapter 4 reviews some of the important results on asset pricing theory. In particular, we define and

relate the key concepts of arbitrage, state-price deflators, and risk-neutral probability measures.

The connections to market completeness and individual investors’ behavior are also addressed.

Furthermore, we consider the special class of diffusion models. All these results will be applied

in the following chapters to the term structure of interest rate and the pricing of fixed income

securities.

In Chapter 5 we study the links between the term structure of interest rates and macro-economic

variables such as aggregate consumption, production, and inflation. The term structure of interest

rates reflects the prices of bonds of various maturities and, as always, prices are set to align supply

and demand. An individual or corporation that has a clear preference for current capital to finance

investments or current consumption can borrow by issuing a bond to an individual who has a clear

preference for future consumption opportunities. The price of a bond of a given maturity will

therefore depend on the attractiveness of the real investment opportunities and on the individuals’

preferences for consumption over the maturity of the bond. Following this intuition we develop

relations between interest rates, aggregate consumption, and aggregate production. We also explore

the relations between nominal interest rates, real interest rates, and inflation. Finally, the chapter

reviews some of the traditional hypotheses on the shape of the yield curve, e.g. the expectation

hypotheses, and discuss their relevance (or, rather, irrelevance) for modern fixed income analysis.

Chapter 6 provides an overview of the most popular fixed income derivatives, e.g. futures and

options on bonds, Eurodollar futures, caps and floors, and swaps and swaptions. We will look at

the characteristics of these securities and what we can say about their prices without setting up

any concrete term structure model.

Starting with Chapter 7 we focus on dynamic term structure models developed for the pricing

of fixed income securities and the management of interest rate risk. Chapter 7 goes through so-

called one-factor diffusion models. This type of models was the first to be applied in the literature

and dates back at least to 1970. The one-factor models of Vasicek and Cox, Ingersoll, and Ross

are still frequently applied both in practice and in academic research. They have a lot of realistic

features and deliver relatively simple pricing formulas for many fixed income securities. Chapter 8

explores multi-factor models which have several advantages over one-factor models, but are also

more complicated to analyze and apply.

The diffusion models deliver prices both for bonds and derivatives. However, the model price

for a given bond may not be identical to the actually observed price of the bond. If you want

to price a derivative on that bond, this seems problematic. If the model does not get the price

of the underlying security right, why trust the models price of the derivative? In Chapter 9 we

discuss how one- and multi-factor models can be extended to be consistent with current market

information, such as bond prices and volatilities. A more direct route to ensuring consistency is

explored in Chapter 10 that introduces and analyzes so-called Heath-Jarrow-Morton models. They

are characterized by taking the current market term structure of interest rates as given and then

modeling the evolution of the entire term structure in an arbitrage-free way. We will explore the

relation between these models and the factor models studied in earlier chapters.

Yet another class of models is the subject of Chapter 11. These “market models” are designed

for the pricing and hedging of specific products that are traded on a large scale in the international
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markets, namely caps, floors, and swaptions. These models have become increasingly popular in

recent years.

In Chapters 6–11 we focus on the pricing of various fixed income securities. However, it is

also extremely important to be able to measure and manage interest rate risk. Interest rate risk

measures of individual securities are needed in order to obtain an overview of the total interest rate

risk of the investors’ portfolio and to identify the contribution of each security to this total risk.

Many institutional investors are required to produce such risk measures for regulatory authorities

and for publication in their accounting reports. In addition, such risk measures constitute an

important input to the portfolio management. Interest rate risk management is the topic of

Chapter 12. First, some traditional interest rate risk measures are reviewed and criticized. Then

we turn to risk measures defined in relation to the dynamic term structure models studied in the

previous chapters.

The following chapters deal with some securities that require special attention. The subject of

Chapter 13 is how to construct models for the pricing and risk management of mortgage-backed

securities. The main concern is how to adjust the models studied in earlier chapters to take the

prepayment options involved in mortgages into account. In Chapter 14 (only some references are

listed in the current version) we discuss the pricing of corporate bonds and other fixed income

securities where the default risk of the issuer cannot be ignored. Chapter 15 focuses on the

consequences that stochastic variations in interest rates have for the valuation of securities with

payments that are not directly related to interest rates, such as stock options and currency options.

Finally, Chapter 16 (only some references are listed in the current version) describes several

numerical techniques that can be applied in cases where explicit pricing and hedging formulas are

not available.

1.6 Exercises

EXERCISE 1.1 Show that if the discount function does not satisfy the condition

BT
t ≥ BS

t , T < S,

then negative forward rates will exist. Are non-negative forward rates likely to exist? Explain!

EXERCISE 1.2 Consider two bullet bonds, both with annual payments and exactly four years to ma-

turity. The first bond has a coupon rate of 6% and is traded at a price of 101.00. The other bond has a

coupon rate of 4% and is traded at a price of 93.20. What is the four-year discount factor? What is the

four-year zero-coupon interest rate?





Chapter 2

Extracting yield curves from bond prices

2.1 Introduction

As discussed in Chapter 1, the clearest picture of the term structure of interest rates is obtained

by looking at the yields of zero-coupon bonds of different maturities. However, most traded bonds

are coupon bonds, not zero-coupon bonds. This chapter discusses methods to extract or estimate

a zero-coupon yield curve from the prices of coupon bonds at a given point in time.

Section 2.2 considers the so-called bootstrapping technique. It is sometimes possible to con-

struct zero-coupon bonds by forming certain portfolios of coupon bonds. If so, we can deduce an

arbitrage-free price of the zero-coupon bond and transform it into a zero-coupon yield. This is the

basic idea in the bootstrapping approach. Only in bond markets with sufficiently many coupon

bonds with regular payment dates and maturities can the bootstrapping approach deliver a decent

estimate of the whole zero-coupon yield curve. In other markets, alternative methods are called

for.

We study two alternatives to bootstrapping in Sections 2.3 and 2.4. Both are based on the

assumption that the discount function is of a given functional form with some unknown parameters.

The value of these parameters are then estimated to obtain the best possible agreement between

observed bond prices and theoretical bond prices computed using the functional form. Typically,

the assumed functional forms are either polynomials or exponential functions of maturity or some

combination. This is consistent with the usual perception that discount functions and yield curves

are continuous and smooth. If the yield for a given maturity was much higher than the yield for

another maturity very close to the first, most bond owners would probably shift from bonds with

the low-yield maturity to bonds with the high-yield maturity. Conversely, bond issuers (borrowers)

would shift to the low-yield maturity. These changes in supply and demand will cause the gap

between the yields for the two maturities to shrink. Hence, the equilibrium yield curve should be

continuous and smooth. The unknown parameters can be estimated by least-squares methods.

We focus here on two of the most frequently applied parameterization techniques, namely

cubic splines and the Nelson-Siegel parameterization. An overview of some of the many other

approaches suggested in the literature can be seen in Anderson, Breedon, Deacon, Derry, and

Murphy (1996, Ch. 2). For some recent procedures, see Jaschke (1998) and Linton, Mammen,

Nielsen, and Tanggaard (2001).
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2.2 Bootstrapping

In many bond markets only very few zero-coupon bonds are issued and traded. (All bonds issued

as coupon bonds will eventually become a zero-coupon bond after their next-to-last payment date.)

Usually, such zero-coupon bonds have a very short maturity. To obtain knowledge of the market

zero-coupon yields for longer maturities, we have to extract information from the prices of traded

coupon bonds. In some markets it is possible to construct some longer-term zero-coupon bonds

by forming portfolios of traded coupon bonds. Market prices of these “synthetical” zero-coupon

bonds and the associated zero-coupon yields can then be derived.

Example 2.1 Consider a market where two bullet bonds are traded, a 10% bond expiring in one

year and a 5% bond expiring in two years. Both have annual payments and a face value of 100.

The one-year bond has the payment structure of a zero-coupon bond: 110 dollars in one year

and nothing at all other points in time. A share of 1/110 of this bond corresponds exactly to a

zero-coupon bond paying one dollar in a year. If the price of the one-year bullet bond is 100, the

one-year discount factor is given by

Bt+1
t =

1

110
· 100 ≈ 0.9091.

The two-year bond provides payments of 5 dollars in one year and 105 dollars in two years.

Hence, it can be seen as a portfolio of five one-year zero-coupon bonds and 105 two-year zero-coupon

bonds, all with a face value of one dollar. The price of the two-year bullet bond is therefore

B2,t = 5Bt+1
t + 105Bt+2

t ,

cf. (1.4). Isolating Bt+2
t , we get

Bt+2
t =

1

105
B2,t −

5

105
Bt+1
t . (2.1)

If for example the price of the two-year bullet bond is 90, the two-year discount factor will be

Bt+2
t =

1

105
· 90 − 5

105
· 0.9091 ≈ 0.8139.

From (2.1) we see that we can construct a two-year zero-coupon bond as a portfolio of 1/105 units

of the two-year bullet bond and −5/105 units of the one-year zero-coupon bond. This is equivalent

to a portfolio of 1/105 units of the two-year bullet bond and −5/(105 · 110) units of the one-year

bullet bond. Given the discount factors, zero-coupon rates and forward rates can be calculated as

shown in Section 1.2. 2

The example above can easily be generalized to more periods. Suppose we have M bonds

with maturities of 1, 2, . . . ,M periods, respectively, one payment date each period and identical

payment date. Then we can construct successively zero-coupon bonds for each of these maturities

and hence compute the market discount factors Bt+1
t , Bt+2

t , . . . , Bt+Mt . First, Bt+1
t is computed

using the shortest bond. Then, Bt+2
t is computed using the next-to-shortest bond and the already

computed value of Bt+1
t , etc. Given the discount factors Bt+1

t , Bt+2
t , . . . , Bt+Mt , we can compute

the zero-coupon interest rates and hence the zero-coupon yield curve up to time t+M (for the M

selected maturities). This approach is called bootstrapping or yield curve stripping.
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Bootstrapping also applies to the case where the maturities of the M bonds are not all different

and regularly increasing as above. As long as the M bonds together have at most M different

payment dates and each bond has at most one payment date, where none of the bonds provide

payments, then we can construct zero-coupon bonds for each of these payment dates and compute

the associated discount factors and rates. Let us denote the payment of bond i (i = 1, . . . ,M)

at time t + j (j = 1, . . . ,M) by Yij . Some of these payments may well be zero, e.g. if the bond

matures before time t + M . Let Bi,t denote the price of bond i. From (1.4) we have that the

discount factors Bt+1
t , Bt+2

t , . . . , Bt+Mt must satisfy the system of equations










B1,t

B2,t

...

BM,t










=










Y11 Y12 . . . Y1M

Y21 Y22 . . . Y2M

...
...

. . .
...

YM1 YM2 . . . YMM



















Bt+1
t

Bt+2
t

...

Bt+Mt










. (2.2)

The conditions on the bonds ensure that the payment matrix of this equation system is non-singular

so that a unique solution will exist.

For each of the payment dates t + j, we can construct a portfolio of the M bonds, which is

equivalent to a zero-coupon bond with a payment of 1 at time t+ j. Denote by xi(j) the number

of units of bond i which enters the portfolio replicating the zero-coupon bond maturing at t + j.

Then we must have that
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xj(j)
...
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, (2.3)

where the 1 on the left-hand side of the equation is at the j’th entry of the vector. Of course,

there will be the following relation between the solution (Bt+1
t , . . . , Bt+Mt ) to (2.2) and the solution

(x1(j), . . . , xM (j)) to (2.3):1

M∑

i=1

xi(j)Bi,t = Bt+jt . (2.4)

Thus, first the zero-coupon bonds can be constructed, i.e. (2.3) is solved for each j = 1, . . . ,M ,

and next (2.4) can be applied to compute the discount factors.

Example 2.2 In Example 2.1 we considered a two-year 5% bullet bond. Assume now that a

two-year 8% serial bond with the same payment dates is traded. The payments from this bond

are 58 dollars in one year and 54 dollars in two years. Assume that the price of the serial bond

1In matrix notation, Equation (2.2) can be written as Bcpn = YBzero and Equation (2.3) can be written as

ej = Y
⊤x(j), where ej is the vector on the left hand side of (2.3), and the other symbols are self-explanatory (the

symbol ⊤ indicates transposition). Hence,

x(j)⊤
Bcpn = x(j)⊤

YBzero = e
⊤

j Bzero = Bt+j
t ,

which is equivalent to (2.4).
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is 98 dollars. From these two bonds we can set up the following equation system to solve for the

discount factors Bt+1
t and Bt+2

t :

(

90

98

)

=

(

5 105

58 54

)(

Bt+1
t

Bt+2
t

)

.

The solution is Bt+1
t ≈ 0.9330 and Bt+2

t ≈ 0.8127. 2

More generally, if there are M traded bonds having in total N different payment dates, the

system (2.2) becomes one of M equations in N unknowns. If M > N , the system may not have

any solution, since it may be impossible to find discount factors consistent with the prices of all

M bonds. If no such solution can be found, there will be an arbitrage opportunity.

Example 2.3 In the Examples 2.1 and 2.2 we have considered three bonds: a one-year bullet

bond, a two-year bullet bond, and a two-year serial bond. In total, these three bonds have two

different payment dates. According to the prices and payments of these three bonds, the discount

factors Bt+1
t and Bt+2

t must satisfy the following three equations:

100 = 110Bt+1
t ,

90 = 5Bt+1
t + 105Bt+2

t ,

98 = 58Bt+1
t + 54Bt+2

t .

No solution exists. In Example 2.1 we found that the solution to the first two equations is

Bt+1
t ≈ 0.9091 and Bt+2

t ≈ 0.8139.

In contrast, we found in Example 2.2 that the solution to the last two equations is

Bt+1
t ≈ 0.9330 and Bt+2

t ≈ 0.8127.

If the first solution is correct, the price on the serial bond should be

58 · 0.9091 + 54 · 0.8139 ≈ 96.68, (2.5)

but it is not. The serial bond is mispriced relative to the two bullet bonds. More precisely, the

serial bond is too expensive. We can exploit this by selling the serial bond and buying a portfolio

of the two bullet bonds that replicates the serial bond, i.e. provides the same cash flow. We know

that the serial bond is equivalent to a portfolio of 58 one-year zero-coupon bonds and 54 two-year

zero-coupon bonds, all with a face value of 1 dollar. In Example 2.1 we found that the one-year

zero-coupon bond is equivalent to 1/110 units of the one-year bullet bond, and that the two-year

zero-coupon bond is equivalent to a portfolio of −5/(105 · 110) units of the one-year bullet bond

and 1/105 units of the two-year bullet bond. It follows that the serial bond is equivalent to a

portfolio consisting of

58 · 1

110
− 54 · 5

105 · 110
≈ 0.5039

units of the one-year bullet bond and

54 · 1

105
≈ 0.5143



2.3 Cubic splines 25

units of the two-year bullet bond. This portfolio will give exactly the same cash flow as the serial

bond, i.e. 58 dollars in one year and 54 dollars in two years. The price of the portfolio is

0.5039 · 100 + 0.5143 · 90 ≈ 96.68,

which is exactly the price found in (2.5). 2

In some markets, the government bonds are issued with many different payment dates. The

system (2.2) will then typically have fewer equations than unknowns. In that case there are many

solutions to the equation system, i.e. many sets of discount factors can be consistent both with

observed prices and the no-arbitrage pricing principle.

2.3 Cubic splines

Bootstrapping can only provide knowledge of the discount factors for (some of) the payment

dates of the traded bonds. In many situations information about market discount factors for other

future dates will be valuable. In this section and the next, we will consider methods to estimate

the entire discount function T 7→ BTt (at least up to some large T ). To simplify the notation in

what follows, let B̄(τ) denote the discount factor for the next τ periods, i.e. B̄(τ) = Bt+τt . Hence,

the function B̄(τ) for τ ∈ [0,∞) represents the time t market discount function. In particular,

B̄(0) = 1. We will use a similar notation for zero-coupon rates and forward rates: ȳ(τ) = yt+τt

and f̄(τ) = f t+τt . The methods studied in this and the following sections are both based on

the assumption that the discount function τ 7→ B̄(τ) can be described by some functional form

involving some unknown parameters. The parameter values are chosen to get a close match between

the observed bond prices and the theoretical bond prices computed using the assumed discount

function.

The approach studied in this section is a version of the cubic splines approach introduced by

McCulloch (1971) and later modified by McCulloch (1975) and Litzenberger and Rolfo (1984).

The word spline indicates that the maturity axis is divided into subintervals and that the separate

functions (of the same type) are used to describe the discount function in the different subintervals.

The reasoning for doing this is that it can be quite hard to fit a relatively simple functional form

to prices of a large number of bonds with very different maturities. To ensure a continuous and

smooth term structure of interest rates, one must impose certain conditions for the maturities

separating the subintervals.

Given prices for M bonds with time-to-maturities of T1 ≤ T2 ≤ · · · ≤ TM . Divide the maturity

axis into subintervals defined by the “knot points” 0 = τ0 < τ1 < · · · < τk = TM . A spline

approximation of the discount function B̄(τ) is based on an expression like

B̄(τ) =
k−1∑

j=0

Gj(τ)Ij(τ),

where the Gj ’s are basis functions, and the Ij ’s are the step functions

Ij(τ) =







1, if τ ≥ τj ,

0, otherwise.
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Hence, B̄(τ) = G0(τ) for τ ∈ [τ0, τ1), B̄(τ) = G0(τ) +G1(τ) for τ ∈ [τ1, τ2), etc. We demand that

the Gj ’s are continuous and differentiable and ensure a smooth transition in the knot points τj .

A polynomial spline is a spline where the basis functions are polynomials. Let us consider a cubic

spline, where

Gj(τ) = αj + βj(τ − τj) + γj(τ − τj)
2 + δj(τ − τj)

3,

and αj , βj , γj , and δj are constants.

For τ ∈ [0, τ1), we have

B̄(τ) = α0 + β0τ + γ0τ
2 + δ0τ

3. (2.6)

Since B̄(0) = 1, we must have α0 = 1. For τ ∈ [τ1, τ2), we have

B̄(τ) =
(
1 + β0τ + γ0τ

2 + δ0τ
3
)

+
(
α1 + β1(τ − τ1) + γ1(τ − τ1)

2 + δ1(τ − τ1)
3
)
. (2.7)

To get a smooth transition between (2.6) and (2.7) in the point τ = τ1, we demand that

B̄(τ1−) = B̄(τ1+), (2.8)

B̄′(τ1−) = B̄′(τ1+), (2.9)

B̄′′(τ1−) = B̄′′(τ1+), (2.10)

where B̄(τ1−) = limτ→τ1,τ<τ1 B̄(τ), B̄(τ1+) = limτ→τ1,τ>τ1 B̄(τ), etc. The condition (2.8) ensures

that the discount function is continuous in the knot point τ1. The condition (2.9) ensures that the

graph of the discount function has no kink at τ1 by restricting the first-order derivative to approach

the same value whether t approaches τ1 from below or from above. The condition (2.10) requires

the same to be true for the second-order derivative, which ensures an even smoother behavior of

the graph around the knot point τ1.

The condition (2.8) implies α1 = 0. Differentiating (2.6) and (2.7), we find

B̄′(τ) = β0 + 2γ0τ + 3δ0τ
2, 0 ≤ τ < τ1,

and

B̄′(τ) = β0 + 2γ0τ + 3δ0τ
2 + β1 + 2γ1(τ − τ1) + 3δ1(τ − τ1)

2, τ1 ≤ τ < τ2.

The condition (2.9) now implies β1 = 0. Differentiating again, we get

B̄′′(τ) = 2γ0 + 6δ0τ, 0 ≤ τ < τ1,

and

B̄′′(τ) = 2γ0 + 6δ0τ + 2γ1 + 6δ1(τ − τ1), τ1 ≤ τ < τ2.

Consequently, the condition (2.10) implies γ1 = 0. Similarly, it can be shown that αj = βj = γj = 0

for all j = 1, . . . , k − 1. The cubic spline is therefore reduced to

B̄(τ) = 1 + β0τ + γ0τ
2 + δ0τ

3 +

k−1∑

j=1

δj(τ − τj)
3Ij(τ). (2.11)

Let t1, t2, . . . , tN denote the time distance from today (date t) to the each of the payment dates

in the set of all payment dates of the bonds in the data set. Let Yin denote the payment of bond

i in tn periods. From the no-arbitrage pricing relation (1.4), we should have that

Bi =
N∑

n=1

YinB̄(tn),
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where Bi is the current market price of bond i. Since not all the zero-coupon bonds involved in

this equation are traded, we will allow for a deviation εi so that

Bi =

N∑

n=1

YinB̄(tn) + εi. (2.12)

We assume that εi is normally distributed with mean zero and variance σ2 (assumed to be the

same for all bonds) and that the deviations for different bonds are mutually independent. We want

to pick parameter values that minimize the sum of squared deviations
∑M
i=1 ε

2
i .

Substituting (2.11) into (2.12) yields

Bi =
N∑

n=1

Yin






1 + β0tn + γ0t

2
n + δ0t

3
n +

k−1∑

j=1

δj(tn − τj)
3Ij(τ)






+ εi,

which implies that

Bi −
N∑

n=1

Yin = β0

N∑

n=1

Yintn + γ0

N∑

n=1

Yint
2
n + δ0

N∑

n=1

Yint
3
n +

k−1∑

j=1

δj

N∑

n=1

Yin(tn − τj)
3Ij(tn) + εi.

Given the prices and payment schemes of the M bonds, the k+2 parameters β0, γ0, δ0, δ1, . . . , δk−1

can now be estimated using ordinary least squares.2 Substituting the estimated parameters

into (2.11), we get an estimated discount function, from which estimated zero-coupon yield curves

and forward rate curves can be derived as explained earlier in the chapter.

It remains to describe how the number of subintervals k and the knot points τj are to be chosen.

McCulloch suggested to let k be the nearest integer to
√
M and to define the knot points by

τj = Thj
+ θj(Thj+1 − Thj

),

where hj = [j ·M/k] (here the square brackets mean the integer part) and θj = j ·M/k − hj . In

particular, τk = TM . Alternatively, the knot points can be placed at for example 1 year, 5 years,

and 10 years, so that the intervals broadly correspond to the short-term, intermediate-term, and

long-term segments of the market, cf. the preferred habitats hypothesis discussed in Section 5.7.

Figure 2.1 shows the discount function on the Danish government bond markets on February

14, 2000 estimated using cubic splines and data from 14 bonds with maturities up to 25 years.

Figure 2.2 shows the associated zero-coupon yield curve and the term structure of forward rates.

Discount functions estimated using cubic splines will usually have a credible form for maturities

less than the longest maturity in the data set. Although there is nothing in the approach that

ensures that the resulting discount function is positive and decreasing, as it should be according

to (1.1), this will almost always be the case. As the maturity approaches infinity, the cubic spline

discount function will approach either plus or minus infinity depending on the sign of the coefficient

of the third order term. Of course, both properties are unacceptable, and the method cannot be

expected to provide reasonable values beyond the longest maturity TM , since none of the bonds

are affected by that very long end of the term structure.

Two other properties of the cubic splines approach are more disturbing. First, the derived

zero-coupon rates will often increase or decrease significantly for maturities approaching TM , cf.

2See, for example, Johnston (1984).
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Figure 2.1: The discount function, τ 7→ B̄(τ), estimated using cubic splines and prices of Danish

government bonds February 14, 2000.
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Figure 2.3: The three curves which the Nelson-Siegel parameterization combines.

Shea (1984, 1985). Second, the derived forward rate curve will typically be quite rugged especially

near the knot points, and the curve tends to be very sensitive to the bond prices and the precise

location of the knot points. Therefore, forward rate curves estimated using cubic splines should

only be applied with great caution.

2.4 The Nelson-Siegel parameterization

Nelson and Siegel (1987) proposed a simple parameterization of the term structure of interest

rates, which has become quite popular. The approach is based on the following parameterization

of the forward rates:

f̄(τ) = β0 + β1e
−τ/θ + β2

τ

θ
e−τ/θ, (2.13)

where β0, β1, β2, and θ are constants to be estimated. The same constants are assumed to apply

for all maturities, so no splines are involved. The simple functional form ensures a smooth and yet

quite flexible curve. Figure 2.3 shows the graphs of the three functions that constitutes (2.13). The

flat curve (corresponding to the constant term β0) will by itself determine the long-term forward

rates, the term β1e
−τ/θ is mostly affecting the short-term forward rates, while the term β2τ/θe

−τ/θ

is important for medium-term forward rates. The value of the parameter θ determines how large

a maturity interval the non-constant terms will affect. The value of the parameters β0, β1, and β2

determine the relative weighting of the three curves.

According to (1.20) on page 8, the term structure of zero-coupon rates is given by

ȳ(τ) =
1

τ

∫ τ

0

f̄(u) du = β0 + (β1 + β2)
1 − e−τ/θ

τ/θ
− β2e

−τ/θ,
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Figure 2.4: Possible forms of the zero-coupon yield curve using the Nelson-Siegel parameterization.

which we will rewrite as

ȳ(τ) = a+ b
1 − e−τ/θ

τ/θ
+ ce−τ/θ. (2.14)

Figure 2.4 depicts the possible forms of the zero-coupon yield curve for different values of a, b,

and c. By varying the parameter θ, the curves can be stretched or compressed in the horizontal

dimension.

If we could directly observe zero-coupon rates ȳ(Ti) for different maturities Ti, i = 1, . . . ,M ,

we could, given θ, estimate the parameters a, b, and c using simple linear regression on the model

ȳ(τ) = a+ b
1 − e−τ/θ

τ/θ
+ ce−τ/θ + εi,

where εi ∼ N(0, σ2), i = 1, . . . ,M , are independent error terms. Doing this for various choices

of θ, we could pick the θ and the corresponding regression estimates of a, b and c that result in

the highest R2, i.e. that best explain the data. This is exactly the procedure used by Nelson and

Siegel on data on short-term zero-coupon bonds in the U.S. market.

When the data set involves coupon bonds, the estimation procedure is slightly more compli-

cated. The discount function associated with the forward rate structure in (2.14) is given by

B̄(τ) = exp
{

−aτ − bθ
(

1 − e−τ/θ
)

− cτe−τ/θ
}

.

Substituting this into (2.12), we get

Bi =

N∑

n=1

Yin exp
{

−atn − bθ
(

1 − e−tn/θ
)

− ctne
−tn/θ

}

+ εi. (2.15)

Since this is a non-linear expression in the unknown parameters, the estimation must be based on

generalized least squares, i.e. non-linear regression techniques. See e.g. Gallant (1987).
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2.5 Additional remarks on yield curve estimation

Above we looked at two of the many estimation procedures based on a given parameterized

form of either the discount function, the zero-coupon yield curve, or the forward rate curve. A clear

disadvantage of both methods is that the estimated discount function is not necessarily consistent

with those (probably few) discount factors that can be derived from market prices assuming only

no-arbitrage. The procedures do no punish deviations from no-arbitrage values.

A more essential disadvantage of all such estimation procedures is that they only consider

the term structure of interest rates at one particular point in time. Estimations at two different

dates are completely independent and do not take into account the possible dynamics of the term

structure over time. As we shall see in Chapters 7 and 8, there are many dynamic term structure

models which also provide a parameterized form for the term structure at any given date. Applying

such models, the estimation can (and should) be based on bond price observations at different

dates. Typically, the possible forms of the term structure in such models resemble those of the

Nelson-Siegel approach. We will return to this discussion in Chapter 7.

Finally, we will emphasize that the estimated term structure of interest rates should be used

with caution. An obvious use of the estimated yield curve is to value fixed income securities.

In particular, the coupon bonds in the data set used in the estimation can be priced using the

estimated discount function. For some of the bonds the price according to the estimated curve will

be lower (higher) than the market price. Therefore, one might think such bonds are overvalued

(undervalued) by the market. (In an estimation like (2.12) this can be seen directly from the

residual εi.) It would seem a good strategy to sell the overvalued and buy the undervalued bonds.

However, such a strategy is not a riskless arbitrage, but a risky strategy, since the applied discount

function is not derived from the no-arbitrage principle only, but depends on the assumed parametric

form and the other bonds in the data set. With another parameterized form or a different set of

bonds the estimated discount function and, hence, the assessment of over- and undervaluation can

be different.

2.6 Exercises

EXERCISE 2.1 Find a list of current price quotes on government bonds at an exchange in your country.

Derive as many discount factors and zero-coupon yields as possible using only the no-arbitrage pricing

principle, i.e. use the bootstrapping approach.





Chapter 3

Stochastic processes and stochastic

calculus

3.1 Introduction

Most interest rates and asset prices vary over time in a non-deterministic way. We can observe

the price of a given asset today, but the price of the same asset at any future point in time will

typically be unknown, i.e. a random variable. In order to describe the uncertain evolution in the

price of the asset over time, we need a collection of a random variables, namely one random variable

for each point in time. Such a collection of random variables is called a stochastic process. Modern

finance models therefore use stochastic processes to represent the evolution in prices and rates over

time. This is also the case for models for fixed income analysis.

This chapter gives an introduction to stochastic processes and the mathematical tools needed

to do calculations with stochastic processes, the so-called stochastic calculus. We will omit many

technical details that are not important for a reasonable level of understanding and focus on

processes and results that will become important in later chapters. For more details and proofs,

the reader is referred to textbooks on stochastic processes, as for example Øksendal (1998) and

Karatzas and Shreve (1988), and to more extensive and formal introductions to stochastic processes

in the mathematical finance textbooks of Dothan (1990), Duffie (2001), and Björk (2004).

The outline of the remainder of the chapter is as follows. In Section 3.2 we define the concept

of a stochastic process more formally and introduce much of the terminology used. We define and

a particular process, the so-called Brownian motion, in Section 3.3. This will be the basic building

block in the definition of other processes. In Section 3.4 we introduce the class of diffusion processes,

which contains most of the processes used in popular fixed income models. Section 3.5 gives a short

introduction to the more general class of Itôprocesses. Both diffusions and Itôprocesses involve

stochastic integrals, which are discussed in Section 3.6. In Section 3.7 we state the very important

Itô’s Lemma, which is frequently applied when handling stochastic processes. Three diffusions that

are widely used in finance models are introduced and studied in Section 3.8. Section 3.9 discusses

multi-dimensional processes. Finally, Section 3.10 focuses on the change of probability measure,

which will also be relevant in the models studied in later chapters.

33
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3.2 What is a stochastic process?

3.2.1 Probability spaces and information filtrations

The basic object for studies of uncertain events is a probability space, which is a triple

(Ω,F,P). Let us look at each of the three elements.

Ω is the state space, which is the set of possible states or outcomes of the uncertain object.

For example, if one studies the outcome of a throw of a dice (meaning the number of “eyes” on

top of the dice), the state space is Ω = {1, 2, 3, 4, 5, 6}. In our finance models an outcome is a

realization of all relevant uncertain objects over the entire time interval studied in the model. Only

one outcome, the “true” outcome, will be realized.

F is the set of events to which a probability can be assigned, i.e. the set of “probabilizable”

events. An event is a set of possible outcomes, i.e. a subset of the state space. In the example with

the dice, some events are {1, 2, 3}, {4, 5}, {1, 3, 5}, {6}, and {1, 2, 3, 4, 5, 6}. In a finance model an

event is some set of realizations of the uncertain object. For example in a model of the uncertain

dynamics of a given asset price over a period of 10 years, one event is that the asset price one year

into the future is above 100. Since F is a set of events, it is really a set of subsets of the state

space! It is required that

(i) the entire state space can be assigned a probability, i.e. Ω ∈ F;

(ii) if some event F ⊆ Ω can be assigned a probability, so can its complement F c ≡ Ω \ F , i.e.

F ∈ F ⇒ F c ∈ F; and

(iii) given a sequence of probabilizable events, the union is also probabilizable, i.e. F1, F2, · · · ∈ F

⇒ ∪∞
i=1Fi ∈ F.

Often F is referred to as a sigma-algebra (called sigma-field by some authors).

P is a probability measure, which formally is a function from the sigma-field F into the

interval [0, 1]. To each event F ∈ F, the probability measure assigns a number P(F ) in the interval

[0, 1]. This number is called the P-probability (or simply the probability) of F . A probability

measure must satisfy the following conditions:

(i) P(Ω) = 1 and P(∅) = 0, where ∅ denotes the empty set;

(ii) the probability of the state being in the union of disjoint sets is equal to the sum of the

probabilities for each of the sets, i.e. given F1, F2, · · · ∈ F with Fi ∩ Fj = ∅ for all i 6= j, we

have P(∪∞
i=1Fi) =

∑∞
i=1 P(Fi).

Many different probability measures can be defined on the same sigma-field, F, of events. In the

example of the dice, a probability measure P corresponding to the idea that the dice is “fair” is

defined by P({1}) = P({2}) = · · · = P({6}) = 1/6. Another probability measure, Q, can be defined

by Q({1}) = 1/12, Q({2}) = · · · = Q({5}) = 1/6, and Q({6}) = 3/12, which may be appropriate

if the dice is believed to be “unfair”.

Two probability measures P and Q defined on the same state space and sigma-field (Ω,F) are

called equivalent if the two measures assign probability zero to exactly the same events, i.e. if

P(A) = 0 ⇔ Q(A) = 0. The two probability measures in the dice example are equivalent. In the
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stochastic models of financial markets switching between equivalent probability measures turns out

to be important.

In our models of the uncertain evolution of financial markets, the uncertainty is resolved gradu-

ally over time. At each date we can observe values of prices and rates that were previously uncertain

so we learn more and more about the true outcome. We need to keep to track of the information

flow. Let us again consider the throw of a dice so that the state space is Ω = {1, 2, 3, 4, 5, 6} and

the set F of probabilizable events consists of all subsets of Ω. Suppose now that the outcome of

the throw of the dice is not resolved at once, but sequentially. In the beginning, at “time 0”, we

know nothing about the true outcome so it can be any element in Ω. Then, at “time 1”, you will

be told that the outcome is either in the set {1, 2}, in the set {3, 4, 5}, or in the set {6}. Of course,

in the latter case you will know exactly the true outcome, but in the first two cases there is still

uncertainty about the true outcome. Later on, at “time 2”, the true outcome will be announced.

We can represent the information available at a given point in time by a partition of Ω. By a

partition of a given set, we simply mean a collection of disjoint subsets of Ω so that the union of

these subsets equals the entire set Ω. At time 0, we only know that one of the six elements in Ω

will be realized. This corresponds to the (trivial) partition F0 = {Ω}. The information at time 1

can be represented by the partition

F1 = {{1, 2}, {3, 4, 5}, {6}} .

At time 2 we know exactly the true outcome, corresponding to the partition

F2 = {{1}, {2}, {3}, {4}, {5}, {6}} .

As time passes we receive more and more information about the true path. This is reflected by

the fact that the partitions become finer and finer in the sense that every set in F1 is a subset

of some set in F0 and every set in F2 is a subset of some set in F1. The information flow in this

simple example can then be represented by the sequence (F0, F1, F2) of partitions of Ω. In more

general models, the information flow can be represented by a sequence (Ft)t∈T of partitions, where

T is the set of relevant points in time in the model. Each Ft consists of disjoint events and the

interpretation is that at time t we will know which of these events the true outcome belongs to.

The fact that we learn more and more about the true outcome implies that the partitions will be

increasingly fine in the sense that, for u > t, every element in Ft is a union of elements in Fu.

An alternative way of representing the information flow is in terms of an information filtra-

tion. Given a partition Ft of Ω, we can define Ft as the set of all unions of sets in Ft, including the

“empty union”, i.e. the empty set ∅. Where Ft contains the disjoint “decidable” events at time t,

Ft contains all “decidable” events at time t. Each Ft is a sigma-algebra. For our example above

we get

F0 = {∅,Ω} ,
F1 = {∅, {1, 2}, {3, 4, 5}, {6}, {1, 2, 3, 4, 5}, {1, 2, 6}, {3, 4, 5, 6},Ω} ,

while F2 becomes the collection of all possible subsets of Ω. The sequence F = (F0,F1,F2) is

called an information filtration. In models involving the set T of points in time, the information

filtration is written as F = (Ft)t∈T. We will always assume that the time 0 information is trivial,
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corresponding to F0 = {∅,Ω} and that all uncertainty is resolved at or before some final date T so

that FT is equal to the set F of all probabilizable events. The fact that we accumulate information

dictates that Ft ⊂ Ft′ whenever t < t′, i.e. every set in Ft is also in Ft′ .

Above we constructed an information filtration from a sequence of partitions. We can also go

from a filtration to a sequence of partitions. In each Ft, simply remove all sets that are unions

of other sets in Ft. Therefore there is a one-to-one relationship between information filtration

and a sequence of partitions. When we go to models with an infinite state space, the information

filtration representation is preferable. Hence, our formal model of uncertainty and information is

a filtered probability space (Ω,F,P,F), where (Ω,F,P) is a probability space and F = (Ft)t∈T

is an information filtration.

3.2.2 Random variables and stochastic processes

A random variable is a function from Ω into RK for some integer K. The random variable

x : Ω → RK associates to each outcome ω ∈ Ω a value x(ω) ∈ RK . Sometimes we will emphasize

the dimension and say that the random variable is K-dimensional. With sequential resolution

of the uncertainty the values of some random variables will be known before all uncertainty is

resolved.

In the dice story with sequential information from before suppose that your friend George will

pay you 10 dollars if the dice shows either three, four, or five eyes and nothing in other cases. The

payment from George is a random variable x. Of course, at time 2 you will know the true outcome,

so the payment x will be known at time 2. We say that x is time 2 measurable or F2-measurable.

At time 1 you will also know the payment x because you will be told either that the true outcome

is in {1, 2}, in which case the payment will be 0, or that the true outcome is in {3, 4, 5}, in which

case the payment will be 10, or that the true outcome is 6, in which case the payment will be

0. So the random variable x is also F1-measurable. Of course, at time 0 you will not know what

payment you will get so x is not F0-measurable. Suppose your friend John promises to pay you

10 dollars if the dice shows 4 or 5 and nothing otherwise. Represent the payment from John by

the random variable y. Then y is surely F2-measurable. However, y is not F1-measurable, because

if at time 1 you learn that the true outcome is in {3, 4, 5}, you still will not know whether you get

the 10 dollars or not.

A stochastic process x is a collection of random variables, namely one random variable for each

relevant point in time. We write this as x = (xt)t∈T, where each xt is a random variable. We

still have an underlying filtered probability space (Ω,F,P,F = (Ft)t∈T) representing uncertainty

and information flow. We will only consider processes x that are adapted in the sense that for

every t ∈ T the random variable xt is Ft-measurable. This is just to say that the time t value of

the process will be known at time t. In models of individuals choice of investment strategy (or

other dynamic decisions), it is also natural to require that the chosen investment process must be

adapted to the information filtration. You cannot base an investment strategy on information you

have not yet received.
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3.2.3 Important concepts and terminology

Let x = (xt)t∈T denote some stochastic process defined on a filtered probability space (Ω,F,P,F =

(Ft)t∈T). Each possible outcome ω ∈ Ω will fully determine the value of the process at all points in

time. We refer to this collection (xt(ω))t∈T of realized values as a (sample) path of the process.

As time goes by, we can observe the evolution in the object which the stochastic process

describes. At any given time t′, the previous values (xt)t≤t′) will be known. These values constitute

the history of the process up to time t′. The future values are (typically) still stochastic.

As time passes and we obtain new information about the true outcome, we will typically revise

our expectations of the future values of the process or, more precisely, revise the probability

distribution we attribute to the value of the process at any future point in time. Suppose we stand

at time t and consider the value of a process x at a future time t′ > t. The distribution of the

value of xt′ is characterized by probabilities P(xt′ ∈ A) for different sets A. If for all t, t′ ∈ T with

t < t′ and all A, we have that

P
(
xt′ ∈ A | (xs)s∈[0,t]

)
= P (xt′ ∈ A | xt) ,

then x is called a Markov process. Broadly speaking, this condition says that, given the presence,

the future is independent of the past. The history contains no information about the future value

that cannot be extracted from the current value. Markov processes are often used in financial

models to describe the evolution in prices of financial assets, since the Markov property is consistent

with the so-called weak form of market efficiency, which says that extraordinary returns cannot

be achieved by use of the precise historical evolution in the price of an asset.1 If extraordinary

returns could be obtained in this manner, all investors would try to profit from it, so that prices

would change immediately to a level where the extraordinary return is non-existent. Therefore, it

is reasonable to model prices by Markov processes. In addition, models based on Markov processes

are often more tractable than models with non-Markov processes.

A stochastic process is said to be a martingale if, at all points in time, the expected change in

the value of the process over any given future period is equal to zero. In other words, the expected

future value of the process is equal to the current value of the process. Because expectations

depend on the probability measure, the concept of a martingale should be seen in connection with

the applied probability measure. More rigorously, a stochastic process x = (xt)t≥0 is a P-martingale

if for all t ∈ T we have that

EP
t [xt′ ] = xt, for all t′ ∈ T with t′ > t.

Here, EP
t denotes the expected value computed under the P-probabilities given the information

available at time t, that is, given the history of the process up to and including time t. Sometimes

the probability measure will be clear from the context and can be notationally suppressed.

We assume, furthermore, that all the random variables xt take on values in the same set S,

which we call the value space of the process. More precisely this means that S is the smallest set

with the property that P({xt ∈ S}) = 1. If S ⊆ R, we call the process a one-dimensional, real-valued

process. If S is a subset of RK (but not a subset of RK−1), the process is called a K-dimensional,

1This does not conflict with the fact that the historical evolution is often used to identify some characteristic

properties of the process, e.g. for estimation of means and variances.
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real-valued process, which can also be thought of as a collection of K one-dimensional, real-valued

processes. Note that as long as we restrict ourselves to equivalent probability measures, the value

space will not be affected by changes in the probability measure.

3.2.4 Different types of stochastic processes

A stochastic process for the state of an object at every point in time in a given interval is called

a continuous-time stochastic process. This corresponds to the case where the set T takes the

form of an interval [0, T ] or [0,∞). In contrast a stochastic process for the state of an object at

countably many separated points in time is called a discrete-time stochastic process. This is

for example the case when T = {0,∆t, 2∆t, . . . , T ≡ N∆t} or {0,∆t, 2∆, . . . } for some ∆t > 0. If

the process can take on all values in a given interval (e.g. all real numbers), the process is called

a continuous-variable stochastic process. On the other hand, if the state can take on only

countably many different values, the process is called a discrete-variable stochastic process.

What type of processes should we use in our models for asset pricing in general and fixed

income analysis in particular? Our choice will be guided both by realism and tractability. First,

let us consider the time dimension. The investors in the financial markets can trade at more or

less any point in time. Due to practical considerations and transaction costs, no investor will trade

continuously. However, it is not possible in advance to pick a fairly moderate number of points in

time where all trades take place. Also, with many investors there will be some trades at almost any

point in time, so that prices and interest rates etc. will also change almost continuously. Therefore,

it seems to be a better approximation of real life to describe such economic variables by continuous-

time stochastic processes than by discrete-time stochastic processes. Continuous-time stochastic

processes are in many aspects also easier to handle than discrete-time stochastic processes.

Next, consider the value dimension. In practice, most economic variables can strictly speaking

only take on countably many values, e.g. stock prices are multiples of the smallest possible unit

(0.01 currency units in many countries), and interest rates are only stated with a given num-

ber of decimals. But since the possible values are very close together, it seems reasonable to

use continuous-variable processes in the modeling of these objects. In addition, the mathematics

involved in the analysis of continuous-variable processes is simpler and more elegant than the math-

ematics for discrete-variable processes. Integrals are easier to deal with than sums, derivatives are

easier to handle than differences. In sum, we will use continuous-time, continuous-variable stochas-

tic processes throughout to describe the evolution in prices and rates. Therefore the remaining

sections of this chapter will be devoted to that type of stochastic processes.

It should be noted that discrete-time and/or discrete-variable processes also have their virtues.

First, many concepts and results are easier understood or illustrated in a simple framework. Sec-

ond, even if we have low-frequency data for many financial variables, we do not have continuous

data. When it comes to estimation of parameters in financial models, continuous-time processes

often have to be approximated by discrete-time processes. Third, although explicit results on asset

prices, optimal investment strategies, etc. are easier to obtain with continuous-time models, not

all relevant questions can be explicitly answered. Some problems are solved numerically by com-

puter algorithms and also for that purpose it is often necessary to approximate continuous-time,

continuous-variable processes with discrete-time, discrete-variable processes.
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3.2.5 How to write up stochastic processes

Many financial models describe the movements and comovements of various variables simulta-

neously. In fixed income models we are interested in the dynamic behavior of yields of bonds of

different maturities, prices of different bonds and options, etc. The standard modeling procedure

is to assume that there is some common exogenous shock that affects all the relevant variables

and then model the response of all these variables to that shock. First, consider a discrete-time

framework with time set T = {0, t1, t2, . . . , tN ≡ T} where tn = n∆t. The shock over any period

[tn, tn+1] is represented by a random variable εtn+1
, which in general may be multi-dimensional,

but let us for now just focus on the one-dimensional case. The sequence of shocks εt1 , εt2 , . . . , εtN

constitutes the basic or the underlying uncertainty in the model. Since the shock should represent

some unexpected information, assume that εtn+1
has mean zero.

A stochastic process x = (xt)t∈T representing the dynamics of a price, an interest rate, or

another interesting variable can then be defined the initial value x0 and the changes ∆xtn+1
=

xtn+1
− xtn , n = 0, . . . , N − 1, which are typically assumed to be of the form

∆xtn+1
= µtn∆t+ σtnεtn+1

. (3.1)

In general µtn and σtn can themselves be stochastic, but must be known at time tn, i.e. they must

be Ftn-measurable random variables. In fact, we can form adapted processes µ = (µt)t∈T and

σ = (σt)t∈T. Standing at time tn, the only random variable on the right-hand side of (3.1) is εtn+1
,

which is assumed to have mean zero and some variance Var[εtn+1
]. Hence, the mean and variance

of ∆xtn+1
, conditional on time tn information, will be

Etn [∆xtn+1
] = µtn∆t, Vartn [∆xtn+1

] = σ2
tn Var[εtn+1

].

We can see that µtn has the interpretation of the expected change in x per time period.

From the sequence εt1 , εt2 , . . . , εtN of exogenous shocks we can define a stochastic process

z = (zt)t∈T by letting z0 = 0 and ztn = εt1 + · · ·+εtn . Consequently, εtn+1
= ztn+1

−ztn ≡ ∆ztn+1
.

Now the process z captures the basic uncertainty in the model. The information filtration of the

model is then defined by the information that can be extracted from observing the path of z.

Without loss of generality we can assume that Var[∆ztn+1
] = Var[εtn+1

] = ∆t for any period

[tn, tn+1]. With the z-notation we can rewrite (3.1) as

∆xtn+1
= µtn∆t+ σtn∆ztn+1

(3.2)

and now Vartn [∆xtn+1
] = σ2

tn∆t so that σ2
tn can be interpreted as the variance of the change in x

per time period.

The distribution of ∆xtn+1
will be determined by the distribution assumed for the shocks

εtn+1
= ∆ztn+1

. If the shocks are assumed to be normally distributed, the changes in x will also

be normally distributed.

We can loosely think of a continuous-time model as the result of taking a discrete-time model

and let ∆t go to zero. In that spirit we will often define a continuous-time stochastic process x =

(xt)t∈T by writing

dxt = µt dt+ σt dzt (3.3)

which is to be thought of as the limit of (3.2) as ∆t → 0. Hence, dxt represents the change in x

over the infinitesimal, i.e. infinitely short, period after time t. Similarly for dzt. The interpretations
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of µt and σt are also similar to the discrete-time case. While (3.3) might seem very intuitive, it

does not really make any sense to talk about the change of something over a period of infinitesimal

length. The expression (3.3) really means that the change in the value of x over any time interval

[t, t′] ⊆ T is given by

xt′ − xt =

∫ t′

t

dxu =

∫ t′

t

µu du+

∫ t′

t

σu dzu. (3.4)

The problem is that the right-hand side of this equation will not make sense before we define the

two integrals. We will look more closely at this issue in later sections.

In almost all the continuous-time models studied in this book we will assume that the shocks

are normally distributed, i.e. that the change in the shock process z over any time interval is

normally distributed. A process z with this property is the so-called standard Brownian motion.

In the next section we will formally define this process and study some of its properties. Then in

later sections we will build various processes x from that basic process z.

The choice of using standard Brownian motions to represent the underlying uncertainty has

an important consequence. All the processes defined by equations of the form (3.3) will then

have continuous paths, i.e. there will be no jumps. Stochastic processes which have paths with

discontinuities also exist. The jumps of such processes are often modeled by Poisson processes

or related processes. It is well-known that large, sudden movements in financial variables occur

from time to time, for example in connection with stock market crashes. There may be many

explanations of such large movements, for example a large unexpected change in the productivity

in a particular industry or the economy in general, perhaps due to a technological break-through.

Another source of sudden, large movements is changes in the political or economic environment

such as unforseen interventions by the government or central bank. Stock market crashes are

sometimes explained by the bursting of a bubble (which does not necessarily conflict with the

usual assumption of rational investors). Whether such sudden, large movements can be explained

by a sequence of small continuous movements in the same direction or jumps have to be included

in the models is an empirical question, which is still open.

There are numerous financial models of stock markets that allow for jumps in stock prices,

e.g. Merton (1976) discusses the pricing of stock options in such a framework. On the other

hand, there are only very few models allowing for jumps in interest rates.2 This can be justified

empirically by the observation that sudden, large movements are not nearly as frequent in the

bond markets as in the stock markets. Of course, models for corporate bonds must be able to

handle the possible default of the issuing company, which in some cases comes as a surprise to the

financial market. Therefore, such models will typically involve jump processes. We will study such

models in Chapter 14, but in the other chapters we will focus on default-free contracts and use

continuous-path processes.

3.3 Brownian motions

All the stochastic processes we shall apply in the financial models in the following chapters

build upon a particular class of processes, the so-called Brownian motions. A (one-dimensional)

stochastic process z = (zt)t≥0 is called a standard Brownian motion, if it satisfies the following

2For an example see Babbs and Webber (1994).
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conditions:

(i) z0 = 0,

(ii) for all t, t′ ≥ 0 with t < t′: zt′ − zt ∼ N(0, t′ − t) [normally distributed increments],

(iii) for all 0 ≤ t0 < t1 < · · · < tn, the random variables zt1 − zt0 , . . . , ztn − ztn−1
are mutually

independent [independent increments],

(iv) z has continuous paths.

Here N(a, b) denotes the normal distribution with mean a and variance b. A standard Brown-

ian motion is defined relative to a probability measure P, under which the increments have the

properties above. For example, for all t < t′ and all h ∈ R we have that

P

(
zt′ − zt√
t′ − t

< h

)

= N(h) ≡
∫ h

−∞

1√
2π
e−a

2/2 da,

where N(·) denotes the cumulative distribution function for anN(0, 1)-distributed random stochas-

tic variable. To be precise, we should use the term P-standard Brownian motion, but the probability

measure is often clear from the context. Note that a standard Brownian motion is a Markov pro-

cess, since the increment from today to any future point in time is independent of the history of

the process. A standard Brownian motion is also a martingale, since the expected change in the

value of the process is zero.

The name Brownian motion is in honor of the Scottish botanist Robert Brown, who in 1828

observed the apparently random movements of pollen submerged in water. The often used name

Wiener process is due to Norbert Wiener, who in the 1920s was the first to show the existence

of a stochastic process with these properties and who initiated a mathematically rigorous analysis

of the process. As early as in the year 1900, the standard Brownian motion was used in a model

for stock price movements by the French researcher Louis Bachelier, who derived the first option

pricing formula, cf. Bachelier (1900).

The defining characteristics of a standard Brownian motion look very nice, but they have some

drastic consequences. It can be shown that the paths of a standard Brownian motion are nowhere

differentiable, which broadly speaking means that the paths bend at all points in time and are

therefore strictly speaking impossible to illustrate. However, one can get an idea of the paths by

simulating the values of the process at different times. If ε1, . . . , εn are independent draws from a

standard N(0,1) distribution, we can simulate the value of the standard Brownian motion at time

0 ≡ t0 < t1 < t2 < · · · < tn as follows:

zti = zti−1
+ εi

√

ti − ti−1, i = 1, . . . , n.

With more time points and hence shorter intervals we get a more realistic impression of the paths

of the process. Figure 3.1 shows a simulated path for a standard Brownian motion over the interval

[0, 1] based on a partition of the interval into 200 subintervals of equal length.3 Note that since

a normally distributed random variable can take on infinitely many values, a standard Brownian

motion has infinitely many paths that each has a zero probability of occurring. The figure shows

just one possible path.

3Most spreadsheets and programming tools have a built-in procedure that generates uniformly distributed num-

bers over the interval [0, 1]. Such uniformly distributed random numbers can be transformed into standard normally
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Figure 3.1: A simulated path of a standard Brownian motion based on 200 subintervals.

Another property of a standard Brownian motion is that the expected length of the path over

any future time interval (no matter how short) is infinite. In addition, the expected number

of times a standard Brownian motion takes on any given value in any given time interval is also

infinite. Intuitively, these properties are due to the fact that the size of the increment of a standard

Brownian motion over an interval of length ∆t is proportional to
√

∆t, in the sense that the

standard deviation of the increment equals
√

∆t. When ∆t is close to zero,
√

∆t is significantly

larger than ∆t, so the changes are large relative to the length of the time interval over which the

changes are measured.

The expected change in an object described by a standard Brownian motion equals zero and

the variance of the change over a given time interval equals the length of the interval. This can

easily be generalized. As before let z = (zt)t≥0 be a one-dimensional standard Brownian motion

and define a new stochastic process x = (xt)t≥0 by

xt = x0 + µt+ σzt, t ≥ 0, (3.5)

where x0, µ, and σ are constants. The constant x0 is the initial value for the process x. It

follows from the properties of the standard Brownian motion that, seen from time 0, the value xt

is normally distributed with mean µt and variance σ2t, i.e. xt ∼ N(x0 + µt, σ2t).

The change in the value of the process between two arbitrary points in time t and t′, where

t < t′, is given by

xt′ − xt = µ(t′ − t) + σ(zt′ − zt).

distributed numbers in several ways. One example: Given uniformly distributed numbers U1 and U2, the numbers

ε1 and ε2 defined by

ε1 =
√

−2 ln U1 sin(2πU2), ε2 =
√

−2 ln U1 cos(2πU2)

will be independent standard normally distributed random numbers. This is the so-called Box-Muller transformation.

See e.g. Press, Teukolsky, Vetterling, and Flannery (1992, Sec. 7.2).
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The change over an infinitesimally short interval [t, t+ ∆t] with ∆t→ 0 is often written as

dxt = µdt+ σ dzt, (3.6)

where dzt can loosely be interpreted as aN(0, dt)-distributed random variable. As discussed earlier,

this must really be interpreted as a limit of the expression

xt+∆t − xt = µ∆t+ σ(zt+∆t − zt)

for ∆t → 0. The process x is called a generalized Brownian motion or a generalized Wiener

process. The parameter µ reflects the expected change in the process per unit of time and is

called the drift rate or simply the drift of the process. The parameter σ reflects the uncertainty

about the future values of the process. More precisely, σ2 reflects the variance of the change in the

process per unit of time and is often called the variance rate of the process. σ is a measure for

the standard deviation of the change per unit of time and is referred to as the volatility of the

process.

A generalized Brownian motion inherits many of the characteristic properties of a standard

Brownian motion. For example, also a generalized Brownian motion is a Markov process, and the

paths of a generalized Brownian motion are also continuous and nowhere differentiable. However,

a generalized Brownian motion is not a martingale unless µ = 0. The paths can be simulated by

choosing time points 0 ≡ t0 < t1 < · · · < tn and iteratively computing

xti = xti−1
+ µ(ti − ti−1) + εiσ

√

ti − ti−1, i = 1, . . . , n,

where ε1, . . . , εn are independent draws from a standard normal distribution. Figures 3.2 and 3.3

show simulated paths for different values of the parameters µ and σ. The straight lines represent

the deterministic trend of the process, which corresponds to imposing the condition σ = 0 and

hence ignoring the uncertainty. Both figures are drawn using the same sequence of random numbers

εi, so that they are directly comparable. The parameter µ determines the trend, and the parameter

σ determines the size of the fluctuations around the trend.

If the parameters µ and σ are allowed to be time-varying in a deterministic way, the process

x is said to be a time-inhomogeneous generalized Brownian motion. In differential terms such a

process can be written as defined by

dxt = µ(t) dt+ σ(t) dzt. (3.7)

Over a very short interval [t, t+∆t] the expected change is approximately µ(t)∆t, and the variance

of the change is approximately σ(t)2∆t. More precisely, the increment over any interval [t, t′] is

given by

xt′ − xt =

∫ t′

t

µ(u) du+

∫ t′

t

σ(u) dzu. (3.8)

The last integral is a so-called stochastic integral, which we will define and describe in a later

section. There we will also state a theorem, which implies that, seen from time t, the integral
∫ t′

t
σ(u) dzu is a normally distributed random variable with mean zero and variance

∫ t′

t
σ(u)2 du.

3.4 Diffusion processes

For both standard Brownian motions and generalized Brownian motions, the future value is

normally distributed and can therefore take on any real value, i.e. the value space is equal to R.
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Figure 3.2: Simulation of a generalized Brownian motion with µ = 0.2 and σ = 0.5 or σ = 1.0. The

straight line shows the trend corresponding to σ = 0. The simulations are based on 200 subintervals.
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Figure 3.3: Simulation of a generalized Brownian motion with µ = 0.6 and σ = 0.5 or σ = 1.0. The

straight line shows the trend corresponding to σ = 0. The simulations are based on 200 subintervals.
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Many economic variables can only have values in a certain subset of R. For example, prices of

financial assets with limited liability are non-negative. The evolution in such variables cannot be

well represented by the stochastic processes studied so far. In many situations we will instead use

so-called diffusion processes.

A (one-dimensional) diffusion process is a stochastic process x = (xt)t≥0 for which the change

over an infinitesimally short time interval [t, t+ dt] can be written as

dxt = µ(xt, t) dt+ σ(xt, t) dzt, (3.9)

where z is a standard Brownian motion, but where the drift µ and the volatility σ are now functions

of time and the current value of the process.4 This expression generalizes (3.6), where µ and σ

were assumed to be constants, and (3.7), where µ and σ were functions of time only. An equation

like (3.9), where the stochastic process enters both sides of the equality, is called a stochastic

differential equation. Hence, a diffusion process is a solution to a stochastic differential equation.

If both functions µ and σ are independent of time, the diffusion is said to be time-homo-

geneous, otherwise it is said to be time-inhomogeneous. For a time-homogeneous diffusion

process, the distribution of the future value will only depend on the current value of the process

and how far into the future we are looking – not on the particular point in time we are standing

at. For example, the distribution of xt+δ given xt = x will only depend on x and δ, but not on t.

This is not the case for a time-inhomogeneous diffusion, where the distribution will also depend

on t.

In the expression (3.9) one may think of dzt as being N(0, dt)-distributed, so that the mean

and variance of the change over an infinitesimally short interval [t, t+ dt] are given by

Et[dxt] = µ(xt, t) dt, Vart[dxt] = σ(xt, t)
2 dt,

where Et and Vart denote the mean and variance, respectively, conditionally on the available

information at time t (the history up to and including time t). To be more precise, the change in

a diffusion process over any interval [t, t′] is

xt′ − xt =

∫ t′

t

µ(xu, u) du+

∫ t′

t

σ(xu, u) dzu, (3.10)

where
∫ t′

t
σ(xu, u) dzu is a stochastic integral, which we will discuss in Section 3.6. However, we

will continue to use the simple and intuitive differential notation (3.9). The drift rate µ(xt, t) and

the variance rate σ(xt, t)
2 are really the limits

µ(xt, t) = lim
∆t→0

Et [xt+∆t − xt]

∆t
,

σ(xt, t)
2 = lim

∆t→0

Vart [xt+∆t − xt]

∆t
.

A diffusion process is a Markov process as can be seen from (3.9), since both the drift and the

volatility only depend on the current value of the process and not on previous values. A diffusion

process is not a martingale, unless the drift µ(xt, t) is zero for all xt and t. A diffusion process

will have continuous, but nowhere differentiable paths. The value space for a diffusion process and

4For the process x to be mathematically meaningful, the functions µ(x, t) and σ(x, t) must satisfy certain condi-

tions. See e.g. Øksendal (1998, Ch. 7) and Duffie (2001, App. E).
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the distribution of future values will depend on the functions µ and σ. In Section 3.8 we will give

some important examples of diffusion processes, which we shall use in later chapters to model the

evolution of some economic variables.

3.5 Itô processes

It is possible to define even more general processes than those in the class of diffusion processes.

A (one-dimensional) stochastic process xt is said to be an Itô process, if the local increments are

on the form

dxt = µt dt+ σt dzt, (3.11)

where the drift µ and the volatility σ themselves are stochastic processes. A diffusion process is the

special case where the values of the drift µt and the volatility σt are given by t and xt. For a general

Itô process, the drift and volatility may also depend on past values of the x process. It follows

that Itô processes are generally not Markov processes. They are generally not martingales either,

unless µt is identically equal to zero (and σt satisfies some technical conditions). The processes µ

and σ must satisfy certain regularity conditions for the x process to be well-defined. We will refer

the reader to Øksendal (1998, Ch. 4). The expression (3.11) gives an intuitive understanding of

the evolution of an Itô process, but it is more precise to state the evolution in the integral form

xt′ − xt =

∫ t′

t

µu du+

∫ t′

t

σu dzu, (3.12)

where the last term again is a stochastic integral.

3.6 Stochastic integrals

3.6.1 Definition and properties of stochastic integrals

In (3.10) and (3.12) and similar expressions a term of the form
∫ t′

t
σu dzu appears. An integral

of this type is called a stochastic integral or an Itô integral. We will only consider stochastic

integrals where the “integrator” z is a Brownian motion, although stochastic integrals involving

more general processes can also be defined. For given t < t′, the stochastic integral
∫ t′

t
σu dzu is a

random variable. Assuming that σu is known at time u, the value of the integral becomes known

at time t′. The process σ is called the integrand. The stochastic integral can be defined for very

general integrands. The simplest integrands are those that are piecewise constant. Assume that

there are points in time t ≡ t0 < t1 < · · · < tn ≡ t′, so that σu is constant on each subinterval

[ti, ti+1). The stochastic integral is then defined by

∫ t′

t

σu dzu =

n−1∑

i=0

σti
(
zti+1

− zti
)
. (3.13)

If the integrand process σ is not piecewise constant, a sequence of piecewise constant processes

σ(1), σ(2), . . . exists, which converges to σ. For each of the processes σ(m), the integral
∫ t′

t
σ

(m)
u dzu

is defined as above. The integral
∫ t′

t
σu dzu is then defined as a limit of the integrals of the

approximating processes:
∫ t′

t

σu dzu = lim
m→∞

∫ t′

t

σ(m)
u dzu. (3.14)
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We will not discuss exactly how this limit is to be understood and which integrand processes we can

allow. Again the interested reader is referred to Øksendal (1998). The distribution of the integral
∫ t′

t
σu dzu will, of course, depend on the integrand process and can generally not be completely

characterized, but the following theorem gives the mean and the variance of the integral:

Theorem 3.1 The stochastic integral
∫ t′

t
σu dzu has the following properties:

Et

[
∫ t′

t

σu dzu

]

= 0,

Vart

[
∫ t′

t

σu dzu

]

=

∫ t′

t

Et[σ
2
u] du.

If the integrand is a deterministic function of time, σ(u), the integral will be normally dis-

tributed, so that the following result holds:

Theorem 3.2 If z is a Brownian motion, and σ(u) is a deterministic function of time, the random

variable
∫ t′

t
σ(u) dzu is normally distributed with mean zero and variance

∫ t′

t
σ(u)2 du.

Proof: We present a sketch of the proof. Dividing the interval [t, t′] into subintervals defined by

the time points t ≡ t0 < t1 < · · · < tn ≡ t′, we can approximate the integral with a sum,
∫ t′

t

σ(u) dzu ≈
n−1∑

i=0

σ(ti)
(
zti+1

− zti
)
.

The increment of the Brownian motion over any subinterval is normally distributed with mean

zero and a variance equal to the length of the subinterval. Furthermore, the different terms in

the sum are mutually independent. It is well-known that a sum of normally distributed random

variables is itself normally distributed, and that the mean of the sum is equal to the sum of the

means, which in the present case yields zero. Due to the independence of the terms in the sum,

the variance of the sum is also equal to the sum of the variances, i.e.

Vart

(
n−1∑

i=0

σ(ti)
(
zti+1

− zti
)

)

=

n−1∑

i=0

σ(ti)
2 Vart

(
zti+1

− zti
)

=

n−1∑

i=0

σ(ti)
2(ti+1 − ti),

which is an approximation of the integral
∫ t′

t
σ(u)2 du. The result now follows from an appropriate

limit where the subintervals shrink to zero length. 2

Note that the process y = (yt)t≥0 defined by yt =
∫ t

0
σu dzu is a martingale, since

Et[yt′ ] = Et

[
∫ t′

0

σu dzu

]

= Et

[
∫ t

0

σu dzu +

∫ t′

t

σu dzu

]

= Et

[∫ t

0

σu dzu

]

+ Et

[
∫ t′

t

σu dzu

]

=

∫ t

0

σu dzu

= yt,

so that the expected future value is equal to the current value.
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3.6.2 The martingale representation theorem

As discussed above any process y = (yt) of the form yt =
∫ t

0
σu dzu, or more generally yt =

y0 +
∫ t

0
σu dzu for some constant y0, is a martingale. The converse is also true in the sense that

any martingale can be expressed as an Itô integral. This is the so-called martingale representation

theorem:

Theorem 3.3 Suppose the process M = (Mt) is a martingale with respect to a probability measure

under which z = (zt) is a standard Brownian motion. Then a unique adapted process θ = (θt)

exists such that

Mt = M0 +

∫ t

0

θu dzu

for all t.

This result is used in the chapter on general asset pricing results. For a mathematically more

precise statement of the result and a proof, see Øksendal (1998, Thm. 4.3.4).

3.6.3 Leibnitz’ rule for stochastic integrals

Leibnitz’ differentiation rule for ordinary integrals is as follows: If f(t, s) is a deterministic

function, and we define Y (t) =
∫ T

t
f(t, s) ds, then

Y ′(t) = −f(t, t) +

∫ T

t

∂f

∂t
(t, s) ds.

If we use the notation Y ′(t) = dY
dt and ∂f

∂t = df
dt , we can rewrite this result as

dY = −f(t, t) dt+

(
∫ T

t

df

dt
(t, s) ds

)

dt,

and formally cancelling the dt-terms, we get

dY = −f(t, t) dt+

∫ T

t

df(t, s) ds.

We will now consider a similar result in the case where f(t, s) and, hence, Y (t) are stochastic

processes. We will make use of this result in Chapter 10 (and only in that chapter).

Theorem 3.4 For any s ∈ [t0, T ], let fs = (fst )t∈[t0,s] be the Itô process defined by the dynamics

dfst = αst dt+ βst dzt,

where α and β are sufficiently well-behaved stochastic processes. Then the dynamics of the stochas-

tic process Yt =
∫ T

t
fst ds is given by

dYt =

[(
∫ T

t

αst ds

)

− f tt

]

dt+

(
∫ T

t

βst ds

)

dzt.

Since the result is usually not included in standard textbooks on stochastic calculus, a sketch

of the proof is included. The proof applies the generalized Fubini-rule for stochastic processes,

which was stated and demonstrated in the appendix of Heath, Jarrow, and Morton (1992). The
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Fubini-rule says that the order of integration in double integrals can be reversed, if the integrand

is a sufficiently well-behaved function – we will assume that this is indeed the case.

Proof: Given any arbitrary t1 ∈ [t0, T ]. Since

fst1 = fst0 +

∫ t1

t0

αst dt+

∫ t1

t0

βst dzt,

we get

Yt1 =

∫ T

t1

fst0 ds+

∫ T

t1

[∫ t1

t0

αst dt

]

ds+

∫ T

t1

[∫ t1

t0

βst dzt

]

ds

=

∫ T

t1

fst0 ds+

∫ t1

t0

[
∫ T

t1

αst ds

]

dt+

∫ t1

t0

[
∫ T

t1

βst ds

]

dzt

= Yt0 +

∫ t1

t0

[
∫ T

t

αst ds

]

dt+

∫ t1

t0

[
∫ T

t

βst ds

]

dzt

−
∫ t1

t0

fst0 ds−
∫ t1

t0

[∫ t1

t

αst ds

]

dt−
∫ t1

t0

[∫ t1

t

βst ds

]

dzt

= Yt0 +

∫ t1

t0

[
∫ T

t

αst ds

]

dt+

∫ t1

t0

[
∫ T

t

βst ds

]

dzt

−
∫ t1

t0

fst0 ds−
∫ t1

t0

[∫ s

t0

αst dt

]

ds−
∫ t1

t0

[∫ s

t0

βst dzt

]

ds

= Yt0 +

∫ t1

t0

[
∫ T

t

αst ds

]

dt+

∫ t1

t0

[
∫ T

t

βst ds

]

dzt −
∫ t1

t0

fss ds

= Yt0 +

∫ t1

t0

[(
∫ T

t

αst ds

)

− f tt

]

dt+

∫ t1

t0

[
∫ T

t

βst ds

]

dzt,

where the Fubini-rule was employed in the second and fourth equality. The result now follows from

the final expression. 2

3.7 Itô’s Lemma

In our dynamic models of the term structure of interest rates, we will take as given a stochas-

tic process for the dynamics of some basic quantity such as the short-term interest rate. Many

other quantities of interest will be functions of that basic variable. To determine the dynamics of

these other variables, we shall apply Itô’s Lemma, which is basically the chain rule for stochastic

processes. We will state the result for a function of a general Itô process, although we will most

frequently apply the result for the special case of a function of a diffusion process.

Theorem 3.5 Let x = (xt)t≥0 be a real-valued Itô process with dynamics

dxt = µt dt+ σt dzt,

where µ and σ are real-valued processes, and z is a one-dimensional standard Brownian motion. Let

g(x, t) be a real-valued function which is two times continuously differentiable in x and continuously

differentiable in t. Then the process y = (yt)t≥0 defined by

yt = g(xt, t)
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is an Itô process with dynamics

dyt =

(
∂g

∂t
(xt, t) +

∂g

∂x
(xt, t)µt +

1

2

∂2g

∂x2
(xt, t)σ

2
t

)

dt+
∂g

∂x
(xt, t)σt dzt. (3.15)

The proof is based on a Taylor expansion of g(xt, t) combined with appropriate limits, but a

formal proof is beyond the scope of this book. Once again, we refer to Øksendal (1998, Ch. 4)

and similar textbooks. The result can also be written in the following way, which may be easier

to remember:

dyt =
∂g

∂t
(xt, t) dt+

∂g

∂x
(xt, t) dxt +

1

2

∂2g

∂x2
(xt, t)(dxt)

2. (3.16)

Here, in the computation of (dxt)
2, one must apply the rules (dt)2 = dt · dzt = 0 and (dzt)

2 = dt,

so that

(dxt)
2 = (µt dt+ σt dzt)

2 = µ2
t (dt)

2 + 2µtσt dt · dzt + σ2
t (dzt)

2 = σ2
t dt.

The intuition behind these rules is as follows: When dt is close to zero, (dt)2 is far less than

dt and can therefore be ignored. Since dzt ∼ N(0, dt), we get E[dt · dzt] = dt · E[dzt] = 0 and

Var[dt · dzt] = (dt)2 Var[dzt] = (dt)3, which is also very small compared to dt and is therefore

ignorable. Finally, we have E[(dzt)
2] = Var[dzt] − (E[dzt])

2 = dt, and it can be shown that5

Var[(dzt)
2] = 2(dt)2. For dt close to zero, the variance is therefore much less than the mean, so

(dzt)
2 can be approximated by its mean dt.

In Section 3.8, we give examples of the application of Itô’s Lemma. We will use Itô’s Lemma

extensively throughout the rest of the book. It is therefore important to be familiar with the way

it works. It is a good idea to train yourself by doing the exercises at the end of this chapter.

3.8 Important diffusion processes

In this section we will discuss particular examples of diffusion processes that are frequently

applied in modern financial models, as those we consider in the following chapters.

3.8.1 Geometric Brownian motions

A stochastic process x = (xt)t≥0 is said to be a geometric Brownian motion if it is a solution

to the stochastic differential equation

dxt = µxt dt+ σxt dzt, (3.17)

where µ and σ are constants. The initial value for the process is assumed to be positive, x0 > 0.

A geometric Brownian motion is the particular diffusion process that is obtained from (3.9) by

inserting µ(xt, t) = µxt and σ(xt, t) = σxt. Paths can be simulated by computing

xti = xti−1
+ µxti−1

(ti − ti−1) + σxti−1
εi
√

ti − ti−1.

Figure 3.4 shows a single simulated path for σ = 0.2 and a path for σ = 0.5. For both paths we

have used µ = 0.1 and x0 = 100, and the same sequence of random numbers.

5This is based on the computation Var[(zt+∆t−zt)2] = E[(zt+∆t−zt)4]−
(
E[(zt+∆t − zt)2]

)2
= 3(∆t)2−(∆t)2 =

2(∆t)2 and a passage to the limit.
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Figure 3.4: Simulation of a geometric Brownian motion with initial value x0 = 100, relative drift rate

µ = 0.1, and a relative volatility of σ = 0.2 and σ = 0.5, respectively. The smooth curve shows the

trend corresponding to σ = 0. The simulations are based on 200 subintervals of equal length, and the

same sequence of random numbers has been used for the two σ-values.

The expression (3.17) can be rewritten as

dxt
xt

= µdt+ σ dzt,

which is the relative (percentage) change in the value of the process over the next infinitesimally

short time interval [t, t+ dt]. If xt is the price of a traded asset, then dxt/xt is the rate of return

on the asset over the next instant. The constant µ is the expected rate of return per period, while

σ is the standard deviation of the rate of return per period. In this context it is often µ which is

called the drift (rather than µxt) and σ which is called the volatility (rather than σxt). Strictly

speaking, one must distinguish between the relative drift and volatility (µ and σ, respectively) and

the absolute drift and volatility (µxt and σxt, respectively). An asset with a constant expected rate

of return and a constant relative volatility has a price that follows a geometric Brownian motion.

For example, such an assumption is used for the stock price in the famous Black-Scholes-Merton

model for stock option pricing, cf. Section 4.8, and a geometric Brownian motion is also used

to describe the evolution in the short-term interest rate in some models of the term structure of

interest rate, cf. Section 7.6.

Next, we will find an explicit expression for xt, i.e. we will find a solution to the stochastic

differential equation (3.17). We can then also determine the distribution of the future value of

the process. We apply Itô’s Lemma with the function g(x, t) = lnx and define the process yt =
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g(xt, t) = lnxt. Since

∂g

∂t
(xt, t) = 0,

∂g

∂x
(xt, t) =

1

xt
,

∂2g

∂x2
(xt, t) = − 1

x2
t

,

we get from Theorem 3.5 that

dyt =

(

0 +
1

xt
µxt −

1

2

1

x2
t

σ2x2
t

)

dt+
1

xt
σxt dzt =

(

µ− 1

2
σ2

)

dt+ σ dzt.

Hence, the process yt = lnxt is a generalized Brownian motion. In particular, we have

yt′ − yt =

(

µ− 1

2
σ2

)

(t′ − t) + σ(zt′ − zt),

which implies that

lnxt′ = lnxt +

(

µ− 1

2
σ2

)

(t′ − t) + σ(zt′ − zt).

Taking exponentials on both sides, we get

xt′ = xt exp

{(

µ− 1

2
σ2

)

(t′ − t) + σ(zt′ − zt)

}

. (3.18)

This is true for all t′ > t ≥ 0. In particular,

xt = x0 exp

{(

µ− 1

2
σ2

)

t+ σzt

}

.

Since exponentials are always positive, we see that xt can only have positive values, so that the

value space of a geometric Brownian motion is S = (0,∞).

Suppose now that we stand at time t and have observed the current value xt of a geometric

Brownian motion. Which probability distribution is then appropriate for the uncertain future

value, say at time t′? Since zt′ − zt ∼ N(0, t′ − t), we see from (3.18) that the future value xt′

(given xt) will be lognormally distributed. The probability density function for xt′ (given xt) is

given by

f(x) =
1

x
√

2πσ2(t′ − t)
exp

{

− 1

2σ2(t′ − t)

(

ln

(
x

xt

)

−
(

µ− 1

2
σ2

)

(t′ − t)

)2
}

, x > 0,

and the mean and variance are

Et[xt′ ] = xte
µ(t′−t),

Vart[xt′ ] = x2
t e

2µ(t′−t)
[

eσ
2(t′−t) − 1

]

,

cf. Appendix A.

The geometric Brownian motion in (3.17) is time-homogeneous, since neither the drift nor the

volatility are time-dependent. We will also make use of the time-inhomogeneous variant, which is

characterized by the dynamics

dxt = µ(t)xt dt+ σ(t)xt dzt, (3.19)

where µ and σ are deterministic functions of time. Following the same procedure as for the time-

homogeneous geometric Brownian motion, one can show that the inhomogeneous variant satisfies

xt′ = xt exp

{
∫ t′

t

(

µ(u) − 1

2
σ(u)2

)

du+

∫ t′

t

σ(u) dzu

}

. (3.20)
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According to Theorem 3.2,
∫ t′

t
σ(u) dzu is normally distributed with mean zero and variance

∫ t′

t
σ(u)2 du. Therefore, the future value of the time-inhomogeneous geometric Brownian motion

is also lognormally distributed. In addition, we have

Et[xt′ ] = xte
∫

t′

t
µ(u) du,

Vart[xt′ ] = x2
t e

2
∫

t′

t
µ(u) du

(

e
∫

t′

t
σ(u)2 du − 1

)

.

3.8.2 Ornstein-Uhlenbeck processes

Another stochastic process we shall apply in models of the term structure of interest rate

is the so-called Ornstein-Uhlenbeck process. A stochastic process x = (xt)t≥0 is said to be an

Ornstein-Uhlenbeck process, if its dynamics is of the form

dxt = [ϕ− κxt] dt+ β dzt, (3.21)

where ϕ, β, and κ are constants with κ > 0. Alternatively, this can be written as

dxt = κ [θ − xt] dt+ β dzt, (3.22)

where θ = ϕ/κ. An Ornstein-Uhlenbeck process exhibits mean reversion in the sense that the drift

is positive when xt < θ and negative when xt > θ. The process is therefore always pulled towards

a long-term level of θ. However, the random shock to the process through the term β dzt may

cause the process to move further away from θ. The parameter κ controls the size of the expected

adjustment towards the long-term level and is often referred to as the mean reversion parameter

or the speed of adjustment.

To determine the distribution of the future value of an Ornstein-Uhlenbeck process we proceed

as for the geometric Brownian motion. We will define a new process yt as some function of xt

such that y = (yt)t≥0 is a generalized Brownian motion. It turns out that this is satisfied for

yt = g(xt, t), where g(x, t) = eκtx. From Itô’s Lemma we get

dyt =

[
∂g

∂t
(xt, t) +

∂g

∂x
(xt, t) (ϕ− κxt) +

1

2

∂2g

∂x2
(xt, t)β

2

]

dt+
∂g

∂x
(xt, t)β dzt

=
[
κeκtxt + eκt (ϕ− κxt)

]
dt+ eκtβ dzt

= ϕeκt dt+ βeκt dzt.

This implies that

yt′ = yt +

∫ t′

t

ϕeκu du+

∫ t′

t

βeκu dzu.

After substitution of the definition of yt and yt′ and a multiplication by e−κt
′

, we arrive at the

expression

xt′ = e−κ(t
′−t)xt +

∫ t′

t

ϕe−κ(t
′−u) du+

∫ t′

t

βe−κ(t
′−u) dzu

= e−κ(t
′−t)xt + θ

(

1 − e−κ(t
′−t)
)

+

∫ t′

t

βe−κ(t
′−u) dzu.

(3.23)

This holds for all t′ > t ≥ 0. In particular, we get that the solution to the stochastic differential

equation (3.21) can be written as

xt = e−κtx0 + θ
(
1 − e−κt

)
+

∫ t

0

βe−κ(t−u) dzu. (3.24)
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According to Theorem 3.2, the integral
∫ t′

t
βe−κ(t

′−u) dzu is normally distributed with mean

zero and variance
∫ t′

t
β2e−2κ(t′−u) du = β2

2κ

(

1 − e−2κ(t′−t)
)

. We can thus conclude that xt′ (given

xt) is normally distributed, with mean and variance given by

Et[xt′ ] = e−κ(t
′−t)xt + θ

(

1 − e−κ(t
′−t)
)

, (3.25)

Vart[xt′ ] =
β2

2κ

(

1 − e−2κ(t′−t)
)

. (3.26)

The value space of an Ornstein-Uhlenbeck process is R. For t′ → ∞, the mean approaches θ,

and the variance approaches β2/(2κ). For κ → ∞, the mean approaches θ, and the variance

approaches 0. For κ→ 0, the mean approaches the current value xt, and the variance approaches

β2(t′ − t). The distance between the level of the process and the long-term level is expected to be

halved over a period of t′ − t = (ln 2)/κ, since Et[xt′ ] − θ = 1
2 (xt − θ) implies that e−κ(t

′−t) = 1
2

and, hence, t′ − t = (ln 2)/κ.

The effect of the different parameters can also be evaluated by looking at the paths of the

process, which can be simulated by

xti = xti−1
+ κ[θ − xti−1

](ti − ti−1) + βεi
√

ti − ti−1.

Figure 3.5 shows a single path for different combinations of x0, κ, θ, and β. In each sub-figure one

of the parameters is varied and the others fixed. The base values of the parameters are x0 = 0.08,

θ = 0.08, κ = ln 2 ≈ 0.69, and β = 0.03. All paths are computed using the same sequence

of random numbers ε1, . . . , εn and are therefore directly comparable. None of the paths shown

involve negative values of the process, but other paths will, see e.g. Figure 3.6. As a matter of

fact, it can be shown that an Ornstein-Uhlenbeck process with probability one will sooner or later

become negative.

We will also apply the time-inhomogeneous Ornstein-Uhlenbeck process, where the constants

ϕ and β are replaced by deterministic functions:

dxt = [ϕ(t) − κxt] dt+ β(t) dzt = κ [θ(t) − xt] dt+ β(t) dzt. (3.27)

Following the same line of analysis as above, it can be shown that the future value xt′ given xt is

normally distributed with mean and variance given by

Et[xt′ ] = e−κ(t
′−t)xt +

∫ t′

t

ϕ(u)e−κ(t
′−u) du, (3.28)

Vart[xt′ ] =

∫ t′

t

β(u)2e−2κ(t′−u) du. (3.29)

One can also allow κ to depend on time, but we will not make use of that extension.

One of the earliest (but still frequently applied) dynamic models of the term structure of interest

rates is based on the assumption that the short-term interest rate follows an Ornstein-Uhlenbeck

process, cf. Section 7.4. In an extension of that model, the short-term interest rate is assumed to

follow a time-inhomogeneous Ornstein-Uhlenbeck process, cf. Section 9.4.

3.8.3 Square root processes

Another stochastic process frequently applied in term structure models is the so-called square

root process. A one-dimensional stochastic process x = (xt)t≥0 is said to be a square root
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Figure 3.5: Simulated paths for an Ornstein-Uhlenbeck process. The basic parameter values are

x0 = θ = 0.08, κ = ln 2 ≈ 0.69, and β = 0.03.

process, if its dynamics is of the form

dxt = [ϕ− κxt] dt+ β
√
xt dzt = κ [θ − xt] dt+ β

√
xt dzt, (3.30)

where ϕ = κθ. Here, ϕ, θ, β, and κ are positive constants. We assume that the initial value of the

process x0 is positive, so that the square root function can be applied. The only difference to the

dynamics of an Ornstein-Uhlenbeck process is the term
√
xt in the volatility. The variance rate

is now β2xt which is proportional to the level of the process. A square root process also exhibits

mean reversion.

A square root process can only take on non-negative values. To see this, note that if the value

should become zero, then the drift is positive and the volatility zero, and therefore the value of the

process will with certainty become positive immediately after (zero is a so-called reflecting barrier).

It can be shown that if 2ϕ ≥ β2, the positive drift at low values of the process is so big relative

to the volatility that the process cannot even reach zero, but stays strictly positive.6 Hence, the

6To show this, the results of Karlin and Taylor (1981, p. 226ff) can be applied.
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Figure 3.6: A comparison of simulated paths for an Ornstein-Uhlenbeck process and a square root

process. For both processes, the parameters θ = 0.08 and κ = ln 2 ≈ 0.69 are used, while β is set to

0.03 for the Ornstein-Uhlenbeck process and to 0.03/
√

0.08 ≈ 0.1061 for the square root process.

value space for a square root process is either S = [0,∞) or S = (0,∞).

Paths for the square root process can be simulated by successively calculating

xti = xti−1
+ κ[θ − xti−1

](ti − ti−1) + β
√
xti−1

εi
√

ti − ti−1.

Variations in the different parameters will have similar effects as for the Ornstein-Uhlenbeck pro-

cess, which is illustrated in Figure 3.5. Instead, let us compare the paths for a square root process

and an Ornstein-Uhlenbeck process using the same drift parameters κ and θ, but where the β-

parameter for the Ornstein-Uhlenbeck process is set equal to the β-parameter for the square root

process multiplied by the square root of θ, which ensures that the processes will have the same

variance rate at the long-term level. Figure 3.6 compares two pairs of paths of the processes. In

part (a), the initial value is set equal to the long-term level, and the two paths continue to be

very close to each other. In part (b), the initial value is lower than the long-term level, so that

the variance rates of the two processes differ from the beginning. For the given sequence of ran-

dom numbers, the Ornstein-Uhlenbeck process becomes negative, while the square root process of

course stays positive. In this case there is a clear difference between the paths of the two processes.

Since a square root process cannot become negative, the future values of the process cannot be

normally distributed. In order to find the actual distribution, let us try the same trick as for the

Ornstein-Uhlenbeck process, that is we look at yt = eκtxt. By Itô’s Lemma,

dyt = κeκtxt dt+ eκt(ϕ− κxt) dt+ eκtβ
√
xt dzt

= ϕeκt dt+ βeκt
√
xt dzt,

so that

yt′ = yt +

∫ t′

t

ϕeκu du+

∫ t′

t

βeκu
√
xu dzu.
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Computing the ordinary integral and substituting the definition of y, we get

xt′ = xte
−κ(t′−t) +

ϕ

κ

(

1 − e−κ(t
′−t)
)

+ β

∫ t′

t

e−κ(t
′−u)√xu dzu. (3.31)

Since x enters the stochastic integral we cannot immediately determine the distribution of xt′ given

xt from this equation. We can, however, use it to obtain the mean and variance of xt′ . Due to the

fact that the stochastic integral has mean zero, cf. Theorem 3.1, we easily get

Et[xt′ ] = e−κ(t
′−t)xt + θ

(

1 − e−κ(t
′−t)
)

= θ + (xt − θ) e−κ(t
′−t). (3.32)

To compute the variance we apply the second equation of Theorem 3.1:

Vart[xt′ ] = Vart

[

β

∫ t′

t

e−κ(t
′−u)√xu dzu

]

= β2

∫ t′

t

e−2κ(t′−u) Et[xu] du

= β2

∫ t′

t

e−2κ(t′−u)
(

θ + (xt − θ) e−κ(u−t)
)

du

= β2θ

∫ t′

t

e−2κ(t′−u) du+ β2 (xt − θ) e−2κt′+κt

∫ t′

t

eκu du

=
β2θ

2κ

(

1 − e−2κ(t′−t)
)

+
β2

κ
(xt − θ)

(

e−κ(t
′−t) − e−2κ(t′−t)

)

=
β2xt
κ

(

e−κ(t
′−t) − e−2κ(t′−t)

)

+
β2θ

2κ

(

1 − e−κ(t
′−t)
)2

. (3.33)

Note that the mean is identical to the mean for an Ornstein-Uhlenbeck process, whereas the

variance is more complicated for the square root process. For t′ → ∞, the mean approaches θ,

and the variance approaches θβ2/(2κ). For κ → ∞, the mean approaches θ, and the variance

approaches 0. For κ→ 0, the mean approaches the current value xt, and the variance approaches

β2xt(t
′ − t).

It can be shown that, given the value xt, the value xt′ with t′ > t is given by the non-central

χ2-distribution. A non-central χ2-distribution is characterized by a number a of degrees of freedom

and a non-centrality parameter b and is denoted by χ2(a, b). More precisely, the distribution of xt′

given xt is identical to the distribution of the random variable Y/c(t′−t) where c is the deterministic

function

c(τ) =
4κ

β2 (1 − e−κτ )

and Y is a χ2(a, b(t′ − t))-distributed random variable with

a =
4ϕ

β2
, b(τ) = xtc(τ)e

−κτ .

The density function for a χ2(a, b)-distributed random variable is

fχ2(a,b)(y) =

∞∑

i=0

e−b/2(b/2)i

i!
fχ2(a+2i)(y) =

∞∑

i=0

e−b/2(b/2)i

i!

(1/2)i+a/2

Γ(i+ a/2)
yi−1+a/2e−y/2,

where fχ2(a+2i) is the density function for a central χ2-distribution with a+2i degrees of freedom.

Inserting this density in the first sum will give the second sum. Here Γ denotes the so-called

gamma-function defined as Γ(m) =
∫∞

0
xm−1e−x dx.
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The mean and variance of a χ2(a, b)-distributed random variable are a + b and 2(a + 2b),

respectively. This opens another way of deriving the mean and variance of xt′ given xt. We leave

it for the reader to verify that this procedure will yield the same results as given above.

A frequently applied dynamic model of the term structure of interest rates is based on the

assumption that the short-term interest rate follows a square root process, cf. Section 7.5. Since

interest rates are positive and empirically seem to have a variance rate which is positively correlated

to the interest rate level, the square root process gives a more realistic description of interest rates

than the Ornstein-Uhlenbeck process. On the other hand, models based on square root processes

are more complicated to analyze than models based on Ornstein-Uhlenbeck processes.

3.9 Multi-dimensional processes

So far we have only considered one-dimensional processes, i.e. processes with a value space

which is R or a subset of R. Some models in the following chapters will involve multi-dimensional

processes, which have values in (a subset of) RK for some integer K > 1. A multi-dimensional

process can also be considered as a vector of one-dimensional processes. In this section we will

briefly introduce some multi-dimensional processes and a multi-dimensional version of Itô’s Lemma.

A note on the notation: vectors are printed in boldface. Matrices are indicated by a double line

under the symbol. We treat all vectors as column vectors. The symbol ⊤ denotes transposition,

so that e.g. (a, b)⊤ represents the (column) vector

(

a

b

)

. If a is a (column) vector, then a⊤ is the

corresponding row vector.

A K-dimensional (standard) Brownian motion z = (z1, . . . , zK)⊤ is a stochastic process where

the individual components zi are mutually independent one-dimensional (standard) Brownian mo-

tions. If we let 0 = (0, . . . , 0)⊤ denote the zero vector in RK and let I denote the identity matrix

of dimension K ×K (the matrix with ones in the diagonal and zeros in all other entries), then we

can write the defining properties of a K-dimensional Brownian motion z as follows:

(i) z0 = 0,

(ii) for all t, t′ ≥ 0 with t < t′: zt′ − zt ∼N(0, (t′ − t)I) [normally distributed increments],

(iii) for all 0 ≤ t0 < t1 < · · · < tn, the random variables zt1 − zt0 , . . . , ztn − ztn−1
are mutually

independent [independent increments],

(iv) z has continuous paths in RK .

Here, N(a, b) denotes a K-dimensional normal distribution with mean vector a and variance-

covariance matrix b. As for standard Brownian motions, we can also define multi-dimensional

generalized Brownian motions, which simply are vectors of independent one-dimensional general-

ized Brownian motions.

A K-dimensional diffusion process x = (x1, . . . , xK)⊤ is a process with increments of the form

dxt = µ(xt, t) dt+ σ (xt, t) dzt, (3.34)

where µ is a function from RK × R+ into RK , and σ is a function from RK × R+ into the space

of K ×K-matrices. As before, z is a K-dimensional standard Brownian motion. The evolution of
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the multi-dimensional diffusion can also be written componentwise as

dxit = µi(xt, t) dt+ σi(xt, t)
⊤ dzt

= µi(xt, t) dt+

K∑

k=1

σik(xt, t) dzkt, i = 1, . . . ,K,
(3.35)

where σi(xt, t)
⊤ is the i’th row of the matrix σ (xt, t), and σik(xt, t) is the (i, k)’th entry (i.e.

the entry in row i, column k). Since dz1t, . . . , dzKt are mutually independent and all N(0, dt)

distributed, the expected change in the i’th component process over an infinitesimal period is

Et[dxit] = µi(xt, t) dt, i = 1, . . . ,K,

so that µi can be interpreted as the drift of the i’th component. Furthermore, the covariance

between changes in the i’th and the j’th component processes over an infinitesimal period becomes

Covt(dxit, dxjt) = Covt

(
K∑

k=1

σik(xt, t) dzkt,
K∑

l=1

σjl(xt, t) dzlt

)

=
K∑

k=1

K∑

l=1

σik(xt, t)σjl(xt, t)Covt(dzkt, dzlt)

=

K∑

k=1

σik(xt, t)σjk(xt, t) dt

= σi(xt, t)
⊤σj(xt, t) dt, i, j = 1, . . . ,K,

where we have applied the usual rules for covariances and the independence of the components

of z. In particular, the variance of the change in the i’th component process of an infinitesimal

period is given by

Vart[dxit] = Covt(dxit, dxit) =

K∑

k=1

σik(xt, t)
2 dt = ‖σi(xt, t)‖2 dt, i = 1, . . . ,K.

The volatility of the i’th component is given by ‖σi(xt, t)‖. It is clear from these computations

that the elements of the matrix σ (xt, t) determine all variances and covariances over infinitesimal

periods. To be precise, the variance-covariance matrix is Σ(xt, t) dt = σ (xt, t)σ (xt, t)
⊤ dt. Note

that the individual component processes are generally not mutually independent since the drift

and volatility of one component will generally depend on the values of the other components. As

for one-dimensional diffusions, means, variances, and covariances over non-infinitesimal intervals

such as [t, t′] will generally depend on the entire path of the process over this interval.

Of course, the concept of an Itôprocess can also be generalized to multiple dimensions. A

K-dimensional stochastic process x = (xt) is said to be an Itô process, if the local increments are

on the form

dxt = µt dt+ σ t dzt, (3.36)

where z = (zt) is assumed to be a K-dimensional standard Brownian motion, the drift is a K-

dimensional process µ = (µt), and the sensitivity towards the shock is a stochastic processes

σ = (σ t) taking K ×K matrices as values. The processes µ and σ must satisfy certain regularity

conditions for x to be well-defined, but we will not go into details here.

Finally, we state a multi-dimensional version of Itô’s Lemma, where a one-dimensional process

is defined as a function of time and a multi-dimensional process.
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Theorem 3.6 Let x = (xt)t≥0 be an Itô process in RK with dynamics

dxt = µt dt+ σ t dzt,

which componentwise is equivalent to

dxit = µit dt+ σ⊤

it dzt = µit dt+

K∑

k=1

σikt dzkt, i = 1, . . . ,K,

where z1, . . . , zK are independent standard Brownian motions, and µi and σik are well-behaved

stochastic processes.

Let g(x, t) be a real-valued function for which all the derivatives ∂g
∂t ,

∂g
∂xi

, and ∂2g
∂xi∂xj

exist and

are continuous. Then the process y = (yt)t≥0 defined by

yt = g(xt, t)

is also an Itô process with dynamics

dyt =




∂g

∂t
(xt, t) +

K∑

i=1

∂g

∂xi
(xt, t)µit +

1

2

K∑

i=1

K∑

j=1

∂2g

∂xi∂xj
(xt, t)γijt



 dt

+
K∑

i=1

∂g

∂xi
(xt, t)σi1t dz1t + · · · +

K∑

i=1

∂g

∂xi
(xt, t)σiKt dzKt,

(3.37)

where we have introduced the notation

γij = σi1σj1 + · · · + σiKσjK ,

which is exactly the covariance between the processes xi and xj.

The result can also be written as

dyt =
∂g

∂t
(xt, t) dt+

K∑

i=1

∂g

∂xi
(xt, t) dxit +

1

2

K∑

i=1

K∑

j=1

∂2g

∂xi∂xj
(xt, t)(dxit)(dxjt), (3.38)

where in the computation of (dxit)(dxjt) one must use the rules (dt)2 = dt · dzit = 0 for all i,

dzit · dzjt = 0 for i 6= j, and (dzit)
2 = dt for all i.

Alternatively, the result can be expressed using vector and matrix notation:

dyt =

(
∂g

∂t
(xt, t) +

(
∂g

∂x
(xt, t)

)
⊤

µt +
1

2
tr

(

σ tσ
⊤

t

[
∂2g

∂x2
(xt, t)

]))

dt+

(
∂g

∂x
(xt, t)

)
⊤

σ t dzt,

(3.39)

where

∂g

∂x
(xt, t) =







∂g
∂x1

(xt, t)

. . .
∂g
∂x

K
(xt, t)






,

∂2g

∂x2
(xt, t) =










∂2g
∂x2

1
(xt, t)

∂2g
∂x1∂x2

(xt, t) . . . ∂2g
∂x1∂xK

(xt, t)
∂2g

∂x2∂x1
(xt, t)

∂2g
∂x2

2
(xt, t) . . . ∂2g

∂x2∂xK
(xt, t)

...
...

. . .
...

∂2g
∂xK∂x1

(xt, t)
∂2g

∂xK∂x2
(xt, t) . . . ∂2g

∂x2
K

(xt, t)










,

and tr denotes the trace of a quadratic matrix, i.e. the sum of the diagonal elements. For example,

tr(A) =
∑K
i=1Aii.
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The probabilistic properties of a K-dimensional diffusion process is completely specified by the

drift function µ and the variance-covariance function Σ. The values of the variance-covariance

function are symmetric and positive-definite matrices. Above we had Σ = σ σ⊤ for a general

(K×K)-matrix σ . But from linear algebra it is well-known that a symmetric and positive-definite

matrix can be written as σ̂ σ̂⊤ for a lower-triangular matrix σ̂ , i.e. a matrix with σ̂ik = 0 for k > i.

This is the so-called Cholesky decomposition. Hence, we might as well from the beginning take σ

to be lower-triangular and ay write the dynamics as

dx1t = µ1(xt, t) dt+ σ11(xt, t) dz1t

dx2t = µ2(xt, t) dt+ σ21(xt, t) dz1t + σ22(xt, t) dz2t

...

dxKt = µK(xt, t) dt+ σK1(xt, t) dz1t + σK2(xt, t) dz2t + · · · + σKK(xt, t) dzKt

(3.40)

We can think of building up the model by starting with x1. The shocks to x1 are represented by

the standard Brownian motion z1 and it’s coefficient σ11 is the volatility of x1. Then we extend the

model to include x2. Unless the infinitesimal changes to x1 and x2 are always perfectly correlated

we need to introduce another standard Brownian motion, z2. The coefficient σ21 is fixed to match

the covariance between changes to x1 and x2 and then σ22 can be chosen so that
√

σ2
21 + σ2

22

equals the volatility of x2. The model may be extended to include additional processes in the same

manner.

Some authors prefer to write the dynamics in an alternative way with a single standard Brow-

nian motion ẑi for each component xi such as

dx1t = µ1(xt, t) dt+ V1(xt, t) dẑ1t

dx2t = µ2(xt, t) dt+ V2(xt, t) dẑ2t

...

dxKt = µK(xt, t) dt+ VK(xt, t) dẑKt

(3.41)

Clearly, the coefficient Vi(xt, t) is then the volatility of xi. To capture an instantaneous non-zero

correlation between the different components the standard Brownian motions ẑ1, . . . , ẑK have to

be mutually correlated. Let ρij be the correlation between ẑi and ẑj . If (3.41) and (3.40) are

meant to represent the same dynamics, we must have

Vi =
√

σ2
i1 + · · · + σ2

ii, i = 1, . . . ,K,

ρii = 1; ρij =

∑i
k=1 σikσjk
ViVj

, ρji = ρij , i < j.

3.10 Change of probability measure

When we represent the evolution of a given economic variable by a stochastic process and discuss

the distributional properties of this process, we have implicitly fixed a probability measure P. For

example, when we use the square-root process x = (xt) in (3.30) for the dynamics of a particular

interest rate, we have taken as given a probability measure P under which the stochastic process

z = (zt) is a standard Brownian motion. Since the process x is presumably meant to represent

the uncertain dynamics of the interest rate in the world we live in, we refer to the measure P as
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the real-world probability measure. Of course, it is the real-world dynamics and distributional

properties of economic variables that we are ultimately interested in. Nevertheless, it turns out

that in order to compute and understand prices and rates it is often convenient to look at the

dynamics and distributional properties of these variables assuming that the world was different

from the world we live in, e.g. a hypothetical world in which investors were risk-neutral instead

of risk-averse. A different world is represented mathematically by a different probability measure.

Hence, we need to be able to analyze stochastic variables and processes under different probability

measures. In this section we will briefly discuss how we can change the probability measure.

If the state space Ω has only finitely many elements, we can write it as Ω = {ω1, . . . , ωn}. As

before, the set of events, i.e. subsets of Ω, that can be assigned a probability is denoted by F. Let

us assume that the single-element sets {ωi}, i = 1, . . . , n, belong to F. In this case we can represent

a probability measure P by a vector (p1, . . . , pn) of probabilities assigned to each of the individual

elements:

pi = P ({ωi}) , i = 1, . . . , n.

Of course, we must have that pi ∈ [0, 1] and that
∑n
i=1 pi = 1. The probability assigned to any

other event can be computed from these basic probabilities. For example, the probability of the

event {ω2, ω4} is given by

P ({ω2, ω4}) = P ({ω2} ∪ {ω4}) = P ({ω2}) + P ({ω4}) = p2 + p4.

Another probability measure Q on F is similarly given by a vector (q1, . . . , qn) with qi ∈ [0, 1] and
∑n
i=1 qi = 1. We are only interested in equivalent probability measures. In this setting, the two

measures P and Q will be equivalent whenever pi > 0 ⇔ qi > 0 for all i = 1, . . . , n. With a finite

state space there is no point in including states that occur with zero probability so we can assume

that all pi, and therefore all qi, are strictly positive.

We can represent the change of probability measure from P to Q by the vector ξ = (ξ1, . . . , ξn),

where

ξi =
qi
pi
, i = 1, . . . , n.

We can think of ξ as a random variable that will take on the value ξi if the state ωi is realized.

Sometimes ξ is called the Radon-Nikodym derivative of Q with respect to P and is denoted by

dQ/dP. Note that ξi > 0 for all i and that the P-expectation of ξ = dQ/dP is

EP

[
dQ

dP

]

= EP [ξ] =
n∑

i=1

piξi =
n∑

i=1

pi
qi
pi

=
n∑

i=1

qi = 1.

Consider a random variable x that takes on the value xi if state i is realized. The expected value

of x under the measure Q is given by

EQ[x] =
n∑

i=1

qixi =
n∑

i=1

pi
qi
pi
xi =

n∑

i=1

piξixi = EP [ξx] .

Now let us consider the case where the state space Ω is infinite. Also in this case the change from

a probability measure P to an equivalent probability measure Q is represented by a strictly positive

random variable ξ = dQ/dP with EP [ξ] = 1. Again the expected value under the measure Q of a

random variable x is given by EQ[x] = EP[ξx], since

EQ[x] =

∫

Ω

x dQ =

∫

Ω

x
dQ

dP
dP =

∫

Ω

xξ dP = EP[ξx].
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In our economic models we will model the dynamics of uncertain objects over some time span

[0, T ]. For example, we might be interested in determining bond prices with maturities up to

T years. Then we are interested in the stochastic process on this time interval, i.e. x = (xt)t∈[0,T ].

The state space Ω is the set of possible paths of the relevant processes over the period [0, T ] so

that all the relevant uncertainty has been resolved at time T and the values of all relevant random

variables will be known at time T . The Radon-Nikodym derivative ξ = dQ/dP is also a random

variable and is therefore known at time T and usually not before time T . To indicate this the

Radon-Nikodym derivative is often denoted by ξT = dQ
dP

.

We can define a stochastic process ξ = (ξt)t∈[0,T ] by setting

ξt = EP
t

[
dQ

dP

]

= EP
t [ξT ] .

This definition is consistent with ξT being identical to dQ/dP, since all uncertainty is resolved at

time T so that the time T expectation of any variable is just equal to the variable. Note that the

process ξ is a P-martingale, since for any t < t′ ≤ T we have

EP
t [ξt′ ] = EP

t

[

EP
t′ [ξT ]

]

= EP
t [ξT ] = ξt.

Here the first and the third equalities follow from the definition of ξ. The second equality follows

from the law of iterated expectations, which says that the expectation today of what we expect

tomorrow for a given random variable realized later is equal to today’s expectation of that random

variable. This is a very intuitive result. For a more formal statement and proof, see Øksendal

(1998). The following result turns out to be very useful in our dynamic models of he economy. Let

x = (xt)t∈[0,T ] be any stochastic process. Then we have

EQ
t [xt′ ] = EP

t

[
ξt′

ξt
xt′

]

. (3.42)

For a proof, see Björk (2004, Prop. B.41).

Suppose that the underlying uncertainty is represented by a standard Brownian motion z = (zt)

(under the real-world probability measure P), as will be the case in all the models we will consider.

Let λ = (λt)t∈[0,T ] be any sufficiently well-behaved stochastic process.7. Here, z and λ must have

the same dimension. For notational simplicity, we assume in the following that they are one-

dimensional, but the results generalize naturally to the multi-dimensional case. We can generate

an equivalent probability measure Qλ in the following way. Define the process ξλ = (ξλt )t∈[0,T ] by

ξλt = exp

{

−
∫ t

0

λs dzs −
1

2

∫ t

0

λ2
s ds

}

. (3.43)

Then ξλ0 = 1, ξλ is strictly positive, and it can be shown that ξλ is a P-martingale (see Exercise 3.5)

so that EP[ξλT ] = ξλ0 = 1. Consequently, an equivalent probability measure Qλ can be defined by

the Radon-Nikodym derivative

dQλ

dP
= ξλT = exp

{

−
∫ T

0

λs dzs −
1

2

∫ T

0

λ2
s ds

}

.

7Basically, λ must be square-integrable in the sense that
∫ T
0 λ2

t dt is finite with probability 1 and that λ satisfies

Novikov’s condition, i.e. the expectation EP
[

exp
{

1
2

∫ T
0 λ2

t dt
}]

is finite.
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From (3.42), we get that

EQλ

t [xt′ ] = EP
t

[
ξλt′

ξλt
xt′

]

= EP
t

[

xt′ exp

{

−
∫ t′

t

λs dzs −
1

2

∫ t′

t

λ2
s ds

}]

(3.44)

for any stochastic process x = (xt)t∈[0,T ]. A central result is Girsanov’s Theorem:

Theorem 3.7 (Girsanov) The process zλ = (zλt )t∈[0,T ] defined by

zλt = zt +

∫ t

0

λs ds, 0 ≤ t ≤ T, (3.45)

is a standard Brownian motion under the probability measure Qλ. In differential notation,

dzλt = dzt + λt dt.

This theorem has the attractive consequence that the effects on a stochastic process of changing

the probability measure from P to some Qλ are captured by a simple adjustment of the drift. If

x = (xt) is an Itô process with dynamics

dxt = µt dt+ σt dzt,

then

dxt = µt dt+ σt
(
dzλt − λt dt

)
= (µt − σtλt) dt+ σt dz

λ
t .

Hence, µ − σλ is the drift under the probability measure Qλ, which is different from the drift

under the original measure P unless σ or λ are identically equal to zero. In contrast, the volatility

remains the same as under the original measure.

In many financial models, the relevant change of measure is such that the distribution under

Qλ of the future value of the central processes is of the same class as under the original P measure,

but with different moments. For example, consider the Ornstein-Uhlenbeck process

dxt = (ϕ− κxt) dt+ σ dzt

and perform the change of measure given by a constant λt = λ. Then the dynamics of x under the

measure Qλ is given by

dxt = (ϕ̂− κxt) dt+ σ dzλt ,

where ϕ̂ = ϕ − σλ. Consequently, the future values of x are normally distributed both under P

and Qλ. From (3.25) and (3.26), we see that the variance of xt′ (given xt) is the same under Qλ

and P, but the expected values will differ (recall that θ = ϕ/κ):

EP
t [xt′ ] = e−κ(t

′−t)xt +
ϕ

κ

(

1 − e−κ(t
′−t)
)

,

EQλ

t [xt′ ] = e−κ(t
′−t)xt +

ϕ̂

κ

(

1 − e−κ(t
′−t)
)

.

However, in general, a shift of probability measure may change not only some or all moments of

future values, but also the distributional class.
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3.11 Exercises

EXERCISE 3.1 Suppose x = (xt) is a geometric Brownian motion, dxt = µxt dt + σxt dzt. What is the

dynamics of the process y = (yt) defined by yt = (xt)
n? What can you say about the distribution of future

values of the y process?

EXERCISE 3.2 (Adapted from Björk (1998).) Define the process y = (yt) by yt = z4
t , where z = (zt) is

a standard Brownian motion. Find the dynamics of y. Show that

yt = 6

∫ t

0

z2
s ds + 4

∫ t

0

z3
s dzs.

Show that E[yt] ≡ E[z4
t ] = 3t2, where E[ ] denotes the expectation given the information at time 0.

EXERCISE 3.3 (Adapted from Björk (1998).) Define the process y = (yt) by yt = eazt , where a is a

constant and z = (zt) is a standard Brownian motion. Find the dynamics of y. Show that

yt = 1 +
1

2
a2

∫ t

0

ys ds + a

∫ t

0

ys dzs.

Define m(t) = E[yt]. Show that m satisfies the ordinary differential equation

m′(t) =
1

2
a2m(t), m(0) = 1.

Show that m(t) = ea2t/2 and conclude that

E [eazt ] = ea2t/2.

EXERCISE 3.4 Consider the two general stochastic processes x1 = (x1t) and x2 = (x2t) defined by the

dynamics

dx1t = µ1t dt + σ1t dz1t,

dx2t = µ2t dt + ρtσ2t dz1t +
√

1 − ρ2
t σ2t dz2t,

where z1 and z2 are independent one-dimensional standard Brownian motions. Interpret µit, σit, and ρt.

Define the processes y = (yt) and w = (wt) by yt = x1tx2t and wt = x1t/x2t. What is the dynamics of

y and w? Concretize your answer for the special case where x1 and x2 are geometric Brownian motions

with constant correlation, i.e. µit = µixit, σit = σixit, and ρt = ρ with µi, σi, and ρ being constants.

EXERCISE 3.5 Find the dynamics of the process ξλ defined in (3.43).





Chapter 4

A review of general asset pricing theory

4.1 Introduction

Bonds and other fixed income securities have some special characteristics that make them

distinctively different from other financial assets such as stocks and stock market derivatives.

However, in the end, all financial assets serve the same purpose: shifting consumption opportunities

through time and states. Hence, the pricing of fixed income securities follows the same general

principles as the pricing of all other financial assets. In this chapter we will discuss some important

general concepts and results in asset pricing theory that will then be applied in the following

chapters to the term structure of interest rate and the pricing of fixed income securities.

The fundamental concepts of asset pricing theory are arbitrage, state prices, risk-neutral prob-

ability measures, market prices of risk, and market completeness. Asset pricing models aim at

characterizing equilibrium prices of financial assets. A market is in equilibrium if the prices are

such that the market clears (i.e. supply equals demand) and every investor has picked a trading

strategy in the financial assets that is optimal given his preferences and budget constraints and

given the prices prevailing in the market. An arbitrage is a trading strategy that generates a

riskless profit, i.e. gives something for nothing. If an investor has the opportunity to invest in an

arbitrage, he will surely do so, and hence change his original trading strategy. A market in which

prices allow arbitrage is therefore not in equilibrium. When searching for equilibrium prices we

can thus limit ourselves to no-arbitrage prices. In Section 4.2 we introduce our general model of

assets and define the concept of an arbitrage more formally.

In typical financial markets thousands of different assets are traded. The price of each asset

will, of course, depend on the future payoffs of the asset. In order to price the assets in a financial

market, one strategy would be to specify the future payoffs of all assets in all possible states of the

world and then try to figure out which set of prices that would rule out arbitrage. However, this

would surely be a quite complicated procedure. Instead we try first to determine how a general

future payoff stream should be valued in order to rule out arbitrage and then this general arbitrage-

free pricing mechanism can be applied to the payoffs of any particular asset. We will show how to

capture the general arbitrage-free pricing mechanisms in a market in three different, but equivalent

objects: a state-price deflator, a risk-neutral probability measure, and a market price of risk. Once

one of these objects has been specified, any payoff stream can be priced. We discuss these objects

and the relations between them and no-arbitrage pricing in Section 4.3. We will also see that the

general pricing mechanism is closely related to the marginal utilities of consumption of the agents

67



68 Chapter 4. A review of general asset pricing theory

investing in the market.

While the risk-neutral probability measure is a standard object for summarizing an arbitrage-

free price system, we show in Section 4.4 that we might as well use other probability measures for

the same purpose. When it comes to derivative pricing, it is often computationally convenient to

use a carefully selected probability measure.

In Section 4.5, we make a distinction between markets which are complete and markets which

are incomplete. Basically, a market is complete if all risks are traded in the sense that agents can

obtain any desired exposure to the shocks to the economy. In general markets many state-price

deflators (or risk-neutral probability measures or market prices of risk) will be consistent with

absence of arbitrage. We will see that in a complete, arbitrage-free market there will be a unique

state-price deflator (or risk-neutral probability measure or market price of risk). We introduce in

Section 4.6 the concept of a representative agent and show that in a complete market, we may

assume that the economy is inhabited by a single agent. We will apply this in the next chapter in

order to link the term structure of interest rate to aggregate consumption.

For notational simplicity we will first develop the main results under the assumption that the

available assets only pay dividends at some time T , where all relevant uncertainty is resolved. In

Section 4.7 we show how to generalize the results to the more realistic case with dividends at other

points in time.

Finally, Section 4.8 considers the special class of diffusion models which covers many popular

term structure models and also the famous Black-Scholes-Merton model for stock option pricing.

Assuming that the relevant information for the pricing of a given asset is captured by a (prefer-

ably low-dimensional) diffusion process, the price of the asset can be found by solving a partial

differential equation.

Our analysis is set in the framework of continuous-time stochastic models. Most of the gen-

eral asset pricing concepts and results were originally developed in discrete-time models, where

interpretations and proofs are sometimes easier to understand. Some classic references are Arrow

(1951, 1953, 1964, 1970), Debreu (1953, 1954, 1959), Negishi (1960), and Ross (1978). Textbook

presentations of discrete-time asset pricing theory can be found in, e.g., Ingersoll (1987), Huang

and Litzenberger (1988), Cochrane (2001), LeRoy and Werner (2001), and Duffie (2001, Chs. 1–4).

As already discussed in Section 3.2.4 continuous-time models are often more elegant and tractable,

and a continuous-time setting can be argued to be more realistic than a discrete-time setting.

Moreover, most term structure models are formulated in continuous time, so we really need the

continuous-time versions of the general asset pricing concepts and results. Many of the definitions

and results in the continuous-time framework are originally due to Harrison and Kreps (1979)

and Harrison and Pliska (1981, 1983). For textbook presentations with more technical details and

proofs the reader is referred to Dothan (1990), Duffie (2001), and Karatzas and Shreve (1998).

4.2 Assets, trading strategies, and arbitrage

We will set up a model for an economy over a certain time period [0, T ], where T represents

some terminal point in time in the sense that we do not care what happens after time T . We

assume that the basic uncertainty in the economy is represented by the evolution of a d-dimensional

standard Brownian motion, z = (zt)t∈[0,T ]. Think of dzt as a vector of d exogenous shocks to the
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economy at time t. All the uncertainty that affects the investors stems from these exogenous shocks.

This includes financial uncertainty, i.e. uncertainty about the evolution of prices and interest

rates, future expected returns, volatilities, and correlations, but also non-financial uncertainty,

e.g. uncertainty about prices of consumption goods and uncertainty about future labor income of

the agents. The state space Ω is in this case the set of all paths of the Brownian motion z. Note

that since a Brownian motion has infinitely many possible paths, we have an infinite state space.

The information filtration

mathbfF = (Ft)t∈[0,T ] represents the information that can be extracted from observing z, i.e. the

smallest filtration with respect to which the process z is adapted.

For notational simplicity we shall first develop the main results for the case where the available

assets pay no dividends before time T . Later we will discuss the necessary modifications in the

presence of intermediate dividends.

4.2.1 Assets

We model a financial market with one instantaneously riskless and N risky assets. Let us

first describe the instantaneously riskless asset. Let rt denote the continuously compounded,

instantaneously riskless interest rate at time t, i.e. the rate of return over an infinitesimal interval

[t, t+dt] is rt dt. The instantaneously riskless asset is a continuous roll-over of such instantaneously

riskless investments. We shall refer to this asset as the bank account. Let A = (At) denote the

price process of the bank account. The increment to the balance of the account over an infinitesimal

interval [t, t+ dt] is known at time t to be

dAt = Atrt dt.

A time zero deposit of A0 will grow to

At = A0e
∫

t
0
ru du

at time t. We think of AT as the terminal dividend of the bank account. We need to assume that

the process r = (rt) is such that
∫ T

0
|rt| dt is finite with probability one. Note that the bank account

is only instantaneously riskless since future interest rates are generally not known. We refer to rt

as the short-term interest rate or simply the short rate. Some authors use the phrase spot rate

to distinguish this rate from forward rates. If the zero-coupon yield curve at time t is given by

τ 7→ yt+τt for τ > 0, we can think of rt as the limiting value limτ→0 y
t+τ
t , which corresponds to the

intercept of the yield curve and the vertical axis in a (τ, y)-diagram.

The short rate is strictly speaking a zero maturity interest rate. The maturity of the shortest

government bond traded in the market may be several months, so that it is impossible to observe

the short rate directly from market prices. The short rate in the bond markets can be estimated

as the intercept of a yield curve. In the money markets, rates are set for deposits and loans of

very short maturities, typically as short as one day. While this is surely a reasonable proxy for the

zero-maturity interest rate in the money markets, it is not necessarily a good proxy for the riskless

(government bond) short rate. The reason is that money market rates apply for unsecured loans

between financial institutions and hence they reflect the default risk of those investors. Money

market rates are therefore expected to be higher than similar bond market rates.
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The prices of the N risky assets are modeled as general Itô processes, cf. Section 3.5. The price

process Pi = (Pit) of the i’th risky asset is assumed to be of the form

dPit = Pit



µit dt+

d∑

j=1

σijt dzjt



 .

Here µi = (µit) denotes the (relative) drift, and σij = (σijt) reflects the relative sensitivity of the

price to the j’th exogenous shock. Note that the price of a given asset may not be sensitive to all

the shocks dz1t, . . . , dzdt so that some of the σijt may be equal to zero. It can also be that no asset

is sensitive to a particular shock. Some shocks may be relevant for investors, but not affect asset

prices directly, e.g. shocks to labor income. If we let σit be the sensitivity vector (σi1t, . . . , σidt)
⊤,

the price dynamics of asset i can be rewritten as

dPit = Pit [µit dt+ σ⊤

it dzt] . (4.1)

We think of PiT as the terminal dividend of asset i. We can write the price dynamics of all the N

risky assets compactly using vector notation as

dP t = diag(P t)
[
µt dt+ σ t dzt

]
, (4.2)

where

P t =










P1t

P2t

...

PNt










, diag(P t) =










P1t 0 . . . 0

0 P2t . . . 0
...

...
. . .

...

0 0 . . . PNt










,

µt =










µ1t

µ2t

...

µNt










, σ t =










σ11t σ12t . . . σ1dt

σ21t σ22t . . . σ2dt

...
...

. . .
...

σN1t σN2t . . . σNdt










We assume that the processes µi and σij are “well-behaved”, e.g. generating prices with finite

variances. The economic interpretation of µit is the expected rate of return per time period (year)

over the next instant. The matrix σ t captures the sensitivity of the prices to the exogenous shocks

and determines the instantaneous variances and covariances (and, hence, also the correlations) of

the risky asset prices. In particular, σ tσ
⊤

t dt is the N ×N variance-covariance matrix of the rates

of return over the next instant [t, t+ dt]. The volatility of asset i is the standard deviation of the

relative price change per time unit over the next instant, i.e. ‖σit‖ =
(
∑d
j=1 σ

2
ijt

)1/2

.

4.2.2 Trading strategies

A trading strategy is a pair (α,θ), where α = (αt) is a real-valued process representing the

units held of the instantaneously riskless asset and θ is an N -dimensional process representing the

units held of the N risky assets. To be precise, θ = (θ1, . . . ,θN )⊤, where θi = (θit) with θit

representing the units of asset i held at time t. The value of a trading strategy at time t is given

by

V α,θt = αtAt + θ⊤

t P t.
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The gains from holding the portfolio (αt,θt) over the infinitesimal interval [t, t+ dt] is

αt dAt + θ⊤

t dP t = αtrte
∫

t
0
rs ds dt+ θ⊤

t dP t.

A trading strategy is called self-financing if the future value is equal to the sum of the initial

value and the accumulated trading gains so that no money has been added or withdrawn. In

mathematical terms, a trading strategy (α,θ) is self-financing if

V α,θt = V α,θ0 +

∫ t

0

(

αsrse
∫

s
0
ru du ds+ θ⊤

s dP s

)

or, in differential terms,

dV α,θt = αtrte
∫

t
0
ru du dt+ θ⊤

t dP t

= (αtrtAt + θ⊤

t diag(P t)µt) dt+ θ⊤

t diag(P t)σ t dzt.
(4.3)

4.2.3 Redundant assets

An asset is said to be redundant if there exists a self-financing trading strategy in other assets

which yields the same payoff at time T . In order to be sure to end up with the same payoff or

value at time T , the value of the replicating trading strategy must be identical to the price of

the asset at any point in time and in any state. Hence, the value process of the strategy and the

price process of the asset must be identical. In particular, the value process of the strategy must

react to shocks to the economy in the same way as the price process of the asset. Therefore, an

asset is redundant whenever the sensitivity vector of its price process is a linear combination of

the sensitivity vectors of the price processes of the other assets. This implies that whenever there

are redundant assets among the N assets, the rows in the matrix σ t are linearly dependent.1

As the name reflects, a redundant asset does not in any way enhance the opportunities of the

agents to move consumption across time and states. The agents can do just as well without the

redundant assets. Therefore, we can remove the redundant assets from the set of traded assets.

Note that whether an asset is redundant or not depends on the other available assets. Therefore,

we should remove redundant assets one by one. First identify one redundant asset and remove that.

Then, based on the remaining assets, look for another redundant asset and remove that. Continuing

that process until none of the remaining assets are redundant, the number of remaining assets will

be equal to the rank2 of the original sensitivity matrix σ t. Suppose the rank of σ t equals k for

all t. Then there will be k non-redundant assets. We let σ̂
t

denote the k × d matrix obtained

from σ t by removing rows corresponding to redundant assets and let µ̂t denote the k-dimensional

vector that is left after deleting from µt the elements corresponding to the redundant assets.

4.2.4 Arbitrage

An arbitrage is a self-financing trading strategy (α,θ) satisfying one of the following two

conditions:

1Two vectors a and b are called linearly independent if k1a + k2b = 0 implies k1 = k2 = 0, i.e. a and b cannot

be linearly combined into a zero vector. If they are not linearly independent, they are said to be linearly dependent.
2The rank of a matrix is defined to be the maximum number of linearly independent rows in the matrix or,

equivalently, the maximum number of linearly independent columns. The rank of a k × l matrix has to be less than

or equal to the minimum of k and l. If the rank is equal to the minimum of k and l, the matrix is said to be of full

rank.
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(i) V α,θ0 < 0 and V α,θT ≥ 0 with probability one,

(ii) V α,θ0 ≤ 0, V α,θT ≥ 0 with probability one, and V α,θT > 0 with strictly positive probability.

A trading strategy (α,θ) satisfying (i) has a negative initial price so the investor receives money

when initiating the trading strategy. The terminal payoff of the strategy is non-negative no matter

how the world evolves and since the strategy is self-financing there are no intermediate payments.

Any rational investor would want to invest in such a trading strategy. Likewise, a trading strat-

egy satisfying (ii) will never require the investor to make any payments and it offers a positive

probability of a positive terminal payoff. It is like a free lottery ticket.

A straightforward consequence of arbitrage-free pricing is that the price of a redundant asset

must be equal to the cost of implementing the self-financing replicating trading strategy. If the

redundant asset was cheaper than the replicating trading strategy, an arbitrage can be realized by

buying the redundant asset and shorting the replicating trading strategy. Conversely, if the redun-

dant asset was more expensive than the replicating strategy. This observation is the foundation

of many models of derivatives pricing including the famous Black-Scholes-Merton model of stock

option pricing, cf. Black and Scholes (1973) and Merton (1973).

Although the definition of arbitrage focuses on payoffs at time T , it does cover shorter term

riskless gains. Suppose for example that we can construct a trading strategy with a non-positive

initial value (i.e. a non-positive price), always non-negative values, and a strictly positive value

at some time t < T . Then this strictly positive value can be invested in the bank account in the

period [t, T ] generating a strictly positive terminal value.

Any realistic model of equilibrium prices should rule out arbitrage. However, in our continuous-

time setting it is in fact possible to construct some strategies that generate something for nothing.

These are the so-called doubling strategies. Think of a series of coin tosses enumerated by n =

1, 2, . . . . The n’th coin toss takes place at time 1 − 1/(n + 1). In the n’th toss, you get α2n−1

if heads comes up, and looses α2n−1 otherwise. You stop betting the first time heads comes up.

Suppose heads comes up the first time in toss number (k+ 1). Then in the first k tosses you have

lost a total of α(1+2+ · · ·+2k−1) = α(2k−1). Since you win α2k in toss number k+1, your total

profit will be α2k−α(2k−1) = α. Since the probability that heads comes up eventually is equal to

one, you will gain α with probability one. Similar strategies can be constructed in continuous-time

models of financial markets, but are clearly impossible to implement in real life. These strategies

are ruled out by requiring that trading strategies have values that are bounded from below, i.e.

that some constant K exists such that V α,θt ≥ −K for all t. This is a reasonable restriction since

no one can borrow an infinite amount of money. If you have a limited borrowing potential, the

doubling strategy described above cannot be implemented.

4.3 State-price deflators, risk-neutral probabilities, and market prices

of risk

In stead of trying to separately price each of the many, many financial assets traded, it is wiser

first to derive a representation of the general pricing mechanisms in an arbitrage-free market. In

order to price a particular asset the general mechanism can then be combined with the asset-

specific payoff. In this section we give three basically equivalent representations of arbitrage-free
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price systems: state-price deflators, risk-neutral probability measures, and markets price of risk.

Once one of these objects has been specified, any payoff stream can be priced.

4.3.1 State-price deflators

A state-price deflator is a strictly positive process ζ = (ζt) with ζ0 = 1 and the property

that the product of the state-price deflator and the price of an asset is a martingale, i.e. (ζtPit)

is a martingale for any i = 1, . . . , N and (ζt exp{
∫ t

0
ru du}) is a martingale. In particular, for all

t < t′ ≤ T , we have

Pitζt = Et [Pit′ζt′ ] ,

or

Pit = Et

[
ζt′

ζt
Pit′

]

. (4.4)

Suppose we are given a state-price deflator ζ and hence the distribution of ζT /ζt. Then the price

at time t of an asset with a terminal dividend given by the random variable PiT is equal to

Et[(ζT /ζt)PiT ]. Hence, the state-price deflator captures the market-wide pricing information. In

particular, if a zero-coupon bond maturing at time T is traded, its time t price must be

BTt = Et

[
ζT
ζt

]

. (4.5)

Let us write the dynamics of a state-price deflator as

dζt = ζt [mt dt+ v⊤

t dzt] (4.6)

for some relative drift m and some “sensitivity” vector v. Define ζ∗t = ζtAt = ζt exp{
∫ t

0
ru du}. By

Itô’s Lemma,

dζ∗t = ζ∗t [(mt + rt) dt+ v⊤

t dzt] .

Since ζ∗ = (ζ∗t ) is a martingale, we must have mt = −rt, i.e. the relative drift of a state-price

deflator is equal to the negative of the short-term interest rate. For any risky asset i, the process

ζit = ζtPit must be a martingale. From Itô’s Lemma and the dynamics of Pi and ζ given in (4.1)

and (4.6), we get

dζit = ζt dPit + Pitdζt + (dζt)(dPit)

= ζit
[
(µit +mt + σ⊤

itvt) dt+ (vt + σit)
⊤

dzt
]
.

Hence, for ζ to be a state-price deflator, the equation

µit +mt + σ⊤

itvt = 0 (4.7)

must hold for any asset i. With a riskless asset, we know that mt = −rt. In compact form, the

condition on v is then that

µt − rt1 = −σ tvt. (4.8)

The product of a state-price deflator and the value of a self-financing trading strategy will also

be a martingale so that

ζtV
α,θ
t = Et

[

ζt′V
α,θ
t′

]

.
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To see this, first use Itô’s Lemma to get

d(ζtV
α,θ
t ) = ζt dV

α,θ
t + V α,θt dζt + (dζt)(dV

α,θ
t ).

Substituting in dV α,θt from (4.3) and dζt from (4.6), we get after some simplification that

d(ζtV
α,θ
t ) = ζtθ

⊤

t diag(P t)
(
µt − rt1 + σ tvt

)
dt+ ζtV

α,θ
t v⊤

t dzt.

From (4.8), we see that the drift is zero so that the process is a martingale.

Given a state-price deflator we can price any asset. But can we be sure that a state-price

deflator exist? It turns out that the existence of a state-price deflator is basically equivalent to the

absence of arbitrage. Here is the first part of that statement:

Theorem 4.1 If a state-price deflator exists, prices admit no arbitrage.

Proof: For simplicity, we will ignore the lower bound on the value processes of trading strategies.

(The interested reader is referred to Duffie (2001, p. 105) to see how to incorporate the lower

bound; this involves local martingales and super-martingales which we will not discuss here.)

Suppose (α,θ) is a self-financing trading strategy with V α,θT ≥ 0. Given a state-price deflator

ζ = (ζt) the initial value of the strategy is

V α,θ0 = E
[

ζTV
α,θ
T

]

,

which must be non-negative since ζT > 0. If, furthermore, there is a positive probability of V α,θT

being strictly positive, then V α,θ0 must be strictly positive. Consequently, arbitrage is ruled out.

2

Conversely, under some technical conditions, the absence of arbitrage implies the existence of a

state-price deflator. In the absence of arbitrage the optimal consumption strategy of any agent is

finite and well-defined and we will now show that the marginal rate of intertemporal substitution

of the agent can then be used as a state-price deflator.

In a continuous-time setting it is natural to assume that each agent consumes according to a

non-negative continuous-time process c = (ct). We assume that the life-time utility from a given

consumption process is of the time-additive form E[
∫ T

0
e−δtu(ct) dt]. Here u(·) is the utility function

and δ the time-preference rate (or subjective discount rate) of this agent. In this case ct is the

consumption rate at time t, i.e. it is the number of consumption goods consumed per time period.

The total number of units of the good consumed over an interval [t, t + ∆t] is
∫ t+∆t

t
cs ds which

for small ∆t is approximately equal to ct · ∆t. The agents can shift consumption across time and

states by applying appropriate trading strategies.

Suppose c = (ct) is the optimal consumption process for some agent. Any deviation from this

strategy will generate a lower utility. One deviation occurs if the agent at time 0 increases his

investment in asset i by ε units. The extra costs of εPi0 implies a reduced consumption now. Let

us suppose that the agent finances this extra investment by cutting down his consumption rate

in the time interval [0,∆t] for some small positive ∆t by εPi0/∆t. The extra ε units of asset i is

resold at time t < T , yielding a revenue of εPit. This finances an increase in the consumption rate

over [t, t+ ∆t] by εPit/∆t. Since we have assumed so far that the assets pay no dividends before
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time T , the consumption rates outside the intervals [0,∆t] and [t, t+∆t] will be unaffected. Given

the optimality of c = (ct), we must have that

E

[
∫ ∆t

0

e−δs
(

u

(

cs −
εPi0
∆t

)

− u(cs)

)

ds+

∫ t+∆t

t

e−δs
(

u

(

cs +
εPit
∆t

)

− u(cs)

)

ds

]

≤ 0.

Dividing by ε and letting ε→ 0, we obtain

E

[

−Pi0
∆t

∫ ∆t

0

e−δsu′(cs) ds+
Pit
∆t

∫ t+∆t

t

e−δsu′(cs) ds

]

≤ 0.

Letting ∆t→ 0, we arrive at

E
[
−Pi0u′(c0) + Pite

−δtu′(ct)
]
≤ 0,

or, equivalently,

Pi0u
′(c0) ≥ E

[
e−δtPitu

′(ct)
]
.

The reverse inequality can be shown similarly by considering the “opposite” perturbation, i.e.

a decrease in the investment in asset i by ε units at time 0 over the interval [0, t] leading to higher

consumption over [0,∆t] and lower consumption over [t, t + ∆t]. Combining the two inequalities,

we have that Pi0u
′(c0) = E[e−δtPitu

′(ct)] or more generally

Pit = Et

[

e−δ(t
′−t)u

′(ct′)

u′(ct)
Pit′

]

, t ≤ t′ ≤ T. (4.9)

With intermediate dividends this relation is slightly different, cf. Section 4.7.

Comparing (4.4) and (4.9), we see that ζt = e−δtu′(ct)/u
′(c0) is a good candidate for a state-

price deflator whenever the optimal consumption process c of the agent is well-behaved, as it

presumably will be in the absence of arbitrage. (The u′(c0) in the denominator is to ensure that

ζ0 = 1.) However, there are some technical subtleties one must consider when going from no

arbitrage to the existence of a state-price deflator. Again, we refer the interested reader to Duffie

(2001). We summarize in the following theorem:

Theorem 4.2 If prices admit no arbitrage and technical conditions are satisfied, then a state-price

deflator exists.

The state-price deflator ζt = e−δtu′(ct)/u
′(c0) is the marginal rate of substitution of a particular

agent evaluated at her optimal consumption rate. Since the purpose of financial assets is to allow

agents to shift consumption across time and states, it is not surprising that the market-wide pricing

information can be captured by the marginal rate of substitution. Note that each agent will lead

to a state-price deflator and since agents have different utility functions, different time preference

rates, and different optimal consumption plans, there can potentially be (at least) as many state-

price deflators as agents. However, some or all of these state-price deflators may be identical, cf.

the discussion in Section 4.5.

Combining the two previous theorems, we have the following conclusion:

Corollary 4.1 Under technical conditions, the existence of a state-price deflator is equivalent to

the absence of arbitrage.
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4.3.2 Risk-neutral probability measures

For our market with no intermediate dividends, a probability measure Q is said to be a risk-

neutral probability measure (or equivalent martingale measure) if the following three conditions

are satisfied:

(i) Q is equivalent to P,

(ii) for any asset i, the discounted price process P̄it = Pit exp{−
∫ t

0
rs ds} is a Q-martingale,

(iii) the Radon-Nikodym derivative dQ/dP has finite variance.

In particular, if Q is a risk-neutral probability measure, then

Pit = EQ
t

[

e−
∫

t′

t
rs dsPit′

]

(4.10)

for any t < t′ ≤ T . Under some technical conditions on θ, see Duffie (2001, p. 109), the same

relation holds for any self-financing trading strategy (α,θ), i.e.

V α,θt = EQ
t

[

e−
∫

t′

t
rs dsV α,θt′

]

. (4.11)

These relations show that the risk-neutral probability measure (together with the short-term in-

terest rate process) captures the market-wide pricing information. The price of a particular asset

follows from the risk-neutral probability measure and the asset-specific payoff. For the special case

of a zero-coupon bond maturing at T , the price at time t < T can be written as

BTt = EQ
t

[

e−
∫

T
t
rs ds

]

. (4.12)

The existence of a risk-neutral probability measure is closely related to absence of arbitrage:

Theorem 4.3 If a risk-neutral probability measure exists, prices admit no arbitrage.

Proof: Suppose (α,θ) is a self-financing trading strategy satisfying technical conditions ensuring

that (4.11) holds. Then

V α,θ0 = EQ
[

e−
∫

T
0
rt dtV α,θT

]

.

Note that if V α,θT is non-negative with probability one under the real-world probability measure P,

then it will also be non-negative with probability one under a risk-neutral probability measure Q

since Q and P are equivalent. We see from the equation above that if V α,θT is non-negative, so is

V α,θ0 . If, in addition, V α,θT is strictly positive with a strictly positive possibility, then V α,θ0 must

be strictly positive (again using the equivalence of P and Q). Arbitrage is ruled out. 2

The next theorem shows that, under technical conditions, there is a one-to-one relation between

risk-neutral probability measures and state-price deflators. Hence, they are basically two equivalent

representations of the market-wide pricing mechanism.

Theorem 4.4 Given a risk-neutral probability measure Q. Let ξt = Et[dQ/dP] and define ζt =

ξt exp{−
∫ t

0
rs ds}. If ζt has finite variance for all t ≤ T , then ζ = (ζt) is a state-price deflator.

Conversely, given a state-price deflator ζ, define ξt = exp{
∫ t

0
rs ds}ζt. If ξT has finite variance,

then a risk-neutral probability measure Q is defined by dQ/dP = ξT .
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Proof: Suppose that Q is a risk-neutral probability measure. The change of measure implies that

Et [ζsPis] = e−
∫

t
0
ru du Et

[

ξsPise
−
∫

s
t
ru du

]

= e−
∫

t
0
ru duξt E

Q
t

[

Pise
−
∫

s
t
ru du

]

= e−
∫

t
0
ru duξtPit = ζtPit,

where the second equality follows from (3.42). Hence, ζ is a state-price deflator. The finite variance

condition on ζt (and the finite variance of prices) ensure the existence of the expectations.

Conversely, suppose that ζ is a state-price deflator and define ξ as in the statement of the

theorem. Then

E[ξT ] = E
[

e
∫

T
0
rs dsζT

]

= 1,

where the last equality is due to the fact that the product of the state-price deflator and the bank

account value is a martingale. Furthermore, ξT is strictly positive so dQ/dP = ξT defines an

equivalent probability measure Q. By assumption ξT has finite variance. It remains to check that

discounted prices are Q-martingales. Again using (3.42), we get

EQ
t

[

e−
∫

t′

t
rs dsPit′

]

= Et

[
ξt′

ξt
e−

∫
t′

t
rs dsPit′

]

= Et

[
ζt′

ζt
Pit′

]

= Pit,

so this condition is also met. Hence, Q is a risk-neutral probability measure. 2

As discussed in the previous subsection, the absence of arbitrage implies the existence of a state-

price deflator under some technical conditions, and the above theorem gives a one-to-one relation

between state-price deflators and risk-neutral probability measures, also under some technical

conditions. Hence, the absence of arbitrage will also imply the existence of a risk-neutral probability

measure - again under technical conditions. Let us try to clarify this statement somewhat. The

absence of arbitrage by itself does not imply the existence of a risk-neutral probability measure.

We must require a little more than absence of arbitrage. As shown by Delbaen and Schachermayer

(1994, 1999) the condition that prices admit no “free lunch with vanishing risk” is equivalent to the

existence of a risk-neutral probability measure and hence, following Theorem 4.4, the existence of

a state-price deflator. We will not go into the precise and very technical definition of a free lunch

with vanishing risk. Just note that while an arbitrage is a free lunch with vanishing risk, there

are trading strategies which are not arbitrages but nevertheless are free lunches with vanishing

risk. More importantly, we will see below that in markets with sufficiently nice price processes,

we can indeed construct a risk-neutral probability measure. So the bottom-line is that absence of

arbitrage is virtually equivalent to the existence of a risk-neutral probability measure.

4.3.3 Market prices of risk

If Q is a risk-neutral probability measure, the discounted prices are Q-martingales. The dis-

counted risky asset prices are given by

P̄ t = P t e
−
∫

t
0
rs ds.

An application of Itô’s Lemma shows that the dynamics of the discounted prices is

dP̄ t = diag(P̄ t)
[
(µt − rt1) dt+ σ t dzt

]
. (4.13)
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Suppose that Q is a risk-neutral probability measure. The change of measure from P to Q is

captured by a random variable, which we denote by dQ/dP. Define the process ξ = (ξt) by

ξt = Et[dQ/dP]. This is a martingale since, for any t < t′, we have Et[ξt′ ] = Et[Et′ [dQ/dP]] =

Et[dQ/dP] = ξt due to the law of iterated expectations (see the discussion in Section 3.10). Then

it follows from the Martingale Representation Theorem, see Theorem 3.3, that a d-dimensional

process λ = (λt) exists such that

dξt = −ξtλ⊤

t dzt,

or, equivalently (using ξ0 = E[dQ/dP] = 1),

ξt = exp

{

−1

2

∫ t

0

‖λs‖2 ds−
∫ t

0

λ⊤

s dzs

}

. (4.14)

According to Girsanov’s Theorem, i.e. Theorem 3.7, the process zQ = (zQ
t ) defined by

dzQ
t = dzt + λt dt, zQ

0 = 0, (4.15)

is then a standard Brownian motion under the Q-measure. Substituting dzt = dzQ
t − λt dt

into (4.13), we obtain

dP̄ t = diag(P̄ t)
[(
µt − rt1 − σ tλt

)
dt+ σ t dz

Q
t

]

. (4.16)

If discounted prices are to be Q-martingales, the drift must be zero, so we must have that

σ tλt = µt − rt1. (4.17)

From these arguments it follows that the existence of a solution λ to this system of equations is a

necessary condition for the existence of a risk-neutral probability measure. Note that the system

has N equations (one for each asset) in d unknowns, λ1, . . . , λd (one for each exogenous shock).

On the other hand, if a solution λ exists and satisfies certain technical conditions, then a risk-

neutral probability measure Q is defined by dQ/dP = ξT , where ξT is obtained by letting t = T

in (4.14). The technical conditions are that ξT has finite variance and that exp
{

1
2

∫ T

0
‖λt‖2 dt

}

has finite expectation. (The latter condition is Novikov’s condition which ensures that the process

ξ = (ξt) is a martingale.) We summarize these findings as follows:

Theorem 4.5 If a risk-neutral probability measure exists, there must be a solution to (4.17) for

all t. If a solution λt exists for all t and the process λ = (λt) satisfies technical conditions, then a

risk-neutral probability measure exists.

Any process λ = (λt) solving (4.17) is called a market price of risk process. To understand

this terminology, note that the i’th equation in the system (4.17) can be written as

d∑

j=1

σijtλjt = µit − rt.

If the price of the i’th asset is only sensitive to the j’th exogenous shock, the equation reduces to

σijtλjt = µit − rt,

implying that

λjt =
µit − rt
σijt

.
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Therefore, λjt is the compensation in terms of excess expected return per unit of risk stemming

from the j’th exogenous shock.

According to the theorem above, we basically have a one-to-one relation between risk-neutral

probability measures and market prices of risk. Combining this with earlier results, we can conclude

that the existence of a market price of risk is virtually equivalent to the absence of arbitrage.

With a market price of risk it is easy to see the effects of changing the probability measure from

the real-world measure P to a risk-neutral measure Q. Suppose λ is a market price of risk process

and let Q denote the associated risk-neutral probability measure and zQ the associated standard

Brownian motion. Then

dP̄ t = diag(P̄ t)σ t dz
Q
t (4.18)

and

dP t = diag(P t)
[

rt1 dt+ σ t dz
Q
t

]

.

So under a risk-neutral probability all asset prices have a drift equal to the short rate. The

volatilities are not affected by the change of measure.

Next, let us look at the relation between market prices of risk and state-price deflators. Suppose

that λ is a market price of risk and ξt in (4.14) defines the associated risk-neutral probability

measure. From Theorem 4.4 we know that, under a regularity condition, the process ζ defined by

ζt = ξte
−
∫

t
0
rs ds = exp

{

−
∫ t

0

rs ds−
1

2

∫ t

0

‖λs‖2 ds−
∫ t

0

λ⊤

s dzs

}

is a state-price deflator. Since dξt = −ξtλ⊤

t dzt, an application of Itô’s Lemma implies that

dζt = −ζt [rt dt+ λ⊤

t dzt] . (4.19)

As we have already seen, the relative drift of a state-price deflator equals the negative of the

short-term interest rate. Now, we see that the sensitivity vector of a state-price deflator equals

the negative of a market price of risk. Up to technical conditions, there is a one-to-one relation

between market prices of risk and state-price deflators.

Let us again consider the key equation (4.17), which is a system of N equations in d unknowns

given by the vector λ = (λ1, . . . , λd)
⊤. The number of solutions to this system depends on the rank

of the N × d matrix σ t, which, as discussed in Section 4.2.3, equals the number of non-redundant

assets. Let us assume that the rank of σ t is the same for all t (and all states) and denote the

rank by k. We know that k ≤ d. If k < d, there are several solutions to (4.17). We can write one

solution as

λ∗
t = σ̂⊤

t

(

σ̂
t
σ̂⊤

t

)−1

(µ̂t − rt1) , (4.20)

where σ̂
t
and µ̂t were defined in Section 4.2.3. In the special case where k = d, we have the unique

solution

λ∗
t = σ̂−1

t
(µ̂t − rt1) .

4.4 Other useful probability measures

4.4.1 General martingale measures

Suppose that Q is a risk-neutral probability measure and let At = exp{
∫ t

0
rs ds} be the time t

value of the bank account. According to (4.10) the price Pt of any asset with a single payment
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date satisfies the relation
Pt
At

= EQ
t

[
Pt′

At′

]

for all t′ > t before the payment date of the asset, i.e. the relative price process (Pt/At) is a

Q-martingale. In a sense, we use the bank account as a numeraire. If the asset pays off PT at

time T , we can compute the time t price as

Pt = EQ
t

[
At
AT

PT

]

= EQ
t

[

e−
∫

T
t
rs dsPT

]

.

This involves the simultaneous risk-neutral distribution of
∫ T

t
rs ds and PT , which might be quite

complex.

For some assets we can simplify the computation of the price Pt by using a different, appropri-

ately selected, numeraire asset. Let St denote the price process of a particular traded asset or the

value process of a dynamic trading strategy. We require that St > 0. Can we find a probability

measure QS so that the relative price process (Pt/St) is a QS-martingale? Let us write the price

dynamics of St and Pt as

dPt = Pt [µPt dt+ σ⊤

Pt dzt] , dSt = St [µSt dt+ σ⊤

St dzt] .

Then by Itô’s Lemma, cf. Theorem 3.6,

d

(
Pt
St

)

=
Pt
St

[(
µPt − µSt + ‖σSt‖2 − σ⊤

StσPt
)
dt+ (σPt − σSt)⊤

dzt
]
. (4.21)

When we change the probability measure, we change the drift rate. In order to obtain a martingale,

we need to change the probability measure such that the drift becomes zero. Suppose we can find

a well-behaved stochastic process λSt such that

(σPt − σSt)⊤

λSt = µPt − µSt + ‖σSt‖2 − σ⊤

StσPt. (4.22)

Then we can define a probability measure QS by the Radon-Nikodym derivative

dQS

dP
= exp

{

−1

2

∫ T

0

‖λSt ‖2 ds−
∫ T

0

(

λSt

)
⊤

dzt

}

.

The process zS defined by

dzSt = dzt + λSt dt, zS0 = 0

is a standard Brownian motion under QS . Substituting dzt = dzSt − λSt dt into (4.21) we get

d

(
Pt
St

)

=
Pt
St

(σPt − σSt)⊤

dzSt ,

so that (Pt/St) indeed is a QS-martingale.

How can we find a λS satisfying (4.22)? As we have seen, under weak conditions a market

price of risk λt will exist with the property that µPt = rt + σ⊤

Ptλt and µSt = rt + σ⊤

Stλt. If

we substitute in these relations and recall that ‖σSt‖2 = σ⊤

StσSt, the right-hand side of (4.22)

simplifies to (σPt − σSt)⊤

(λt − σSt). We can therefore use

λSt = λt − σSt.
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In general we refer to such a probability measure QS as a martingale measure for the asset

with price S = (St). In particular, a risk-neutral probability measure Q is a martingale measure

for the bank account.

Given a martingale measure QS for the asset with price S, the price Pt of an asset with a single

payment PT at time T satisfies

Pt = St E
QS

t

[
PT
ST

]

. (4.23)

In situations where the distribution of PT /ST under the measure QS is relatively simple, this

provides a computationally convenient way of stating the price Pt in terms of St. In the following

subsections we look at some important examples.

4.4.2 First example: the forward martingale measures

For the pricing of derivative securities that only provide a payoff at a single time T , it is

typically convenient to use the zero-coupon bond maturing at time T as the numeraire. Recall

that the price at time t ≤ T of this bond is denoted by BTt and that BTT = 1. Let σTt denote the

sensitivity vector of BTt so that

dBTt = BTt
[(
rt + (σTt )⊤λt

)
dt+ (σTt )⊤dzt

]
,

assuming the existence of a market price of risk process λ = (λt).

We denote the martingale measure for the zero-coupon bond maturing at T by QT and refer to

QT as the T -forward martingale measure. This type of martingale measure was introduced by

Jamshidian (1987) and Geman (1989). The term comes from the fact that under this probability

measure the forward price for delivery at time T of any security with no intermediate payments is

a martingale, i.e. the expected change in the forward price is zero. If the price of the underlying

asset is Pt, the forward price is Pt/B
T
t , and by definition this relative price is a QT -martingale.

The expectation under the T -forward martingale measure is sometimes called the expectation in

a T -forward risk-neutral world.

The time t price of an asset paying PT at time T can be computed as

Pt = BTt EQT

t [PT ] . (4.24)

Under the probability measure QT , the process zT defined by

dzTt = dzt +
(
λt − σTt

)
dt, zT0 = 0, (4.25)

is a standard Brownian motion according to Girsanov’s theorem. In order to compute the price

from (4.24) we only have to know (1) the current price of the zero-coupon bond that matures at

the payment date of the asset and (2) the distribution of the random payment of the asset under

the T -forward martingale measure QT . We shall apply this pricing technique to derive prices of

European options on zero-coupon bonds. The forward martingale measures are also important in

the analysis of the so-called market models studied in Chapter 11.

Note that if the yield curve is constant and therefore flat (as in the famous Black-Scholes-

Merton model for stock options), the bond price volatility σTt is zero and, consequently, there is

no difference between the risk-neutral probability measure and the T -forward martingale measure.
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The two measures differ only when interest rates are stochastic. The general difference is captured

by the relation

dzTt = dzQ
t − σTt dt, (4.26)

which follows from (4.15) and (4.25). To emphasize the difference between the risk-neutral measure

and the forward martingale measures, the risk-neutral probability measure is sometimes referred

to as the spot martingale measure since it is linked to the short rate or spot rate bank account.

4.5 Complete vs. incomplete markets

A financial market is said to be (dynamically) complete if all relevant risks can be hedged by

forming portfolios of the traded financial assets. More formally, let L denote the set of all random

variables (with finite variance) whose outcome can be determined from the exogenous shocks to the

economy over the entire period [0, T ]. In mathematical terms, L is the set of all random variables

that are measurable with respect to the σ-algebra generated by the path of the Brownian motion z

over [0, T ]. On the other hand, let M denote the set of possible time T values that can be generated

by forming self-financing trading strategies in the financial market, i.e.

M =
{

V α,θT | (α,θ) self-financing with V α,θt bounded from below for all t ∈ [0, T ]
}

.

Of course, for any trading strategy (α,θ) the terminal value V α,θT is a random variable, whose

outcome is not determined until time T . Due to the technical conditions imposed on trading

strategies, the terminal value will have finite variance, so M is always a subset of L. If, in fact, M

is equal to L, the financial market is said to be complete. If not, it is said to be incomplete.

In a complete market, any random variable of interest to the investors can be replicated by a

trading strategy, i.e. for any random variable W we can find a self-financing trading strategy with

terminal value V α,θT = W . Consequently, an investor can obtain exactly her desired exposure to

any of the d exogenous shocks.

Intuitively, to have a complete market, sufficiently many financial assets must be traded. How-

ever, the assets must also be sufficiently different in terms of their response to the exogenous shocks.

After all, we cannot hedge more risk with two perfectly correlated assets than with just one of

these assets. Market completeness is therefore closely related to the sensitivity matrix process σ

of the traded assets. The following theorem provides the precise relation:

Theorem 4.6 Suppose that the short-term interest rate r is bounded. Also, suppose that a bounded

market price of risk process λ exists. Then the financial market is complete if and only if the rank

of σ t is equal to d (almost everywhere).

Clearly, a necessary (but not sufficient) condition for the market to be complete is that at least

d risky asset are traded — if N < d, the matrix σ t cannot have rank d. If σ t has rank d, then

there is exactly one solution to the system of equations (4.17) and, hence, exactly one market

price of risk process, namely λ∗, and (if λ∗ is sufficiently nice) exactly one risk-neutral probability

measure. If the rank of σ t is strictly less than d, there will be multiple solutions to (4.17) and

therefore multiple market prices of risk and multiple risk-neutral probability measures. Combining

these observations with the previous theorem, we have the following conclusion:
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Theorem 4.7 Suppose that the short-term interest rate r is bounded and that the market is com-

plete. Then there is a unique market price of risk process λ and, if λ satisfies technical conditions,

there is a unique risk-neutral probability measure.

This theorem and Theorem 4.4 together imply that in a complete market, under technical condi-

tions, we have a unique state-price deflator.

Real financial markets are probably not complete in a broad sense, since most investors face

restrictions on the trading strategies they can invest in, e.g. short-selling and portfolio mix restric-

tions, and are exposed to risks that cannot be fully hedged by any financial investments, e.g. labor

income risk. An example of an incomplete market is a market where the traded assets are only

sensitive to k < d of the d exogenous shocks. Decomposing the d-dimensional standard Brownian

motion z into (Z, Ẑ), where Z is k-dimensional and Ẑ is (d−k)-dimensional, the dynamics of the

traded risky assets can be written as

dP t = diag(P t)
[
µt dt+ σ t dZt

]
.

For example, the dynamics of rt, µt, or σ t may be affected by the non-traded risks Ẑ, representing

non-hedgeable risk in interest rates, expected returns, and volatilities and correlations, respectively.

Or other variables important for the investor, e.g. his labor income, may be sensitive to Ẑ. Let us

assume for simplicity that k = N and the k × k matrix σ t is non-singular. Then we can define a

unique market price of risk associated with the traded risks by the k-dimensional vector

Λt =
(
σ t
)−1

(µt − rt1) ,

but for any well-behaved (d − k)-dimensional process Λ̂, the process λ = (Λ, Λ̂) will be a market

price of risk for all risks. Each choice of Λ̂ generates a valid market price of risk process and hence

a valid risk-neutral probability measure and a valid state-price deflator.

4.6 Equilibrium and representative agents in complete markets

An economy consists of agents and assets. Each agent is characterized by her preferences

(utility function) and endowments (initial wealth and future income). An equilibrium for an

economy consists of a set of prices for all assets and a feasible trading strategy for each agent such

that

(i) given the asset prices, each agent has chosen an optimal trading strategy according to her

preferences and endowments,

(ii) markets clear, i.e. total demand equals total supply for each asset.

To an equilibrium corresponds an equilibrium consumption process for each agent as a result of her

endowments and her trading strategy. Clearly, an equilibrium set of prices cannot admit arbitrage.

As shown in Section 4.3, the absence of arbitrage (and some technical conditions) imply that the

optimal consumption process for any agent defines a state-price deflator. Assuming time-additive

preferences, the state-price deflator associated to agent l is the process ζl = (ζlt) defined by

ζlt = e−δ
lt u

′
l(c

l
t)

u′l(c
l
0)
,
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where ul is the utility function, δl the time preference rate, and cl = (clt) the optimal consumption

process of agent l.

In general the state-price deflators associated with different agents may differ, but in complete

markets there is a unique state-price deflator. Consequently, all the state-price deflators associated

with the different agents must be identical. In particular, for any agents k and l and any state ω,

we must have that

ζt(ω) = e−δ
ktu

′
k(c

k
t (ω))

u′k(c
k
0)

= e−δ
ltu

′
l(c

l
t(ω))

u′l(c
l
0)

.

The agents trade until their marginal rates of substitution are perfectly aligned. This is known as

efficient risk-sharing. In a complete market equilibrium we cannot have ζkt (ω) > ζlt(ω), because

agents k and l will then be able to make a trade that makes both better off. Any such trade

is feasible in a complete market, but not necessarily in an incomplete market. In an incomplete

market it may thus be impossible to completely align the marginal rates of substitution of the

different agents.

Suppose that aggregate consumption at time t is higher in state ω than in state ω′. Then there

must be at least one agent, say agent l, who consumes more at time t in state ω than in state ω′,

clt(ω) > clt(ω
′). Consequently, u′l(c

l
t(ω)) < u′l(c

l
t(ω

′)). Let k denote any other agent. If the market

is complete we will have that

u′k(c
k
t (ω))

u′k(c
k
t (ω

′))
=

u′l(c
l
t(ω))

u′l(c
l
t(ω

′))
,

for any two states ω, ω′. Consequently, u′k(c
k
t (ω)) < u′k(c

k
t (ω

′)) and thus ckt (ω) > ckt (ω
′) for any

agent k. It follows that in a complete market, the optimal consumption of any agent is an increasing

function of the aggregate consumption level. Individuals’ consumption levels move together.

A consumption allocation is called Pareto-optimal if the aggregate endowment cannot be

allocated to consumption in another way that leaves all agents at least as good off and some agent

strictly better off. An important result is the First Welfare Theorem:

Theorem 4.8 If the financial market is complete, then every equilibrium consumption allocation

is Pareto-optimal.

The intuition is that if it was possible to reallocate consumption so that no agent was worse off and

some agent was strictly better off, then the agents would generate such a reallocation by trading

the financial assets appropriately. When the market is complete, an appropriate transaction can

always be found, which is not necessarily the case in incomplete markets.

Both for theoretical and practical applications it is very cumbersome to deal with the individual

utility functions and optimal consumption plans of many different agents. It would be much simpler

if we could just consider a single agent. So we want to set up a single-agent economy in which

equilibrium asset prices are the same as in the more realistic multi-agent economy. Such a single

agent is called a representative agent. Like any agent, a representative agent is defined through

her preferences and endowments, so the question is under what conditions and how we can construct

preferences and endowments for such an agent. Clearly, the endowment of the single agent should

be equal to the total endowments of all the individuals in the multi-agent economy. Hence, the

main issue is how to define the preferences of the agent so that she is representative. The next

theorem states that this can be done whenever the market is complete.
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Theorem 4.9 Suppose all individuals are greedy and risk-averse. If the financial market is com-

plete, the economy has a representative agent.

When the market is complete, we must look for preferences such that the associated marginal

rate of substitution evaluated at the aggregate endowments is equal to the unique state-price

deflator. If all agents have identical preferences, then we can use the same preferences for a repre-

sentative agent. If individual agents have different preferences, the preferences of the representative

agent will be some appropriately weighted average of the preferences of the individuals. We will

not go into the details here, but refer the interested reader to Duffie (2001). Note that in the rep-

resentative agent economy there can be no trade in the financial assets (who should be the other

party in the trade?) and the consumption of the representative agent must equal the aggregate

endowment or aggregate consumption in the multi-agent economy. In Chapter 5 we will use these

results to link interest rates to aggregate consumption.

4.7 Extension to intermediate dividends

Up to now we have assumed that the assets provide a final dividend payment at time T and no

dividend payments before. Clearly, we need to extend this to the case of dividends at other dates.

We distinguish between lump-sum dividends and continuous dividends. A lump-sum dividend is a

payment at a single point in time, whereas a continuous dividend is paid over a period of time.

Suppose Q is a risk-neutral probability measure. Consider an asset paying only a lump-sum

dividend of Lt′ at time t′ < T . If we invest the dividend in the bank account over the period [t′, T ],

we end up with a value of Lt′ exp{
∫ T

t′
ru du}. Thinking of this as a terminal dividend, the value of

the asset at time t < t′ must be

Pt = EQ
t

[

e−
∫

T
t
ru du

(

Lt′e
∫

T
t′
ru du

)]

= EQ
t

[

e−
∫

t′

t
ru duLt′

]

.

Intermediate lump-sum dividends are therefore valued similarly to terminal dividends and the

discounted price process of such an asset will be a Q-martingale over the period [0, t′] where the

asset “lives”. An important example is that of a zero-coupon bond paying one at some future

date t′. The price at time t < t′ of such a bond is given by

Bt
′

t = EQ
t

[

e−
∫

t′

t
ru du

]

. (4.27)

In terms of a state-price deflator ζ, we have

Bt
′

t = Et

[
ζt′

ζt

]

. (4.28)

A continuous dividend is represented by a dividend rate process D = (Dt), which means that

the total dividend paid over any period [t, t′] is equal to
∫ t′

t
Du du. Over a very short interval

[s, s + ds] the total dividend paid is approximately Ds ds. Investing this in the bank account

provides a time T value of e
∫

T
s
ru duDs ds. Integrating up the time T values of all the dividends in

the period [t, T ], we get a terminal value of
∫ T

t
e
∫

T
s
ru duDs ds. According to the previous sections

the time t value of such a terminal payment is

Pt = EQ
t

[

e−
∫

T
t
ru du

(
∫ T

t

e
∫

T
s
ru duDs ds

)]

= EQ
t

[
∫ T

t

e−
∫

s
t
ru duDs ds

]

.



86 Chapter 4. A review of general asset pricing theory

This implies that for any t < t′ < T , we have

Pt = EQ
t

[

e−
∫

t′

t
ru du Pt′ +

∫ t′

t

e−
∫

s
t
ru duDs ds

]

(4.29)

and the process with time t value given by Pt exp{−
∫ t

0
ru du} +

∫ t

0
exp{−

∫ s

0
ru du}Ds ds is a

Q-martingale. In terms of a state-price deflator ζ we have that the process with time t value

ζtPt +
∫ t

0
ζsDs ds is a P-martingale and

Pt = Et

[

ζt′

ζt
Pt′ +

∫ t′

t

ζs
ζt
Ds ds

]

.

In the special case where the payment rate is proportional to the value of the security, i.e. Ds =

qsPs, it can be shown that

Pt = EQ
t

[

e−
∫

t′

t
[ru−qu] duPt′

]

. (4.30)

Pricing expressions for assets that have both continuous and lump-sum dividends can be ob-

tained by combining the expressions above appropriately.

The inclusion of intermediate dividends does not change the link between state-price deflators

and the marginal rate of substitution of an agent. We still have the result that ζt = e−δtu′(ct)/u
′(c0)

is valid state-price deflator.

4.8 Diffusion models and the fundamental partial differential equation

Many financial models assume the existence of one or several so-called state variables, i.e.

variables whose current values contain all the relevant information about the economy. Of course,

the relevance of information depends on the purpose of the model. Generally, the price of an asset

depends on the dynamics of the short-term interest rate, the market prices of relevant risks, and

on the distribution of the payoff(s) of the asset. In models with a single state variable we denote

the time t value of the state variable by xt, while in models with several state variables we gather

their time t values in the vector xt. By assumption, the current values of the state variables

are sufficient information for the pricing and hedging of fixed income securities. In particular,

historical values of the state variables, xs for s < t, are irrelevant. It is therefore natural to model

the evolution of xt by a diffusion process since we know that such processes have the Markov

property, cf. Section 3.4 on page 43. We will refer to models of this type as diffusion models.

We will first consider diffusion models with a single state variable, which are naturally termed one-

factor diffusion models. Afterwards, we shall briefly discuss how the results obtained for one-factor

models can be extended to multi-factor models, i.e. models with several state variables.

4.8.1 One-factor diffusion models

We assume that a single, one-dimensional, state variable contains all the relevant information,

i.e. that the possible values of xt lie in a set S ⊆ R. We assume that x = (xt)t≥0 is a diffusion

process with dynamics given by the stochastic differential equation

dxt = α(xt, t) dt+ β(xt, t) dzt, (4.31)
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where z is a one-dimensional standard Brownian motion, and α and β are “well-behaved” functions

with values in R. Given a market price of risk λt = λ(xt, t), we can use (4.15) to write the dynamics

of the state variable under the risk-neutral probability measure as

dxt = [α(xt, t) − β(xt, t)λ(xt, t)] dt+ β(xt, t) dz
Q
t . (4.32)

We also assume that the short interest rate depends at most on x and t, i.e. rt = r(xt, t).

Consider a security with a single payment of HT at time T . We know that the price of the

security satisfies Pt = EQ
t

[

e−
∫

T
t
ru duHT

]

. Assuming that HT = H(xT , T ), we can rewrite the

price as Pt = P (xt, t), where

P (x, t) = EQ
x,t

[

e−
∫

T
t
r(xu,u) duH(xT , T )

]

and we have exploited the Markov property of (xt) to write the expectation as a function of the

current value of the process. Here EQ
x,t denotes the expectation given that xt = x. It follows from

Itô’s Lemma (see Theorem 3.5 on page 49) that the dynamics of Pt = P (xt, t) is

dPt = Pt [µ(xt, t) dt+ σ(xt, t) dzt] , (4.33)

where the functions µ and σ are defined by

µ(x, t)P (x, t) =
∂P

∂t
(x, t) +

∂P

∂x
(x, t)α(x, t) +

1

2

∂2P

∂x2
(x, t)β(x, t)2, (4.34)

σ(x, t)P (x, t) =
∂P

∂x
(x, t)β(x, t). (4.35)

We also know that for a market price of risk λ(xt, t), we have

µ(xt, t) = r(xt, t) + σ(xt, t)λ(xt, t)

for all possible values of xt and hence

µ(x, t)P (x, t) = r(x, t)P (x, t) + σ(x, t)P (x, t)λ(xt, t)

for all (x, t). Substituting in µ and σ and rearranging, we arrive at a partial differential equation

(PDE) as stated in the following theorem.

Theorem 4.10 The function P defined by

P (x, t) = EQ
x,t

[

e−
∫

T
t
r(xu,u) duH(xT , T )

]

(4.36)

satisfies the partial differential equation

∂P

∂t
(x, t) + (α(x, t) − β(x, t)λ(x, t))

∂P

∂x
(x, t)

+
1

2
β(x, t)2

∂2P

∂x2
(x, t) − r(x, t)P (x, t) = 0, (x, t) ∈ S × [0, T ), (4.37)

together with the terminal condition

P (x, T ) = H(x, T ), x ∈ S. (4.38)

The relation between expectations and partial differential equations is generally known as the

Feynman-Kac theorem, cf. Øksendal (1998, Thm. 8.2.1). Note that the coefficient of the ∂P/∂x

in the PDE is identical to the risk-neutral drift of the state variable, cf. (4.32). Also note that

the prices of all securities with no payments before T solve the same PDE. However, the terminal

conditions and thereby also the solutions depend on the payoff characteristics of the securities.
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Using the price of a traded asset as the state variable

When the state variable itself is the price of a traded asset, the market price of risk disappears

from the pricing PDE. The expected rate of return (corresponding to µ) of this asset is α(x, t)/x,

and the volatility (corresponding to σ) is β(x, t)/x. Since Equation (4.17) in particular must hold

for this asset, we have that

λ(x, t) =
α(x,t)
x − r(x, t)

β(x,t)
x

=
α(x, t) − r(x, t)x

β(x, t)
⇒ α(x, t) − β(x, t)λ(x, t) = r(x, t)x. (4.39)

By insertion of this expression, the PDE (4.37) reduces to

∂P

∂t
(x, t) + r(x, t)

(

x
∂P

∂x
(x, t) − P (x, t)

)

+
1

2
β(x, t)2

∂2P

∂x2
(x, t) = 0, (x, t) ∈ S × [0, T ). (4.40)

Since no knowledge of the market price of risk is necessary, assets with price of the form P (xt, t)

are in this case priced by pure no-arbitrage arguments. The securities which can be priced in this

way are exactly the redundant securities.

This approach has proven successful in the pricing of stock options with the prime example

being the Black-Scholes-Merton model developed by Black and Scholes (1973) and Merton (1973).

The model assumes that the riskless interest rate r (continuously compounded) is constant over

time and that the price St of the underlying asset follows a continuous stochastic process with a

constant relative volatility, i.e.

dSt = µ(St, t) dt+ σSt dzt, (4.41)

where σ is a constant and µ is a “nice” function.3 Furthermore, we assume that the underlying

asset has no payments in the life of the derivative security. The time t price Pt of a derivative asset

is then given by Pt = P (St, t) where

P (S, t) = EQ
S,t

[

e−
∫

T
t
r duH(ST , T )

]

= e−r[T−t] EQ
S,t [H(ST , T )]

and the risk-neutral dynamics of the underlying asset price is

dSt = rSt dt+ σSt dz
Q
t ,

i.e. a geometric Brownian motion so that ST is lognormally distributed. The function P (S, t) solves

the PDE

∂P

∂t
(S, t) + rS

∂P

∂S
(S, t) +

1

2
σ2S2 ∂

2P

∂S2
(S, t) = rP (S, t), (S, t) ∈ S × [0, T ), (4.42)

with the terminal condition P (S, T ) = H(S, T ), for all S ∈ S. For a European call option with an

exercise price ofK the payoff function is given byH(S, T ) = max(S−K, 0). The price Ct = C(St, t)

can then be found either by solving the PDE (4.42) with the relevant terminal condition or by

calculating the discounted risk-neutral expected payoff, i.e.

C(St, t) = e−r[T−t] EQ
St,t

[max(ST −K, 0)] .

3It is often assumed that µ(St, t) = µSt for a constant parameter µ, but that is not necessary. However, we must

require that the function µ is such that the value space for the price process will be S = R+.
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Applying Theorem A.4 in Appendix A, the latter approach immediately gives the famous Black-

Scholes-Merton formula for the price of a European call option on a stock:4

C(St, t) = StN (d1(St, t)) −Ke−r[T−t]N (d2(St, t)) , (4.43)

where

d1(St, t) =
ln(St/K) + r[T − t]

σ
√
T − t

+
1

2
σ
√
T − t, (4.44)

d2(St, t) =
ln(St/K) + r[T − t]

σ
√
T − t

− 1

2
σ
√
T − t = d1(St, t) − σ

√
T − t. (4.45)

It can be verified that the function C(S, t) defined in (4.43) solves the PDE (4.42) with the relevant

terminal condition. Similarly, for a European put option the price is

π(St, t) = Ke−r[T−t]N (−d2(St, t)) − StN (−d1(St, t)) . (4.46)

Practitioners often apply slightly modified versions of the Black-Scholes-Merton model and op-

tion pricing formula to price other derivatives than stock options, including many fixed-income

securities. These modifications are often based on Black (1976) who adapted the Black-Scholes-

Merton setting to the pricing of European options on commodity futures. However, it is inappro-

priate to price interest rate derivatives just by modeling the dynamics of the underlying security.

Consistent pricing of fixed income securities must be based on the evolution of the entire term

structure of interest rates. Broadly speaking, the entire term structure is the underlying “asset”

for all fixed income securities.

Hedging

In a model with a single one-dimensional state variable a locally riskless portfolio can be

constructed from any two securities. In other words, the bank account can be replicated by a

suitable trading strategy of any two securities. Conversely, it is possible to replicate any risky

asset by a suitable trading strategy of the bank account and any other risky asset. To replicate

asset 1 by a portfolio of the bank account and asset 2, the portfolio must at any point in time

consist of

θt =
∂P1

∂x (xt, t)
∂P2

∂x (xt, t)
=
σ1(xt, t)P1(xt, t)

σ2(xt, t)P2(xt, t)

units of asset 2, plus

αt =

(

1 − σ1(xt, t)

σ2(xt, t)

)

P1(xt, t)

4According to Abramowitz and Stegun (1972), the cumulative distribution function N(·) of the standard normal

distribution can be approximated with six-digit accuracy as follows:

N(x) ≈ 1 − n(x)
(
a1b(x) + a2b(x)2 + a3b(x)3 + a4b(x)4 + a5b(x)5

)
, x ≥ 0,

where n(x) = e−x2/2/
√

2π is the probability density function, b(x) = 1/(1 + cx), and the constants are given by

c = 0.2316419, a1 = 0.31938153,

a2 = −0.356563782, a3 = 1.781477937,

a4 = −1.821255978, a5 = 1.330274429.

For x < 0, we can use the relation N(x) = 1 − N(−x), where N(−x) can be computed using the approximation

above.
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invested in the bank account. Then indeed the time t value of the portfolio is

Πt ≡ αt + θtP2(xt, t)

=

(

1 − σ1(xt, t)

σ2(xt, t)

)

P1(xt, t) +
σ1(xt, t)

σ2(xt, t)
P1(xt, t)

= P1(xt, t),

and the dynamics of the portfolio value is

dΠt = αtr(xt, t) dt+ θt dP2(xt, t)

= r(xt, t)

(

1 − σ1(xt, t)

σ2(xt, t)

)

P1(xt, t) dt

+
σ1(xt, t)P1(xt, t)

σ2(xt, t)P2(xt, t)
(µ2(xt, t)P2(xt, t) dt+ σ2(xt, t)P2(xt, t) dzt)

=

(

r(xt, t) +
σ1(xt, t)

σ2(xt, t)
(µ2(xt, t) − r(xt, t))

)

P1(xt, t) dt+ σ1(xt, t)P1(xt, t) dzt

= (r(xt, t) + σ1(xt, t)λ(xt, t))P1(xt, t) dt+ σ1(xt, t)P1(xt, t) dzt

= µ1(xt, t)P1(xt, t) dt+ σ1(xt, t)P1(xt, t) dzt

= dP1t,

so that the trading strategy replicates asset 1. In particular, in one-factor term structure models

any fixed income security can be replicated by a portfolio of the bank account and any other fixed

income security. We will discuss hedging issues in more detail in Chapter 12.

If the state variable xt itself is the price of a traded asset, the considerations above imply that

any asset can be replicated by a trading strategy that at time t consists of ∂P
∂x (xt, t) units of the

underlying asset and an appropriate position in the bank account.

Securities with several payment dates

Many financial securities have more than one payment date, e.g. coupon bonds, swaps, caps,

and floors. Theorem 4.10 does not directly apply to such securities. In the extension to securities

with several payments, we distinguish again between securities with discrete lump-sum payments

and securities with a continuous stream of payments.

First consider a security with discrete lump-sum payments, which are either deterministic or

depend on the value of the state variable at the payment date. Suppose that the security provides

payments Hj(xTj
) at time Tj for j = 1, . . . , N with T1 < · · · < Tn. Clearly, at the time of a

payment the value of the security will drop exactly by the payment. The “ex-payment” value will

equal the “cum-payment” value minus the size of the payment. Letting t+ denote “immediately

after time t”, we can express this relation as

P (x, Tj+) = P (x, Tj) −Hj(x).

If the drop in the price −[P (x, Tj+) − P (x, Tj)] was less than the payment Hj(x), an arbitrage

profit could be locked in by buying the security immediately before the time of payment and

selling it again immediately after the payment was received. Between payment dates, i.e. in the

intervals (Tj , Tj+1), the price of the security will satisfy the PDE (4.37). Alternatively, we can
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apply Theorem 4.10 in order to separately find the current value of each of the payments after

which the value of the security follows from a simple summation.

Next consider a security providing continuous payments at the rate ht = h(xt, t) throughout

[0, T ] and a terminal lump-sum payment of HT = H(xT , T ). From (4.29) we know that the price

of such a security in our diffusion setting is given by

P (xt, t) = EQ
t

[

e−
∫

T
t
r(xu,u) duH(xT , T ) +

∫ T

t

e−
∫

s
t
r(xu,u) duh(xs, s) ds

]

.

Theorem 4.10 can be extended to show that the function P in this case will solve the PDE

∂P

∂t
(x, t) + (α(x, t) − β(x, t)λ(x, t))

∂P

∂x
(x, t)

+
1

2
β(x, t)2

∂2P

∂x2
(x, t) − r(x, t)P (x, t) + h(x, t) = 0, (x, t) ∈ S × [0, T ),

with the terminal condition P (x, T ) = H(x, T ) for all x ∈ S. The only change in the PDE relative

to the case with no intermediate dividends is the addition of the term h(x, t) on the left-hand side

of the equation.

In the special case where the payment rate is proportional to the value of the security, i.e.

h(x, t) = q(x, t)P (x, t), we know from (4.30) that the price can be written as

P (xt, t) = EQ
t

[

e−
∫

T
t

[r(xu,u)−q(xu,u)] duH(xT , T )
]

. (4.47)

The relevant PDE is now

∂P

∂t
(x, t) + (α(x, t) − β(x, t)λ(x, t))

∂P

∂x
(x, t)

+
1

2
β(x, t)2

∂2P

∂x2
(x, t) −

(
r(x, t) − q(x, t)

)
P (x, t) = 0, (x, t) ∈ S × [0, T ). (4.48)

4.8.2 Multi-factor diffusion models

Assume now that the short-term interest rate, the market prices of risk, and the payoffs we

want to price depend on n state variables x1, . . . , xn and that the vector x = (x1, . . . , xn)
⊤

follows

the stochastic process

dxt = α(xt, t) dt+ β(xt, t) dzt, (4.49)

where z is an n-dimensional standard Brownian motion. We can write (4.49) componentwise as

dxit = αi(xt, t) dt+ βi(xt, t)
⊤ dzt = αi(xt, t) dt+

n∑

j=1

βij(xt, t) dzjt.

The volatility of the i’th state variable is the standard deviation

‖βi(xt, t)‖ =

√
√
√
√

n∑

k=1

βik(xt, t)2,

and the instantaneous correlation between changes in the i’th and the j’th state variable is

ρij(xt, t) =
Covt(dxit, dxjt)

√

Vart(dxit)
√

Vart(dxjt)
=

∑n
k=1 βik(xt, t)βjk(xt, t)

‖βi(xt, t)‖ ‖βj(xt, t)‖
.
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Consider again a security with a single payment of HT = H(xT , T ) at time T . Its price is

Pt = P (xt, t), where

P (x, t) = EQ
x,t

[

e−
∫

T
t
r(xu,u) duH(xT , T )

]

.

It follows from the multi-dimensional version of Itô’s Lemma (see Theorem 3.6 on page 60) that

the dynamics of Pt is

dPt
Pt

= µ(xt, t) dt+

n∑

j=1

σj(xt, t) dzjt, (4.50)

where the functions µ and σj are defined as

µ(x, t)P (x, t) =
∂P

∂t
(x, t) +

n∑

j=1

∂P

∂xj
(x, t)αj(x, t)

+
1

2

n∑

j=1

n∑

k=1

∂2P

∂xj∂xk
(x, t)ρjk(x, t) ‖βj(x, t)‖ ‖βk(x, t)‖,

(4.51)

σj(x, t)P (x, t) =
n∑

k=1

∂P

∂xk
(x, t)βkj(x, t). (4.52)

We also know that for a market price of risk λ(xt, t), we have

µ(xt, t) = r(xt, t) + σ(xt, t)λ(xt, t) = r(xt, t) +
n∑

j=1

σj(xt, t)λj(xt, t). (4.53)

Substituting in µ and σ, we arrive at the PDE

∂P

∂t
(x, t) +

n∑

j=1

(

αj(x, t) −
n∑

k=1

βjk(x, t)λk(x, t)

)

∂P

∂xj
(x, t)

+
1

2

n∑

j=1

n∑

k=1

ρjk(x, t) ‖βj(x, t)‖ ‖βk(x, t)‖
∂2P

∂xj∂xk
(x, t)− r(x, t)P (x, t) = 0, (x, t) ∈ S× [0, T ),

(4.54)

with the obvious the terminal condition P (x, T ) = H(x, T ),x ∈ S.

Using matrix notation the PDE can be written more compactly as

∂P

∂t
(x, t) +

(

α(x, t) − β(x, t)λ(x, t)
)

⊤ ∂P

∂x
(x, t)

+
1

2
tr

(

β(x, t)β(x, t)⊤
∂2P

∂x2
(x, t)

)

− r(x, t)P (x, t) = 0, (x, t) ∈ S × [0, T ), (4.55)

where ∂P/∂x is the vector of first-order derivatives ∂P/∂xj , ∂
2P/∂x2 is the n × n matrix of

second-order derivatives ∂2P/∂xi∂xj , and tr(M) denotes the “trace” of the matrix M , which is

defined as the sum of the diagonal elements, tr(M) =
∑

jMjj .

In a model with n state variables the bank account can be replicated by a suitably constructed

trading strategy in n+1 (sufficiently different) securities. Conversely, any security can be replicated

by a suitably constructed trading strategy in the bank account and n other (sufficiently different)

securities. For securities with more than one payment date the analysis must be modified similarly

to the one-dimensional case.
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4.9 Concluding remarks

This chapter has reviewed the central results of modern asset pricing theory in a continuous-

time framework. Ignoring technicalities, we can summarize our main findings as follows:

• The market-wide pricing principles can be represented in three equivalent objects: state-

price deflators, risk-neutral probability measures, and market prices of risk. These objects

are closely related to individuals’ marginal rates of substitution.

• A specification of a state-price deflator, a risk-neutral probability measure, or a market price

of risk fixes the prices of all traded assets.

• The absence of arbitrage is equivalent to the existence of a state-price deflator, a risk-neutral

probability measure, and a market price of risk.

• In a complete and arbitrage-free market, there is a unique state-price deflator, a unique

risk-neutral probability measure, and a unique market price of risk.

• In a complete market, a representative agent exists and the unique state-price deflator is that

agent’s marginal rate of substitution evaluated at the aggregate consumption process.

4.10 Exercises

EXERCISE 4.1 Show that if there is no arbitrage and the short rate can never go negative, then the

discount function is non-increasing and all forward rates are non-negative.

EXERCISE 4.2 Show Equation (4.13).





Chapter 5

The economics of the term structure of

interest rates

5.1 Introduction

A bond is nothing but a standardized and transferable loan agreement between two parties. The

issuer of the bond is borrowing money from the holder of the bond and promises to pay back the

loan according to a predefined payment scheme. The presence of the bond market allows individuals

to trade consumption opportunities at different points in time among each other. An individual

who has a clear preference for current capital to finance investments or current consumption can

borrow by issuing a bond to an individual who has a clear preference for future consumption

opportunities. The price of a bond of a given maturity is, of course, set to align the demand and

supply of that bond, and will consequently depend on the attractiveness of the real investment

opportunities and on the individuals’ preferences for consumption over the maturity of the bond.

The term structure of interest rates will reflect these dependencies. In Sections 5.2 and 5.3 we

derive relations between equilibrium interest rates and aggregate consumption and production in

settings with a representative agent. In Section 5.4 we give some examples of equilibrium term

structure models that are derived from the basic relations between interest rates, consumption,

and production.

Since agents are concerned with the number of units of goods they consume and not the dollar

value of these goods, the relations found in the first part of this chapter apply to real interest

rates. However, most traded bonds are nominal, i.e. they promise the delivery of certain dollar

amounts, not the delivery of a certain number of consumption goods. The real value of a nominal

bond depends on the evolution of the price of the consumption good. In Section 5.5 we explore the

relations between real rates, nominal rates, and inflation. We consider both the case where money

has no real effects on the economy and the case where money does affect the real economy.

The development of arbitrage-free dynamic models of the term structure was initiated in the

1970s. Until then, the discussions among economists about the shape of the term structure were

based on some relatively loose hypotheses. The most well-known of these is the expectation

hypothesis, which postulates a close relation between current interest rates or bond returns and

expected future interest rates or bond returns. Many economists still seem to rely on the validity

of this hypothesis, and a lot of man power has been spend on testing the hypothesis empirically. In

95



96 Chapter 5. The economics of the term structure of interest rates

Section 5.6, we review several versions of the expectation hypothesis and discuss the consistency

of these versions. We argue that neither of these versions will hold for any reasonable dynamic

term structure model. Some alternative traditional hypothesis are briefly reviewed in Section 5.7.

5.2 Real interest rates and aggregate consumption

In order to study the link between interest rates and aggregate consumption, we assume

the existence of a representative agent maximizing an expected time-additive utility function,

E[
∫ T

0
e−δtu(Ct) dt]. As discussed in Section 4.6, a representative agent will exist in a complete

market. The parameter δ is the subjective time preference rate with higher δ representing a more

impatient agent. Ct is the consumption rate of the agent, which is then also the aggregate con-

sumption level in the economy. In terms of the utility and time preference of the representative

agent the state price deflator is therefore characterized by

ζt = e−δt
u′(Ct)

u′(C0)
.

Assume that the aggregate consumption process C = (Ct) has dynamics of the form

dCt = Ct [µCt dt+ σ⊤

Ct dzt] ,

where z = (zt) is a (possibly multi-dimensional) standard Brownian motion. The dynamics

of the state-price deflator will then follow from Itô’s Lemma applied to the function g(C, t) =

e−δtu′(C)/u′(C0). Since the relevant derivatives are

∂g

∂t
= −δg(C, t), ∂g

∂C
= e−δt

u′′(C)

u′(C0)
=
u′′(C)

u′(C)
g(C, t),

∂2g

∂C2
= e−δt

u′′′(C)

u′(C0)
=
u′′′(C)

u′(C)
g(C, t),

the dynamics of ζ = (ζt) is

dζt = ζt

[(

−δ −
(−Ctu′′(Ct)

u′(Ct)

)

µCt +
1

2
C2
t

u′′′(Ct)

u′(Ct)
‖σCt‖2

)

dt−
(−Ctu′′(Ct)

u′(Ct)

)

σ⊤

Ct dzt

]

. (5.1)

Recalling from Section 4.3.1 that the equilibrium short-term interest rate equals minus the relative

drift of the state-price deflator, we can write the short rate as

rt = δ +
−Ctu′′(Ct)
u′(Ct)

µCt −
1

2
C2
t

u′′′(Ct)

u′(Ct)
‖σCt‖2. (5.2)

This is the interest rate at which the market for short-term borrowing and lending will clear.

The equation relates the equilibrium short-term interest rate to the time preference rate and the

expected growth rate µCt and the variance rate ‖σCt‖2 of aggregate consumption growth over the

next instant. We can observe the following relations:

• There is a positive relation between the time preference rate and the equilibrium interest

rate. The intuition behind this is that when the agents of the economy are impatient and

has a high demand for current consumption, the equilibrium interest rate must be high in

order to encourage the agents to save now and postpone consumption.

• The multiplier of µCt in (5.2) is the relative risk aversion of the representative agent, which

is positive. Hence, there is a positive relation between the expected growth in aggregate



5.2 Real interest rates and aggregate consumption 97

consumption and the equilibrium interest rate. This can be explained as follows: We expect

higher future consumption and hence lower future marginal utility, so postponed payments

due to saving have lower value. Consequently, a higher return on saving is needed to maintain

market clearing.

• If u′′′ is positive, there will be a negative relation between the variance of aggregate consump-

tion and the equilibrium interest rate. If the representative agent has decreasing absolute

risk aversion, which is certainly a reasonable assumption, u′′′ has to be positive. The intu-

ition is that the greater the uncertainty about future consumption, the more will the agents

appreciate the sure payments from the riskless asset and hence the lower a return is necessary

to clear the market for borrowing and lending.

In the special case of constant relative risk aversion, u(c) = c1−γ/(1 − γ), Equation (5.2)

simplifies to

rt = δ + γµCt −
1

2
γ(1 + γ)‖σCt‖2. (5.3)

In particular, we see that if the drift and variance rates of aggregate consumption are constant, i.e.

aggregate consumption follows a geometric Brownian motion, then the short-term interest rate will

be constant over time. Consequently, the yield curve will be flat and constant over time. This is

clearly an unrealistic case. To obtain interesting models we must either allow for variations in the

expectation and the variance of aggregate consumption growth or allow for non-constant relative

risk aversion (or both).

We can also characterize the equilibrium term structure of interest rates in terms of the expec-

tations and uncertainty about future aggregate consumption.1 The equilibrium time t price of a

zero-coupon bond paying one consumption unit at time T ≥ t is given by

BTt = Et

[
ζT
ζt

]

= e−δ(T−t) Et [u
′(CT )]

u′(Ct)
, (5.4)

where CT is the uncertain future aggregate consumption level. We can write the left-hand side of

the equation above in terms of the yield yTt of the bond as

BTt = e−y
T
t (T−t) ≈ 1 − yTt (T − t),

using a first order Taylor expansion. Turning to the right-hand side of the equation, we will use a

second-order Taylor expansion of u′(CT ) around Ct:

u′(CT ) ≈ u′(Ct) + u′′(Ct)(CT − Ct) +
1

2
u′′′(Ct)(CT − Ct)

2.

This approximation is reasonable when CT stays relatively close to Ct, which is the case for fairly

low and smooth consumption growth and fairly short time horizons. Applying the approximation,

the right-hand side of (5.4) becomes

e−δ(T−t) Et [u
′(CT )]

u′(Ct)
≈ e−δ(T−t)

(

1 +
u′′(Ct)

u′(Ct)
Et[CT − Ct] +

1

2

u′′′(Ct)

u′(Ct)
Vart[CT − Ct]

)

≈ 1 − δ(T − t) + e−δ(T−t)Ctu
′′(Ct)

u′(Ct)
Et

[
CT
Ct

− 1

]

+
1

2
e−δ(T−t)C2

t

u′′′(Ct)

u′(Ct)
Vart

[
CT
Ct

]

,

1The presentation is adapted from Breeden (1986).
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where Vart[ · ] denotes the variance conditional on the information available at time t, and we have

used the approximation e−δ(T−t) ≈ 1 − δ(T − t). Substituting the approximations of both sides

into (5.4) and rearranging, we find the following approximate expression for the zero-coupon yield:

yTt ≈ δ + e−δ(T−t)

(−Ctu′′(Ct)
u′(Ct)

)
Et [CT /Ct − 1]

T − t
− 1

2
e−δ(T−t)C2

t

u′′′(Ct)

u′(Ct)

Vart [CT /Ct]

T − t
. (5.5)

Again assuming u′ > 0, u′′ < 0, and u′′′ > 0, we can state the following conclusions. The

equilibrium yield is increasing in the subjective rate of time preference. The equilibrium yield for

the period [t, T ] is positively related to the expected growth rate of aggregate consumption over

the period and negatively related to the uncertainty about the growth rate of consumption over

the period. The intuition for these results is the same as for short-term interest rate discussed

above. We see that the shape of the equilibrium time t yield curve T 7→ yTt is determined by

how expectations and variances of consumption growth rates depend on the length of the forecast

period. For example, if the economy is expected to enter a short period of high growth rates, real

short-term interest rates tend to be high and the yield curve downward-sloping.

5.3 Real interest rates and aggregate production

In order to study the relation between interest rates and production, we will look at a slightly

simplified version of the general equilibrium model of Cox, Ingersoll, and Ross (1985a).

Consider an economy with a single physical good that can be used either for consumption or

investment. All values are expressed in units of this good. The instantaneous rate of return on an

investment in the production of the good is

dηt
ηt

= g(xt) dt+ ξ(xt) dz1t, (5.6)

where z1 is a standard one-dimensional Brownian motion and g and ξ are well-behaved real-valued

functions (given by Mother Nature) of some state variable xt. To be more specific, η0 goods

invested in the production process at time 0 will grow to ηt goods at time t if the output of the

production process is continuously reinvested in this period. We can interpret g as the expected

real growth rate of the economy and the volatility ξ (assumed positive for all x) as a measure of the

uncertainty about the growth rate of the economy. The production process has constant returns

to scale in the sense that the distribution of the rate of return is independent of the scale of the

investment. There is free entry to the production process. We can think of individuals investing

in production directly by forming their own firm or indirectly be investing in stocks of production

firms. For simplicity we take the first interpretation. All producers, individuals and firms, act

competitively so that firms have zero profits and just passes production returns on to their owners.

All individuals and firms act as price takers.

We assume that the state variable is one-dimensional and evolves according to the stochastic

differential equation

dxt = m(xt) dt+ v1(xt) dz1t + v2(xt) dz2t, (5.7)

where z2 is another standard one-dimensional Brownian motion independent of z1, and m, v1, and

v2 are well-behaved real-valued functions. The instantaneous variance rate of the state variable

is v1(x)
2 + v2(x)

2, the covariance rate of the state variable and the real growth rate is ξ(x)v1(x)
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so that the correlation between the state and the growth rate is v1(x)/
√

v1(x)2 + v2(x)2. Unless

v2 ≡ 0, the state variable is imperfectly correlated with the real production returns. If v1 is positive

[negative], then the state variable is positively [negatively] correlated with the growth rate of the

economy (since ξ is assumed positive). Since the state determines the expected returns and the

variance of returns on real investments, we may think of xt as a productivity or technology variable.

In addition to the investment in the production process, we assume that the agents have access

to a financial asset with a price Pt with dynamics of the form

dPt
Pt

= µt dt+ σ1t dz1t + σ2t dz2t. (5.8)

As a part of the equilibrium we will determine the relation between the expected return µt and

the volatility coefficients σ1t and σ2t. Finally, the agents can borrow and lend funds at an instan-

taneously riskless interest rate rt, which is also determined in equilibrium. The market is therefore

complete. Other financial assets affected by z1 and z2 may be traded, but they will be redundant.

We will get the same equilibrium relation between expected returns and volatility coefficients for

these other assets as for the one modeled explicitly. For simplicity we stick to the case with a

single financial asset.

If an agent at each time t consumes at a rate of ct ≥ 0, invests a fraction αt of his wealth in the

production process, invests a fraction πt of wealth in the financial asset, and invests the remaining

fraction 1 − αt − πt of wealth in the riskless asset, his wealth Wt will evolve as

dWt = {rtWt +Wtαt (g(xt) − rt) +Wtπt (µt − rt) − ct} dt
+Wtαtξ(xt) dz1t +Wtπtσ1t dz1t +Wtπtσ2t dz2t.

(5.9)

Since a negative real investment is physically impossible, we should restrict αt to the non-negative

numbers. However, we will assume that this constraint is not binding. Let us look at an agent

maximizing expected utility of future consumption. The indirect utility function is defined as

J(W,x, t) = sup
(αs,πs,cs)s∈[t,T ]

Et

[
∫ T

t

e−δ(s−t)u(cs) ds

]

,

i.e. the maximal expected utility the agent can obtain given his current wealth and the current

value of the state variable. Applying dynamic programming techniques, it can be shown that the

optimal choice of α and π satisfies

α∗ =
−JW
WJWW

[

(g − r)
σ2

1 + σ2
2

ξ2σ2
2

− (µ− r)
σ1

ξσ2
2

]

+
−JWx

WJWW

σ2v1 − σ1v2
ξσ2

, (5.10)

π∗ =
−JW
WJWW

[

− σ1

ξσ2
2

(g − r) +
1

σ2
2

(µ− r)

]

+
−JWx

WJWW

v2
σ2
. (5.11)

In equilibrium, prices and interest rates are such that (a) all agents act optimally and (b) all

markets clear. In particular, summing up the positions of all agents in the financial asset we should

get zero, and the total amount borrowed by agents on a short-term basis should equal the total

amount lend by agents. Since the available production apparatus is to be held by some investors,

summing the optimal α’s over investors we should get 1. Since we have assumed a complete

market, we can construct a representative agent, i.e. an agent with a given utility function so that

the equilibrium interest rates and price processes are the same in the single agent economy as in

the larger multi agent economy. Alternatively, we may think of the case where all agents in the
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economy are identical so that they will have the same indirect utility function and always make

the same consumption and investment choices.

In an equilibrium, we have π∗ = 0 for the representative agent, and hence (5.11) implies that

µ− r =
σ1

ξ
(g − r) −

(
−JW x

WJW W

)

(
−JW

WJW W

)σ2v2. (5.12)

Substituting this into the expression for α∗ and using the fact that α∗ = 1 in equilibrium, we get

that

1 =

( −JW
WJWW

)


(g − r)
σ2

1 + σ2
2

ξ2σ2
2

− σ1

ξ

σ1

ξσ2
2

(g − r) +

(
−JW x

WJW W

)

(
−JW

WJW W

)σ2v2
σ1

ξσ2
2





+

( −JWx

WJWW

)
σ2v1 − σ1v2

ξσ2

=

( −JW
WJWW

)
g − r

ξ2
+

( −JWx

WJWW

)
v1
ξ
.

Consequently, the equilibrium short-term interest rate can be written as

r = g −
(−WJWW

JW

)

ξ2 +
JWx

JW
ξv1. (5.13)

This equation ties the equilibrium real short-term interest rate to the production side of the

economy. Let us address each of the three right-hand side terms:

• The equilibrium real interest rate r is positively related to the expected real growth rate

g of the economy. The intuition is that for higher expected growth rates, the productive

investments are more attractive relative to the riskless investment, so to maintain market

clearing the interest rate has to be higher.

• The term −WJWW /JW is the relative risk aversion of the representative agent’s indirect

utility, which is assumed to be positive. Hence, we see that the equilibrium real interest rate

r is negatively related to the uncertainty about the growth rate of the economy, represented

by the instantaneous variance ξ2. For a higher uncertainty, the safe returns of a riskless

investment is relatively more attractive, so to establish market clearing the interest rate has

to decrease.

• The last term in (5.13) is due to the presence of the state variable. The covariance rate of

the state variable and the real growth rate of the economy is equal to ξv1. Suppose that

high values of the state variable represents good states of the economy, where the wealth of

the agent is high. Then the marginal utility JW will be decreasing in x, i.e. JWx < 0. If

the state variable and the growth rate of the economy are positively correlated, i.e. v1 > 0,

we see from (5.10) that the hedge demand of the productive investment is decreasing, and

hence the demand for depositing money at the short rate increasing, in the magnitude of the

correlation (both JWx and JWW are negative). To maintain market clearing, the interest

rate must be decreasing in the magnitude of the correlation as reflected by (5.13).

We see from (5.12) that the market prices of risk are given by

λ1 =
g − r

ξ
, λ2 = −

(
−JW x

WJW W

)

(
−JW

WJW W

)v2 = −JWx

JW
v2. (5.14)
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Applying the relation

g − r =

(−WJWW

JW

)

ξ2 − JWx

JW
ξv1,

we can rewrite λ1 as

λ1 ≡
(−WJWW

JW

)

ξ − JWx

JW
v1. (5.15)

5.4 Equilibrium term structure models

5.4.1 Production-based models

As a special case of their general equilibrium model with production, Cox, Ingersoll, and Ross

(1985b) consider a model where the representative agent is assumed to have a logarithmic utility so

that the relative risk aversion of the direct utility function is 1. In addition, the agent is assumed to

have an infinite time horizon, which implies that the indirect utility function will be independent

of time. It can be shown that under these assumptions the indirect utility function of the agent

is of the form J(W,x) = A lnW + B(x). In particular, JWx = 0 and the relative risk aversion of

the indirect utility function is also 1. It follows from (5.13) that the equilibrium real short-term

interest rate is equal to

r(xt) = g(xt) − ξ(xt)
2.

The authors further assume that the expected rate of return and the variance rate of the return

on the productive investment are both proportional to the state, i.e.

g(x) = k1x, ξ(x)2 = k2x,

where k1 > k2. Then the equilibrium short-rate becomes r(x) = (k1 − k2)x ≡ kx. Assume now

that the state variable follows a square-root process

dxt = κ (x̄− xt) dt+ ρσx
√
xt dz1t +

√

1 − ρ2σx
√
xt dz2t

= κ (x̄− xt) dt+ σx
√
xt dz̄t,

where z̄ is a standard Brownian motion with correlation ρ with the standard Brownian motion z1

and correlation
√

1 − ρ2 with z2. Then the dynamics of the real short rate is drt = k dxt, which

yields

drt = κ (r̄ − rt) dt+ σr
√
rt dz̄t, (5.16)

where r̄ = kx̄ and σr =
√
kσx. The market prices of risk given in (5.14) and (5.15) simplify to

λ1 = ξ(x) =
√

k2x =
√

k2/k
√
r, λ2 = 0.

From Chapter 4 we know that the short-rate dynamics and the market prices of risk fully determine

prices of all bonds and hence the entire term structure of interest rates. In fact, this is one of the

most frequently used dynamic term structure models, the so-called CIR model, which we will

discuss in much more detail in Section 7.5.

Longstaff and Schwartz (1992a) study a two-factor version of the production-based equilibrium

model. They assume that the production returns are given by

dηt
ηt

= g(x1t, x2t) dt+ ξ(x2t) dz1t,
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where

g(x1, x2) = k1x1 + k2x2, ξ(x2)
2 = k3x2,

so that the state variable x2 affects both expected returns and uncertainty of production, while

the state variable x1 only affects the expected return. With log utility the short rate is again equal

to the expected return minus the variance,

r(x1, x2) = g(x1, x2) − ξ(x2)
2 = k1x1 + (k2 − k3)x2.

The state variables are assumed to follow independent square-root processes,

dx1t = (ϕ1 − κ1x1t) dt+ β1
√
x1t dz2t,

dx2t = (ϕ2 − κ2x2t) dt+ β2
√
x2t dz3t,

where z2 are independent of z1 and z3, but z1 and z3 may be correlated. The market prices of risk

associated with the Brownian motions are

λ1(x2) = ξ(x2) =
√

k2
√
x2, λ2 = λ3 = 0.

We will discuss the implications of this model in much more detail in Chapter 8.

5.4.2 Consumption-based models

Other authors take a consumption-based approach for developing models of the term structure

of interest rates. For example, Goldstein and Zapatero (1996) present a simple model in which the

equilibrium short-term interest rate is consistent with the term structure model of Vasicek (1977).

They assume that aggregate consumption evolves as

dCt = Ct [µCt dt+ σC dzt] ,

where z is a one-dimensional standard Brownian motion, σC is a constant, and the expected

consumption growth rate µCt follows an Ornstein-Uhlenbeck process

dµCt = κ (µ̄C − µCt) dt+ θ dzt.

The representative agent is assumed to have a constant relative risk aversion of γ. It follows

from (5.3) that the equilibrium real short-term interest rate is

rt = δ + γµCt −
1

2
γ(1 + γ)σ2

C

with dynamics drt = γ dµCt, i.e.

drt = κ (r̄ − rt) dt+ σr dzt, (5.17)

where σr = γθ and r̄ = γµ̄C + δ − 1
2γ(1 + γ)σ2

C . The market price of risk is given by

λ = γσC ,

which is constant. We will give a thorough treatment of this model in Section 7.4.
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In fact, we can generate any of the so-called affine term structure model in this way. Assume

that the expected growth rate and the variance rate of aggregate consumption are affine in some

state variables, i.e.

µCt = a0 +

n∑

i=1

aixit, ‖σCt‖2 = b0 +

n∑

i=1

bixit,

then the equilibrium short rate will be

rt =

(

δ + γa0 −
1

2
γ(1 + γ)b0

)

+ γ

n∑

i=1

(

ai −
1

2
(1 + γ)bi

)

xit.

Of course, we should have b0 +
∑n
i=1 bixit ≥ 0 for all values of the state variables. The market

price of risk is λt = γσCt. If the state variables xi follow processes of the affine type, we have an

affine term structure model. We will return to the affine models both in Chapter 7 and Chapter 8.

For other term structure models developed with the consumption-based approach, see e.g.

Bakshi and Chen (1997).

5.5 Real and nominal interest rates and term structures

In this section we discuss the difference and relation between real interest rates and nominal

interest rates. Nominal interest rates are related to investments in nominal bonds, which are

bonds that promise given payments in a given currency, say dollars. The purchasing power of these

payments are uncertain, however, since the future price level of consumer goods is uncertain. Real

interest rates are related to investments in real bonds, which are bonds whose dollar payments

are adjusted by the evolution in the consumer price index and effectively provide a given purchasing

power at the payment dates.2 Although most bond issuers and investors would probably reduce

relevant risks by using real bonds rather than nominal bonds, the vast majority of bonds issued and

traded at all exchanges is nominal bonds. Surprisingly few real bonds are traded. To the extent

that people have preferences for consumption units only (and not for their monetary holdings) they

should base their consumption and investment decisions on real interest rates rather than nominal

interest rates. The relations between interest rates and consumption and production discussed in

the previous sections apply to real interest rates.

In a world where traded bonds are nominal we can quite easily get a good picture of the term

structure of nominal interest rates. But what about real interest rates? Traditionally, economists

think of nominal rates as the sum of real rates and the expected (consumer price) inflation rate.

This relation is often referred to as the Fisher hypothesis or Fisher relation in honor of Fisher

(1907). However, neither empirical studies nor modern financial economics theories (as we shall

see below) support the Fisher hypothesis.3

In the following we shall first derive some generally valid relations between real rates, nominal

rates, and inflation and investigate the differences between real and nominal asset prices. Then

we will discuss two different types of models in which we can say more about real and nominal

2Since not all consumers will want the same composition of different consumption goods as that reflected by the

consumer price index, real bonds will not necessarily provide a perfectly certain purchasing power for each investor.
3Of course, at the end of any given period one can compute an ex-post real return by subtracting the realized

inflation rate from an ex-post realized nominal return. It is not clear, however, why investors should care about

such an ex-post real return.
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rates. The first setting follows the neoclassical tradition in assuming that monetary holdings do

not affect the preferences of the agents so that the presence of money has no effects on real rates

and real asset returns. Hence, the relations derived earlier in this chapter still applies. However,

several empirical findings indicate that the existence of money does have real effects. For example,

real stock returns are negatively correlated with inflation and positively correlated with growth

in money supply. Also, assets that are positively correlated with inflation have a lower expected

return.4 In the second setting we consider below, money is allowed to have real effects. Economies

with this property are called monetary economies.

5.5.1 Real and nominal asset pricing

As before, let ζ = (ζt) denote a state-price deflator, which evolves over time according to

dζt = −ζt [rt dt+ λ⊤

t dzt] ,

where r = (rt) is the short-term real interest rate and λ = (λt) is the market price of risk. Then

the time t real price of a real zero-coupon bond maturing at time T is given by

BTt = Et

[
ζT
ζt

]

.

If the real price S = (St) of an asset follows the stochastic process

dSt = St [µSt dt+ σ⊤

St dzt] ,

then we know that

µSt − rt = σ⊤

Stλt (5.18)

must hold in equilibrium. From Chapter 4 we also know that we can characterize real prices in

terms of the risk-neutral probability measure Q, which is formally defined by the change-of-measure

process

ξt ≡ Et

[
dQ

dP

]

= exp

{

−1

2

∫ t

0

‖λs‖2 ds−
∫ t

0

λ⊤

s dzs

}

.

The real price of an asset paying no dividends in the time interval [t, T ] can then be written as

Pt = Et

[
ζT
ζt
PT

]

= EQ
t

[

e−
∫

T
t
rs dsPT

]

.

In particular, the time t real price of a real zero-coupon bond maturing at T is

BTt = EQ
t

[

e−
∫

T
t
rs ds

]

.

In order to study nominal prices and interest rates, we introduce the consumer price index It,

which is interpreted as the dollar price It of a unit of consumption. We write the dynamics of

I = (It) as

dIt = It [it dt+ σ⊤

It dzt] . (5.19)

We can interpret dIt/It as the realized inflation rate over the next instant, it as the expected

inflation rate, and σIt as the percentage volatility vector of the inflation rate.

4Such results are reported by, e.g., Fama (1981), Fama and Gibbons (1982), Chen, Roll, and Ross (1986), and

Marshall (1992).
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Consider now a nominal bank account which over the next instant promises a riskless monetary

return represented by the nominal short-term interest rate r̃t. If we let Ñt denote the time t dollar

value of such an account, we have that

dÑt = r̃tÑt dt.

The real price of this account is Nt = Ñt/It, since this is the number of units of the consumption

good that has the same value as the account. An application of Itô’s Lemma implies a real price

dynamics of

dNt = Nt
[(
r̃t − it + ‖σIt‖2

)
dt− σ⊤

It dzt
]
. (5.20)

Note that the real return on this instantaneously nominally riskless asset, dNt/Nt, is risky. Since

the percentage volatility vector is given by −σIt, the expected return is given by the real short

rate plus −σ⊤

Itλt. Comparing this with the drift term in the equation above, we have that

r̃t − it + ‖σIt‖2 = rt − σ⊤

Itλt.

Consequently the nominal short-term interest rate is given by

r̃t = rt + it − ‖σIt‖2 − σ⊤

Itλt, (5.21)

i.e. the nominal short rate is equal to the real short rate plus the expected inflation rate minus the

variance of the inflation rate minus a risk premium. The presence of the last two terms invalidates

the Fisher relation, which says that the nominal interest rate is equal to the sum of the real interest

rate and the expected inflation rate. The Fisher hypothesis will hold if and only if the inflation

rate is instantaneously riskless.

Since most traded assets are nominal, it would be nice to have a relation between expected

nominal returns and volatility of nominal prices. For this purpose, let P̃t denote the dollar price

of a financial asset and assume that the price dynamics can be described by

dP̃t = P̃t [µ̃Pt dt+ σ̃⊤

Pt dzt] .

The real price of this asset is given by Pt = P̃t/It and by Itô’s Lemma

dPt = Pt
[(
µ̃Pt − it − σ̃⊤

PtσIt + ‖σIt‖2
)
dt+ (σ̃Pt − σIt)⊤

dzt
]
.

The expected excess real rate of return on the asset is therefore

µPt − rt = µ̃Pt − it − σ̃⊤

PtσIt + ‖σIt‖2 − rt

= µ̃Pt − r̃t − σ̃⊤

PtσIt − σ⊤

Itλt,

where we have introduced the nominal short rate r̃t by applying (5.21). The volatility vector of

the real return on the asset is

σPt = σ̃Pt − σIt.

Substituting the expressions for µPt − rt and σPt into the relation (5.18), we obtain

µ̃Pt − r̃t − σ̃⊤

PtσIt − σ⊤

Itλt = (σ̃Pt − σIt)⊤

λt,

and hence

µ̃Pt − r̃t = σ̃⊤

Ptλ̃t, (5.22)
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where λ̃t is the nominal market price of risk vector defined by

λ̃t = σIt + λt. (5.23)

In terms of expectations, we know that

P̃t
It

= Et

[

ζT
ζt

P̃T
IT

]

,

from which it follows that

P̃t = Et

[
ζT
ζt

It
IT
P̃T

]

= Et

[

ζ̃T

ζ̃t
P̃T

]

,

where ζ̃t = ζt/It for any t. (In particular, ζ̃0 = 1/I0.) Since the left-hand side is the current

nominal price and the right-hand side involves the future nominal price or payoff, it is reasonable

to call ζ̃ = (ζ̃t) a nominal state-price deflator. Its dynamics is given by

dζ̃t = −ζ̃t
[

r̃t dt+ λ̃
⊤

t dzt

]

(5.24)

so the drift rate is (minus) the nominal short rate and the volatility vector is (minus) the nominal

market price of risk, completely analogous to the real counterparts.

We can also introduce a nominal risk-neutral measure Q̃ by the change-of-measure process

ξ̃t ≡ Et

[

dQ̃

dP

]

= exp

{

−1

2

∫ t

0

‖λ̃s‖2 ds−
∫ t

0

λ̃
⊤

s dzs

}

.

Then the nominal price of a non-dividend paying asset can be written as

P̃t = Et

[

ζ̃T

ζ̃t
P̃T

]

= EQ̃
t

[

e−
∫

T
t
r̃s dsP̃T

]

.

In particular, the time t nominal price of a nominal zero-coupon bond maturing at T is

B̃Tt = Et

[

ζ̃T

ζ̃t

]

= EQ̃
t

[

e−
∫

T
t
r̃s ds

]

.

To sum up, the prices of nominal bonds are related to the nominal short rate and the nominal

market price of risk in exactly the same way as the prices of real bonds are related to the real short

rate and the real market price of risk. Models that are based on specific exogenous assumptions

about the short rate dynamics and the market price of risk can be applied both to real term

structures and to nominal term structures. This is indeed the case for most popular term structure

models. However the equilibrium arguments that some authors offer in support of a particular

term structure model, cf. Section 5.4, typically apply to real interest rates and real market prices

of risk. Due to the relations (5.21) and (5.23), the same arguments cannot generally support

similar assumptions on nominal rates and market price of risk. Nevertheless, these models are

often applied on nominal bonds and term structures.

Above we derived an equilibrium relation between real and nominal short-term interest rates.

What can we say about the relation between longer-term real and nominal interest rates? Applying
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the well-known relation Cov(x, y) = E(xy) − E(x) E(y), we can write

B̃Tt = Et

[
ζT
ζt

It
IT

]

= Et

[
ζT
ζt

]

Et

[
It
IT

]

+ Covt

(
ζT
ζt
,
It
IT

)

= BTt Et

[
It
IT

]

+ Covt

(
ζT
ζt
,
It
IT

)

.

(5.25)

From the dynamics of the state-price deflator and the price index, we get

ζT
ζt

= exp

{

−
∫ T

t

(

rs +
1

2
‖λs‖2

)

ds−
∫ T

t

λ⊤

s dzs

}

,

It
IT

= exp

{

−
∫ T

t

(

is −
1

2
‖σIs‖2

)

ds−
∫ T

t

σ⊤

Is dzs

}

,

which can be substituted into the above relation between prices on real and nominal bonds. How-

ever, the covariance-term on the right-hand side can only be explicitly computed under very special

assumptions about the variations over time in r, i, λ, and σI .

5.5.2 No real effects of inflation

In this subsection we will take as given some process for the consumer price index and assume

that monetary holdings do not affect the utility of the agents directly. As before the aggregate

consumption level is assumed to follow the process

dCt = Ct [µCt dt+ σ⊤

Ct dzt]

so that the dynamics of the real state-price density is

dζt = −ζt [rt dt+ λ⊤

t dzt] .

The short-term real rate is given by

rt = δ − Ctu
′′(Ct)

u′(Ct)
µCt −

1

2
C2
t

u′′′(Ct)

u′(Ct)
‖σCt‖2 (5.26)

and the market price of risk vector is given by

λt =

(

−Ctu
′′(Ct)

u′(Ct)

)

σCt. (5.27)

By substituting the expression (5.27) for λt into (5.21), we can write the short-term nominal

rate as

r̃t = rt + it − ‖σIt‖2 −
(

−Ctu
′′(Ct)

u′(Ct)

)

σ⊤

ItσCt.

In the special case where the representative agent has constant relative risk aversion, i.e. u(C) =

C1−γ/(1−γ), and both the aggregate consumption and the price index follow geometric Brownian

motions, we get constant rates

r = δ + γµC − 1

2
γ(1 + γ)‖σC‖2, (5.28)

r̃ = r + i− ‖σI‖2 − γσ⊤

I σC . (5.29)
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Breeden (1986) considers the relations between interest rates, inflation, and aggregate consump-

tion and production in an economy with multiple consumption goods. In general the presence of

several consumption goods complicates the analysis considerably. Breeden shows that the equilib-

rium nominal short rate will depend on both an inflation rate computed using the average weights

of the different consumption goods and an inflation rate computed using the marginal weights

of the different goods, which are determined by the optimal allocation to the different goods of

an extra dollar of total consumption expenditure. The average and the marginal consumption

weights will generally be different since the representative agent may shift to other consumption

goods as his wealth increases. However, in the special (probably unrealistic) case of Cobb-Douglas

type utility function, the relative expenditure weights of the different consumption goods will be

constant. For that case Breeden obtains results similar to our one-good conclusions.

5.5.3 A model with real effects of money

In the next model we consider, cash holdings enter the direct utility function of the agent(s).

This may be rationalized by the fact that cash holdings facilitate frequent consumption transac-

tions. In such a model the price of the consumption good is determined as a part of the equilibrium

of the economy, in contrast to the models studied above where we took an exogenous process for

the consumer price index. We follow the set-up of Bakshi and Chen (1996) closely.

The general model

We assume the existence of a representative agent who chooses a consumption process C = (Ct)

and a cash process M = (Mt), where Mt is the dollar amount held at time t. As before, let It be

the unit dollar price of the consumption good. Assume that the representative agent has an infinite

time horizon, no endowment stream, and an additively time-separable utility of consumption and

the real value of the monetary holdings, i.e. M̃t = Mt/It. At time t the agent has the opportunity

to invest in a nominally riskless bank account with a nominal rate of return of r̃t. When the agent

chooses to hold Mt dollars in cash over the period [t, t+ dt], she therefore gives up a dollar return

of Mtr̃t dt, which is equivalent to a consumption of Mtr̃t dt/It units of the good. Given a (real)

state-price deflator ζ = (ζt), the total cost of choosing C and M is thus E
[∫∞

0
ζt(Ct +Mtr̃t/It) dt

]
,

which must be smaller than or equal to the initial (real) wealth of the agent, W0. In sum, the

optimization problem of the agent can be written as follows:

sup
(Ct,Mt)

E

[∫ ∞

0

e−δtu (Ct,Mt/It) dt

]

s.t. E

[∫ ∞

0

ζt

(

Ct +
Mt

It
r̃t

)

dt

]

≤W0.

The first order conditions are

e−δtuC(Ct,Mt/It) = ψζt, (5.30)

e−δtuM (Ct,Mt/It) = ψζtr̃t, (5.31)

where uC and uM are the first-order derivatives of u with respect to the first and second argument,

respectively. ψ is a Lagrange multiplier, which is set so that the budget condition holds as an

equality. Again, we see that the state-price deflator is given in terms of the marginal utility with
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respect to consumption. Imposing the initial value ζ0 = 1 and recalling the definition of M̃t, we

have

ζt = e−δt
uC(Ct, M̃t)

uC(C0, M̃0)
. (5.32)

We can apply the state-price deflator to value all payment streams. For example, an investment

of one dollar at time t in the nominal bank account generates a continuous payment stream at the

rate of r̃s dollars to the end of all time. The corresponding real investment at time t is 1/It and

the real dividend at time s is r̃s/Is. Hence, we have the relation

1

It
= Et

[∫ ∞

t

ζs
ζt

r̃s
Is
ds

]

,

or, equivalently,

1

It
= Et

[
∫ ∞

t

e−δ(s−t)
uC(Cs, M̃s)

uC(Ct, M̃t)

r̃s
Is
ds

]

. (5.33)

Substituting the first optimality condition (5.30) into the second (5.31), we see that the nominal

short rate is given by

r̃t =
uM (Ct,Mt/It)

uC(Ct,Mt/It)
. (5.34)

The intuition behind this relation can be explained in the following way. If you have an extra dollar

now you can either keep it in cash or invest it in the nominally riskless bank account. If you keep

it in cash your utility grows by uM (Ct,Mt/It)/It. If you invest it in the bank account you will

earn a dollar interest of r̃t that can be used for consuming r̃t/It extra units of consumption, which

will increase your utility by uC(Ct,Mt/It)r̃t/It. At the optimum, these utility increments must

be identical. Combining (5.33) and (5.34), we get that the price index must satisfy the recursive

relation
1

It
= Et

[
∫ ∞

t

e−δ(s−t)
uM (Cs, M̃s)

uC(Ct, M̃t)

1

Is
ds

]

. (5.35)

Let us find expressions for the equilibrium real short rate and the market price of risk in this

setting. As always, the real short rate equals minus the percentage drift of the state-price deflator,

while the market price of risk equals minus the percentage volatility vector of the state-price

deflator. In an equilibrium, the representative agent must consume the aggregate consumption

and hold the total money supply in the economy. Suppose that the aggregate consumption and

the money supply follow exogenous processes of the form

dCt = Ct [µCt dt+ σ⊤

Ct dzt] ,

dMt = Mt [µMt dt+ σ⊤

Mt dzt] .

Assuming that the endogenously determined price index will follow a similar process,

dIt = It [it dt+ σ⊤

It dzt] ,

the dynamics of M̃t = Mt/It will be

dM̃t = M̃t [µ̃Mt dt+ σ̃⊤

Mt dzt] ,

where

µ̃Mt = µMt − it + ‖σIt‖2 − σ⊤

MtσIt, σ̃Mt = σMt − σIt.
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Given these equations and the relation (5.32), we can find the drift and the volatility vector of the

state-price deflator by an application of Itô’s Lemma. We find that the equilibrium real short-term

interest rate can be written as

rt = δ +

(

−CtuCC(Ct, M̃t)

uC(Ct, M̃t)

)

µCt +

(

−M̃tuCM (Ct, M̃t)

uC(Ct, M̃t)

)

µ̃Mt

− 1

2

C2
t uCCC(Ct, M̃t)

uC(Ct, M̃t)
‖σCt‖2 − 1

2

M̃2
t uCMM (Ct, M̃t)

uC(Ct, M̃t)
‖σ̃Mt‖2 − CtM̃tuCCM (Ct, M̃t)

uC(Ct, M̃t)
σ⊤

Ctσ̃Mt,

(5.36)

while the market price of risk vector is

λt =

(

−CtuCC(Ct, M̃t)

uC(Ct, M̃t)

)

σCt +

(

−M̃tuCM (Ct, M̃t)

uC(Ct, M̃t)

)

σ̃Mt

=

(

−CtuCC(Ct, M̃t)

uC(Ct, M̃t)

)

σCt +

(

−M̃tuCM (Ct, M̃t)

uC(Ct, M̃t)

)

(σMt − σIt) .
(5.37)

With uCM < 0, we see that assets that are positively correlated with the inflation rate will have

a lower expected real return, other things equal. Intuitively such assets are useful for hedging

inflation risk so that they do not have to offer as high an expected return.

The relation (5.21) is also valid in the present setting. Substituting the expression (5.37) for

the market price of risk into (5.21), we obtain

r̃t − rt − it + ‖σIt‖2 = −
(

−CtuCC(Ct, M̃t)

uC(Ct, M̃t)

)

σ⊤

ItσCt −
(

−M̃tuCM (Ct, M̃t)

uC(Ct, M̃t)

)

σ⊤

Itσ̃Mt. (5.38)

An example

To obtain more concrete results, we must specify the utility function and the exogenous pro-

cesses C and M . Assume a utility function of the Cobb-Douglas type,

u(C, M̃) =

(

CϕM̃1−ϕ
)1−γ

1 − γ
,

where ϕ is a constant between zero and one, and γ is a positive constant. The limiting case for

γ = 1 is log utility,

u(C, M̃) = ϕ lnC + (1 − ϕ) ln M̃.

By inserting the relevant derivatives into (5.36), we see that the real short rate becomes

rt = δ + [1 − ϕ(1 − γ)]µCt − (1 − ϕ)(1 − γ)µ̃Mt −
1

2
[1 − ϕ(1 − γ)][2 − ϕ(1 − γ)]‖σCt‖2

+
1

2
(1 − ϕ)(1 − γ)[1 − (1 − ϕ)(1 − γ)]‖σ̃Mt‖2 + (1 − ϕ)(1 − γ)[1 − ϕ(1 − γ)]σ⊤

Ctσ̃Mt,

(5.39)

which for γ = 1 simplifies to

rt = δ + µCt − ‖σCt‖2. (5.40)

We see that with log utility, the real short rate will be constant if aggregate consumption C = (Ct)

follows a geometric Brownian motion. From (5.34), the nominal short rate is

r̃t =
1 − ϕ

ϕ

Ct

M̃t

. (5.41)
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The ratio Ct/M̃t is called the velocity of money. If the velocity of money is constant, the nominal

short rate will be constant. Since M̃t = Mt/It and It is endogenously determined, the velocity of

money will also be endogenously determined.

To identify the nominal short rate for any γ and the real short rate for γ 6= 1, we have to

determine the price level in the economy, which is given recursively in (5.35). This is possible

under the assumption that both C and M follow geometric Brownian motions. We conjecture that

It = kMt/Ct for some constant k. From (5.35), we get

1

k
=

1 − ϕ

ϕ

∫ ∞

t

e−δ(s−t) Et

[(
Cs
Ct

)1−γ (
Ms

Mt

)−1
]

ds.

Inserting the relations

Cs
Ct

= exp

{(

µC − 1

2
‖σC‖2

)

(s− t) + σ⊤

C(zs − zt)
}

,

Ms

Mt
= exp

{(

µM − 1

2
‖σM‖2

)

(s− t) + σ⊤

M (zs − zt)
}

,

and applying a standard rule for expectations of lognormal variables, we get

1

k
=

1 − ϕ

ϕ

∫ ∞

t

exp
{(

− δ + (1 − γ)(µC − 1

2
‖σC‖2) − µM + ‖σM‖2

+
1

2
(1 − γ)2‖σC‖2 − (1 − γ)σ⊤

CσM

)

(s− t)
}

ds,

which implies that the conjecture is true with

k =
ϕ

1 − ϕ

(

δ − (1 − γ)(µC − 1

2
‖σC‖2) + µM − ‖σM‖2 − 1

2
(1 − γ)2‖σC‖2 + (1 − γ)σ⊤

CσM

)

.

From an application of Itô’s Lemma, it follows that the price index also follows a geometric Brow-

nian motion

dIt = It [i dt+ σ⊤

I dzt] , (5.42)

where

i = µM − µC + ‖σC‖2 − σ⊤

MσC , σI = σM − σC .

With It = kMt/Ct, we have M̃t = Ct/k, so that the velocity of money Ct/M̃t = k is constant, and

the nominal short rate becomes

r̃t =
1 − ϕ

ϕ
k = δ−(1−γ)(µC− 1

2
‖σC‖2)+µM−‖σM‖2− 1

2
(1−γ)2‖σC‖2 +(1−γ)σ⊤

CσM , (5.43)

which is also a constant. With log utility, the nominal rate simplifies to δ+µM −‖σM‖2. In order

to obtain the real short rate in the non-log case, we have to determine µ̃Mt and σ̃Mt and plug

into (5.39). We get µ̃Mt = µC + 1
2‖σC‖2 + σ⊤

MσC and σ̃Mt = σC and hence

rt = δ + γµC − γ‖σC‖2

[
1

2
(1 + γ) + ϕ(1 − γ)

]

, (5.44)

which is also a constant. In comparison with (5.28) for the case where money has no real effects,

the last term in the equation above is new.
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Another example

Bakshi and Chen (1996) also study another model specification in which both nominal and real

short rates are time-varying, but evolve independently of each other. To obtain stochastic interest

rates we have to specify more general processes for aggregate consumption and money supply than

the geometric Brownian motions used above. They assume log-utility (γ = 1) in which case we

have already seen that

rt = δ + µCt − ‖σCt‖2, r̃t =
1 − ϕ

ϕ

Ct

M̃t

=
1 − ϕ

ϕ

CtIt
Mt

.

The dynamics of aggregate consumption is assumed to be

dCt = Ct [(αC + κCxt) dt+ σC
√
xt dz1t] ,

where x can be interpreted as a technology variable and is assumed to follow the process

dxt = κx(θx − xt) dt+ σx
√
xt dz1t.

The money supply is assumed to be Mt = M0e
µ∗

M tgt/g0, where

dgt = gt

[

κg(θg − gt) dt+ σg
√
gt

(

ρCM dz1t +
√

1 − ρ2
CM dz2t

)]

,

and where z1 and z2 are independent one-dimensional Brownian motions. Following the same basic

procedure as in the previous model specification, the authors show that the real short rate is

rt = δ + αC + (κC − σ2
C)xt, (5.45)

while the nominal short rate is

r̃t =
(δ + µ∗

M )(δ + µ∗
M + κgθg)

δ + µ∗
M + (κg + σ2

g)gt
. (5.46)

Both rates are time-varying. The real rate is driven by the technology variable x, while the

nominal rate is driven by the monetary shock process g. In this set-up, shocks to the real economy

have opposite effects of the same magnitude on real rates and inflation so that nominal rates are

unaffected.

The real price of a real zero-coupon bond maturing at time T is of the form

BTt = e−a(T−t)−b(T−t)x,

while the nominal price of a nominal zero-coupon bond maturing at T is

B̃Tt =
ã(T − t) + b̃(T − t)gt
δ + µ∗

M + (κg + σ2
g)gt

,

where a, b, ã, and b̃ are deterministic functions of time for which Bakshi and Chen provide closed-

form expressions.

In the very special case where these processes are uncorrelated, i.e. ρCM = 0, the real and

nominal term structures of interest rates are independent of each other! Although this is an

extreme result, it does point out that real and nominal term structures in general may have quite

different properties.
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5.6 The expectation hypothesis

The expectation hypothesis relates the current interest rates and yields to expected future

interest rates or returns. Such relations were discussed already by Fisher (1896) and further devel-

oped and concretized by Hicks (1939) and Lutz (1940). The original motivation of the hypothesis

is that when lenders (bond investors) and borrowers (bond issuers) decide between long-term or

short-term bonds, they will compare the price or yield of a long-term bond to the expected price

or return on a roll-over strategy in short-term bonds. Hence, long-term rates and expected future

short-term rates will be linked. Of course, a cornerstone of modern finance theory is that, when

comparing different strategies, investors will also take the risks into account. So even before going

into the specifics of the hypothesis you should really be quite skeptical, at least when it comes to

very strict interpretations of the expectation hypothesis.

The vague idea that current yields and interest rates are linked to expected future rates and

returns can be concretized in a number of ways. Below we will present and evaluate a number of

versions. This analysis follows Cox, Ingersoll, and Ross (1981a) quite closely. We find that some

versions are equivalent, some versions inconsistent. We end up concluding that none of the variants

of the expectations hypothesis are consistent with any realistic behavior of interest rates. Hence,

the analysis of the shape of the yield curve and models of term structure dynamics should not be

based on this hypothesis. It is surprising, maybe even disappointing, that empirical tests of the

expectation hypothesis have generated such a huge literature in the past and that the hypothesis

still seems to be widely accepted among economists.

5.6.1 Versions of the pure expectation hypothesis

The first version of the pure expectation hypothesis that we will discuss says that prices in

the bond markets are set so that the expected gross returns on all self-financing trading strategies

over a given period are identical. In particular, the expected gross return from buying at time t a

zero-coupon bond maturing at time T and reselling it at time t′ ≤ T , which is given by Et[B
T
t′ /B

T
t ],

will be independent of the maturity date T of the bond (but generally not independent of t′). Let

us refer to this as the gross return pure expectation hypothesis.

This version of the hypothesis is consistent with pricing in a world of risk-neutral investors.

If we have a representative agent with time-additive expected utility, we know that zero-coupon

bond prices satisfy

BTt = Et

[

e−δ(t
′−t)u

′(Ct′)

u′(Ct)
BTt′

]

,

where u is the instantaneous utility function, δ is the time preference rate, and C denotes aggregate

consumption. If the representative agent is risk-neutral, his marginal utility is constant, which

implies that

Et

[
BTt′

BTt

]

= eδ(t
′−t), (5.47)

which is clearly independent of T . Clearly, the assumption of risk-neutrality is not very attractive.

There is also another serious problem with this hypothesis. As is to be shown in Exercise 5.2, it

cannot hold when interest rates are uncertain.

A slight variation of the above is to align all expected continuously compounded returns, i.e.
1

t′−t Et[ln
(
BTt′ /B

T
t

)
] for all T . In particular with T = t′, the expected continuously compounded
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rate of return is known to be equal to the zero-coupon yield for maturity t′, which we denote by

yt
′

t = − 1
t′−t lnBt

′

t . We can therefore formulate the hypothesis as

1

t′ − t
Et

[

ln

(
BTt′

BTt

)]

= yt
′

t , all T ≥ t′.

Let us refer to this as the rate of return pure expectation hypothesis. For t′ → t, the right-hand

side approaches the current short rate rt, while the left-hand side approaches the absolute drift

rate of lnBTt .

An alternative specification of the pure expectation hypothesis claims that the expected return

over the next time period is the same for all investments in bonds and deposits. In other words

there is no difference between expected returns on long-maturity and short-maturity bonds. In the

continuous-time limit we consider returns over the next instant. The riskless return over [t, t+ dt]

is rt dt, so for any zero-coupon bond, the hypothesis claims that

Et

[
dBTt
BTt

]

= rt dt, for all T > t, (5.48)

or, equivalently,5 that

BTt = Et

[

e−
∫

T
t
rs ds

]

, for all T > t.

This is the local pure expectations hypothesis.

Another interpretation says that the return from holding a zero-coupon bond to maturity should

equal the expected return from rolling over short-term bonds over the same time period, i.e.

1

BTt
= Et

[

e
∫

T
t
rs ds

]

, for all T > t (5.49)

or, equivalently,

BTt =
(

Et

[

e
∫

T
t
rs ds

])−1

, for all T > t.

This is the return-to-maturity pure expectation hypothesis.

A related claim is that the yield on any zero-coupon bond should equal the expected yield on a

roll-over strategy in short bonds. Since an investment of one at time t in the bank account generates

5Here and later we use that, under suitable regularity conditions, the relative drift rate of an Itô process x = (xt)

is given by the process µ = (µt) if and only if xt = Et[xT exp{−
∫ T

t µs ds}]. Suppose first that the relative

drift rate is given by µ so that dxt = xt[µt dt + σ⊤

t dzt]. Then an application of Itô’s Lemma reveals that the

process xt exp{−
∫ t
0 µs ds} is a martingale so that xt exp{−

∫ t
0 µs ds} = Et[xT exp{−

∫ T
0 µs ds}] and hence xt =

Et[xT exp{−
∫ T

t µs ds}].
The absolute drift of x is the limit of 1

∆t
Et[xt+∆t −xt] as ∆t → 0. If xt = Et[xT exp{−

∫ T
t µs ds}] for all t, then

1

∆t
Et[xt+∆t − xt] =

1

∆t
Et

[(

Et+∆t

[

xT e
−
∫ T
t+∆t

µs ds
])

−
(

Et

[

xT e−
∫ T
t

µs ds
])]

=
1

∆t
Et

[

xT e
−
∫ T

t+∆t
µs ds − xT e−

∫ T
t

µs ds
]

= Et

[

xT e−
∫ T
t

µs ds e
∫ t+∆t

t µs ds − 1

∆t

]

→ µt Et

[

xT e−
∫ T
t

µs ds
]

= µtxt,

i.e. the relative drift rate equals µt.
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e
∫

T
t
rs ds at time T , the ex-post realized yield is 1

T−t

∫ T

t
rs ds. Hence, this yield-to-maturity pure

expectation hypothesis says that

yTt = − 1

T − t
lnBTt = Et

[

1

T − t

∫ T

t

rs ds

]

, (5.50)

or, equivalently,

BTt = e−Et[
∫

T
t
rs ds], for all T > t.

Finally, the unbiased pure expectation hypothesis states that the forward rate for time T

prevailing at time t < T is equal to the time t expectation of the short rate at time T , i.e. that

forward rates are unbiased estimates of future spot rates. In symbols,

fTt = Et[rT ], for all T > t.

This implies that

− lnBTt =

∫ T

t

fst ds =

∫ T

t

Et[rs] ds = Et

[
∫ T

t

rs ds

]

,

from which we see that the unbiased version of the pure expectation hypothesis is indistinguishable

from the yield-to-maturity version.

We will first show that the three versions are inconsistent when future rates are uncertain. This

follows from an application of Jensen’s inequality which states that if X is a random variable and

f is a convex function, i.e. f ′′ > 0, then E[f(X)] > f(E[X]). Since f(x) = ex is a convex function,

we have E[eX ] > eE[X] for any random variable X. In particular for X =
∫ T

t
rs ds, we get

Et

[

e
∫

T
t
rs ds

]

> eEt[
∫

T
t
rs ds] ⇒ e−Et[

∫
T
t
rs ds] >

(

Et

[

e
∫

T
t
rs ds

])−1

.

This shows that the bond price according to the yield-to-maturity version is strictly greater than

the bond price according to the return-to-maturity version. For X = −
∫ T

t
rs ds, we get

Et

[

e−
∫

T
t
rs ds

]

> eEt[−
∫

T
t
rs ds] = e−Et[

∫
T
t
rs ds],

hence the bond price according to the local version of the hypothesis is strictly greater than the

bond price according to the yield-to-maturity version. We can conclude that at most one of the

versions of the local, return-to-maturity, and yield-to-maturity pure expectations hypothesis can

hold.

5.6.2 The pure expectation hypothesis and equilibrium

Next, let us see whether the different versions can be consistent with any equilibrium. As-

sume that interest rates and bond prices are generated by a d-dimensional standard Brownian

motion z. Assuming absence of arbitrage there exists a market price of risk process λ so that for

any maturity T , the zero-coupon bond price dynamics is of the form

dBTt = BTt

[(

rt +
(
σTt
)⊤

λt

)

dt+
(
σTt
)⊤

dzt

]

, (5.51)

where σTt denotes the d-dimensional sensitivity vector of the bond price. Recall that the same λt

applies to all zero-coupon bonds so that λt is independent of the maturity of the bond. Comparing
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with (5.48), we see that the local expectation hypothesis will hold if and only if
(
σTt
)

⊤

λt = 0

for all T . This is true if either investors are risk-neutral or interest rate risk is uncorrelated with

aggregate consumption. Neither of these conditions hold in real life.

To evaluate the return-to-maturity version, first note that an application of Itô’s Lemma

on (5.51) show that

d

(
1

BTt

)

=
1

BTt

[(

−rt −
(
σTt
)⊤

λt + ‖σTt ‖2
)

dt−
(
σTt
)⊤

dzt

]

.

On the other hand, according to the hypothesis (5.49) the relative drift of 1/BTt equals −rt; cf. a

previous footnote. To match the two expressions for the drift, we must have

(
σTt
)⊤

λt = ‖σTt ‖2, for all T . (5.52)

Is this possible? Cox, Ingersoll, and Ross (1981a) conclude that it is impossible. If the exogenous

shock z and therefore σTt and λt are one-dimensional, they are right, since λt must then equal

σTt , and this must hold for all T . Since λt is independent of T and the volatility σTt approaches

zero for T → t, this cannot hold when interest rates are stochastic. However, as pointed out by

McCulloch (1993) and Fisher and Gilles (1998), in multi-dimensional cases the key condition (5.52)

may indeed hold, at least in very special cases. Let ϕ be a d-dimensional function with the property

that ‖ϕ(τ)‖2 is independent of τ . Define λt = 2ϕ(0) and σTt = ϕ(0) − ϕ(T − t). Then (5.52) is

indeed satisfied. However, all such functions ϕ seem to generate very strange bond price dynamics.

The examples given in the two papers mentioned above are

ϕ(τ) = k

(√
2e−τ − e−2τ

1 − e−τ

)

, ϕ(τ) = k1

(

cos(k2τ)

sin(k2τ)

)

,

where k, k1, k2 are constants.

As discussed above, the rate or return version implies that the absolute drift rate of the log-bond

price equals the short rate. We can see from (5.50) that the same is true for the yield-to-maturity

version and hence the unbiased version.6 On the other hand Itô’s Lemma and (5.51) imply that

d
(
lnBTt

)
=

(

rt + (σTt )⊤λt −
1

2
‖σTt ‖2

)

dt+
(
σTt
)⊤

dzt. (5.53)

Hence, these versions of the hypothesis will hold if and only if

(σTt )⊤λt =
1

2
‖σTt ‖2, for all T .

Again, it is possible that the condition holds. Just let ϕ and σTt be as for the return-to-maturity

hypothesis and let λt = ϕ(0). But such specifications are not likely to represent real life term

structures.

The conclusion to be drawn from this analysis is that neither of the different versions of the

pure expectation hypothesis seem to be consistent with any reasonable description of the term

structure of interest rates.

6This is analogous to the previous footnote. According to the hypothesis,

1

∆t
Et

[

ln BT
t+∆t − ln BT

t

]

=
1

∆t
Et

[

−Et+∆t

[∫ T

t+∆t
rs ds

]

+ Et

[∫ T

t
rs ds

]]

=
1

∆t
Et

[∫ t+∆t

t
rs ds

]

,

which approaches rt as ∆t → 0.
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5.6.3 The weak expectation hypothesis

Above we looked at versions of the pure expectation hypothesis that all aligns an expected

return or yield with a current interest rate or yield. However, as pointed out by Campbell (1986),

there is also a weak expectation hypothesis that allows for a difference between the relevant ex-

pected return/yield and the current rate/yield, but restricts this difference to be constant over

time.

The local weak expectation hypothesis says that

Et

[
dBTt
BTt

]

= (rt + g(T − t)) dt

for some deterministic function g. In the pure version g is identically zero. For a given time-to-

maturity there is a constant “instantaneous holding term premium”. Comparing with (5.51), we

see that this hypothesis will hold when the market price of risk λt is constant and the bond price

sensitivity vector σTt is a deterministic function of time-to-maturity. These conditions are satisfied

in the Vasicek (1977) model and in other models of the Gaussian class.

Similarly, the weak yield-to-maturity expectation hypothesis says that

fTt = Et[rT ] + h(T − t)

for some deterministic function h with h(0) = 0, i.e. that there is a constant “instantaneous forward

term premium”. The pure version requires h to be identically equal to zero. It can be shown that

this condition implies that the drift of lnBTt equals rt + h(T − t).7 Comparing with (5.53), we see

that also this hypothesis will hold when λt is constant and σTt is a deterministic function of T − t

as is the case in the Gaussian models.

The class of Gaussian models have several unrealistic properties. For example, such models

allow negative interest rates and requires bond and interest rate volatilities to be independent of

the level of interest rates. So far, the validity of even weak versions of the expectation hypothesis

has not been shown in more realistic term structure models.

5.7 Liquidity preference, market segmentation, and preferred habitats

Another traditional explanation of the shape of the yield curve is given by the liquidity pref-

erence hypothesis introduced by Hicks (1939). He realized that the expectation hypothesis

basically ignores investors’ aversion towards risk and argued that expected returns on long bonds

should exceed the expected returns on short bonds to compensate for the higher price fluctuations

of long bonds. According to this view the yield curve should tend to be increasing. Note that the

word “liquidity” in the name of the hypothesis is not used in the usual sense of the word. Short

7From the weak yield-to-maturity hypothesis, it follows that − ln BT
t =

∫ T
t (Et[rs] + h(s − t)) ds. Hence,

1

∆t
Et

[

ln BT
t+∆t − ln BT

t

]

=
1

∆t
Et

[

−
∫ T

t+∆t
(Et+∆t[rs] + h(s − (t + ∆t))) ds +

∫ T

t
(Et[rs] + h(s − t)) ds

]

=
1

∆t
Et

[∫ t+∆t

t
rs ds

]

− 1

∆t

(∫ T

t+∆t
h(s − (t + ∆t)) ds −

∫ T

t
h(s − t) ds

)

.

The limit of 1
∆t

(∫ T
t+∆t h(s − (t + ∆t)) ds −

∫ T
t h(s − t) ds

)

as ∆t → 0 is exactly the derivative of
∫ T

t h(s − t) ds

with respect to t. Applying Leibnitz’ rule and h(0) = 0, this derivative equals −
∫ T

t h′(s − t) ds = −h(T − t). In

sum, the drift rate of ln BT
t becomes rt + h(T − t) according to the hypothesis.
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bonds are not necessarily more liquid than long bonds. A better name would be “the maturity

preference hypothesis”.

In contrast the market segmentation hypothesis introduced by Culbertson (1957) claims

that investors will typically prefer to invest in bonds with time-to-maturity in a certain interval, a

maturity segment, perhaps in an attempt to match liabilities with similar maturities. For example,

a pension fund with liabilities due in 20-30 years can reduce risk by investing in bonds of similar

maturity. On the other hand, central banks typically operate in the short end of the market.

Hence, separated market segments can exist without any relation between the bond prices and the

interest rates in different maturity segments. If this is really the case, we cannot expect to see

continuous or smooth yield curves and discount functions across the different segments.

A more realistic version of this hypothesis is the preferred habitats hypothesis put forward

by Modigliani and Sutch (1966). An investor may prefer bonds with a certain maturity, but should

be willing to move away from that maturity if she is sufficiently compensated in terms of a higher

yield.8 The different segments are therefore not completely independent of each other, and yields

and discount factors should depend on maturity in a smooth way.

It is really not possible to quantify the market segmentation or the preferred habitats hypothesis

without setting up an economy with agents having different favorite maturities. The resulting

equilibrium yield curve will depend heavily on the degree of risk aversion of the various agents as

illustrated by an analysis of Cox, Ingersoll, and Ross (1981a).

5.8 Concluding remarks

In this chapter we have derived links between equilibrium interest rates and aggregate con-

sumption and production that are useful in interpreting and understanding shifts in the level of

interest rates and the shape of the yield curve. We have derived relations between nominal rates,

real rates, and inflation, and among other things concluded that the term structure of nominal

rates can behave very differently than the term structure of real rates. We have shown that some

popular term structure models can be supported by equilibrium considerations. Finally, we have

discussed and criticized traditional hypotheses about the shape of the yield curve.

The equilibrium models and arguments of this chapter were set in a relatively simple framework,

e.g. assuming the existence of a representative agent with time-additive utility. For models of the

equilibrium term structure of interest rates with investor heterogeneity or more general utility

functions than studied in this chapter, see, e.g., Duffie and Epstein (1992), Wang (1996), Riedel

(2000, 2004), Wachter (2004). The effects of central banks on the term structure are discussed and

modeled by, e.g., Babbs and Webber (1994), Balduzzi, Bertola, and Foresi (1997), and Piazzesi

(2001).

5.9 Exercises

EXERCISE 5.1 The term premium at time t for the future period [t′, T ] is the current forward rate for

that period minus the expected spot rate, i.e. f t′,T
t − Et[y

T
t′ ]. This exercise will give a link between the

term premium and a state-price deflator ζ = (ζt).

8In a sense the liquidity preference hypothesis simply says that all investors prefer short bonds.
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(a) Show that

BT
t = Bt′

t Et

[

BT
t′

]

+ Covt

(
ζt′

ζt
,
ζT

ζt′

)

for any t ≤ t′ ≤ T .

(b) Using the above result, show that

Et

[

e−yT
t′

(T−t′)
]

− e−f
t′,T
t (T−t′) = − 1

Bt′
t

Covt

(
ζt′

ζt
,
ζT

ζt′

)

.

Using the previous result and the approximation ex ≈ 1 + x, show that

f t′,T
t − Et[y

T
t′ ] ≈ − 1

(T − t′)Bt′
t

Covt

(
ζt′

ζt
,
ζT

ζt′

)

.

EXERCISE 5.2 The purpose of this exercise is to show that the claim of the gross return pure expectation

hypothesis is inconsistent with interest rate uncertainty. In the following we consider time points t0 < t1 <

t2.

(a) Show that if the hypothesis holds, then

1

Bt1
t0

=
1

Bt2
t0

Et0

[
Bt2

t1

]
.

Hint: Compare two investment strategies over the period [t0, t1]. The first strategy is to buy at time t0

zero-coupon bonds maturing at time t1. The second strategy is to buy at time t0 zero-coupon bonds

maturing at time t2 and to sell them again at time t1.

(b) Show that if the hypothesis holds, then

1

Bt2
t0

=
1

Bt1
t0

Et0

[

1

Bt2
t1

]

.

(c) Show from the two previous questions that the hypothesis implies that

Et0

[

1

Bt2
t1

]

=
1

Et0

[
Bt2

t1

] . (*)

(d) Show that (*) can only hold under full certainty. Hint: Use Jensen’s inequality.

EXERCISE 5.3 Go through the derivations in Section 5.5.3.

EXERCISE 5.4 Constantinides (1992) develops a theory of the nominal term structure of interest rates

by specifying exogenously the nominal state-price deflator ζ̃. In a slightly simplified version, his assumption

is that

ζ̃t = e−gt+(xt−α)2 ,

where g and α are constants, and x = (xt) follows the Ornstein-Uhlenbeck process

dxt = −κxt dt + σ dzt,

where κ and σ are positive constants with σ2 < κ and z = (zt) is a standard one-dimensional Brownian

motion.

(a) Derive the dynamics of the nominal state-price deflator. Express the nominal short-term interest

rate, r̃t, and the nominal market price of risk, λ̃t, in terms of the variable xt.

(b) Find the dynamics of the nominal short rate.
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(c) Find parameter constrains that ensure that the short rate stays positive? Hint: The short rate is a

quadratic function of x. Find the minimum value of this function.

(d) What is the distribution of xT given xt?

(e) Let Y be a normally distributed random variable with mean µ and variance v2. Show that

E
[

e−γY 2
]

= (1 + 2γv2)−1/2 exp

{

− γµ2

1 + 2γv2

}

.

(f) Use the results of the two previous questions to derive the time t price of a nominal zero-coupon

bond with maturity T , i.e. B̃T
t . It will be an exponential-quadratic function of xt. What is the yield

on this bond?

(g) Find the percentage volatility σT
t of the price of the zero-coupon bond maturing at T .

(h) The instantaneous expected excess rate of return on the zero-coupon bond maturing at T is often

called the term premium for maturity T . Explain why the term premium is given by σT
t λ̃t and show

that the term premium can be written as

4σ2α2 (1 − F (T − t))
(xt

α
− 1
)(xt

α
− 1 − F (T − t)eκ(T−t)

1 − F (T − t)

)

,

where

F (τ) =
1

σ2

κ
+
(

1 − σ2

κ

)

e2κτ
.

For which values of xt will the term premium for maturity T be positive/negative? For a given state

xt, is it possible that the the term premium is positive for some maturities and negative for others?



Chapter 6

Interest rate derivatives

6.1 Introduction

Section 1.4 gave a short description of various interest rate derivatives and provided statistics

documenting that the markets for interest rate derivatives are of an enormous size. In this chapter

we will describe and discuss various interest rate derivatives more formally. We will specify the

payments of these derivatives, the links between different derivatives, and we will also indicate what

we can conclude about their prices without specifying any concrete model of the term structure of

interest rates. Among other things, we show

• a put-call parity for options on bonds, both zero-coupon bonds and coupon bonds,

• that prices of caps and floors follow from prices of portfolios on certain European options on

zero-coupon bonds

• that prices of European swaptions follow from prices of certain European options on coupon

bonds.

Consequently, we can price many frequently traded securities as long as we price bonds and Euro-

pean call options on bonds. In later chapters we can therefore focus on the pricing of these “basic”

securities.

Section 6.2 deals with forwards and futures, Section 6.3 with options, Section 6.4 with caps

and floors, and Section 6.5 with swaps and swaptions. Some features of American-style derivatives

are discussed in Section 6.6. Finally, Section 6.7 gives a short overview of the pricing models we

are going to study in the following chapters and discusses criteria for choosing between the many

different models.

6.2 Forwards and futures

6.2.1 General results on forward prices and futures prices

A forward with maturity date T and delivery price K provides a payoff of PT −K at time T ,

where P is the underlying variable, typically the price of an asset or a specific interest rate. The

121
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time t value of such a future payoff can be written as

Vt = EQ
t

[

e−
∫

T
t
ru du (PT −K)

]

= EQ
t

[

e−
∫

T
t
ru duPT

]

−K EQ
t

[

e−
∫

T
t
ru du

]

= EQ
t

[

e−
∫

T
t
ru duPT

]

−KBTt ,

where the last equality is due to (4.27). For forwards contracted upon at time t, the delivery price

K is set so that the value of the forward at time t is zero. This value of K is called the forward

price at time t (for the delivery date T ) and is denoted by FTt . Solving the equation Vt = 0, we

get that the forward price is given by

FTt =
EQ
t

[

e−
∫

T
t
ru duPT

]

BTt
. (6.1)

If the underlying variable is the price of a traded asset with no payments in the period [t, T ], we

have

EQ
t

[

e−
∫

T
t
ru duPT

]

= Pt,

so that the forward price can be written as

FTt =
Pt
BTt

.

Applying a well-known property of covariances, we have that

EQ
t

[

e−
∫

T
t
ru duPT

]

= CovQ
t

(

e−
∫

T
t
ru du, PT

)

+ EQ
t

[

e−
∫

T
t
ru du

]

EQ
t [PT ]

= CovQ
t

(

e−
∫

T
t
ru du, PT

)

+BTt EQ
t [PT ].

Upon substitution of this into (6.1) we get the following expression for the forward price:

FTt = EQt [PT ] +
CovQ

t

(

e−
∫

T
t
ru du, PT

)

BTt
. (6.2)

We can also characterize the forward price in terms of the T -forward martingale measure intro-

duced in Swction 4.4.2. The forward price process for contracts with delivery date T is a martingale

under the T -forward martingale measure. This is clear from the following considerations. With

BTt as the numeraire, we have that the forward price FTt is set so that

0

BTt
= EQT

t

[
PT − FTt
BTT

]

and hence

FTt = EQT

t [PT ] = EQ
T

t [FTT ],

which implies that the forward price FTt is a QT -martingale.

Consider now a futures contract with final settlement at time T . The marking-to-market at a

given date involves the payment of the change in the so-called futures price of the contract relative

to the previous settlement date. Let ΦTt be the futures price at time t. The futures price at

the settlement time is by definition equal to the price of the underlying security, ΦTT = PT . At

maturity of the contract the futures thus gives a payoff equal to the difference between the price of
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the underlying asset at that date and the futures price at the previous settlement date. After the

last settlement before maturity, the futures is therefore indistinguishable from the corresponding

forward contract, so the values of the futures and the forward at that settlement date must be

identical. At the next-to-last settlement date before maturity, the futures price is set to that

value that ensures that the net present value of the upcoming settlement at the last settlement

date before maturity (which depends on this futures price) and the final payoff is equal to zero.

Similarly at earlier settlement dates. We assume for mathematical convenience that the futures

is continuously marked-to-market so that over any infinitesimal interval [t, t + dt] it provides a

payment of dΦTt . The following theorem characterizes the futures price:

Theorem 6.1 The futures price ΦTt is a martingale under the risk-neutral probability measure Q,

so that in particular

ΦTt = EQ
t [PT ] . (6.3)

Proof: We will prove the theorem by first considering a discrete-time setting in which positions can

be changed and the futures contracts marked-to-market at times t, t+∆t, t+2∆t, . . . , t+N∆t ≡ T .

This proof is originally due to Cox, Ingersoll, and Ross (1981b). A proof based on the same idea,

but formulated directly in continuous-time, was given by Duffie and Stanton (1992).

The idea is to set up a self-financing strategy that requires an initial investment at time t equal

to the futures price ΦTt . Hence, at time t, ΦTt is invested in the bank account. In addition, ert∆t

futures contracts are acquired (at a price of zero).

At time t + ∆t, the deposit at the bank account has grown to ert∆tΦTt . The marking-to-

market of the futures position yields a payoff of ert∆t
(
ΦTt+∆t − ΦTt

)
, which is deposited at the

bank account, so that the balance of the account becomes ert∆tΦTt+∆t. The position in futures is

increased (at no extra costs) to a total of e(rt+∆t+rt)∆t contracts.

At time t+2∆t, the deposit has grown to e(rt+∆t+rt)∆tΦTt+∆t, which together with the marking-

to-market payment of e(rt+∆t+rt)∆t
(
ΦTt+2∆t − ΦTt+∆t

)
gives a total of e(rt+∆t+rt)∆tΦTt+2∆t.

Continuing this way, the balance of the bank account at time T = t+N∆t will be

e(rt+(N−1)∆t+···+rt)∆tΦTt+N∆t = e(rt+(N−1)∆t+···+rt)∆tΦTT = e(rt+(N−1)∆t+···+rt)∆tPT .

The continuous-time limit of this is e
∫

T
t
ru duPT . The time t value of this payment is ΦTt , since this

is the time t investment required to obtain that terminal payment. On the other hand, we can

value the time T payment by discounting by e−
∫

T
t
ru du and taking the risk-neutral expectation.

Hence,

ΦTt = EQ
t

[

e−
∫

T
t
ru du

(

e
∫

T
t
ru duPT

)]

= EQ
t [PT ],

as was to be shown. 2

Comparing with (4.30), we see that we can think of the futures price as the price of a traded

asset with a continuous dividend given by the product of the current price and the short-term

interest rate.

From (6.2) and (6.3) we get that the difference between the forward price FTt and the futures

price ΦTt is given by

FTt − ΦTt =
CovQ

t

(

e−
∫

T
t
ru du, PT

)

BTt
. (6.4)
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The forward price and the futures price will only be identical if the two random variables PT and

exp
(

−
∫ T

t
ru du

)

are uncorrelated under the risk-neutral probability measure. In particular, this

is true if the short rate rt is constant or deterministic.

The forward price is larger [smaller] than the futures price if the variables exp
(

−
∫ T

t
ru du

)

and

PT are positively [negatively] correlated under the risk-neutral probability measure. An intuitive,

heuristic argument for this goes as follows. If the forward price and the futures price are identical,

the total undiscounted payments from the futures contract will be equal to the terminal payment

of the forward. Suppose the interest rate and the spot price of the underlying asset are positively

correlated, which ought to be the case whenever exp
(

−
∫ T

t
ru du

)

and PT are negatively correlated.

Then the marking-to-market payments of the futures tend to be positive when the interest rate

is high and negative when the interest rate is low. So positive payments can be reinvested at a

high interest rate, whereas negative payments can be financed at a low interest rate. With such a

correlation, the futures contract is clearly more attractive than a forward contract when the futures

price and the forward price are identical. To maintain a zero initial value of both contracts, the

futures price has to be larger than the forward price. Conversely, if the sign of the correlation is

reversed.

6.2.2 Forwards on bonds

From (6.1) the unique no-arbitrage forward price on a zero-coupon bond is

FT,St =
BSt
BTt

, (6.5)

where T is the delivery date of the futures and S > T is the maturity date of the underlying bond.

At the delivery time T the gain or loss from the forward position will be known. The gain from a

long position in a forward written on a zero-coupon with face value H and maturity at S is equal

to H(BST −FT,St ). If we write the spot bond price BST in terms of the spot LIBOR rate lST and the

forward bond price FT,St in terms of the forward LIBOR rate LT,St , it follows from (1.8), (1.14),

and (6.5) that the gain is equal to

H
(

BST − FT,St

)

= H

(

1

1 + (S − T )lST
− 1

1 + (S − T )LT,St

)

=
(S − T )(LT,St − lST )H

(
1 + (S − T )lST

) (

1 + (S − T )LT,St

) .

(6.6)

An investor with a long position in the forward will realize a gain if the spot bond price at delivery

turns out to be above the forward price, i.e. if the spot interest rate at delivery turns out to be

below the forward interest rate when the forward position was taken. We can think of a short

position in a forward on a zero-coupon bond as a way to lock in the borrowing rate for the period

between the delivery date of the forward and the maturity date of the bond.

Next, consider a forward on a coupon bond with payments Yi at time Ti, i = 1, . . . , n. The
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bond price at time t will be Bt =
∑

Ti>t
YiB

Ti

t , and the unique no-arbitrage forward price is

FT,cpn
t =

EQ
t

[

e−
∫

T
t
ru duBT

]

BTt

=

∑

Ti>T
Yi E

Q
t

[

e−
∫

T
t
ru duBTi

T

]

BTt

=

∑

Ti>T
YiB

Ti

t

BTt

=
Bt −

∑

t<Ti<T
YiB

Ti

t

BTt

=
∑

Ti>T

YiF
T,Ti

t .

(6.7)

In particular, this relation implies that forward prices on coupon bonds follow from forward prices

of zero-coupon bonds.

6.2.3 Interest rate forwards – forward rate agreements

As discussed in Section 1.2 forward interest rates are rates for a future period relative to the time

where the rate is set. Many participants in the financial markets may on occasion be interested

in “locking in” an interest rate for a future period, either in order to hedge risk involved with

varying interest rates or to speculate in specific changes in interest rates. In the money markets

the agents can lock in an interest rate by entering a forward rate agreement (FRA). Suppose the

relevant future period is the time interval between T and S, where S > T . In principle, a forward

rate agreement with a face value H and a contract rate of K involves two payments: a payment

of −H at time T and a payment of H[1 + (S − T )K] at time S. (Of course, the payments to the

other part of the agreement are H at time T and −H[1 + (S − T )K] at time S.) In practice, the

contract is typically settled at time T , so that the two payments are replaced by a single payment

of BSTH[1 + (S − T )K] −H at time T .

Usually the contract rate K is set so that the present value of the future payment(s) is zero at

the time the contract is made. Suppose the contract is made at time t < T . Then the time t value

of the two future payments of the contract is equal to −HBTt +H[1 + (S − T )K]BSt . This is zero

if and only if

K =
1

S − T

(
BTt
BSt

− 1

)

= LT,St ,

cf. (1.14), i.e. when the contract rate equals the forward rate prevailing at time t for the period

between T and S. For this contract rate, we can think of the forward rate agreement having a

single payment at time T , which is given by

BSTH[1 + (S − T )K] −H = H

(

1 + (S − T )LT,St
1 + (S − T )lST

− 1

)

=
(S − T )(LT,St − lST )H

1 + (S − T )lST
. (6.8)

The numerator is exactly the interest lost by lending out H from time T to time S at the forward

rate given by the FRA rather than the realized spot rate. Of course, this amount may be negative,

so that a gain is realized. The division by 1 + (S − T )lST corresponds to discounting the gain/loss

from time S back to time T . The time T value stated in (6.8) is closely related, but not identical,

to the gain/loss on a forward on a zero-coupon bond, cf. (6.6).
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6.2.4 Futures on bonds

Theorem 6.1 implies that the time t futures price for a futures on a zero-coupon bond maturing

at time S > T is given by

ΦT,St = EQ
t

[
BST
]
.

For a futures on a coupon bond with payments Yi at time Ti the final settlement is based on the

bond price BT =
∑

Ti>T
YiB

Ti

T and hence the futures price is

ΦT,cpn
t = EQ

t

[
∑

Ti>T

YiB
Ti

T

]

=
∑

Ti>T

Yi E
Q
t

[

BTi

T

]

=
∑

Ti>T

YiΦ
T,Ti

t , (6.9)

so that the the futures price on a coupon bond is a payment-weighted average of futures prices of

the zero-coupon bonds maturing at the payment dates of the coupon bond. In later we can hence

focus on futures on zero-coupon bonds.

Since bond prices generally are negatively correlated with interest rates, we expect that the

covariance in (6.4) will be positive and, hence, that forward prices on bonds are higher than the

corresponding futures prices.

6.2.5 Interest rate futures – Eurodollar futures

Interest rate futures trade with a very high volume at several international exchanges, e.g.

CME (Chicago Mercantile Exchange), LIFFE (London International Financial Futures & Options

Exchange), and MATIF (Marché à Terme International de France). The CME interest rate futures

involve the three-month Eurodollar deposit rate and are called Eurodollar futures. The interest

rate involved in the futures contracts traded at LIFFE and MATIF is the three-month LIBOR rate

on the Euro currency. We shall simply refer to all these contracts as Eurodollar futures and refer

to the underlying interest rate as the three-month LIBOR rate, whose value at time t we denote

by lt+0.25
t .

The price quotation of Eurodollar futures is a bit complicated, since the amounts paid in the

marking-to-market settlements are not exactly the changes in the quoted futures price. We must

therefore distinguish between the quoted futures price, ẼTt , and the actual futures price, ETt , with

the settlements being equal to changes in the actual futures price. At the maturity date of the

contract, T , the quoted Eurodollar futures price is defined in terms of the prevailing three-month

LIBOR rate according to the relation

Ẽ
T
T = 100

(
1 − lT+0.25

T

)
, (6.10)

which using (1.8) on page 5 can be rewritten as

Ẽ
T
T = 100

(

1 − 4

(

1

BT+0.25
T

− 1

))

= 500 − 400
1

BT+0.25
T

.

Traders and analysts typically transform the Eurodollar futures price to an interest rate, the so-

called LIBOR futures rate, which we denote by ϕTt and define by

ϕTt = 1 − ẼTt

100
⇔ Ẽ

T
t = 100

(
1 − ϕTt

)
.
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It follows from (6.10) that the LIBOR futures rate converges to the three-month LIBOR spot rate,

as the maturity of the futures contract approaches.

The actual Eurodollar futures price is given by

E
T
t = 100 − 0.25(100 − Ẽ

T
t ) =

1

4

(

300 + Ẽ
T
t

)

= 100 − 25ϕTt

per 100 dollars of nominal value. It is the change in the actual futures price which is exchanged

in the marking-to-market settlements. At the CME the nominal value of the Eurodollar futures is

1 million dollars. A quoted futures price of ẼTt = 94.47 corresponds to a LIBOR futures rate of

5.53% and an actual futures price of

1 000 000

100
· [100 − 25 · 0.0553] = 986 175.

If the quoted futures price increases to 94.48 the next day, corresponding to a drop in the LIBOR

futures rate of one basis point (0.01 percentage points), the actual futures price becomes

1 000 000

100
· [100 − 25 · 0.0552] = 986 200.

An investor with a long position will therefore receive 986 200 − 986 175 = 25 dollars at the

settlement at the end of that day.

If we simply sum up the individual settlements without discounting them to the terminal date,

the total gain on a long position in a Eurodollar futures contract from t to expiration at T is given

by

E
T
T − E

T
t =

(
100 − 25ϕTT

)
−
(
100 − 25ϕTt

)
= −25

(
ϕTT − ϕTt

)

per 100 dollars of nominal value, i.e. the total gain on a contract with nominal value H is equal

to −0.25
(
ϕTT − ϕTt

)
H. The gain will be positive if the three-month spot rate at expiration turns

out to be below the futures rate when the position was taken. Conversely for a short position.

The gain/loss on a Eurodollar futures contract is closely related to the gain/loss on a forward rate

agreement, as can be seen from substituting S = T + 0.25 into (6.8). Recall that the rates ϕTT and

lT+0.25
T are identical. However, it should be emphasized that in general the futures rate ϕTt and

the forward rate LT,T+0.25
t will be different due to the marking-to-market of the futures contract.

The final settlement is based on the terminal actual futures price

E
T
T ≡ 100 − 0.25

(

100 − Ẽ
T
T

)

= 100 − 0.25
(
400

[
(BT+0.25

T )−1 − 1
])

= 100
[
2 − (BT+0.25

T )−1
]
.

It follows from Theorem 6.1 that the actual futures price at any earlier point in time t can be

computed as

E
T
t = EQ

t

[
E
T
T

]
= 100

(

2 − EQ
t

[
(BT+0.25

T )−1
])

.

The quoted futures price is therefore

Ẽ
T
t = 4ETt − 300 = 500 − 400EQ

t

[
(BT+0.25

T )−1
]
. (6.11)

6.3 Options

In this section, we focus on European options. Some aspects of American options are discussed

in Section 6.6.
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6.3.1 General pricing results for European options

We can use the idea of changing the numeraire and the probability measure to obtain a general

characterization of the price of a European call option. Let T be the expiry date and K the exercise

price of the option, so that the option payoff at time T is of the form

CT = max(PT −K, 0).

For an option on a traded asset, PT is the price of the underlying asset at the expiry date. For

an option on a given interest rate, PT denotes the value of this interest rate at the expiry date.

According to (4.24) the time t price of the option is

Ct = BTt EQT

t [max(PT −K, 0)] , (6.12)

where QT is the T -forward martingale measure. We can rewrite the payoff as

CT = (PT −K)1{PT>K},

where 1{PT>K} is the indicator for the event PT > K. This indicator is a random variable whose

value will be 1 if the realized value of PT turns out to be larger than K and the value is 0 otherwise.

Hence, the option price can be rewritten as1

Ct = BTt EQT

t

[
(PT −K)1{PT>K}

]

= BTt

(

EQT

t

[
PT1{PT>K}

]
−K EQT

t

[
1{PT>K}

])

= BTt

(

EQT

t

[
PT1{PT>K}

]
−KQT

t (PT > K)
)

= BTt EQT

t

[
PT1{PT>K}

]
−KBTt QT

t (PT > K).

(6.13)

Here QT
t (PT > K) denotes the probability (using the probability measure QT ) of PT > K given

the information known at time t. This can be interpreted as the probability of the option finishing

in-the-money, computed in a hypothetical forward-risk-neutral world.

For an option on a traded asset we can rewrite the first term in the above pricing formula, since

Pt is then a valid numeraire with a corresponding probability measure QP . Applying (4.23) for

both the numeraires BTt and Pt, we get

BTt EQT

t

[
PT1{PT>K}

]
= Pt E

QP

t

[
1{PT>K}

]

= PtQ
P
t (PT > K).

1In the computation we use the fact that the expected value of the indicator of an event is equal to the probability

of that event. This follows from the general definition of an expected value, E[g(ω)] =
∫

ω∈Ω g(ω)f(ω) dω, where

f(ω) is the probability density function of the state ω and the integration is over all possible states. The set of

possible states can be divided into two sets, namely the set of states ω for which PT > K and the set of ω for which

PT ≤ K. Consequently,

E[1{PT >K}] =

∫

ω∈Ω
1{PT >K}f(ω) dω

=

∫

ω:PT >K
1⊤f(ω) dω +

∫

ω:PT ≤K
0⊤f(ω) dω

=

∫

ω:PT >K
f(ω) dω,

which is exactly the probability of the event PT > K.
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This assumes that the underlying asset pays no dividends in the interval [t, T ]. The call price is

therefore

Ct = PtQ
P
t (PT > K) −KBTt QT

t (PT > K). (6.14)

Both probabilities in this formula show the probability of the option finishing in-the-money, but

under two different probability measures. To compute the price of the European call option in a

concrete model we “just” have to compute these probabilities. In some cases, however, it is easier

to work directly on (6.12).

For a put option the analogous result is

πt = KBTt QT
t (PT ≤ K) − PtQ

P
t (PT ≤ K). (6.15)

We can now also derive a general put-call parity for European options. Combining (6.14)

and (6.15) we get

Ct − πt = Pt
(
QP
t (PT > K) − QP

t (PT ≤ K)
)
−KBTt

(
QT
t (PT > K) + QT

t (PT ≤ K)
)

= Pt −KBTt

so that

Ct +KBTt = πt + Pt. (6.16)

We note again that this assumes that the underlying asset provides no dividends in the inter-

val [t, T ], otherwise the time t value of these intermediate payments must be subtracted from Pt

in the above equation. A consequence of the put-call parity is that we can focus on the pricing of

European call options. The prices of European put options will then follow immediately.

The put-call parity can also be shown using the following simple replication argument. A

portfolio consisting of a call option and K zero-coupon bonds maturing at the same time as the

option yields a payoff at time T of

max (PT −K, 0) +K = max (PT ,K)

and will have a current time t price given by the left-hand side of (6.16). Another portfolio

consisting of a put option and one unit of the underlying asset has a time T value of

max (K − PT , 0) + PT = max (K,PT )

and a time t price corresponding to the right-hand side of (6.16). Therefore, there will be an

obvious arbitrage opportunity unless (6.16) is satisfied.

6.3.2 Options on bonds

Turning to options on bonds, we will first consider options on zero-coupon bonds although,

apparently, no such options are traded at any exchange. However, we shall see later that other,

frequently traded, fixed income securities can be considered as portfolios of European options on

zero-coupon bonds. This is true for caps and floors, which we turn to in Section 6.4. We will

also show later that, under certain assumptions on the dynamics of interest rates, any European

option on a coupon bond is equivalent to a portfolio of certain European options on zero-coupon
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bonds; see Chapter 7. For these reasons, it is important to be able to price European options on

zero-coupon bonds.

Let us first fix some notation. The time of maturity of the option is denoted by T . The

underlying zero-coupon bond gives a payment of 1 (dollar) at time S, where S ≥ T . The exercise

price of the option is denoted by K. We let CK,T,St denote the time t price of such a European

call option. At maturity the value of the call equals its payoff:

CK,T,ST = max
(
BST −K, 0

)
.

We let πK,T,St denote the time t price of a similar put option. The value at maturity is equal to

πK,T,ST = max
(
K −BST , 0

)
.

Note that only options with an exercise price between 0 and 1 are interesting, since the price of the

underlying zero-coupon bond at expiry of the option will be in this interval, assuming non-negative

interest rates.

From the general option pricing results derived above, we can conclude that the call price can

be written as

CK,T,St = BTt EQT

t

[
max

(
BST −K, 0

)]
(6.17)

and as

CK,T,St = BSt QS
t (BST > K) −KBTt QT

t (BST > K), (6.18)

where QS denotes the S-forward martingale measure and QT , as before, is the T -forward martingale

measure. We will use these equations in later chapters to derive closed-form option pricing formulas

in specific models of the term structure of interest rates. The probabilities in (6.18) will be

determined by the precise assumptions of the model. The put-call parity for European options on

zero-coupon bonds is

CK,T,St +KBTt = πK,T,St +BSt . (6.19)

Next, consider options on coupon bonds. Assume that the underlying coupon bond has pay-

ments Yi at time Ti (i = 1, 2, . . . , n), where T1 < T2 < · · · < Tn. Let Bt denote the time t price of

this bond, i.e.

Bt =
∑

Ti>t

YiB
Ti

t .

Let CK,T,cpn
t and πK,T,cpn

t denote the time t prices of a European call and a European put, re-

spectively, expiring at time T , having an exercise price of K and the coupon bond above as the

underlying asset. Of course, we must have that T < Tn. The time T value of the options is given

by their payoffs:

CK,T,cpn
T = max (BT −K, 0) = max

(
∑

Ti>T

YiB
Ti

T −K, 0

)

,

πK,T,cpn
T = max (K −BT , 0) = max

(

K −
∑

Ti>T

YiB
Ti

T , 0

)

.

Such options are only interesting, if the exercise price is positive and less than
∑

Ti>T
Yi, which is

the upper bound for BT with non-negative forward rates. Note that (i) only the payments of the
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bonds after maturity of the option are relevant for the payoff and the value of the option;2 (ii) we

have assumed that the payoff of the option is determined by the difference between the exercise

price and the true bond price rather than the quoted bond price. The true bond price is the sum

of the quoted bond price and accrued interest.3 Some aspects of options on the quoted bond price

are discussed by Munk (2002).

The general pricing formula for options implies that the price of a European call on a coupon

bond can be written as

CK,T,cpn
t =



Bt −
∑

Ti∈(t,T ]

YiB
Ti

t



QB
t (BT > K) −KBTt QT

t (BT > K) . (6.20)

Here QB indicates the martingale measure corresponding to using the underlying coupon bond as

the numeraire. Note that the first term on the right-hand side is the present value of the payments

of the underlying bond that comes after the option maturity date. The put-call parity for European

options on coupon bonds is as follows:

CK,T,cpn
t +KBTt = πK,T,cpn

t +Bt −
∑

t<Ti≤T

YiB
Ti

t . (6.21)

In Exercise 6.2 you are asked to give a replication argument supporting (6.21).

We cannot derive unique option prices without making concrete assumptions about the dynam-

ics of the underlying asset and interest rates to pin down option prices. But using the no-arbitrage

principle only, we can derive bounds on option prices. Merton (1973) derived well-known bounds

on the prices of European options on stocks, which are know reproduced in many option pricing

textbooks, e.g. Hull (2003). The bounds that can be obtained for bond options are not just a

simple reformulation of the bounds available for stock options due to

• the close relation between the appropriate discount factor and the price of the underlying

asset,

• the existence of an upper bound on the price of the underlying bond: under the reasonable

assumption that all forward rates are non-negative, the price of a bond will be less than or

equal to the sum of its remaining payments.

Although the obtainable bounds for bond options are tighter than those for stock options, they

still leave quite a large interval in which the price can lie. For proofs and examples see Munk

(2002) and Exercise 6.1.

6.3.3 Black’s formula for bond options

Practitioners often use Black-Scholes-Merton type formulas for interest rate derivatives. The

formulas are based on the Black (1976) variant of the Black-Scholes-Merton model developed for

2In particular, we assume that in the case where the expiry date of the option coincides with a payment date of

the underlying bond, it is the bond price excluding that payment which determines the payoff of the option.
3The quoted price is sometimes referred to as the clean price. Similarly, the true price is sometimes called the

dirty price.
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stock option pricing, cf. Section 4.8. Black’s formula for a European call option on a bond is

CK,T,cpn
t = BTt

[

FT,cpn
t N

(

d̂1(F
T,cpn
t , t)

)

−KN
(

d̂2(F
T,cpn
t , t)

)]

,

=

(

Bt −
∑

t<Ti<T

YiB
Ti

t

)

N
(

d̂1(F
T,cpn
t , t)

)

−KBTt N
(

d̂2(F
T,cpn
t , t)

)

,
(6.22)

where FT,cpn
t is the forward price of the bond, and

d̂1(Φ
T∗

t , t) =
ln(ΦT

∗

t /K)

σ
√
T − t

+
1

2
σ
√
T − t, (6.23)

d̂2(Φ
T∗

t , t) =
ln(ΦT

∗

t /K)

σ
√
T − t

− 1

2
σ
√
T − t = d̂1(Φ

T∗

t , t) − σ
√
T − t. (6.24)

As discussed briefly in Section 4.8, the use of Black’s formula for interest rate derivatives is generally

not theoretically supported and may lead to pricing allowing arbitrage. To ensure consistent

arbitrage-free pricing of fixed income securities we have to model the dynamics of the entire term

structure of interest rates.

6.4 Caps, floors, and collars

6.4.1 Caps

An (interest rate) cap is designed to protect an investor who has borrowed funds on a floating

interest rate basis against the risk of paying very high interest rates. Suppose the loan has a face

value of H and payment dates T1 < T2 < · · · < Tn, where Ti+1 − Ti = δ for all i.4 The interest

rate to be paid at time Ti is determined by the δ-period money market interest rate prevailing

at time Ti−1 = Ti − δ, i.e. the payment at time Ti is equal to HδlTi

Ti−δ
. Note that the interest

rate is set at the beginning of the period, but paid at the end. Define T0 = T1 − δ. The dates

T0, T1, . . . , Tn−1 where the rate for the coming period is determined are called the reset dates of

the loan.

A cap with a face value of H, payment dates Ti (i = 1, . . . , n) as above, and a so-called cap

rate K yields a time Ti payoff of Hδmax(lTi

Ti−δ
−K, 0), for i = 1, 2, . . . , n. If a borrower buys such

a cap, the net payment at time Ti cannot exceed HδK. The period length δ is often referred to as

the frequency or the tenor of the cap.5 In practice, the frequency is typically either 3, 6, or 12

months. Note that the time distance between payment dates coincides with the “maturity” of the

floating interest rate. Also note that while a cap is tailored for interest rate hedging, it can also

be used for interest rate speculation.

A cap can be seen as a portfolio of n caplets, namely one for each payment date of the cap.

The i’th caplet yields a payoff at time Ti of

C
i
Ti

= Hδmax
(

lTi

Ti−δ
−K, 0

)

(6.25)

and no other payments. A caplet is a call option on the zero-coupon yield prevailing at time Ti− δ
for a period of length δ, but where the payment takes place at time Ti although it is already fixed

at time Ti − δ.

4In practice, there will not be exactly the same number of days between successive reset dates, and the calculations

below must be slightly adjusted by using the relevant day count convention.
5The word tenor is sometimes used for the set of payment dates T1, . . . , Tn.
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In the following we will find the value of the i’th caplet before time Ti. Since the payoff becomes

known at time Ti − δ, we can obtain its value in the interval between Ti − δ and Ti by a simple

discounting of the payoff, i.e.

C
i
t = BTi

t Hδmax
(

lTi

Ti−δ
−K, 0

)

, Ti − δ ≤ t ≤ Ti.

In particular,

C
i
Ti−δ = BTi

Ti−δ
Hδmax

(

lTi

Ti−δ
−K, 0

)

. (6.26)

To find the value before the fixing of the payoff, i.e. for t < Ti − δ, we shall use two strategies.

The first is simply to take relevant expectations of the payoff. Since the payoff comes at Ti, we

know from Section 4.4.2 that the value of the payoff can be found as the product of the expected

payoff computed under the Ti-forward martingale measure and the current discount factor for

time Ti payments, i.e.

C
i
t = HδBTi

t EQTi

t

[

max
(

LTi−δ,Ti

Ti−δ
−K, 0

)]

, t < Ti − δ. (6.27)

The price of a cap can therefore be determined as

Ct = Hδ

n∑

i=1

BTi

t EQTi

t

[

max
(

LTi−δ,Ti

Ti−δ
−K, 0

)]

, t < T0. (6.28)

In Chapter 11 we will look at a class of models that prices caps by directly modeling the dynamics

of the rates LTi−δ,Ti

t under the relevant QTi probability measures.

The second pricing strategy links caps to bond options. Applying (1.8) on page 5, we can

rewrite (6.26) as

C
i
Ti−δ = BTi

Ti−δ
H max

(

1 + δlTi

Ti−δ
− [1 + δK], 0

)

= BTi

Ti−δ
H max

(

1

BTi

Ti−δ

− [1 + δK], 0

)

= H(1 + δK)max

(
1

1 + δK
−BTi

Ti−δ
, 0

)

.

We can now see that the value at time Ti − δ is identical to the payoff of a European put option

expiring at time Ti − δ that has an exercise price of 1/(1 + δK) and is written on a zero-coupon

bond maturing at time Ti. Accordingly, the value of the i’th caplet at an earlier point in time

t ≤ Ti − δ must equal the value of that put option. With the notation used earlier we can write

this as

C
i
t = H(1 + δK)π

(1+δK)−1,Ti−δ,Ti

t . (6.29)

To find the value of the entire cap contract we simply have to add up the values of all the caplets

corresponding to the remaining payment dates of the cap. Before the first reset date, T0, none of

the cap payments are known, so the value of the cap is given by

Ct =
n∑

i=1

C
i
t = H(1 + δK)

n∑

i=1

π
(1+δK)−1,Ti−δ,Ti

t , t < T0. (6.30)

At all dates after the first reset date, the next payment of the cap will already be known. If we

again use the notation Ti(t) for the nearest following payment date after time t, the value of the
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cap at any time t in [T0, Tn] (exclusive of any payment received exactly at time t) can be written

as

Ct = HB
Ti(t)

t δmax
(

l
Ti(t)

Ti(t)−δ
−K, 0

)

+ (1 + δK)H

n∑

i=i(t)+1

π
(1+δK)−1,Ti−δ,Ti

t , T0 ≤ t ≤ Tn.
(6.31)

If Tn−1 < t < Tn, we have i(t) = n, and there will be no terms in the sum, which is then considered

to be equal to zero. In later chapters we will discuss models for pricing bond options. From the

results above, cap prices will follow from prices of European puts on zero-coupon bonds.

Note that the interest rates and the discount factors appearing in the expressions above are

taken from the money market, not from the government bond market. Also note that since caps

and most other contracts related to money market rates trade OTC, one should take the default

risk of the two parties into account when valuing the cap. Here, default simply means that the party

cannot pay the amounts promised in the contract. Official money market rates and the associated

discount function apply to loan and deposit arrangements between large financial institutions, and

thus they reflect the default risk of these corporations. If the parties in an OTC transaction have a

default risk significantly different from that, the discount rates in the formulas should be adjusted

accordingly. However, it is quite complicated to do that in a theoretically correct manner, so we

will not discuss this issue any further at this point.

6.4.2 Floors

An (interest rate) floor is designed to protect an investor who has lent funds on a floating

rate basis against receiving very low interest rates. The contract is constructed just as a cap except

that the payoff at time Ti (i = 1, . . . , n) is given by

F
i
Ti

= Hδmax
(

K − lTi

Ti−δ
, 0
)

, (6.32)

where K is called the floor rate. Buying an appropriate floor, an investor who has provided another

investor with a floating rate loan will in total at least receive the floor rate. Of course, an investor

can also speculate in low future interest rates by buying a floor. The (hypothetical) contracts that

only yield one of the payments in (6.32) are called floorlets. Obviously, we can think of a floorlet

as a European put on the floating interest rate with delayed payment of the payoff.

Analogously to the analysis for caps, we can price the floor directly as

Ft = Hδ

n∑

i=1

BTi

t EQTi

t

[

max
(

K − LTi−δ,Ti

Ti−δ
, 0
)]

, t < T0, (6.33)

which is the approach taken in the models studied in Chapter 11. Alternatively, we can express the

floorlet as a European call on a zero-coupon bond, and hence a floor is equivalent to a portfolio of

European calls on zero-coupon bonds. More precisely, the value of the i’th floorlet at time Ti − δ

is

F
i
Ti−δ = H(1 + δK)max

(

BTi

Ti−δ
− 1

1 + δK
, 0

)

. (6.34)

The total value of the floor contract at any time t < T0 is therefore given by

Ft = H(1 + δK)

n∑

i=1

C
(1+δK)−1,Ti−δ,Ti

t , t < T0, (6.35)



6.4 Caps, floors, and collars 135

and later the value is

Ft = HB
Ti(t)

t δmax
(

K − l
Ti(t)

Ti(t)−δ
, 0
)

+ (1 + δK)H

n∑

i=i(t)+1

C
(1+δK)−1,Ti−δ,Ti

t , T0 ≤ t ≤ Tn.
(6.36)

6.4.3 Black’s formula for caps and floors

Black’s formula for the caplet price is

C
i
t = HδBTi

t

[

LTi−δ,Ti

t N
(

d̂i1(L
Ti−δ,Ti

t , t)
)

−KN
(

d̂i2(L
Ti−δ,Ti

t , t)
)]

, t < Ti − δ, (6.37)

where the functions d̂i1 and d̂i2 are given by

d̂i1(L
Ti−δ,Ti

t , t) =
ln(LTi−δ,Ti

t /K)

σi
√
Ti − δ − t

+
1

2
σi
√

Ti − δ − t,

d̂i2(L
Ti−δ,Ti

t , t) = d̂i1(L
Ti−δ,Ti

t , t) − σi
√

Ti − δ − t.

Again, the price for the entire cap is obtained by summation. For a floor the corresponding formula

is

Ft = Hδ
n∑

i=1

BTi

t

[

KN
(

−d̂i2(LTi−δ,Ti

t , t)
)

− LTi−δ,Ti

t N
(

−d̂i1(LTi−δ,Ti

t , t)
)]

, t ≤ T0. (6.38)

In Chapter 11 we will consider some very special term structure model that indeed supports the

use of Black’s formula at least for some caps and floors.

The prices of stock options are often expressed in terms of implicit volatilities. The implicit

volatility for a given European call option on a stock is that value of σ, which by substitution

into the Black-Scholes-Merton formula (4.43), together with the observable variables St, r, K, and

T − t, yields a price equal to the observed market price. Similarly, prices of caps, floors, and

swaptions are expressed in terms of implicit interest rate volatilities computed with reference to

the Black pricing formula. According to (6.37) different σ-values must be applied for each caplet

in a cap. For a cap with more than one remaining payment date, many combinations of the σi’s

will result in the same cap price. If we require that all the σi’s must be equal, only one common

value will result in the market price. This value is called the implicit flat volatility of the cap. If

caps with different maturities, but the same frequency and overlapping payment dates, are traded,

a term structure of volatilities, σ1, σ2, . . . , σn, can be derived. For example, if a one-year and a

two-year cap on the one-year LIBOR rate are traded, the unique value of σ1 that makes Black’s

price equal to the market price of the one-year cap can be determined. Next, by applying this

value of σ1, a unique value of σ2 can be determined so that the Black price and the market price of

the two-year cap are identical. The volatilities σi determined by this procedure are called implicit

spot volatilities.

A graph of the spot volatilities as a function of the maturity, i.e. σi as a function of Ti − δ,

will usually be a humped curve, that is an increasing curve for maturities up to 2-3 years and

then a decreasing curve for longer maturities.6 A similar, though slightly flatter, curve is obtained

6See for example the discussion in Hull (2003, Ch. 22).
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by depicting the flat volatilities as a function of the maturity of the cap, since flat volatilities are

averages of spot volatilities. The picture is the same whether implicit or historical forward rate

volatilities are used.

6.4.4 Collars

A collar is a contract designed to ensure that the interest rate payments on a floating rate

borrowing arrangement stay between two pre-specified levels. A collar can be seen as a portfolio

of a long position in a cap with a cap rate Kc and a short position in a floor with a floor rate of

Kf < Kc (and the same payment dates and underlying floating rate). The payoff of a collar at

time Ti, i = 1, 2, . . . , n, is thus

L
i
Ti

= Hδ
[

max
(

lTi

Ti−δ
−Kc, 0

)

− max
(

Kf − lTi

Ti−δ
, 0
)]

=







−Hδ
[

Kf − lTi

Ti−δ

]

, if lTi

Ti−δ
≤ Kf ,

0, if Kf ≤ lTi

Ti−δ
≤ Kc,

Hδ
[

lTi

Ti−δ
−Kc

]

, if Kc ≤ lTi

Ti−δ
.

The value of a collar with cap rate Kc and floor rate Kf is of course given by

Lt(Kc,Kf ) = Ct(Kc) − Ft(Kf ),

where the expressions for the values of caps and floors derived earlier can be substituted in.

An investor who has borrowed funds on a floating rate basis will by buying a collar ensure that

the paid interest rate always lies in the interval between Kf and Kc. Clearly, a collar gives cheaper

protection against high interest rates than a cap (with the same cap rate Kc), but on the other

hand the full benefits of very low interest rates are sacrificed. In practice, Kf and Kc are often set

such that the value of the collar is zero at the inception of the contract.

6.4.5 Exotic caps and floors

Above we considered standard, plain vanilla caps, floors, and collars. In addition to these

instruments, several contracts trade on the international OTC markets with cash flows that are

similar to plain vanilla contracts, but deviate in one or more aspects. The deviations complicate

the pricing methods considerably. Let us briefly look at a few of these exotic securities. The

examples are taken from Musiela and Rutkowski (1997, Ch. 16).

• A bounded cap is like an ordinary cap except that the cap owner will only receive the

scheduled payoff if the sum of the payments received so far due to the contract does not

exceed a certain pre-specified level. Consequently, the ordinary cap payments in (6.25) are to

be multiplied with an indicator function. The payoff at the end of a given period will depend

not only on the interest rate in the beginning of the period, but also on previous interest

rates. As many other exotic instruments, a bounded cap is therefore a path-dependent asset.

• A dual strike cap is similar to a cap with a cap rate of K1 in periods when the underlying

floating rate lt+δt stays below a pre-specified level l̂, and similar to a cap with a cap rate of

K2, where K2 > K1, in periods when the floating rate is above l̂.
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• A cumulative cap ensures that the accumulated interest rate payments do not exceed a

given level.

• A knock-out cap will at any time Ti give the standard payoff in (6.25) unless the floating

rate lt+δt during the period [Ti− δ, Ti] has exceeded a certain level. In that case the payoff is

zero.

Options on caps and floors are also traded. Since caps and floors themselves are (portfolios

of) options, the options on caps and floors are so-called compound options. An option on a cap is

called a caption and provides the holder with the right at a future point in time, T0, to enter into

a cap starting at time T0 (with payment dates T1, . . . , Tn) against paying a given exercise price.

6.5 Swaps and swaptions

6.5.1 Swaps

Many different types of swaps are traded on the OTC markets, e.g. currency swaps, credit

swaps, asset swaps, but in line with the theme of this chapter we will focus on interest rate swaps.

An (interest rate) swap is an exchange of two cash flow streams that are determined by certain

interest rates. In the simplest and most common interest rate swap, a plain vanilla swap, two

parties exchange a stream of fixed interest rate payments and a stream of floating interest rate

payments. The payments are in the same currency and are computed from the same (hypothetical)

face value or notional principal. The floating rate is usually a money market rate, e.g. a LIBOR

rate, possibly augmented or reduced by a fixed margin. The fixed interest rate is usually set so

that the swap has zero net present value when the parties agree on the contract. While the two

parties can agree upon any maturity, most interest rate swaps have a maturity between 2 and 10

years.

Let us briefly look at the uses of interest rate swaps. An investor can transform a floating rate

loan into a fixed rate loan by entering into an appropriate swap, where the investor receives floating

rate payments (netting out the payments on the original loan) and pays fixed rate payments. This

is called a liability transformation. Conversely, an investor who has lent money at a floating

rate, i.e. owns a floating rate bond, can transform this to a fixed rate bond by entering into a

swap, where he pays floating rate payments and receives fixed rate payments. This is an asset

transformation. Hence, interest rate swaps can be used for hedging interest rate risk on both

(certain) assets and liabilities. On the other hand, interest rate swaps can also be used for taking

advantage of specific expectations of future interest rates, i.e. for speculation.

Swaps are often said to allow the two parties to exploit their comparative advantages in

different markets. Concerning interest rate swaps, this argument presumes that one party has a

comparative advantage (relative to the other party) in the market for fixed rate loans, while the

other party has a comparative advantage (relative to the first party) in the market for floating rate

loans. However, these markets are integrated, and the existence of comparative advantages conflicts

with modern financial theory and the efficiency of the money markets. Apparent comparative

advantages can be due to differences in default risk premia. For details we refer the reader to the

discussion in Hull (2003, Ch. 6).

Next, we will discuss the valuation of swaps. As for caps and floors, we assume that both
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parties in the swap have a default risk corresponding to the “average default risk” of major financial

institutions reflected by the money market interest rates. For a description of the impact on the

payments and the valuation of swaps between parties with different default risk, see Duffie and

Huang (1996) and Huge and Lando (1999). Furthermore, we assume that the fixed rate payments

and the floating rate payments occur at exactly the same dates throughout the life of the swap.

This is true for most, but not all, traded swaps. For some swaps, the fixed rate payments only

occur once a year, whereas the floating rate payments are quarterly or semi-annual. The analysis

below can easily be adapted to such swaps.

In a plain vanilla interest rate swap, one party pays a stream of fixed rate payments and receives

a stream of floating rate payments. This party is said to have a pay fixed, receive floating swap or

a fixed-for-floating swap or simply a payer swap. The counterpart receives a stream of fixed rate

payments and pays a stream of floating rate payments. This party is said to have a pay floating,

receive fixed swap or a floating-for-fixed swap or simply a receiver swap. Note that the names

payer swap and receiver swap refer to the fixed rate payments.

We consider a swap with payment dates T1, . . . , Tn, where Ti+1 − Ti = δ. The floating interest

rate determining the payment at time Ti is the money market (LIBOR) rate lTi

Ti−δ
. In the following

we assume that there is no fixed extra margin on this floating rate. If there were such an extra

charge, the value of the part of the flexible payments that is due to the extra margin could be

computed in the same manner as the value of the fixed rate payments of the swap, see below. We

refer to T0 = T1−δ as the starting date of the swap. As for caps and floors, we call T0, T1, . . . , Tn−1

the reset dates, and δ the frequency or the tenor. Typical swaps have δ equal to 0.25, 0.5, or 1

corresponding to quarterly, semi-annual, or annual payments and interest rates.

We will find the value of an interest rate swap by separately computing the value of the fixed

rate payments (V fix) and the value of the floating rate payments (V fl). The fixed rate is denoted

by K. This is a nominal, annual interest rate, so that the fixed rate payments equal HKδ, where

H is the notional principal or face value (which is not swapped). The value of the remaining fixed

payments is simply

V fix
t =

n∑

i=i(t)

HKδBTi

t = HKδ
n∑

i=i(t)

BTi

t . (6.39)

The floating rate payments are exactly the same as the coupon payments on a floating rate

bond, which was discussed in Section 1.2.5, i.e. at time Ti (i = 1, 2, . . . , n) the payment is HδlTi

Ti−δ
.

Note that this payment is already known at time Ti − δ. According to (1.21), the value of such a

floating bond at any time t ∈ [T0, Tn) is given by H(1 + δl
Ti(t)

Ti(t)−δ
)B

Ti(t)

t . Since this is the value of

both the coupon payments and the final repayment of face value, the value of the coupon payments

only must be

V fl
t = H(1 + δl

Ti(t)

Ti(t)−δ
)B

Ti(t)

t −HBTn

t

= Hδl
Ti(t)

Ti(t)−δ
B
Ti(t)

t +H
[

B
Ti(t)

t −BTn

t

]

, T0 ≤ t < Tn.

At and before time T0, the first term is not present, so the value of the floating rate payments is

simply

V fl
t = H

[

BT0
t −BTn

t

]

, t ≤ T0. (6.40)

We will also develop an alternative expression for the value of the floating rate payments of the
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swap. The time Ti − δ value of the coupon payment at time Ti is

HδlTi

Ti−δ
BTi

Ti−δ
= Hδ

lTi

Ti−δ

1 + δlTi

Ti−δ

,

where we have applied (1.8) on page 5. Consider a strategy of buying a zero-coupon bond with

face value H maturing at Ti − δ and selling a zero-coupon bond with the same face value H but

maturing at Ti. The time Ti − δ value of this position is

HBTi−δ
Ti−δ

−HBTi

Ti−δ
= H − H

1 + δlTi

Ti−δ

= Hδ
lTi

Ti−δ

1 + δlTi

Ti−δ

,

which is identical to the value of the floating rate payment of the swap. Therefore, the value of

this floating rate payment at any time t ≤ Ti − δ must be

H
(

BTi−δ
t −BTi

t

)

= HδBTi

t

B
Ti−δ

t

B
Ti
t

− 1

δ
= HδBTi

t L
Ti−δ,Ti

t , (6.41)

where we have applied (1.14) on page 7. Thus, the value at time t ≤ Ti − δ of getting HδlTi

Ti−δ
at

time Ti is equal to HδBTi

t L
Ti−δ,Ti

t , i.e. the unknown future spot rate lTi

Ti−δ
in the payoff is replaced

by the current forward rate for LTi−δ,Ti

t and then discounted by the current riskfree discount factor

BTi

t . The value at time t > T0 of all the remaining floating coupon payments can therefore be

written as

V fl
t = HδB

Ti(t)

t l
Ti(t)

Ti(t)−δ
+Hδ

n∑

i=i(t)+1

BTi

t L
Ti−δ,Ti

t , T0 ≤ t < Tn.

At or before time T0, the first term is not present, so we get

V fl
t = Hδ

n∑

i=1

BTi

t L
Ti−δ,Ti

t , t ≤ T0. (6.42)

The value of a payer swap is

Pt = V fl
t − V fix

t ,

while the value of a receiver swap is

Rt = V fix
t − V fl

t .

In particular, the value of a payer swap at or before its starting date T0 can be written as

Pt = Hδ

n∑

i=1

BTi

t

(

LTi−δ,Ti

t −K
)

, t ≤ T0, (6.43)

using (6.39) and (6.42), or as

Pt = H

(
[

BT0
t −BTn

t

]

−
n∑

i=1

KδBTi

t

)

, t ≤ T0, (6.44)

using (6.39) and (6.40). If we let Yi = Kδ for i = 1, . . . , n−1 and Yn = 1+Kδ, we can rewrite (6.44)

as

Pt = H

(

BT0
t −

n∑

i=1

YiB
Ti

t

)

, t ≤ T0. (6.45)
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Also note the following relation between a cap, a floor, and a payer swap having the same payment

dates and where the cap rate, the floor rate, and the fixed rate in the swap are all identical:

Ct = Ft + Pt. (6.46)

This follows from the fact that the payments from a portfolio of a floor and a payer swap exactly

match the payments of a cap.

The swap rate l̃δT0
prevailing at time T0 for a swap with frequency δ and payments dates

Ti = T0 + iδ, i = 1, 2, . . . , n, is defined as the unique value of the fixed rate that makes the present

value of a swap starting at T0 equal to zero, i.e. PT0
= RT0

= 0. The swap rate is sometimes called

the equilibrium swap rate or the par swap rate. Applying (6.43), we can write the swap rate as

l̃δT0
=

∑n
i=1 L

Ti−δ,Ti

T0
BTi

T0
∑n
i=1B

Ti

T0

,

which can also be written as a weighted average of the relevant forward rates:

l̃δT0
=

n∑

i=1

wiL
Ti−δ,Ti

T0
, (6.47)

where wi = BTi

T0
/
∑n
i=1B

Ti

T0
. Alternatively, we can let t = T0 in (6.44) yielding

PT0
= H

(

1 −BTn

T0
−Kδ

n∑

i=1

BTi

T0

)

,

so that the swap rate can be expressed as

l̃δT0
=

1 −BTn

T0

δ
∑n
i=1B

Ti

T0

. (6.48)

Substituting (6.48) into the expression just above it, the time T0 value of an agreement to pay a

fixed rate K and receive the prevailing market rate at each of the dates T1, . . . , Tn, can be written

in terms of the current swap rate as

PT0
= H

(

l̃δT0
δ

(
n∑

i=1

BTi

T0

)

−Kδ

(
n∑

i=1

BTi

T0

))

=

(
n∑

i=1

BTi

T0

)

Hδ
(

l̃δT0
−K

)

.

(6.49)

A forward swap (or deferred swap) is an agreement to enter into a swap with a future starting

date T0 and a fixed rate which is already set. Of course, the contract also fixes the frequency, the

maturity, and the notional principal of the swap. The value at time t ≤ T0 of a forward payer

swap with fixed rate K is given by the equivalent expressions (6.43)–(6.45). The forward swap

rate L̃δ,T0

t is defined as the value of the fixed rate that makes the forward swap have zero value at

time t. The forward swap rate can be written as

L̃δ,T0

t =
BT0
t −BTn

t

δ
∑n
i=1B

Ti

t

=

∑n
i=1 L

Ti−δ,Ti

t BTi

t
∑n
i=1B

Ti

t

. (6.50)

Note that both the swap rate and the forward swap rate depend on the frequency and the

maturity of the underlying swap. To indicate this dependence, let l̃δt (n) denote the time t swap
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rate for a swap with payment dates Ti = t + iδ, i = 1, 2, . . . , n. If we depict the swap rate as a

function of the maturity, i.e. the function n 7→ l̃δt (n) (only defined for n = 1, 2, . . . ), we get a term

structure of swap rates for the given frequency. Many financial institutions participating in the

swap market will offer swaps of varying maturities under conditions reflected by their posted term

structure of swap rates. In Exercise 6.3, the reader is asked to show how the discount factors BTi

T0

can be derived from a term structure of swap rates.

6.5.2 Swaptions

A European swaption gives its holder the right, but not the obligation, at the expiry date

T0 to enter into a specific interest rate swap that starts at T0 and has a given fixed rate K. No

exercise price is to be paid if the right is utilized. The rate K is sometimes referred to as the

exercise rate of the swaption. We distinguish between a payer swaption, which gives the right to

enter into a payer swap, and a receiver swaption, which gives the right to enter into a receiver

swap. As for caps and floors, two different pricing strategies can be taken. One strategy is to

link the swaption payoff to the payoff of another well-known derivative. The other strategy is to

directly take relevant expectations of the swaption payoff.

Let us first see how we can link swaptions to options on bonds. Let us focus on a European

receiver swaption. At time T0, the value of a receiver swap with payment dates Ti = T0 + iδ,

i = 1, 2, . . . , n, and a fixed rate K is given by

RT0
= H

(
n∑

i=1

YiB
Ti

T0
− 1

)

,

where Yi = Kδ for i = 1, . . . , n − 1 and Yn = 1 + Kδ; cf. (6.45). Hence, the time T0 payoff of a

receiver swaption is

RT0
= max (RT0

− 0, 0) = H max

(
n∑

i=1

YiB
Ti

T0
− 1, 0

)

, (6.51)

which is equivalent to the payoff of H European call options on a bullet bond with face value 1,

n payment dates, a period of δ between successive payments, and an annualized coupon rate K.

The exercise price of each option equals the face value 1. The price of a European receiver swaption

must therefore be equal to the price of these call options. In many of the pricing models we develop

in later chapters, we can compute such prices quite easily.

Similarly, a European payer swaption yields a payoff of

PT0
= max (PT0

− 0, 0) = max (−RT0
, 0) = H max

(

1 −
n∑

i=1

YiB
Ti

T0
, 0

)

. (6.52)

This is identical to the payoff from H European put options expiring at T0 and having an exercise

price of 1 with a bond paying Yi at time Ti, i = 1, 2, . . . , n, as its underlying asset.

Alternatively, we can apply (6.49) to express the payoff of a European payer swaption as

PT0
=

(
n∑

i=1

BTi

T0

)

Hδmax
(

l̃δT0
−K, 0

)

, (6.53)

where l̃δT0
is the (equilibrium) swap rate prevailing at time T0. What is an appropriate numeraire

for pricing this swaption? If we were to use the zero-coupon bond maturing at T0 as the numeraire,
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we would have to find the expectation of the payoff PT0
under the T0-forward martingale measure

QT0 . But since the payoff depends on several different bond prices, the distribution of PT0
under

QT0 is rather complicated. It is more convenient to use another numeraire, namely the annuity

bond, which at each of the dates T1, . . . , Tn provides a payment of 1 dollar. The value of this

annuity at time t ≤ T0 equals Gt =
∑n
i=1B

Ti

t . In particular, the payoff of the swaption can be

restated as

PT0
= GT0

Hδmax
(

l̃δT0
−K, 0

)

,

and the payoff expressed in units of the annuity bond is simply Hδmax
(

l̃δT0
−K, 0

)

. The mar-

tingale measure corresponding to the annuity being the numeraire is called the swap martingale

measure and will be denoted by QG in the following. The price of the European payer swaption

can now be written as

Pt = Gt E
QG

t

[
PT0

GT0

]

= GtHδ EQG

t

[

max
(

l̃δT0
−K, 0

)]

, (6.54)

so we only need to know the distribution of the swap rate l̃δT0
under the swap martingale measure.

In Chapter 11 we will look at models of swap rate dynamics under the swap martingale measure

that allow us to price swaptions using the above formula.

Similar to the put-call parity for bonds we have the following payer-receiver parity for

European swaptions having the same underlying swap and the same exercise rate:

Pt − Rt = Pt, t ≤ T0, (6.55)

cf. Exercise 6.4. In words, a payer swaption minus a receiver swaption is indistinguishable from a

forward payer swap.

While a large majority of traded swaptions are European, so-called Bermuda swaptions

are also traded. A Bermuda swaption can be exercised at a number of pre-specified dates and,

therefore, resembles an American option. When the Bermuda swaption is exercised, the holder

receives a position in a swap with certain payment dates. Most Bermuda swaptions are constructed

such that the underlying swap has some fixed, potential payment dates T1, . . . , Tn. If the Bermuda

swaption is exercised at, say, time t′, only the remaining swap payments will be effective, i.e. the

payments at date Ti(t′), . . . , Tn. Later exercise results in a shorter swap. The possible exercise

dates will usually coincide with the potential swap payment dates. Exercise of a Bermuda payer

(receiver) swaption at date Tl results in a payoff at that date equal to the payoff of a European payer

(receiver) swaption expiring at that date with a swap with payment dates Tl+1, . . . , Tn. Bermuda

swaptions are often issued together with a given swap. Such a “package” is called a cancellable

swap or a puttable swap. Typically, the Bermuda swaption cannot be exercised over a certain

period in the beginning of the swap. When practitioners talk of, say, a “10 year non call 2 year

Bermuda swaption”, they mean an option on a 10 year swap, where the option at the earliest can

be exercised 2 years into the swap and then on all subsequent payment dates of the swap. A less

traded variant is a constant maturity Bermuda swaption, where the option holder upon exercise

receives a swap with the same time to maturity no matter when the option is exercised.

The market standard for pricing European swaptions is Black’s formula, which for a payer

swaption is

Pt = Hδ

(
n∑

i=1

BTi

t

)[

L̃δ,T0

t N
(

d̂1(L̃
δ,T0

t , t)
)

−KN
(

d̂2(L̃
δ,T0

t , t)
)]

, t < T0, (6.56)
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where the functions d̂1 and d̂2 are as in (6.23) and (6.24) with T = T0. The analogous formula for

a European receiver swaption is

Rt = Hδ

(
n∑

i=1

BTi

t

)[

KN
(

−d̂2(L̃
δ,T0

t , t)
)

− L̃δ,T0

t N
(

−d̂1(L̃
δ,T0

t , t)
)]

, t < T0. (6.57)

Again, the assumptions behind are generally inappropriate. However, we will see in Chapter 11 that

these pricing formula can be backed by a very special no-arbitrage model of swap rate dynamics.

If we consider formula (6.47) and assume as an approximation that the weights wi are constant

over time, the variance of the future swap rate can be written as

Vart[l̃
δ
T0

] = Vart

[
n∑

i=1

wiL
Ti−δ,Ti

T0

]

=
n∑

i=1

n∑

j=1

wiwjσiσjρij ,

where σi denotes the standard deviation of the forward rate LTi−δ,Ti

T0
, and ρij denotes the cor-

relation between the forward rates LTi−δ,Ti

T0
and L

Tj−δ,Tj

T0
. The prices of swaptions will therefore

depend on both the volatilities of the relevant forward rates and their correlations. If implicit

forward rate volatilities have already been determined from the market prices of caplets and caps,

implicit forward rate correlations can be determined from the market prices of swaptions by

an application of (6.56).

6.5.3 Exotic swap instruments

The following examples of exotic swap market products are adapted from Musiela and Rutkowski

(1997) and Hull (2003):

• Float-for-floating swap: Two floating interest rates are swapped, e.g. the three-month

LIBOR rate and the yield on a given government bond.

• Amortizing swap: The notional principal is reduced from period to period following a

pre-specified scheme, e.g. so that the notional principle at any time reflects the outstanding

debt on a loan with periodic instalments (as for an annuity or a serial bond).

• Step-up swap: The notional principal increases over time in a pre-determined way.

• Accrual swap: The scheduled payments of one party are only to be paid as long as the

floating rate lies in some interval I. Assume for concreteness that it is the fixed rate payments

that have this feature. At the swap payment date Ti the effective fixed rate payment is then

HδKN1/N2, where N1 is the number of days in the period between Ti−1 and Ti, where the

floating rate lt+δt was in the interval I, and N2 is the total number of days in the period. The

interval I may even differ from period to period either in a deterministic way or depending

on the evolution of the floating interest rate so far.

• Constant maturity swap: At the payment dates a fixed rate is exchanged for the (equi-

librium) swap rate on a swap of a given, constant maturity, i.e. the floating rate is itself a

swap rate.

• Extendable swap: One party has the right to extend the life of the swap under certain

conditions.
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• Forward swaption: A forward swaption gives the right to enter into a forward swap, i.e.

the swaption expires at time t∗ before the starting date of the swap T0. The payoff is

Hδ

n∑

i=1

max
(

L̃δ,t
∗

T0
−K, 0

)

BTi

t∗ =

(
n∑

i=1

BTi

t∗

)

Hδmax
(

L̃δ,t
∗

T0
−K, 0

)

.

• Swap rate spread option: The payoff is determined by the difference between (equilibrium)

swap rates for two different maturities. Recall that l̃δT0
(m) denotes the swap rate for a swap

with payment dates T1, . . . , Tm, where Ti = T0 + iδ. An (m,n)-period European swap rate

spread call option with an exercise rate K yields a payoff at time T0 of

max
(

l̃δT0
(m) − l̃δT0

(n) −K, 0
)

.

The corresponding put has a payoff of

max
(

K −
[

l̃δT0
(m) − l̃δT0

(n)
]

, 0
)

.

• Yield curve swap: In a one-period yield curve swap one party receives at a given date T a

swap rate l̃δT (m) and pays a rate K + l̃δT (n), both computed on the basis of a given notional

principal H. A multi-period yield curve swap has, say, L payment dates T1, . . . , TL. At

time Tl one party receives an interest rate of l̃δTl
(m) and pays an interest rate of K + l̃δTl

(n).

In addition, several instruments combine elements of interest rate swaps and currency swaps. For

example, in a differential swap a domestic floating rate is swapped for a foreign floating rate.

6.6 American-style derivatives

Consider an American-style derivative where the holder can choose to exercise the derivative

at the expiration date T or at any time before T . Let Pτ denote the payoff if the derivative is

exercised at time τ ≤ T . In general, Pτ may depend on the evolution of the economy up to and

including time τ , but it is usually a simple function of the time τ price of an underlying security

or the time τ value of a particular interest rate. At each point in time the holder of the derivative

must decide whether or not he will exercise. Of course, this decision must be based on the available

information, so we are seeking an entire exercise strategy that tell us exactly in what states of the

world we should exercise the derivative. We can represent an exercise strategy by an indicator

function I(ω, t), which for any given state of the economy ω at time t either has the value 1 or 0,

where the value 1 indicates exercise and 0 indicates non-exercise. For a given exercise strategy I,

the derivative will be exercised the first time I(ω, t) takes on the value 1. We can write this point

in time as

τ(I) = min{s ∈ [t, T ] | I(ω, s) = 1}.

This is called a stopping time in the literature on stochastic processes. By our earlier analysis, the

value of getting the payoff Vτ(I) at time τ(I) is given by EQ
t

[

e−
∫

τ(I)
t

ru duPτ(I)

]

. If we let I[t, T ]

denote the set of all possible exercise strategies over the time period [t, T ], the time t value of the

American-style derivative must therefore be

Vt = sup
I∈I[t,T ]

EQ
t

[

e−
∫

τ(I)
t

ru duPτ(I)

]

. (6.58)
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An optimal exercise strategy I∗ is such that

Vt = EQ
t

[

e−
∫

τ(I∗)
t

ru duPτ(I∗)

]

.

Note that the optimal exercise strategy and the price of the derivative must be solved for simul-

taneously. This complicates the pricing of American-style derivatives considerably. In fact, in all

situations where early exercise may be relevant, we will not be able to compute closed-form pricing

formulas for American-style derivatives. We have to resort to numerical techniques.

In a diffusion model with a one-dimensional state variable x, we can write the indicator function

representing the exercise strategy of an American-style derivative as I(x, t), so that I(x, t) = 1 if

and only if the derivative is exercised at time t when xt = x. An exercise strategy divides the space

S × [0, T ] of points (x, t) into an exercise region and a continuation region. The continuation

region corresponding to a given exercise strategy I is the set

CI = {(x, t) ∈ S × [0, T ] | I(x, t) = 0}

and the exercise region is then the remaining part

EI = {(x, t) ∈ S × [0, T ] | I(x, t) = 1},

which can also be written as EI = (S × [0, T ]) \ CI . To an optimal exercise strategy I∗(x, t)

corresponds optimal continuation and exercise regions C∗ and E∗. It is intuitively clear that the

price function P (x, t) for an American-style derivative must satisfy the fundamental PDE (4.37)

in the continuation region corresponding to the optimal exercise strategy, i.e. for (x, t) ∈ C∗. But

since the continuation region is not known, but is part of the solution, it is impossible to solve such

a PDE explicitly except for trivial cases. However, numerical solution techniques for PDEs can,

with some modifications, also be applied to the case of American-style derivatives; see Chapter 16.

What can we say about early exercise of American options on bonds? It is well-known that it

is never strictly advantageous to exercise an American call option on a non-dividend paying stock

before time T ; cf. Merton (1973) and Hull (2003). By analogy, this is also true for American call

options on zero-coupon bonds. At first glance, it may appear optimal to exercise an American call

on a zero-coupon bond immediately in case the price of the underlying bond is equal to 1, because

this will imply a payoff of 1 −K, which is the maximum possible payoff under the assumption of

non-negative interest rates. However, the price of the underlying bond will only equal 1, if interest

rates are zero and stay at zero for sure. Therefore, exercising the option at time T will also provide

a payoff of 1 − K, and since interest rates are zero, the present value of the payoff is also equal

to 1 −K. Hence, there is no strict advantage to early exercise. As for stock options, premature

exercise of an American put option on a zero-coupon bond will be advantageous for sufficiently

low prices of the underlying zero-coupon bond, i.e. sufficiently high interest rates.

When and under what circumstances should one consider exercising an American call on a

coupon bond? This is equivalent to the question of exercising an American call on a dividend-

paying stock, which is discussed e.g. in Hull (2003, Chap. 12). The following conclusions can

therefore be stated. The only points in time when it can be optimal to exercise an American

call on a bond is just before the payment dates of the bond. Let Tl be the last payment date

before expiration of the option. Then it cannot be optimal to exercise the call just before Tl if the

payment Yl is less than K(1−BTTl
). If the opposite relation holds, it may be optimal to exercise just
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before Tl. Similarly, at any earlier payment date Ti ∈ [t, Tl], exercise is ruled out if the payment

at that date Yi is less than K(1−B
Ti+1

Ti
). Broadly speaking, early exercise of the call will only be

relevant if the short-term interest rate is relatively low and the bond payment is relatively high.7

Regarding early exercise of put options, it can never be optimal to exercise an American put on a

bond just before a payment on the bond. At all other points in time early exercise may be optimal

for sufficiently low bond prices, i.e. high interest rates.

For American options on bonds, it is also possible to find no-arbitrage price bounds, and, as a

counterpart to the put-call parity, relatively tight bounds on the difference between the prices of

an American call and an American put. Again the reader is referred to Munk (2002).

6.7 An overview of term structure models

Economists and financial analysts apply term structure models in order to

• improve their understanding of the way the term structure of interest rates is set by the

market and how it evolves over time,

• price fixed-income securities in a consistent way,

• facilitate the management of the interest rate risk that affects the valuation of individual

securities, financial investment portfolios, and real investment projects.

As we shall see in the following chapters, a large number of different term structure models has been

suggested in the last three decades. All the models have both desirable and undesirable properties

so that the choice of model will depend on how one weighs the pros and the cons. Ideally, we seek

a model which has as many as possible of the following characteristics:8

(a) flexible: the model should be able to handle most situations of practical interest, i.e. it

should apply to most fixed income securities and under all likely states of the world;

(b) simple: the model should be so simple that it can deliver answers (e.g. prices and hedge

ratios) in a very short time;

(c) well-specified: the necessary input for applying the model must be relatively easy to observe

or estimate;

(d) realistic: the model should not have clearly unreasonable properties;

(e) empirically acceptable: the model should be able to describe actual data with sufficient

precision;

(f) theoretically sound: the model should be consistent with the broadly accepted principles

for the behavior of individual investors and the financial market equilibrium.

7Some countries have markets with trade in mortgage-backed bonds where the issuer has an American call option

on the bond. These bonds are annuity bonds where the payments are considerably higher than for a standard “bullet”

bond with the same face value. Optimality of early exercise of such a call is therefore more likely than exercise of a

call on a standard bond.
8The presentation is in part based on Rogers (1995).
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No model can completely comply with all these objectives. A realistic, empirically acceptable, and

theoretically sound model is bound to be quite complex and will probably not be able to deliver

prices and hedge ratios with the speed requested by many practitioners. On the other hand, simpler

models will have inappropriate theoretical and/or empirical properties.

We can split the many term structure models into two categories: absolute pricing models and

relative pricing models. An absolute pricing model of the term structure of interest rates aims

at pricing all fixed-income securities, both the basic securities, i.e. bonds and bond-like contracts

such as swaps, and the derivative securities such as bond options and swaptions. In contrast,

a relative pricing model of the term structure takes the currently observed term structure of

interest rates, i.e. the prices of bonds, as given and aims at pricing derivative securities relative

to the observed term structure. The same distinction can be used for other asset classes. For

example, the Black-Scholes-Merton model is a relative pricing model since it prices stock options

relative to the price of the underlying stock, which is taken as given. An absolute stock option

pricing model would derive prices of both the underlying stock and the stock option.

Absolute pricing models are sometimes referred to as equilibrium models, while relative pricing

models are called pure no-arbitrage models. In this context the term equilibrium model does not

necessarily imply that the model is based on explicit assumptions on the preferences and endow-

ments of all market participants (including the bond issuers, e.g. the government) which in the end

determine the supply and demand for bonds and therefore bond prices and interest rates. Indeed,

many absolute pricing models of the term structure are based on an assumption on the dynamics of

one or several state variables and stipulated relations between the short rate and the state variables

and between the market prices of risk and the state variables. These assumptions determine both

the current term structure and the dynamics of interest rates and prices of fixed income securi-

ties. These models do not explain how these assumptions are produced by the actions of market

participants. Nevertheless, it is typically possible to justify the assumptions of these models by

some more basic assumptions on preferences, endowments, etc., so that the model assumptions are

compatible with market equilibrium; see the discussion and the examples in Section 5.4. The pure

no-arbitrage models offer no explanation to why the current term structure is as observed.

We can also divide the term structure models into diffusion models and non-diffusion mod-

els. Again, by a diffusion model we mean a model in which all relevant prices and quantities are

functions of a state variable of a finite (preferably low) dimension and that this state variable

follows a Markov diffusion model. A non-diffusion model is a model which does not meet this defi-

nition of a diffusion model. While the risk-neutral pricing techniques are valid both in diffusion and

non-diffusion models, the PDE approach introduced in Section 4.8 can only be applied in diffusion

models. All well-known absolute pricing models of the term structure are diffusion models. We

study a number of one-factor and multi-factor diffusion models of the term structure in Chapters 7

and 8. In the diffusion models we derive prices and interest rates as functions of the state variables

and relatively few parameters. Consequently, the resulting term structure of interest rates cannot

typically fit the currently observed term structure perfectly. If the main application of the model

is to price derivative securities, this mismatch is troublesome. If the model is not able to price

the underlying securities (i.e. the zero-coupon bonds) correctly, why trust the model prices for

derivative securities? To completely avoid this mismatch one must apply relative pricing models

for the derivative securities.
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We divide the relative pricing models of the term structure into three subclasses: calibrated

diffusion models, Heath-Jarrow-Morton (HJM) models, and market models. The common starting

point of all these models is to take the current term structure as given and then model the risk-

neutral dynamics of the entire term structure. This is done very directly in the HJM models and

the market models. The HJM models are based on assumptions about the dynamics of the entire

curve of instantaneous, continuously compounded forward rates, T 7→ fTt . It turns out that only

the volatility structure of the forward rate curve needs to specified in order to price term structure

derivatives. We will discuss the general HJM model and various concrete models in Chapter 10.

The market models are closely related to the HJM models, but focus on the pricing of money

market products such as caps, floors, and swaptions. These products involve LIBOR rates that

are set for specific periods, e.g. 3 months, 6 months, and 12 months, with a similar compounding

period. The market models are all based on as assumption about a number of forward LIBOR

rates or swap rates. Again, only the volatility structure of these rates needs to be specified. Market

models are studied in Chapter 11. The third subclass of relative pricing models consists of so-called

calibrated diffusion models. These models can be seen as extensions of absolute pricing models of

the diffusion type. The basic idea is to replace one of the constant parameters in a diffusion model

by a suitable deterministic function of time that will make the term structure of the model exactly

match the currently observed term structure in the market. These calibrated diffusion models can

be reformulated as HJM models, but since they are developed in a special way we treat them

separately in Chapter 9.

6.8 Exercises

EXERCISE 6.1 Show that the no-arbitrage price of a European call on a zero-coupon bond will satisfy

max
(

0, BS
t − KBT

t

)

≤ CK,T,S
t ≤ BS

t (1 − K)

provided that all interest rates are non-negative. Here, T is the maturity date of the option, K is the exercise

price, and S is the maturity date of the underlying zero-coupon bond. Compare with the corresponding

bounds for a European call on a stock, cf. Hull (2003, Ch. 8). Derive similar bounds for a European call

on a coupon bond.

EXERCISE 6.2 Show of the put-call parity for options on coupon bonds by a replication argument, i.e.

form two portfolios that have the same payoffs and conclude from their prices that (6.21) must hold.

EXERCISE 6.3 Let l̃δT0
(k) be the equilibrium swap rate for a swap with payment dates T1, T2, . . . , Tk,

where Ti = T0 + iδ as usual. Suppose that l̃δT0
(1), . . . , l̃δT0

(n) are known. Find a recursive procedure for

deriving the associated discount factors BT1
T0

, BT2
T0

, . . . , BTn
T0

.

EXERCISE 6.4 Show the parity (6.55). Show that a payer swaption and a receiver swaption (with

identical terms) will have identical prices, if the exercise rate of the contracts is equal to the forward swap

rate L̃δ,T0
t .

EXERCISE 6.5 Consider a swap with starting date T0 and a fixed rate K. For t ≤ T0, show that

V fl
t /V fix

t = L̃δ,T0
t /K, where L̃δ,T0

t is the forward swap rate.



Chapter 7

One-factor diffusion models

7.1 Introduction

This chapter is devoted to the study of one-factor diffusion models of the term structure of

interest rates. They all take the short rate as the sole state variable and, hence, implicitly assume

that the short rate contains all the information about the term structure that is relevant for pricing

and hedging interest rate dependent claims. All the models assume that the short rate is a diffusion

process

drt = α(rt, t) dt+ β(rt, t) dzt, (7.1)

where z = (zt)t≥0 is a standard Brownian motion under the real-world probability measure P. The

market price of risk at time t is of the form λ(rt, t). The short rate dynamics under the risk-neutral

probability measure Q (i.e. the spot martingale measure) is therefore

drt = α̂(rt, t) dt+ β(rt, t) dz
Q
t , (7.2)

where zQ = (zQ
t ) is a standard Brownian motion under Q, and

α̂(r, t) = α(r, t) − β(r, t)λ(r, t).

We let S ⊆ R denote the value space for the short rate, i.e. the set of values which the short rate

can have with strictly positive probability.1

A model of the type (7.2) is called time homogeneous if α̂ and β are functions of the interest

rate only and not of time. Otherwise it is called time inhomogeneous. In the time homogeneous

models the distribution of a given variable at a future date depends only on the current short

rate and how far into the future we are looking. For example, the distribution of rt+τ given

rt = r is the same for all values of t – the distribution depends only on the “horizon” τ and the

initial value r. Similarly, asset prices will only depend on the current short rate and the time to

maturity of the asset. For example, the price of a zero-coupon bond BTt = BT (rt, t) only depends

on rt and the time to maturity T − t, cf. Theorem 7.1 below. In time inhomogeneous models,

these considerations are not valid, which renders the analysis of such models more complicated.

Furthermore, time homogeneity seems to be a realistic property: why should the drift and the

volatility of the short rate depend on the calendar date? Surely, the drift and the volatility change

1Recall that since the real-world and the risk-neutral probability measures are equivalent, the process can have

exactly the same values under the different probability measures.
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over time, but this is due to changes in fundamental economic variables, not just the passage of

time. However, time inhomogeneous models have some practical advantages, which makes them

worthwhile looking at. We will do that in Chapter 9. In the present chapter we consider only time

homogeneous models.

We will focus on the pricing of bonds, forwards and futures on bonds, Eurodollar futures, and

European options on bonds within the different models. As discussed in Chapter 6, these option

prices lead to prices of other important assets such as caps, floors, and European swaptions. The

pricing techniques applied are those developed in Chapters 4: solution of a partial differential

equation (PDE) or computation of the expected payoff under a suitable martingale measure.

In Section 7.2 we will consider some general aspects of the so-called affine models. Then in

Sections 7.3–7.5 we will look at three specific affine models, namely the classical models of Merton

(1970), Vasicek (1977), and Cox, Ingersoll, and Ross (1985b). Some non-affine models are outlined

and discussed in Section 7.6. Section 7.7 gives a short introduction to the issues of estimating

the parameters of the models and testing to what extent the models are supported by the data.

Finally, Section 7.8 offers some concluding remarks.

7.2 Affine models

In a time homogeneous one-factor model, the dynamics of the short rate is of the form

drt = α̂(rt) dt+ β(rt) dz
Q
t

under the risk-neutral (spot martingale) measure Q. The fundamental PDE of Theorem 4.10 on

page 87 is then

∂P

∂t
(r, t) + α̂(r)

∂P

∂r
(r, t) +

1

2
β(r)2

∂2P

∂r2
(r, t) − rP (r, t) = 0, (r, t) ∈ S × [0, T ), (7.3)

with the terminal condition

P (r, T ) = H(r), r ∈ S, (7.4)

where the function H denotes the interest rate dependent payoff of the asset.

In this section we will study a subset of this class of models, namely the so-called affine models.

An affine model is a model where the risk-adjusted drift rate α̂(r) and the variance rate β(r)2 are

affine functions of the short rate, i.e. of the form

α̂(r) = ϕ̂− κ̂r, β(r)2 = δ1 + δ2r, (7.5)

where ϕ̂, κ̂, δ1, and δ2 are constants. We require that δ1 + δ2r ≥ 0 for all the values of r which

the process for the short rate can have, i.e. for r ∈ S, so that the variance is well-defined. The

dynamics of the short rate under the risk-neutral probability measure is therefore given by the

stochastic differential equation

drt = (ϕ̂− κ̂rt) dt+
√

δ1 + δ2rt dz
Q
t . (7.6)

This subclass of models is tractable and results in nice, explicit pricing formulas for bonds and

forwards on bonds and, in most cases, also for bond futures, Eurodollar futures, and European

options on bonds.
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7.2.1 Bond prices, zero-coupon rates, and forward rates

As before, BTt denotes the price at time t of a zero-coupon bond giving a payment of 1 unit

of account with certainty at time T and nothing at all other points in time. We know that in

a one-factor model, this price can be written as a function of time and the current short rate,

BTt = BT (rt, t). The following theorem shows that, in a model of the type (7.6), BT (r, t) is an

exponential-affine function of the current short rate. The proof of this result is based only on

the fact that BT (r, t) satisfies the partial differential equation (7.3) with the terminal condition

BT (r, T ) = 1.

Theorem 7.1 In the model (7.6) the time t price of a zero-coupon bond maturing at time T is

given as

BT (r, t) = e−a(T−t)−b(T−t)r, (7.7)

where the functions a(τ) and b(τ) satisfy the following system of ordinary differential equations:

1

2
δ2b(τ)

2 + κ̂b(τ) + b′(τ) − 1 = 0, τ > 0, (7.8)

a′(τ) − ϕ̂b(τ) +
1

2
δ1b(τ)

2 = 0, τ > 0, (7.9)

together with the conditions a(0) = b(0) = 0.

Proof: We will show that the price BT (r, t) in (7.7) is a solution to the partial differential equa-

tion (7.3). Since a(0) = b(0) = 0, the terminal condition BT (r, T ) = 1 is satisfied for all r ∈ S.

The relevant derivatives are

∂BT

∂t
(r, t) = BT (r, t) (a′(T − t) + b′(T − t)r) ,

∂BT

∂r
(r, t) = −BT (r, t)b(T − t), (7.10)

∂2BT

∂r2
(r, t) = BT (r, t)b(T − t)2.

After substituting these derivatives into (7.3) and dividing through by BT (r, t), we get

a′(T − t) + b′(T − t)r − b(T − t)α̂(r) +
1

2
b(T − t)2β(r)2 − r = 0, (r, t) ∈ S × [0, T ). (7.11)

Substituting (7.5) into (7.11) and gathering terms involving r, we find that the functions a and

b must satisfy the equation

(

a′(T − t) − ϕ̂b(T − t) +
1

2
δ1b(T − t)2

)

+

(
1

2
δ2b(T − t)2 + κ̂b(T − t) + b′(T − t) − 1

)

r = 0, (r, t) ∈ S × [0, T ).

This can only be true if (7.8) and (7.9) hold.2 2

Conversely, it can be shown that the zero-coupon bond pricesBT (r, t) are only of the exponential-

affine form (7.7), if the drift rate and the variance rate are affine functions of the short rate as

2Suppose A + Br = 0 for all r ∈ S. Given r1, r2 ∈ S, where r1 6= r2. Then, A + Br1 = 0 and A + Br2 = 0.

Subtracting one of these equations from the other, we get B[r1 − r2] = 0, which implies that B = 0. It follows

immediately that A must also equal zero.
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in (7.5).3

The differential equations (7.8)–(7.9) are called Ricatti equations. The functions a and b are

determined by first solving (7.8) with the condition b(0) = 0 to obtain the b-function. The solution

to (7.9) with the condition a(0) = 0 can be written in terms of the b-function as

a(τ) = ϕ̂

∫ τ

0

b(u) du− 1

2
δ1

∫ τ

0

b(u)2 du, (7.12)

since a(τ) = a(τ) − a(0) =
∫ τ

0
a′(u) du. For many frequently applied specifications of ϕ̂, κ̂, δ1, and

δ2, explicit expressions for a and b can be obtained in this way. For other specifications the Ricatti

equations can be solved numerically by very efficient methods. In all the models we will consider,

the function b(τ) is positive for all τ . Consequently, bond prices will be decreasing in the short

rate consistent with the traditional relation between bond prices and interest rates.

Next, we study the yield curves in the affine models (7.6). The zero-coupon rate at time t

for the period up to time T is denoted by yTt and is also a function of the current short rate,

yTt = yT (rt, t). With continuous compounding we have

BT (r, t) = e−y
T (r,t)(T−t),

cf. (1.9) on page 6. It follows from (7.7) that

yT (r, t) = − lnBT (r, t)

T − t
=
a(T − t)

T − t
+
b(T − t)

T − t
r, (7.13)

i.e. any zero-coupon rate is an affine function of the short rate. If b is positive, all zero-coupon rates

are increasing in the short rate. An increase in the short rate will induce an upward shift of the

entire yield curve T 7→ yT (r, t). However, unless b(τ) is proportional to τ , the shift is not a parallel

shift since the coefficient b(T − t)/(T − t) is maturity dependent. In the important models, this

coefficient is decreasing in maturity T , so that a shift in the short rate affects zero-coupon rates of

short maturities more than zero-coupon rates of long maturities, which seems to be a reasonable

property. Note that the zero-coupon rate for a fixed time to maturity of τ can be written as

yt+τ (r, t) =
a(τ)

τ
+
b(τ)

τ
r, (7.14)

which is independent of t, which again stems from the time homogeneity of the model.

The forward rate fTt at time t for a loan over an infinitesimally short period beginning at time T

is also given by a function of the current short rate, fTt = fT (rt, t). With continuous compounding

we have

fT (r, t) = −
∂BT

∂T (r, t)

BT (r, t)
,

cf. (1.17) on page 7. From (7.7) we get that

fT (r, t) = a′(T − t) + b′(T − t)r. (7.15)

Hence, the forward rates are also affine in the short rate r. For a fixed time to maturity τ , the

forward rate is

f t+τ (r, t) = a′(τ) + b′(τ)r.

3For details see Duffie (2001, Sec. 7E).
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Let us consider the dynamics of the price BTt = BT (r, t) of a zero-coupon bond with a fixed

maturity date T . Note that we are mostly interested in the evolution of prices and interest rates

in the real world – the martingale measures are only used for deriving the pricing formulas. From

the general asset pricing theory of Chapter 4, we know that the dynamics will be of the form

dBTt = BTt
[(
rt + σT (rt, t)λ(rt, t)

)
dt+ σT (rt, t) dzt

]
, (7.16)

and from Itô’s Lemma the sensitivity term of the zero-coupon bond price is given by

σT (r, t) =
∂BT

∂r (r, t)

BT (r, t)
β(r, t).

In the time homogeneous affine models it follows from (7.10) that the sensitivity term is

σT (r, t) = −b(T − t)β(r). (7.17)

With b(T − t) and β(r) being positive, σT (r, t) will be negative. If there is a positive [negative]

shock to the short rate, there will a negative [positive] shock to the zero-coupon bond price. The

volatility of the zero-coupon bond price is the absolute value of σT (r, t), i.e. b(T − t)β(r). In

equilibrium, risky assets will normally have an expected rate of return that exceeds the locally

riskfree interest rate. This can only be the case if the market price of risk λ(r, t) is negative.

When we look at the dynamics of zero-coupon rates, we are often more interested in the

evolution of a rate with a fixed time to maturity τ = T − t (say, the 5 year interest rate) rather

than a rate with a fixed maturity date T . Hence, we study the dynamics of ȳτt = yt+τt = yt+τ (rt, t)

for a fixed τ . Itô’s Lemma and (7.13) imply that

dȳτt =
b(τ)

τ
α(rt) dt+

b(τ)

τ
β(rt) dzt (7.18)

under the real-world probability measure. Here we have used that ∂2y/∂r2 = 0 and assumed that

the market price of risk and, therefore, the drift of the short rate under the real-world measure

α(rt) = α̂(rt) + λ(rt)β(rt) is time homogeneous. Similarly, the forward rate with fixed time to

maturity τ is f̄τt = f t+τt = f t+τ (rt, t), which by Itô’s Lemma and (7.15) evolves as

df̄τt = b′(τ)α(rt) dt+ b′(τ)β(rt) dzt.

7.2.2 Forwards and futures

Equation (6.5) offers a general characterization of forward prices on zero-coupon bonds. Letting

FT,S(r, t) denote the forward price at time t with a current short rate of r for delivery at time T of

a zero-coupon bond maturing at time S, we have that FT,S(r, t) = BS(r, t)/BT (r, t). In the affine

models where the zero-coupon price is given by (7.7), the forward price becomes

FT,S(r, t) = exp {− [a(S − t) − a(T − t)] − [b(S − t) − b(T − t)] r} , (7.19)

where the functions a and b are the same as in Theorem 7.1.

For a futures on a zero-coupon bond we let ΦT,S(r, t) denote the futures price. From Section 6.2

we have that the futures price is given by

ΦT,S(r, t) = EQ
r,t

[
BS(rT , T )

]
,
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and from Section 4.8 we know that the price can be found by solving a partial differential equation,

which can be obtained by letting q = r in (4.48), i.e.

∂ΦT,S

∂t
(r, t) + α̂(r)

∂ΦT,S

∂r
(r, t) +

1

2
β(r)2

∂2ΦT,S

∂r2
(r, t) = 0, ∀(r, t) ∈ S × [0, T ), (7.20)

together with the terminal condition ΦT,S(r, T ) = BS(r, T ). The following theorem characterizes

the solution.

Theorem 7.2 Assume an affine model of the type (7.6). For a futures contract with final settle-

ment date T and a zero-coupon bond maturing at time S as the underlying asset, the futures price

at time t with a short rate of r is given by

ΦT,S(r, t) = e−ã(T−t)−b̃(T−t)r, (7.21)

where the functions ã(τ) and b̃(τ) satisfy the following system of ordinary differential equations:

1

2
δ2b̃(τ)

2 + κ̂b̃(τ) + b̃′(τ) = 0, τ ∈ (0, T ), (7.22)

ã′(τ) − ϕ̂b̃(τ) +
1

2
δ1b̃(τ)

2 = 0, τ ∈ (0, T ), (7.23)

with the conditions ã(0) = a(S − T ) and b̃(0) = b(S − T ), where a and b are as in Theorem 7.1.

If δ2 = 0, we have b̃(τ) = b(τ + S − T ) − b(τ).

The solution to (7.23) with ã(0) = a(S − T ) can generally be written as

ã(τ) = a(S − T ) + ϕ̂

∫ τ

0

b̃(u) du− 1

2
δ1

∫ τ

0

b̃(u)2 du. (7.24)

The proof of this theorem is analogous to the proof of Theorem 7.1, since the PDE (7.20) is

almost identical to the PDE (7.3) satisfied by the zero-coupon bond price. The last claim in the

theorem above is left for the reader as Exercise 7.3. The claim implies that, for δ2 = 0, the futures

price becomes

ΦT,S(r, t) = e−ã(T−t)−[b(S−t)−b(T−t)]r. (7.25)

Comparing with the forward price expression (7.19), we see that, for δ2 = 0, we have

∂FT,S

∂r (r, t)

FT,S(r, t)
=

∂ΦT,S

∂r (r, t)

ΦT,S(r, t)
,

i.e. any change in the term structure of interest rates will generate identical percentage changes in

forward prices and futures prices with similar terms.

If the underlying bond is a coupon bond with payments Yi at time Ti, it follows from (6.7) that

the forward price at time t for delivery at time T is given by

FT,cpn(r, t) =
∑

Ti>T

YiF
T,Ti(r, t), (7.26)

into which we can insert (7.19) on the right-hand side. From (6.9) we get that the same relation

holds for futures prices:

ΦT,cpn(r, t) =
∑

Ti>T

YiΦ
T,Ti(r, t), (7.27)
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into which we can insert (7.21) on the right-hand side.

For Eurodollar futures we have from (6.11) on page 127 that the quoted futures price is

Ẽ
T (r, t) = 500 − 400EQ

r,t

[
(BT+0.25(r, T ))−1

]
,

which in an affine model becomes

Ẽ
T (r, t) = 500 − 400EQ

r,t

[

ea(0.25)+b(0.25)rT

]

,

where a and b are as in Theorem 7.1. Above we concluded that for a futures on a zero-coupon

bond the futures price is given by

ΦT,S(r, t) = EQ
r,t

[
BS(r, T )

]
= EQ

r,t

[

e−a(S−T )−b(S−T )rT

]

= e−ã(T−t)−b̃(T−t)r,

where ã and b̃ solve the differential equations (7.22)–(7.23) with ã(0) = a(S−T ), b̃(0) = b(S−T ).

Analogously, we get that

EQ
r,t

[

ea(0.25)+b(0.25)rT

]

= e−â(T−t)−b̂(T−t)r,

where â and b̂ solve the same differential equations, but with the conditions â(0) = −a(0.25),

b̂(0) = −b(0.25). In particular, â is given as

â(τ) = −a(0.25) + ϕ̂

∫ τ

0

b̂(u) du− 1

2
δ1

∫ τ

0

b̂(u)2 du. (7.28)

The quoted Eurodollar futures price is therefore

Ẽ
T (r, t) = 500 − 400e−â(T−t)−b̂(T−t)r. (7.29)

If δ2 = 0, we have b̂(τ) = b(τ) − b(τ + 0.25).

7.2.3 European options on bonds

In Chapter 6 we obtained general pricing formulas for a European call option on a zero-coupon

bond. When we explicitly indicate the dependence of prices on the short-term interest rate, the

formula (6.17) becomes

CK,T,S(rt, t) = BT (rt, t) EQT

t

[
max

(
BS(rT , T ) −K, 0

)]
.

In an affine model where rT is normally distributed under the T -forward martingale measure QT ,

it follows from the bond pricing formula (7.7) that the bond price BS(rT , T ) will be lognormally

distributed and we will end up with a Black-Scholes-Merton type pricing formula (see Section 4.8).

This will be the case in an affine model with a constant volatility, i.e. β(r) = β or δ2 = 0, δ1 = β2.

To obtain the precise formula, we need to know the expectation and variance of BS(rT , T ). It

is computationally convenient to use the fact that we can replace the bond price at the maturity

of the option, i.e. BS(rT , T ), by the forward price of the underlying bond with delivery at the

maturity of the option, i.e. FT,S(rT , T ). When BS(rT , T ) = FT,S(rT , T ) is normally distributed

under QT , it follows from an application of Theorem A.4 in Appendix A that the call price is

CK,T,S(r, t) = BT (r, t) EQT

r,t

[
max

(
FT,S(rT , T ) −K, 0

)]

= BT (r, t)
{

EQT

r,t

[
FT,S(rT , T )

]
N(d1) −KN(d2)

}

,
(7.30)
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where d1 and d2 are given by

d1 =
ln
(

EQT

r,t

[
FT,S(rT , T )

]
/K
)

√

VarQT

r,t [lnFT,S(rT , T )]
+

1

2

√

VarQT

r,t [lnFT,S(rT , T )],

d2 = d1 −
√

VarQT

r,t [lnFT,S(rT , T )].

We also know that forward prices for delivery at time T are martingales under the T -forward

martingale measure so that

EQT

r,t

[
FT,S(rT , T )

]
= FT,S(r, t) =

BS(r, t)

BT (r, t)
.

Hence, the option price can be written as

CK,T,S(r, t) = BS(r, t)N(d1) −KBT (r, t)N(d2), (7.31)

with

d1 =
1

v(t, T, S)
ln

(
BS(r, t)

KBT (r, t)

)

+
1

2
v(t, T, S), (7.32)

d2 = d1 − v(t, T, S) (7.33)

and it only remains to compute

v(t, T, S) ≡
√

VarQT

r,t [lnFT,S(rT , T )]. (7.34)

In order to compute this, we first note that the forward price is given as a function of the interest

rate in (7.19) and where are working in the case with constant interest rate volatility, β. We can

then apply Itô’s Lemma to find the QT -dynamics of the forward price. Since the forward price is

a QT -martingale the drift will be zero. We get

dFT,S(rt, t) = −FT,S(rt, t)β[b(S − t) − b(T − t)] dzTt . (7.35)

It follows that

lnFT,S(rT , T ) = lnFT,S(rt, t)−
1

2
β2

∫ T

t

[b(S − u)− b(T − u)]2 du− β

∫ T

t

[b(S − u)− b(T − u)] dzTu

and applying Theorem 3.2 we obtain

v(t, T, S)2 = VarQT

r,t

[
lnFT,S(rT , T )

]
= β2

∫ T

t

[b(S − u) − b(T − u)]2 du. (7.36)

We still need to identify the b function in the specific model. We emphasize that this procedure

only works when future values of the short rate are normally distributed.

An alternative to the above procedure is to start with Equation (6.18). When we explicitly

indicate the dependence of prices on the short-term interest rate, the formula looks as follows:

CK,T,S(rt, t) = BS(rt, t)Q
S
t (BST > K) −KBT (rt, t)Q

T
t (BST > K),

In affine models we can use the general bond price expression (7.7) to get

BST > K ⇔ rT < −a(S − T )

b(S − T )
− lnK

b(S − T )
.
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We need to compute the probability for this event under the two forward martingale measures QS

and QT conditional on the current interest rate, rt. From Equation (4.26) we know that the link

between the forward martingale measure QS and the risk-neutral probability measure is captured

by the sensitivity of the price of the zero-coupon bond maturing at S, which in a homogeneous

affine model is known from (7.17). Consequently, we have

dzQ
t = dzSt − b(S − t)β(rt) dt,

so that the QS-dynamics of the short rate becomes

drt = α̂(rt) dt+ β(rt)
(
dzSt − b(S − t)β(rt) dt

)

=
(
α̂(rt) − β(rt)

2b(S − t)
)
dt+ β(rt) dz

S
t

= ([ϕ̂− δ1b(S − t)] − [κ̂+ δ2b(S − t)]rt) dt+
√

δ1 + δ2rt dz
S
t .

(7.37)

The QT -dynamics is similar, just replace S by T . Note that also under both these measures, the

short-rate has an “affine” dynamics although with a time-dependent drift.

A reasonable affine one-factor model must have the property that bond prices are decreasing in

the short rate, which is the case if the function b(τ) is positive. This is true in the specific models

studied later in this chapter. This property can be used to show that a European call option on

a coupon bond can be seen as a portfolio of European call options on zero-coupon bonds. Since

this result was first derived by Jamshidian (1989), we shall refer to it as Jamshidian’s trick.

As always the underlying coupon bond is assumed to give Yi at time Ti (i = 1, 2, . . . , n), where

T1 < T2 < · · · < Tn, so that the price of the bond is

B(r, t) =
∑

Ti>t

YiB
Ti(r, t),

where we sum over all the future payment dates.

Theorem 7.3 In an affine one-factor model, where the zero-coupon bond prices are given by (7.7)

with b(τ) > 0 for all τ , the price of a European call on a coupon bond is

CK,T,cpn(r, t) =
∑

Ti>T

YiC
Ki,T,Ti(r, t), (7.38)

where Ki = BTi(r∗, T ), and r∗ is defined as the solution to the equation

B(r∗, T ) = K. (7.39)

Proof: The payoff of the option on the coupon bond is

max(B(rT , T ) −K, 0) = max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

.

Since the zero-coupon bond price BTi(rT , T ) is a monotonically decreasing function of the interest

rate rT , the whole sum
∑

Ti>T
YiB

Ti(rT , T ) is monotonically decreasing in rT . Therefore, exactly

one value r∗ of rT will make the option finish at the money, i.e.

B(r∗, T ) =
∑

Ti>T

YiB
Ti(r∗, T ) = K. (7.40)
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Letting Ki = BTi(r∗, T ), we have that
∑

Ti>T
YiKi = K.

For rT < r∗,
∑

Ti>T

YiB
Ti(rT , T ) >

∑

Ti>T

YiB
Ti(r∗, T ) = K,

and

BTi(rT , T ) > BTi(r∗, T ) = Ki,

so that

max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

=
∑

Ti>T

YiB
Ti(rT , T ) −K

=
∑

Ti>T

Yi
(
BTi(rT , T ) −Ki

)

=
∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)
.

For rT ≥ r∗,
∑

Ti>T

YiB
Ti(rT , T ) ≤

∑

Ti>T

YiB
Ti(r∗, T ) = K,

and

BTi(rT , T ) ≤ BTi(r∗, T ) = Ki,

so that

max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

= 0 =
∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)
.

Hence, for all possible values of rT we may conclude that

max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

=
∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)
.

The payoff of the option on the coupon bond is thus identical to the payoff of a portfolio of options

on zero-coupon bonds, namely a portfolio consisting (for each i with Ti > T ) of Yi options on a

zero-coupon bond maturing at time Ti and an exercise price of Ki. Consequently, the value of

the option on the coupon bond at time t ≤ T equals the value of that portfolio of options on

zero-coupon bonds. The formal derivation is as follows:

CK,T,cpn(r, t) = EQ
r,t

[

e−
∫

T
t
ru du max (B(rT , T ) −K, 0)

]

= EQ
r,t

[

e−
∫

T
t
ru du

∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)

]

=
∑

Ti>T

Yi E
Q
r,t

[

e−
∫

T
t
ru du max

(
BTi(rT , T ) −Ki, 0

)]

=
∑

Ti>T

YiC
Ki,T,Ti(r, t),

which completes the proof. 2

To compute the price of a European call option on a coupon bond we must numerically solve

one equation in one unknown (to find r∗) and calculate n′ prices of European call options on zero-

coupon bonds, where n′ is the number of payment dates of the coupon bond after expiration of
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the option. In the following sections we shall go through three different time homogeneous, affine

models in which the price of a European call option on a zero-coupon bond is given by relatively

simple Black-Scholes type expressions.4

The price of a European call with expiration date T and an exercise price of Ki which is written

on a zero-coupon bond maturing at Ti is given by

CKi,T,Ti(r, t) = BTi(r, t) Q
Ti

r,t

(
BTi(rT , T ) > Ki

)
−KiB

T (r, t) QT
r,t

(
BTi(rT , T ) > Ki

)
.

In the proof of Theorem 7.3 we found that

BTi(rT , T ) > Ki ⇔ rT < r∗

for all i. Together with Theorem 7.3 these expressions imply that the price of a European call on

a coupon bond can be written as

CK,T,cpn(r, t) =
∑

Ti>T

Yi

{

BTi(r, t) Q
Ti

r,t(rT < r∗) −KiB
T (r, t) QT

r,t(rT < r∗)
}

=
∑

Ti>T

YiB
Ti(r, t) Q

Ti

r,t(rT < r∗) −KBT (r, t) QT
r,t(rT < r∗).

(7.41)

Note that the probabilities involved are probabilities of the option finishing in the money under

different probability measures. The precise model specifications will determine these probabilities

and, hence, the option price.

7.3 Merton’s model

7.3.1 The short rate process

Apparently, the first dynamic, continuous-time model of the term structure of interest rates was

introduced by Merton (1970). In his model the short rate follows a generalized Brownian motion

under the risk-neutral probability measure, i.e.

drt = ϕ̂ dt+ β dzQ
t , (7.42)

where ϕ̂ and β are constants. This is a very simple time homogeneous affine model with a constant

drift rate and volatility, which contradicts empirical observations. This assumption implies that

rT = rt + ϕ̂[T − t] + β[zQ
T − zQ

t ], t < T. (7.43)

Since zQ
T − zQ

t ∼ N(0, T − t), we see that, given the short rate rt = r at time t, the future short

rate rT is normally distributed under the risk-neutral measure with mean

EQ
r,t[rT ] = r + ϕ̂[T − t]

and variance

VarQ
r,t[rT ] = β2[T − t].

4As discussed by Wei (1997), a very precise approximation of the price can be obtained by computing the price

of just one European call option on a particular zero-coupon bond. However, since the exact price can be computed

very quickly by Jamshidian’s trick, the approximation is not that useful in these one-factor models, but more

appropriate in multi-factor models. We will discuss the approximation more closely in Chapter 12.
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If the market price of risk λ(rt, t) is constant, the drift rate of the short rate under the real-world

probability measure will also be a constant ϕ = ϕ̂ + βλ. In this case the future short rate is also

normally distributed under the real-world probability measure with mean r+ϕ[T − t] and variance

β2[T − t].

A model (like Merton’s) where the future short rate is normally distributed is called a Gaussian

model. A normally distributed random variable can take on any real valued number, so the value

space S for the interest rate in a Gaussian model is S = R.5 In particular, the short rate in

a Gaussian model can be negative with strictly positive probability, which conflicts with both

economic theory and empirical observations. If the interest rate is negative, a loan is to be repaid

with a lower amount than the original proceeds. This allows so-called mattress arbitrage: borrow

money and put them into your mattress until the loan is due. The difference between the proceeds

and the repayment is a riskless profit. Note, however, that in a deflation period the smaller amount

to be repaid may represent a higher purchasing power than the original proceeds, so in such an

economic environment borrowing at negative nominal rates is not an arbitrage. On the other

hand, who would lend money at a negative nominal rate? It is certainly advantageous to keep the

money in the pocket where they earn a zero interest rate. Hence, nominal interest rates should

stay non-negative.6

7.3.2 Bond pricing

Merton’s model is of the affine form (7.6) with κ̂ = 0, δ1 = β2, and δ2 = 0. Theorem 7.1 implies

that the prices of zero-coupon bonds in Merton’s model are exponentially-affine,

BT (r, t) = e−a(T−t)−b(T−t)r. (7.44)

According to (7.8), the function b(τ) solves the simple ordinary differential equation b′(τ) = 1 with

b(0) = 0, which implies that

b(τ) = τ. (7.45)

The function a(τ) can then be determined from (7.12):

a(τ) = ϕ̂

∫ τ

0

u du− 1

2
β2

∫ τ

0

u2 du =
1

2
ϕ̂τ2 − 1

6
β2τ3. (7.46)

Note that since the future short rate is normally distributed, the future zero-coupon bond prices

are lognormally distributed in Merton’s model.

7.3.3 The yield curve

Let us see which shapes the yield curve can have in Merton’s model. The Equations (7.14),

(7.45), and (7.46) imply that the τ -maturity zero-coupon yield is

yt+τt = r +
1

2
ϕ̂τ − 1

6
β2τ2.

5Future interest rates may not have the same distribution under the real-world probability measure and the

martingale measures, but we know that the measures are equivalent so that the value space is measure-independent.
6Real-life bank accounts often provide some services valuable to the customer, so that their deposit rates (net of

fees) may be slightly negative.
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Hence, for all values of ϕ̂ and β, the yield curve is a parabola with downward-sloping branches.

The maximum zero-coupon yield is obtained for a time to maturity of τ = 3ϕ̂/(2β2) and equals

r + 3ϕ̂2/(8β2). Moreover, yt+τt is negative for τ > τ∗, where

τ∗ =
3

β2

(

ϕ̂

2
+

√

ϕ̂2

4
+

2β2r

3

)

.

From (7.18) we see that in Merton’s model the τ -maturity zero-coupon rate evolves as

dȳτt = α(rt) dt+ β dzt

under the real-world probability measure, where α(rt) = ϕ̂+ βλ(rt) is the real-world drift rate of

the short-term interest rate. Since dȳτt is obviously independent of τ , all zero-coupon rates will

change by the same. In other words, the yield curve will only change by parallel shifts. (See also

Exercise 7.1.) We can therefore conclude that Merton’s model can only generate a completely

unrealistic form and dynamics of the yield curve. Nevertheless, we will still derive forward prices,

futures prices, and European option prices, since this illustrates the general procedure in a relatively

simple setting.

7.3.4 Forwards and futures

By substituting the expressions (7.45) and (7.46) into (7.19), we get that the forward price on

a zero-coupon bond under Merton’s assumptions is

FT,S(r, t) = exp

{

−1

2

[
(S − t)2 − (T − t)2

]
+

1

6
β2
[
(S − t)3 − (T − t)3

]
− (S − T )r

}

.

In Merton’s model δ2 equals 0, so by Theorem 7.2 the b̃ function in the futures price on a zero-

coupon bond is given by b̃(τ) = b(τ + S − T ) − b(τ) = S − T . Applying (7.24), the futures price

can be written as

ΦT,S(r, t) = exp

{
1

2
ϕ̂(S − T )(S + T − 2t) − 1

6
β2(S − T )2(2T + S − 3t) − (S − T )r

}

.

Forward and futures prices on coupon bonds can be found by inserting the expressions above

into (7.26) and (7.27).

In Eq. (7.29), we get b̂(τ) = b(τ) − b(τ + 0.25) = −0.25 and from (7.28) we conclude that

â(τ) = −a(0.25) − 0.25ϕ̂τ − 1

2
(0.25)2β2τ = −1

2
(0.25)2ϕ̂+

1

6
(0.25)3β2 − 0.25ϕ̂τ − 1

2
(0.25)2β2τ.

The quoted Eurodollar futures price in Merton’s model is therefore

Ẽ
T (r, t) = 500 − 400e−â(τ)+0.25r.

7.3.5 Option pricing

Since the future values of the short rate are normally distributed in Merton’s setting, we

conclude from the analysis in Section 7.2.3 that the price of a European call option on a zero-

coupon bond is given by

CK,T,S(r, t) = BS(r, t)N(d1) −KBT (r, t)N(d2), (7.47)
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with

d1 =
1

v(t, T, S)
ln

(
BS(r, t)

KBT (r, t)

)

+
1

2
v(t, T, S), (7.48)

d2 = d1 − v(t, T, S) (7.49)

and, since b(τ) = τ , we have

v(t, T, S)2 = β2

∫ T

t

[S − u− (T − u)]2 du = β2(S − T )2(T − t). (7.50)

The price of a European call option on a coupon bond can be found by combining the pricing

formula (7.47) and Jamshidian’s trick of Theorem 7.3:

CK,T,cpn(r, t) =
∑

Ti>T

Yi
{
BTi(r, t)N(di1) −KiB

T (r, t)N(di2)
}

=
∑

Ti>T

YiB
Ti(r, t)N(di1) −BT (r, t)

∑

Ti>T

YiKiN(di2)

=
∑

Ti>T

YiB
Ti(r, t)N(di1) −KBT (r, t)N(di2),

(7.51)

where

di1 =
1

v(t, T, Ti)
ln

(
BTi(r, t)

KiBT (r, t)

)

+
1

2
v(t, T, Ti),

di2 = di1 − v(t, T, Ti),

v(t, T, Ti) = β[Ti − T ]
√
T − t,

and we have used the fact that the di2’s are identical, cf. the discussion at the end of Section 7.2.3.

7.4 Vasicek’s model

7.4.1 The short rate process

One of the inappropriate properties of Merton’s model is the constant drift of the short rate.

With a constant positive [negative] drift the short rate is expected to increase [decrease] in all the

future which is certainly not realistic. Many empirical studies find that interest rates exhibit mean

reversion in the sense that if an interest rate is high by historical standards, it will typically fall

in the near future. Conversely if the current interest rate is low. Vasicek (1977) assumes that the

short rate follows an Ornstein-Uhlenbeck process:

drt = κ[θ − rt] dt+ β dzt, (7.52)

where κ, θ, and β are positive constants. Note that this is the dynamics under the real-world

probability measure. As we saw in Section 3.8.2 on page 53, this process is mean reverting. If

rt > θ, the drift of the interest rate is negative so that the short rate tends to fall towards θ. If

rt < θ, the drift is positive so that the short rate tends to increase towards θ. The short rate

is therefore always drawn towards θ, which we call the long-term level of the short rate. The

parameter κ determines the speed of adjustment. As in Merton’s model the volatility of the short

rate is constant, which conflicts with empirical studies of interest rates. See Section 3.8.2 for

simulated paths illustrating the impact of the various parameters on the process.
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It follows from Section 3.8.2 that Vasicek’s model is a Gaussian model. More precisely, the

future short rate in Vasicek’s model is normally distributed with mean and variance given by

Er,t [rT ] = θ + (r − θ)e−κ[T−t], (7.53)

Varr,t [rT ] =
β2

2κ

(

1 − e−2κ[T−t]
)

(7.54)

under the real-world probability measure P. As T → ∞, the mean approaches θ and the variance

approaches β2/(2κ). As κ → ∞, the mean approaches the long-term level θ and the variance

approaches zero. As κ → 0, the mean approaches the current short rate rt and the variance

approaches β2[T − t]. The current difference between the short rate and its long-term level is

expected to be halved over a time period of length T − t = (ln 2)/κ.

Like other Gaussian models, Vasicek’s model assigns a positive probability to negative values

of the future short rate (and all other future rates), despite the inappropriateness of this property.

Figure 7.1 illustrates the distribution of the short rate 1
2 , 1, 2, 5, and 100 years into the future at

a current short rate of rt = 0.05 and four different parameter combinations. Figure 7.2 shows

the real-world probability of the future short rate rT being negative (given rt) for the same four

parameter constellations. Since (rT − Er,t[rT ])/
√

Varr,t[rT ] is standard normally distributed, this

probability is easily computed as

Pr,t(rT < 0) = Pr,t

(

rT − Er,t[rT ]
√

Varr,t[rT ]
< − Er,t[rT ]

√

Varr,t[rT ]

)

= N

(

− Er,t[rT ]
√

Varr,t[rT ]

)

,

into which we can insert (7.53) and (7.54). Clearly, this probability is increasing in the interest

rate volatility β and decreasing in the speed of adjustment κ, in the long-term level θ, and in the

current level of the short rate r.

For pricing purposes we are interested in the dynamics of the short rate under the risk-neutral

(spot martingale) measure and other relevant martingale measures. Vasicek assumed without any

explanation that the market price of r-risk is constant, λ(r, t) = λ. As discussed in Section 5.4, it

is possible to construct an equilibrium model resulting in Vasicek’s assumptions. Since absence of

arbitrage is necessary for an equilibrium to exist, it may seem odd that a model allowing negative

interest rates is consistent with equilibrium. The reason is that the model does not allow agents

to hold cash, so that the “mattress arbitrage” strategy cannot be implemented. Therefore, the

equilibrium model supporting the Vasicek model does not eliminate the critique of the lack of

realism of Vasicek’s model.

With λ(r, t) = λ, the dynamics of the short rate under the risk-neutral measure Q becomes

drt = κ[θ − rt] dt+ β
(

dzQ
t − λ dt

)

= κ[θ̂ − rt] dt+ β dzQ
t ,

(7.55)

where θ̂ = θ−λβ/κ. Relative to the real-world dynamics, the only difference is that the parameter

θ is replaced by θ̂. Hence, the process has the same qualitative properties under the two probability

measures.
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Figure 7.1: The distribution of rT for T − t = 0.5, 1, 2, 5, 100 years given a current short rate of

rt = 0.05.
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Figure 7.2: The probability that rT is negative given rt = 0.05 as a function of the horizon T − t. The

benchmark parameter values are κ = 0.36, θ = 0.05, and β = 0.0265.
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7.4.2 Bond pricing

Vasicek’s model is an affine model since (7.55) is of the form (7.6) with κ̂ = κ, ϕ̂ = κθ̂, δ1 = β2,

and δ2 = 0. It follows from Theorem 7.1 that the price of a zero-coupon bond is

BT (r, t) = e−a(T−t)−b(T−t)r, (7.56)

where b(τ) satisfies the ordinary differential equation

κb(τ) + b′(τ) − 1 = 0, b(0) = 0,

which has the solution

b(τ) =
1

κ

(
1 − e−κτ

)
, (7.57)

and from (7.12) we get

a(τ) = κθ̂

∫ τ

0

b(u) du− 1

2
β2

∫ τ

0

b(u)2 du = y∞[τ − b(τ)] +
β2

4κ
b(τ)2. (7.58)

Here we have introduced the auxiliary parameter

y∞ = θ̂ − β2

2κ2
= θ − λβ

κ
− β2

2κ2

and used that
∫ τ

0

b(u) du =
1

κ
(τ − b(τ)),

∫ τ

0

b(u)2 du =
1

κ2
(τ − b(τ)) − 1

2κ
b(τ)2.

In Section 7.4.3 we shall see that y∞ is the “long rate”, i.e. the limit of the zero-coupon yields as

the maturity goes to infinity.

Let us look at some of the properties of the zero-coupon bond price. Simple differentiation

yields
∂BT

∂r
(r, t) = −b(T − t)BT (r, t),

∂2BT

∂r2
(r, t) = b(T − t)2BT (r, t).

Since b(τ) > 0, the zero-coupon price is a convex, decreasing function of the short rate.

The dependence of the zero-coupon bond price on the parameter κ is illustrated in Figure 7.3.

A high value of κ implies that the future short rate is very likely to be close to θ, and hence the

zero-coupon bond price will be relatively insensitive to the current short rate. For κ → ∞, the

zero-coupon bond price approaches exp{−θ[T − t]}, which is 0.7788 for θ = 0.05 and T − t = 5 as

in the figure.7 Conversely, the zero-coupon bond price is highly dependent on the short rate for

low values of κ. If the current short rate is below the long-term level, a high κ will imply that
∫ T

t
ru du is expected to be larger (and exp{−

∫ T

t
ru du} smaller) than for a low value of κ. In this

case, the zero-coupon bond price BT (r, t) = EQ
r,t

[

exp
(

−
∫ T

t
ru du

)]

is thus decreasing in κ. The

converse relation holds whenever the current short rate exceeds the long-term level.

Clearly, the zero-coupon price is decreasing in θ as shown in Figure 7.4 since with higher θ

we expect higher future rates and, consequently, a higher value of
∫ T

t
ru du. The prices of long

maturity bonds are more sensitive to changes in θ since in the long run θ is more important than

the current short rate.

Figure 7.5 shows the relation between zero-coupon bond prices and the interest rate volatility β.

Obviously, the price is not a monotonic function of β. For low values of β the prices decrease in β,
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Figure 7.3: The price of a 5 year zero-coupon bond as a function of the speed of adjustment parameter κ

for different values of the current short rate r. The other parameter values are θ = 0.05, β = 0.03,

and λ = −0.15.
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are κ = 0.3, β = 0.03, and λ = −0.15.
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Figure 7.5: The price of a zero-coupon bond BT (r, t) as a function of the volatility parameter β for

different combinations of the time to maturity T − t and the current short rate r. The values of the

fixed parameters are κ = 0.3, θ = 0.05, and λ = −0.15.

while the opposite is the case for high β-values. Long-term bonds are more sensitive to β than

short-term bonds.

Figure 7.6 illustrates how the zero-coupon bond price depends on the market price of risk

parameter λ. Formula (7.16) on page 153 implies that the dynamics of the zero-coupon bond price

BTt = BT (r, t) can be written as

dBTt = BTt
[(
rt + λσT (rt, t)

)
dt+ σT (rt, t) dzt

]
,

where σT (rt, t) = −b(T − t)β is negative. The more negative λ is, the higher is the excess expected

return on the bond demanded by the market participants, and hence the lower the current price.

Again the dependence is most pronounced for long-term bonds.

We can also see that the price volatility |σT (rt, t)| = b(T − t)β is independent of the interest

rate level and is concavely, increasing in the time to maturity. Also note that the price volatility

depends on the parameters κ and β, but not on θ or λ.

Finally, Figure 7.7 depicts the discount function, i.e. the zero-coupon bond price as a function of

the time to maturity. Note that with a negative short rate, the discount function is not necessarily

decreasing. For τ → ∞, b(τ) will approach 1/κ, whereas a(τ) → −∞ if y∞ < 0, and a(τ) → +∞
if y∞ > 0. Consequently, if y∞ > 0, the discount function approaches zero for T → ∞, which is a

reasonable property. On the other hand, if y∞ < 0, the discount function will diverge to infinity,

which is clearly inappropriate. The long rate y∞ can be negative if the ratio β/κ is sufficiently

large.

7Note that θ̂ goes to θ for κ → ∞.
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7.4.3 The yield curve

From (7.13) on page 152 the zero-coupon rate yT (r, t) at time t for maturity T is

yT (r, t) =
a(T − t)

T − t
+
b(T − t)

T − t
r.

Straightforward differentiation results in

a′(τ) = y∞[1 − b′(τ)] +
β2

2κ
b(τ)b′(τ), (7.59)

b′(τ) = e−κτ , (7.60)

so that an application of l’Hôspital’s rule implies that

lim
τ→0

b(τ)

τ
= 1 and lim

τ→0

a(τ)

τ
= 0,

and thus

lim
T→t

yT (r, t) = r,

i.e. the short rate is exactly the intercept of the yield curve as it should be. Similarly, it can be

shown that

lim
τ→∞

b(τ)

τ
= 0 and lim

τ→∞

a(τ)

τ
= y∞,

so that

lim
T→∞

yT (r, t) = y∞.

The “long rate” y∞ is therefore constant and, in particular, not affected by changes in the short

rate. The following theorem lists the possible shapes of the zero-coupon yield curve T 7→ yT (r, t)

under the assumptions of Vasicek’s model.

Theorem 7.4 In the Vasicek model the zero-coupon yield curve T 7→ yT (r, t) will have one of

three shapes depending on the parameter values and the current short rate:

(i) If r < y∞ − β2

4κ2 , the yield curve is increasing;

(ii) if r > y∞ + β2

2κ2 , the yield curve is decreasing;

(iii) for intermediate values of r, the yield curve is humped, i.e. increasing in T up to some

maturity T ∗ and then decreasing for longer maturities.

Proof: The zero-coupon rate yT (r, t) is given by

yT (r, t) =
a(T − t)

T − t
+
b(T − t)

T − t
r

= y∞ +
b(T − t)

T − t

(
β2

4κ
b(T − t) + r − y∞

)

,

where we have inserted (7.58). We are interested in the relation between the zero-coupon rate and

the time to maturity T − t, i.e. the function Y (τ) = yt+τ (r, t). Defining h(τ) = b(τ)/τ , we have

that

Y (τ) = y∞ + h(τ)

(
β2

4κ
b(τ) + r − y∞

)

.
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A straightforward computation gives the derivative

Y ′(τ) = h′(τ)

(
β2

4κ
b(τ) + r − y∞

)

+ h(τ)e−κτ
β2

4κ
,

where we have applied that b′(τ) = e−κτ . Introducing the auxiliary function

g(τ) = b(τ) +
h(τ)e−κτ

h′(τ)

we can rewrite Y ′(τ) as

Y ′(τ) = h′(τ)

(

r − y∞ +
β2

4κ
g(τ)

)

. (7.61)

Below we will argue that h′(τ) < 0 for all τ and that g(τ) is a monotonically increasing function

with g(0) = −2/κ and g(τ) → 1/κ for τ → ∞. This will imply the claims of the theorem as can

be seen from the following arguments. If r − y∞ + β2/(4κ2) < 0, then the parenthesis on the

right-hand side of (7.61) is negative for all τ . In this case Y ′(τ) > 0 for all τ , and hence the

yield curve will be monotonically increasing in the maturity. Similarly, the yield curve will be

monotonically decreasing in maturity, i.e. Y ′(τ) < 0 for all τ , if r − y∞ − β2/(2κ2) > 0. For the

remaining values of r the expression in the parenthesis on the right-hand side of (7.61) will be

negative for τ ∈ [0, τ∗) and positive for τ > τ∗, where τ∗ is uniquely determined by the equation

r − y∞ +
β2

4κ
g(τ∗) = 0.

In that case the yield curve is “humped”.

Now let us show that h′(τ) < 0 for all τ . Simple differentiation yields h′(τ) = (e−κτ τ−b(τ))/τ2,

which is negative if e−κτ τ < b(τ) or, equivalently, if 1+κτ < eκτ , which is clearly satisfied (compare

the graphs of the functions 1 + x and ex).

Finally, by application of l’Hôpital’s rule, it can be shown that g(0) = −2/κ and g(τ) → 1/κ

for τ → ∞. By differentiation and tedious manipulations it can be shown that g is monotonically

increasing. 2

Figure 7.8 shows the possible shapes of the yield curve. For any maturity the zero-coupon

rate is an increasing affine function of the short rate. An increase [decrease] in the short rate will

therefore shift the whole yield curve upwards [downwards]. The change in the zero-coupon rate

will be decreasing in the maturity, so that shifts are not parallel. Twists of the yield curve where

short rates and long rates move in opposite directions are not possible.

According to (7.15) on page 152, the instantaneous forward rate fT (r, t) prevailing at time t is

given by

fT (r, t) = a′(T − t) + b′(T − t)r.

Applying (7.59) and (7.60) this expression can be rewritten as

fT (r, t) = −
(

1 − e−κ[T−t]
)( β2

2κ2

(

1 − e−κ[T−t]
)

− θ̂

)

+ e−κ[T−t]r

=
(

1 − e−κ[T−t]
)(

y∞ +
β2

2κ2
e−κ[T−t]

)

+ e−κ[T−t]r.

(7.62)

Because the short rate can be negative, so can the forward rates.
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Figure 7.8: The yield curve for different values of the short rate. The parameter values are κ = 0.3,

θ = 0.05, β = 0.03, and λ = −0.15. The long rate is then y∞ = 6%. The yield curve is increasing for

r < 5.75%, decreasing for r > 6.5%, and humped for intermediate values of r. The curve for r = 6%

exhibits a very small hump with a maximum yield for a time to maturity of approximately 5 years.

7.4.4 Forwards and futures

The forward price on a zero-coupon bond in Vasicek’s model is obtained by substituting the

functions b and a from (7.57) and (7.58) into the general expression

FT,S(r, t) = exp {− [a(S − t) − a(T − t)] − [b(S − t) − b(T − t)] r} ,

cf. (7.19).

In Vasicek’s model the δ2 parameter in the general dynamics (7.6) is zero, so that the b̃ function

involved in the futures price on a zero-coupon bond, ΦT,S(r, t) = e−ã(T−t)−b̃(T−t)r, according to

Theorem 7.2 is

b̃(τ) = b(τ + S − T ) − b(τ) = e−κτ b(S − T ).

Substituting this into (7.24) we get that the ã function in the futures price expression is

ã(τ) = a(S − T ) + κθ̂b(S − T )

∫ τ

0

e−κu du− 1

2
β2b(S − T )2

∫ τ

0

e−2κu du

= a(S − T ) + κθ̂b(S − T )b(τ) − 1

2
β2b(S − T )2

(

b(τ) − 1

2
κb(τ)2

)

.

Forward and futures prices on coupon bonds are found by inserting the formulas above into (7.26)

and (7.27).

For Eurodollar futures, (7.29) implies that the quoted price is given by

Ẽ
T (r, t) = 500 − 400e−â(T−t)−b̂(T−t)r,
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and since δ2 = 0, we have b̂(τ) = b(τ) − b(τ + 0.25) = −b(0.25)e−κτ . From (7.28) we get that

â(τ) = −a(0.25) − κθ̂b(0.25)

∫ τ

0

e−κu du− 1

2
β2b(0.25)2

∫ τ

0

e−2κu du

= −a(0.25) − κθ̂b(0.25)b(τ) − 1

2
β2b(0.25)2

(

b(τ) − 1

2
κb(τ)2

)

.

7.4.5 Option pricing

The future values of the short rate are normally distributed so we know from Section 7.2.3 that

the price of a European call option on a zero-coupon bond is given by

CK,T,S(r, t) = BS(r, t)N(d1) −KBT (r, t)N(d2), (7.63)

with

d1 =
1

v(t, T, S)
ln

(
BS(r, t)

KBT (r, t)

)

+
1

2
v(t, T, S), (7.64)

d2 = d1 − v(t, T, S) (7.65)

and

v(t, T, S)2 = β2

∫ T

t

[b(S − u) − b(T − u)]
2
du

=
β2

2κ3

(

1 − e−κ[S−T ]
)2 (

1 − e−2κ[T−t]
)

.

(7.66)

This option pricing formula was first derived by Jamshidian (1989).

Figure 7.9 illustrates how the call price depends on the current short rate. An increase in

the short rate has the effect that the present value of the exercise price decreases, which leaves

the call option more valuable. This effect is known from the Black-Scholes-Merton stock option

formula. For bond options there is an additional effect. When the short rate increases, the price of

the underlying bond decreases, which will lower the call option value. According to the figure, the

latter effect dominates at least for the parameters used when generating the graph. See Exercise 7.2

for more on the relation between the call price and the short rate.

The relation between the call price and the interest rate volatility β is shown in Figure 7.10.

An increase in β yields a higher volatility on the underlying bond, which makes the option more

valuable. However, the price of the underlying bond also depends on β. As shown in Figure 7.5,

the bond price will decrease with β for low values of β, and this effect can be so strong that the

option can decrease with β.

Because the function b(τ) is strictly positive in Vasicek’s model, we can apply Jamshidian’s

trick of Theorem 7.3 for the pricing of a European call option on a coupon bond:

CK,T,cpn(r, t) =
∑

Ti>T

Yi
{
BTi(r, t)N(di1) −KiB

T (r, t)N(di2)
}

=
∑

Ti>T

YiB
Ti(r, t)N(di1) −KBT (r, t)N(di2),

(7.67)

where Ki is defined as Ki = BTi(r∗, T ), r∗ is given as the solution to the equation B(r∗, T ) = K,
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Figure 7.9: The price of a European call option on a zero-coupon bond as a function of the current

short rate r. The option expires in T − t = 0.5 years, while the bond matures in S − t = 5 years. The

prices are computed using Vasicek’s model with parameter values β = 0.03, κ = 0.3, θ = 0.05, and

λ = −0.15.
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Figure 7.10: The price of a European call option on a zero-coupon bond as a function of the interest
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The prices are computed using Vasicek’s model with the parameter values κ = 0.3, θ = 0.05, and

λ = −0.15.
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and

di1 =
1

v(t, T, Ti)
ln

(
BTi(r, t)

KiBT (r, t)

)

+
1

2
v(t, T, Ti),

di2 = di1 − v(t, T, Ti),

v(t, T, Ti) =
β√
2κ3

(

1 − e−κ[Ti−T ]
)(

1 − e−2κ[T−t]
)1/2

.

Here we have used that we know that all the di2’s are identical.

7.5 The Cox-Ingersoll-Ross model

7.5.1 The short rate process

Probably the most popular one-factor model, both among academics and practitioners, was

suggested by Cox, Ingersoll, and Ross (1985b). They assume that the short rate follows a square

root process

drt = κ [θ − rt] dt+ β
√
rt dzt, (7.68)

where κ, θ, and β are positive constants. We will refer to the model as the CIR model. Some of

the key properties of square root processes were discussed in Section 3.8.3. Just as the Vasicek

model, the CIR model for the short rate exhibits mean reversion around a long term level θ. The

only difference relative to Vasicek’s short rate process is the specification of the volatility, which is

not constant, but an increasing function of the interest rate, so that the short rate is less volatile

for low levels than for high levels of the rate. This property seems to be consistent with observed

interest rate behavior – whether the relation between volatility and short rate is of the form β
√
r

is not so clear, cf. the discussion in Section 7.7. The short rate in the CIR model cannot become

negative, which is a major advantage relative to Vasicek’s model. The value space of the short

rate in the CIR model is either S = [0,∞) or S = (0,∞) depending on the parameter values; see

Section 3.8.3 for details.

As discussed in Section 5.4, the CIR model is a special case of a comprehensive general equi-

librium model of the financial markets developed by the same authors in another article, Cox,

Ingersoll, and Ross (1985a). The short rate process (7.68) and an expression for the market price

of interest rate risk, λ(r, t), is the output of the general model under specific assumptions on pref-

erences, endowments, and the underlying technology.8 According to the model the market price

of risk is

λ(r, t) =
λ
√
r

β
,

where λ on the right-hand side is a constant. The drift of the short rate under the risk-neutral

measure is therefore

α(r, t) − β(r, t)λ(r, t) = κ[θ − r] − λ
√
r

β
β
√
r = κθ − (κ+ λ)r.

Defining κ̂ = κ+ λ and ϕ̂ = κθ, the process for the short rate under the risk-neutral measure can

be written as

drt = (ϕ̂− κ̂rt) dt+ β
√
rt dz

Q
t . (7.69)

8In their general model r is in fact the real short-term interest rate and not the nominal short-term interest rate

that we can observe. However, in practice the model is used for the nominal rates.



7.5 The Cox-Ingersoll-Ross model 175

Since this is of the form (7.6) with δ1 = 0 and δ2 = β2, we see that the CIR model is also an affine

model. We can rewrite the dynamics as

drt = κ̂
[

θ̂ − rt

]

dt+ β
√
rt dz

Q
t ,

where θ̂ = κθ/(κ + λ). Hence, the short rate also exhibits mean reversion under the risk-neutral

probability measure, but both the speed of adjustment and the long-term level are different than

under the real-world probability measure. In Vasicek’s model, only the long-term level was changed

by the change of measure.

In the CIR model the distribution of the future short rate rT (conditional on the current short

rate rt) is given by the non-central χ2-distribution. The precise density function follows from the

analysis of the square root process in Section 3.8.3. The mean and variance of rT given rt = r are

Er,t[rT ] = θ + (r − θ)e−κ[T−t],

Varr,t[rT ] =
β2r

κ

(

e−κ[T−t] − e−2κ[T−t]
)

+
β2θ

2κ

(

1 − e−κ[T−t]
)2

.

Note that the mean is just as in Vasicek’s model, cf. (7.53), while the expression for the variance is

slightly more complicated than in the Vasicek model, cf. (7.54). For T → ∞, the mean approaches θ

and the variance approaches θβ2/(2κ). For κ→ ∞, the mean goes to θ and the variance goes to 0.

For κ → 0, the mean approaches the current rate r and the variance approaches β2r[T − t]. The

future short rate is also non-centrally χ2-distributed under the risk-neutral measure, but relative

to the expressions above κ is to be replaced by κ̂ = κ+ λ and θ by θ̂ = κθ/(κ+ λ).

7.5.2 Bond pricing

Since the CIR model is affine, Theorem 7.1 implies that the price of a zero-coupon bond

maturing at time T is

BT (r, t) = e−a(T−t)−b(T−t)r, (7.70)

where the functions a(τ) and b(τ) solve the ordinary differential equations (7.8) and (7.9), which

for the CIR model become

1

2
β2b(τ)2 + κ̂b(τ) + b′(τ) − 1 = 0, (7.71)

a′(τ) − κθb(τ) = 0 (7.72)

with the conditions a(0) = b(0) = 0. The solution to these equations is

b(τ) =
2(eγτ − 1)

(γ + κ̂)(eγτ − 1) + 2γ
, (7.73)

a(τ) = −2κ̂θ̂

β2

(

ln(2γ) +
1

2
(κ̂+ γ)τ − ln [(γ + κ̂)(eγτ − 1) + 2γ]

)

, (7.74)

where γ =
√

κ̂2 + 2β2, cf. Exercise 7.4.

Since
∂BT

∂r
(r, t) = −b(T − t)BT (r, t),

∂2BT

∂r2
(r, t) = b(T − t)2BT (r, t)

and b(τ) > 0, the zero-coupon bond price is a convex, decreasing function of the short rate.

Furthermore, the price is a decreasing function of the time to maturity; a concave, increasing
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function of β2; a concave, increasing function of λ; and a convex, decreasing function of θ. The

dependence on κ is determined by the relation between the current short rate r and the long-term

level θ: if r > θ, the bond price is a concave, increasing function of κ; if r < θ, the price is a

convex, decreasing function of κ.

Manipulating (7.16) slightly, we get that the dynamics of the zero-coupon price BTt = BT (r, t)

is

dBTt = BTt
[
rt (1 − λb(T − t)) dt+ σT (rt, t) dzt

]
,

where σT (r, t) = −b(T − t)β
√
r. The volatility |σT (r, t)| = b(T − t)β

√
r of the zero-coupon bond

price is thus an increasing function of the interest rate level and an increasing function of the time

to maturity, since b′(τ) > 0 for all τ . Note that the volatility depends on κ̂ = κ + λ and β, but

(similar to the Vasicek model) not on θ.

7.5.3 The yield curve

Next we study the zero-coupon yield curve T 7→ yT (r, t). From (7.13) we have that

yT (r, t) =
a(T − t)

T − t
+
b(T − t)

T − t
r.

It can be shown that yt(r, t) = r and that

y∞ ≡ lim
T→∞

yT (r, t) =
2κ̂θ̂

κ̂+ γ
.

Concerning the shape of the yield curve, Kan (1992) has shown the following result:

Theorem 7.5 In the CIR model the shape of the yield curve depends on the parameter values and

the current short rate as follows:

(1) If κ̂ > 0, the yield curve is decreasing for r ≥ ϕ̂/κ̂ = κθ/(κ+ λ) and increasing for 0 ≤ r ≤
ϕ̂/γ. For ϕ̂/γ < r < ϕ̂/κ̂, the yield curve is humped, i.e. first increasing, then decreasing.

(2) If κ̂ ≤ 0, the yield curve is increasing for 0 ≤ r ≤ ϕ̂/γ and humped for r > ϕ̂/γ.

The proof of this theorem is rather complicated and is therefore omitted. Estimations of the model

typically give κ̂ > 0, so that the first case applies. (See references to estimations in Section 7.7.)

The term structure of forward rates T 7→ fT (r, t) is given by

fT (r, t) = a′(T − t) + b′(T − t)r,

which using (7.71) and (7.72) can be rewritten as

fT (r, t) = r + κ̂
[

θ̂ − r
]

b(T − t) − 1

2
β2rb(T − t)2. (7.75)

7.5.4 Forwards and futures

The forward price on a zero-coupon bond in the CIR model is found by substituting the

functions b and a from (7.73) and (7.74) into the general expression

FT,S(r, t) = exp {− [a(S − t) − a(T − t)] − [b(S − t) − b(T − t)] r} ,
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which is known from (7.19). The forward price on a coupon bond follows from (7.26).

It is more complicated to determine the futures price on a zero-coupon bond in the CIR model

than it was in the models of Merton and Vasicek, due to the fact that the parameter δ2 is non-zero

in the CIR model. From Theorem 7.2 we have that the futures price is of the form

ΦT,S(r, t) = e−ã(T−t)−b̃(T−t)r,

where the function b̃ is a solution to the ordinary differential equation (7.22), which in the CIR

model becomes
1

2
β2b̃(τ)2 + κ̂b̃(τ) + b̃′(τ) = 0, τ ∈ (0, T ),

with the condition b̃(0) = b(S − T ). Then the function ã can be determined from (7.24), which in

the present case is

ã(τ) = a(S − T ) + κθ

∫ τ

0

b̃(u) du.

The solution is

b̃(τ) =
2κ̂b(S − T )

β2b(S − T ) (eκ̂τ − 1) + 2κ̂eκ̂τ
, (7.76)

ã(τ) = a(S − T ) − 2κθ

β2
ln

(

b̃(τ)eκ̂τ

b(S − T )

)

. (7.77)

The futures price on a coupon bond follows from (7.27).

According to (7.29) the quoted Eurodollar futures price is

Ẽ
T (r, t) = 500 − 400e−â(T−t)−b̂(T−t)r,

where the functions â and b̂ in the CIR model can be computed to be

b̂(τ) =
−2κ̂b(0.25)

−β2b(0.25) (eκ̂τ − 1) + 2κ̂eκ̂τ
, (7.78)

â(τ) = −a(0.25) − 2κθ

β2
ln

(

− b̂(τ)e
κ̂τ

b(0.25)

)

. (7.79)

7.5.5 Option pricing

To price European options on zero-coupon bonds we can try to compute

CK,T,S(r, t) = BT (r, t) EQT

r,t

[
max

(
BS(rT , T ) −K, 0

)]

using the distribution of rT under the T -forward martingale measure QT (given rt = r). In

the models of Merton and Vasicek, this approach was relatively straightforward since rT was

normally distributed and, hence, BS(rT , T ) lognormally distributed so that we were basically back

to the Black-Scholes-Merton case. However, in the CIR model the distribution of rT and, hence,

BS(rT , T ) is much more complicated so this approach is much more complicated.

Instead, we recall from Section 7.2.3 that the option price can alternatively be written as

CK,T,S(r, t) = BS(r, t) QS
t

(

rT <
− lnK − a(S − T )

b(S − T )

)

−KBT (r, t) QT
t

(

rT <
− lnK − a(S − T )

b(S − T )

)

.

(7.80)
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Equation 7.37 for the QS-dynamics of r specializes to

drt =
(
ϕ̂−

[
κ̂+ β2b(S − t)

]
rt
)
dt+ β

√
rt dz

S
t . (7.81)

In the drift term the coefficient on rt is now a deterministic function of time, but nevertheless

future values will still be non-centrally χ2-distributed. The probabilities in (7.80) can therefore

be computed from the cumulative distribution function of the non-central χ2-distribution with

appropriate parameters. We will skip the details and simply state the resulting pricing formula

first derived by Cox, Ingersoll, and Ross:

CK,T,S(r, t) = BS(r, t)χ2(h1; f, g1) −KBT (r, t)χ2(h2; f, g2), (7.82)

where χ2(·; f, g) is the cumulative distribution function for a non-centrally χ2-distributed random

variable with f degrees of freedom and non-centrality parameter g. The formula has the same

structure as in the models of Merton and Vasicek, but the relevant distribution function is no

longer the normal distribution function. The parameters f , gi, and hi are given by

f =
4κθ

β2
, h1 = 2r̄ (ξ + ψ + b(S − T )) , h2 = 2r̄(ξ + ψ),

g1 =
2ξ2reγ[T−t]

ξ + ψ + b(S − T )
, g2 =

2ξ2reγ[T−t]

ξ + ψ
,

and we have introduced the auxiliary parameters

ξ =
2γ

β2
[
eγ[T−t] − 1

] , ψ =
κ̂+ γ

β2
, r̄ = −a(S − T ) + lnK

b(S − T )
.

Note that r̄ is exactly the critical interest rate, i.e. the value of the short rate for which the option

finishes at the money, since BS(r̄, T ) = K.

To implement the formula, the following approximation of the χ2-distribution function is useful:

χ2(h; f, g) ≈ N(d),

where

d = k

((
h

f + g

)m

− l

)

,

m = 1 − 2

3

(f + g)(f + 3g)

(f + 2g)2
,

k =
(
2m2p [1 − p(1 −m)(1 − 3m)]

)−1/2
,

l = 1 +m(m− 1)p− 1

2
m(m− 1)(2 −m)(1 − 3m)p2,

p =
f + 2g

(f + g)2
.

This approximation was originally suggested by Sankaran (1963) and has subsequently been applied

in the CIR model by Longstaff (1993). For a more precise approximation, see Ding (1992).

Because of the complexity of the formula it is difficult to evaluate how the call price depends

on the parameters and variables involved. Of course, the call price is an increasing function of the

time to maturity of the option9 and a decreasing function of the exercise price. An increase in the

9There are no payments on the underlying asset in the life of the option, so a European call is equivalent to an

American call, which clearly increases in value as time to maturity is increased.
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short rate r has two effects on the call price: the present value of the exercise price decreases, but

the value of the underlying bond also decreases. According to Cox, Ingersoll, and Ross (1985b),

numerical computations indicate that the latter effect dominates the first so that the call price is

a decreasing function of the interest rate, as we saw it in Vasicek’s model.

For the pricing of European options on coupon bonds we can again apply Jamshidian’s trick of

Theorem 7.3:

CK,T,cpn(r, t) =
∑

Ti>T

YiB
Ti(r, t)χ2(h1i; f, g1i) −KBT (r, t)χ2(h2; f, g2), (7.83)

where

h1i = 2r∗ (ξ + ψ + b(Ti − T )) , h2 = 2r∗(ξ + ψ), g1i =
2ξ2reγ[T−t]

ξ + ψ + b(Ti − T )
,

and f , g2, ξ, and ψ are defined just below (7.82). This result was first derived by Longstaff (1993).

7.6 Non-affine models

The financial literature contains many other one-factor models than those that fit into the

affine framework studied in the previous sections. In this section we will go through the non-affine

models that have attracted most attention, which are models where the future values of the short

rate are lognormally distributed.

An apparently popular model among practitioners is the model suggested by Black and Karasin-

ski (1991) and, in particular, the special case considered by Black, Derman, and Toy (1990), the

so-called BDT model. The general time homogeneous version of the Black-Karasinski model is

d(ln rt) = κ[θ − ln rt] dt+ β dzQ
t , (7.84)

where κ, θ, and β are constants. Typically, practitioners replace the parameters κ, θ, and β by

deterministic functions of time which are chosen to ensure that the model prices of bonds and caps

are consistent with current market prices. We will discuss this idea in Chapter 9 and stick to the

model with constant parameters in this section. Relative to the Vasicek model rt is replaced by ln rt

in the stochastic differential equation. Since rT (given rt) is normally distributed in the Vasicek

model, it follows that ln rT (given rt) is normally distributed in the Black-Karasinski model, i.e. rT

is lognormally distributed. A pleasant consequence of this is that the interest rate stays positive.

Also this model exhibits a form of mean reversion. Assume that κ > 0. If rt < eθ, the drift rate of

ln rt is positive so that rt is expected to increase. Conversely if rt > eθ. The parameter κ measures

the speed at which ln rt is drawn towards θ. An application of Itô’s Lemma gives that

drt =

([

κθ +
1

2
β2

]

rt − κrt ln rt

)

dt+ βrt dz
Q
t .

There are no closed-form pricing expressions neither for bonds nor forwards, futures, and options

within this framework. Black and Karasinski implement their model in a binomial tree in which

prices can be computed by the well-known backward iteration procedure.

In the Black-Karasinski model (7.84) the future short rate is lognormally distributed. Another

model with this property is the one where the short rate follows a geometric Brownian motion

drt = rt

[

αdt+ β dzQ
t

]

, (7.85)
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where α and β are constants. Such a model was applied by Rendleman and Bartter (1980).

However, as the Black-Karasinski model, this lognormal model does not allow simple closed-form

expressions for the prices we are interested in.10

In addition to the lack of nice pricing formulas, the lognormal models (7.84) and (7.85) have

another very inappropriate property. As shown by Hogan and Weintraub (1993) these models

imply that, for all t, T, S with t < T < S,

EQ
r,t

[
(BS(rT , T ))−1

]
= ∞. (7.86)

As noted by Sandmann and Sondermann (1997) this result has two inexpedient consequences,

which we state in the following theorem.

Theorem 7.6 In the lognormal one-factor models (7.84) and (7.85) the following holds:

(a) An investment in the bank account over any period of time of strictly positive length is expected

to give an infinite return, i.e. for t ≤ T < S

EQ
r,t

[

exp

{
∫ S

T

ru du

}]

= ∞.

(b) The quoted Eurodollar futures price is ẼT (r, t) = −∞.

Proof: The first part of the theorem follows by Jensen’s inequality, which gives that11

BS(r, T ) = EQ
r,T

[

exp

{

−
∫ S

T

ru du

}]

= EQ
r,T





(

exp

{
∫ S

T

ru du

})−1


 >

(

EQ
r,T

[

exp

{
∫ S

T

ru du

}])−1

and hence

BS(r, T )−1 < EQ
r,T

[

exp

{
∫ S

T

ru du

}]

.

Taking expectations EQ
r,t[ · ] on both sides we get12

EQ
r,t

[

exp

{
∫ S

T

ru du

}]

> EQ
r,t

[
(BS(rT , T ))−1

]
= ∞,

where the equality comes from (7.86).

From (6.11) we have that the quoted Eurodollar futures price is

Ẽ
T (r, T ) = 500 − 400EQ

r,t

[
(BT+0.25(rT , T ))−1

]
.

10Dothan (1978) and Hogan and Weintraub (1993) state some very complicated pricing formulas for zero-coupon

bonds which involve complex numbers, Bessel functions, and hyperbolic trigonometric functions! A seemingly fast

and accurate recursive procedure for the computation of bond prices in the model (7.85) is described by Hansen

and Jørgensen (2000).
11Jensen’s inequality says that if X is a random variable and f(x) is a convex function, then E[f(X)] > f(E[X]).

12Here we apply the law of iterated expectations: EQ
r,t

[

EQ
rT ,T [Y ]

]

= EQ
r,t[Y ] for any random variable Y .
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Inserting (7.86) with S = T +0.25 into the expression above we get the second part of the theorem.

2

Since Eurodollar futures is a highly liquid product on the international financial markets, it is

very inappropriate to use a model which clearly misprices these contracts.

It can be shown that the problematic relation (7.86) is avoided by assuming that either the

effective annual interest rates or the LIBOR interest rates are lognormally distributed instead of

the continuously compounded interest rates. Models with lognormal LIBOR rates have become

very popular in recent years, primarily because they are (at least to some extent) consistent with

practitioners’ use of Black’s pricing formula. We will study such models closely in Chapter 11.

In summary, the lognormal models (7.84) and (7.85) have the nice property that negative rates

are precluded, but they do not allow simple pricing formulas and they clearly misprice an important

class of assets. For these reasons it is difficult to see why they have gained such popularity. The

CIR model, for example, also precludes negative interest rates, is analytically tractable, and does

not lead to obvious mispricing of any contracts. Furthermore, the model is consistent with a

general equilibrium of the economy. Of course, these arguments do not imply that the CIR model

provides the best description of the movements of interest rates over time, cf. the discussion in the

next section.

Finally, let us mention some models that are neither affine nor lognormal. The model

drt = κ [θ − rt] dt+ βrt dz
Q
t (7.87)

was suggested by Brennan and Schwartz (1980) and Courtadon (1982). Despite the relatively

simple dynamics, no explicit pricing formulas have been derived neither for bonds nor derivative

assets.

Longstaff (1989), Beaglehole and Tenney (1991, 1992), and Leippold and Wu (2002) consider

so-called quadratic models where the short rate is given as rt = x2
t , and xt follows an Ornstein-

Uhlenbeck process (like the r-process in Vasicek’s model). This specification ensures non-negative

interest rates. The price of a zero-coupon bond is of the form

BT (x, t) = e−a(T−t)−b(T−t)x−c(T−t)x2

,

where the functions a, b, and c solve ordinary differential equations. Relative to the affine models,

a quadratic term has been added. The quadratic models thus give a more flexible relation between

zero-coupon bond prices and the short rate. Leippold and Wu (2002) and Jamshidian (1996) obtain

some rather complex expressions for the prices of European bond options and other derivatives.

7.7 Parameter estimation and empirical tests

To implement a model, one must assume some values of the parameters. In practice, the true

values of the parameters are unknown, but values can be estimated from observed interest rates

and prices. For concreteness we will take the estimation of the Vasicek model as an example,

but similar considerations apply to other models. The parameters of Vasicek’s model are κ, θ, β,

and λ. The estimation methods can be divided into three classes: time series estimation, cross

section estimation, and panel data estimation. Below we give a short introduction to these methods
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and mention some important studies. More details on the estimation and test of dynamic term

structure models can be found in textbooks such as Campbell, Lo, and MacKinlay (1997) and

James and Webber (2000).

Time series estimation With this approach the parameters of the process for the short rate

are estimated from a time series of historical observations of a short-term interest rate. The esti-

mation itself can be carried out by means of different statistical methods, e.g. maximum likelihood

[as in Marsh and Rosenfeld (1983) and Ogden (1987)] or various moment matching methods [as

in Andersen and Lund (1997), Chan, Karolyi, Longstaff, and Sanders (1992), and Dell’ Aquila,

Ronchetti, and Trojani (2003)]. An essential, practical problem is that no interest rates of zero

maturity are observable so that some proxy must be applied. Interest rates of very short maturities

are set at the money market, but due to e.g. the credit risk of the parties involved these rates are

not perfect substitutes for the truly risk-free interest rate of zero maturity, which is represented by

rt in the models. Most authors use yields on government bonds with short maturities, e.g. one or

three months, as an approximation to the short rate. However, Knez, Litterman, and Scheinkman

(1994) and Duffee (1996) argue that special features of the trading in one-month U.S. Treasury

bills affect the yields on these bonds making them a questionable proxy for the short rate in our

term structure models. Chapman, Long Jr., and Pearson (1999) and Honoré (1998) study the

sensitivity of model estimation results to various proxies for the short rate.

Another problem in applying the time series approach is that not all parameters of the model

can be identified. In Vasicek’s model only the parameters κ, θ, and β that enters the real-world

dynamics of the short rate in (7.52) can be estimated. The missing parameter λ only affects the

process for rt under the risk adjusted martingale measures, but the time series of interest rates is

of course observed in the real world, i.e. under the real-world probability measure.

A third problem is that a large number of observations are required to give reasonably certain

parameter estimates. However, the longer the observation period is, the less likely it is that the

short rate has followed the same process (with constant parameters) during the entire period.

Furthermore, the time series approach ignores the fact that the interest rate models not only

describe the dynamics of the short rate but also describe the entire yield curve and its dynamics.

Cross section estimation Alternatively, the parameters of the model can be estimated as the

values that will lead to model prices of a cross section of liquid bonds (and possibly other fixed

income securities) that are as close as possible to the current market prices of these assets. Then

the estimated model can be applied to price less liquid assets in a way which is consistent with the

market prices of the liquid assets. Typically, the parameter values are chosen to minimize the sum

of squared deviations of model prices from market prices where the sum runs over all the assets in

the chosen cross section. Such a procedure is simple to implement.

A cross section estimation cannot identify all parameters of the model either. The current

prices only depend on the parameters that affect the short rate dynamics under the risk adjusted

martingale measures. For Vasicek’s model this is the case for θ̂, β, and κ. The parameters θ and

λ cannot be estimated separately. However, if the only use of the model is to derive current prices

of other assets, we only need the values of θ̂, β, and κ. In view of the problems connected with

observing the short rate, the value of the short rate is often estimated in line with the parameters
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of the model.

A cross section estimation completely ignores the time series dimension of the data. The

estimation procedure does not in any way ensure that the parameter values estimated at different

dates are of similar magnitudes.13 The model’s results concerning the dynamics of interest rates

and asset prices are not used at all in the estimation.

Panel data estimation This estimation approach combines the two approaches described above

by using both the time series and the cross section dimension of the data and the models. Typically,

the data used are time series of selected yields of different maturities. With a panel data approach

all the parameters can be estimated. For example, Gibbons and Ramaswamy (1993) and Daves

and Ehrhardt (1993) apply this procedure to estimate the CIR model. If we want to apply a

model both for pricing certain assets and for assessing and managing the changes in interest rates

and prices over time, we should also base our estimation on both cross sectional and time series

information.

Two relatively simple versions of the panel data approach are obtained by emphasizing either

the time series dimension or the cross section dimension and only applying the other dimension

to get all the parameters identified. As discussed above the parameters κ, θ, and β of Vasicek’s

model can be estimated from a time series of observations of (approximations of) the short rate.

The remaining parameter λ can then be estimated as the value that leads to model prices (using

the already fixed estimates of κ, θ, and β) that are as close as possible to the current prices on

selected, liquid assets. On the other hand, one can estimate κ, θ̂, and β from a cross section and

then estimate θ from a time series of interest rates (using the already fixed estimates of κ and β).

In this way an estimate of λ can be determined such that the relation θ̂ = θ − λβ/κ holds for the

estimated parameter values.

In any estimation the parameter values are chosen such that the model fits the data to the

best possible extent according to some specified criterion. Typically, an estimation procedure will

also generate information on how well the model fits the data. Therefore, most papers referred to

above also contain a test of one or several models.

Probably the most frequently cited reference on the estimation, comparison, and test of one-

factor diffusion models of the term structure is Chan, Karolyi, Longstaff, and Sanders (1992)

[henceforth abbreviated CKLS], who consider time homogeneous models of the type

drt = (θ − κrt) dt+ βrγt dzt. (7.88)

By restricting the values of the parameters θ, κ, and γ, many of the models studied earlier are

obtained as special cases, for example the models of Merton (κ = γ = 0), Vasicek (γ = 0), CIR

(γ = 1/2), and the lognormal model (7.85) (γ = 1, θ = 0). CKLS use the one-month yield on

government bonds as an approximation to the short-term interest rate and apply a time series

approach on U.S. data over the period 1964–1989. They estimate eight different restricted models

and the unrestricted model and test how well they perform in describing the evolution in the

short rate over the given period. Their results indicate that it is primarily the value that the

13For example, Brown and Dybvig (1986) find that the parameter estimates of the CIR model fluctuate consid-

erably over time.
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model assigns to the parameter γ which determines whether the model is rejected or accepted.

The unrestricted estimate of γ is approximately 1.5, and models having a much lower γ-value are

rejected in their test, including the Vasicek model and the CIR model. On the other hand, the

lognormal model (7.85) is accepted.

Subsequently the CKLS analysis has been criticized on several counts. Firstly, as mentioned

above, the one month yield may be a poor approximation to the zero-maturity short rate. This

critique can be met in a one-factor model by using the one-to-one relation between the zero-coupon

rate of any given maturity and the true short rate. For the affine models this relation is given

by (7.13) where the functions a and b are known in closed-form for some affine models (Merton,

Vasicek, and CIR), and for the other affine models they can be computed quickly and accurately

by solving the Ricatti differential equations (7.8) and (7.9) numerically. For non-affine models the

relation can be found by numerically solving the PDE (7.3) for a zero-coupon bond with the given

time to maturity (one month in the CKLS case) and transforming the price to a zero-coupon yield.

In this way Honoré (1998) transforms a time series of zero-coupon rates with a given maturity to

a time series of implicit zero-maturity short rates. Based on the transformed time series of short

rates he finds estimates of the parameter γ in the interval between 0.8 and 1.0, which is much

lower than the CKLS-estimate.

Another criticism, advanced by Bliss and Smith (1997), is that the data set used by CKLS

includes the period between October 1979 and September 1982, when the Federal Reserve, i.e. the

U.S. central bank, followed a highly unusual monetary policy (“the FED Experiment”) resulting

in a non-representative dynamics in interest rates, in particular the short rates. Hence, Bliss and

Smith allow the parameters to have different values in this sub-period than in the rest of the

period used by CKLS (1964–1989). Outside the experimental period the unrestricted estimate of

γ is 1.0, which is again considerably smaller than the CKLS-estimate. The only models that are

not rejected on a 5% test level are the CIR model and the Brennan-Schwartz model (7.87).

Finally, applying a different estimation method and a different data set (weekly observations of

three month U.S. government bond yields over the period 1954-1995), Andersen and Lund (1997)

estimate γ to 0.676, which is much lower than the estimate of CKLS. Christensen, Poulsen, and

Sørensen (2001) discuss some general problems in estimating a process like (7.88), and using a

maximum likelihood estimation procedure and 1982-1995 data they obtain a γ-estimate of 0.78.

The tests mentioned above are based on a time series of (approximations of) the short rate.

Similar tests of the CIR model using other time series are performed by Brown and Dybvig (1986)

and Brown and Schaefer (1994). On the other hand, Gibbons and Ramaswamy (1993) test the

ability of the CIR model to simultaneously describe the evolution in four zero-coupon rates, namely

the 1, 3, 6, and 12 month rates (a panel data test). With data covering the same period as the

CKLS study, they accept the CIR model.

By now it should be clear that the extensive empirical literature cannot give a clear-cut answer

to the question of which one-factor model fits the data best. The answer depends on the data and

the estimation technique applied. In most tests models with constant interest rate volatility, such

as the models of Merton and Vasicek, and typically also all models without mean reversion are

rejected. The CIR model is accepted in most tests, and since it both has nice theoretical properties

and allows relatively simple closed-form pricing formulas, it is widely used both by academics and

practitioners.
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7.8 Concluding remarks

In this chapter we have studied time homogeneous one-factor diffusion models of the term

structure of interest rates. They are all based on specific assumptions on the evolution of the

short rate and on the market price of interest rate risk. The models of Vasicek and Cox, Ingersoll,

and Ross are frequently applied both by practitioners for pricing and risk management and by

academics for studying the effects of interest rate uncertainty on various financial issues. Both

models are consistent with a general economic equilibrium model, although this equilibrium is

based on many simplifying and unrealistic assumptions on the economy and its agents. Both

models are analytically tractable and generate relatively simple pricing formulas for many fixed

income securities. The CIR model has the economically most appealing properties and perform

better than the Vasicek model in explaining the empirical bond market data.

The assumption of the models of this chapter that the short rate contains all relevant infor-

mation about the yield curve is very restrictive and not empirically acceptable. Several empirical

studies show that at least two and possibly three or four state variables are needed to explain the

observed variations in yield curves. As we shall see in the next chapter, many of the multi-factor

models suggested in the literature are generalizations of the one-factor models of Vasicek and CIR.

In all time homogeneous one-factor models the current yield curve is determined by the current

short rate and the relevant model parameters. No matter how the parameter values are chosen it

is highly unlikely that the yield curve derived from the model can be completely aligned with the

yield curve observed in the market. If the model is to be applied for the pricing of derivatives such

as futures and options on bonds and caps, floors, and swaptions, it is somewhat disturbing that

the model cannot price the underlying zero-coupon bonds correctly. As we will see in Chapter 9, a

perfect model fit of the current yield curve can be obtained in a one-factor model by replacing one

or more parameters by deterministic functions of time. While these time inhomogeneous versions of

the one-factor models may provide a better basis for derivative pricing, they are not unproblematic,

however. Also note that typically the current yield curve is not directly observable in the market,

but has to be estimated from prices of coupon bonds. For this purpose practitioners often use a

cubic spline or a Nelson-Siegel parameterization as outlined in Chapter 2. If one instead applies

the parameterization of the discount function T 7→ BT (r, t) that comes out of an economically

better founded model, such as the CIR model, the problems of time inhomogeneous models can be

avoided.

7.9 Exercises

EXERCISE 7.1 (Parallel shifts of the yield curve) The purpose of this exercise is to find out under which

assumptions the only possible shifts of the yield curve are parallel, i.e. such that dȳτ
t is independent of τ

where ȳτ
t = yt+τ

t .

(a) Argue that if the yield curve only changes in the form of parallel shifts, then the zero-coupon yields

at time t must have the form

yT
t = yT (rt, t) = rt + h(T − t)

for some function h with h(0) = 0 and that the prices of zero-coupon bonds are thereby given as

BT (r, t) = e−r[T−t]−h(T−t)[T−t].
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(b) Use the partial differential equation (7.3) on page 150 to show that

1

2
β(r)2(T − t)2 − α̂(r)(T − t) + h′(T − t)(T − t) + h(T − t) = 0 (*)

for all (r, t) (with t ≤ T , of course).

(c) Using (*), show that 1
2
β(r)2(T − t)2 − α̂(r)(T − t) must be independent of r. Conclude that both

α̂(r) and β(r) have to be constants, so that the model is indeed Merton’s model.

(d) Describe the possible shapes of the yield curve in an arbitrage-free model in which the yield curve

only moves in terms of parallel shifts. Is it possible for the yield curve to be flat in such a model?

EXERCISE 7.2 (Call on zero-coupon bonds in Vasicek’s model) Figure 7.9 on page 173 shows an example

of the relation between the price of a European call on a zero-coupon bond and the current short rate r in

the Vasicek model, cf. (7.63). The purpose of this exercise is to derive an explicit expression for ∂C/∂r.

(a) Show that

BS(r, t)e−
1
2

d1(r,t)2 = KBT (r, t)e−
1
2

d2(r,t)2 .

(b) Show that

BS(r, t)n (d1(r, t)) − KBT (r, t)n (d2(r, t)) = 0,

where n(y) = exp(−y2/2)/
√

2π is the probability density function for a standard normally dis-

tributed random variable.

(c) Show that

∂CK,T,S

∂r
(r, t) = −BS(r, t)b(S − t)N (d1(r, t)) + KBT (r, t)b(T − t)N (d2(r, t)) .

EXERCISE 7.3 (Futures on bonds) Show the last claim in Theorem 7.2.

EXERCISE 7.4 (CIR zero-coupon bond price) Show that the functions b and a given by (7.73) and (7.74)

solve the ordinary differential equations (7.71) and (7.72).

EXERCISE 7.5 (Comparison of prices in the models of Vasicek and CIR) Compare the prices according

to Vasicek’s model (7.52) and the CIR-model (7.68) of the following securities:

(a) 1 year and 10 year zero-coupon bonds;

(b) 3 month European call options on a 5 year zero-coupon bond with exercise prices of 0.7, 0.75, and

0.8, respectively;

(c) a 10 year 8% bullet bond with annual payments;

(d) 3 month European call options on a 10 year 8% bullet bond with annual payments for three different

exercise prices chosen to represent an in-the-money option, a near-the-money option, and an out-of-

the-money option.

In the comparisons use κ = 0.3, θ = 0.05, and λ = 0 for both models. The current short rate is r = 0.05,

and the current volatility on the short rate is 0.03 so that β = 0.03 in Vasicek’s model and β
√

0.05 = 0.03

in the CIR model.

EXERCISE 7.6 (Expectation hypothesis in Vasicek) Verify that the local weak and the weak yield-to-

maturity versions of the expectation hypothesis hold in the Vasicek model.



Chapter 8

Multi-factor diffusion models

8.1 What is wrong with one-factor models?

The preceding chapter gave an overview over one-factor diffusion models of the term structure of

interest rates. All those models are based on an assumed dynamics in the continuously compounded

short rate, r. In several of these models we were able to derive relatively simple, explicit pricing

formulas for both bonds and European options on bonds and hence also for caps, floors, swaps, and

European swaptions, cf. Chapter 6. The models can generate yield curves of various realistic forms,

and the parameters of the models can be estimated quite easily from market data. Several of the

empirical tests described in the literature have accepted selected one-factor models. Furthermore,

particularly the CIR model is theoretically well-founded and based on short rate dynamics with

many realistic properties.

However, all the one-factor models also have obviously unrealistic properties. First, they are

not able to generate all the yield curve shapes observed in practice. For example, the Vasicek and

CIR models can only produce an increasing curve, a decreasing curve, and a curve with a small

hump. While the zero-coupon yield curve typically has one of these shapes, it does occasionally

have a different shape, e.g. the yield curve is sometimes decreasing for short maturities and then

increasing for longer maturities.

Second, the one-factor models are not able to generate all the types of yield curve changes

that have been observed. In the affine one-factor models the zero-coupon yield ȳτt = yt+τt for any

maturity τ is of the form

ȳτt =
a(τ)

τ
+
b(τ)

τ
rt,

cf. (7.13). If b(τ) > 0, the change in the yield of any maturity will have the same sign as the change

in the short rate. Therefore, these models do not allow so-called twists of the term structure of

interest rates, i.e. yield curve changes where short-maturity yields and long-maturity yields move

in opposite directions.

A third critical point, which is related to the second point above, is that the changes over

infinitesimal time periods of any two interest rate dependent variables will be perfectly correlated.

This is for example the case for any two bond prices or any two yields. This is due to the fact

that all unexpected changes are proportional to the shock to the short rate, dzt. For example, the

dynamics of the τi-maturity zero-coupon yield in any time homogeneous one-factor model is of the

187
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maturity (years) 0.25 0.5 1 2 5 10 20 30

0.25 1.00 0.85 0.80 0.72 0.61 0.52 0.46 0.46

0.50 0.85 1.00 0.90 0.85 0.76 0.68 0.63 0.62

1 0.80 0.90 1.00 0.94 0.87 0.79 0.73 0.73

2 0.72 0.85 0.94 1.00 0.95 0.88 0.82 0.82

5 0.61 0.76 0.87 0.95 1.00 0.96 0.92 0.91

10 0.52 0.68 0.79 0.88 0.96 1.00 0.97 0.96

20 0.46 0.63 0.73 0.82 0.92 0.97 1.00 0.97

30 0.46 0.62 0.73 0.82 0.91 0.96 0.97 1.00

Table 8.1: Estimated correlation matrix of weekly changes in par yields on U.S. government bonds.

The matrix is extracted from Exhibit 1 in Canabarro (1995).

form

dȳτi

t = µy(rt, τi) dt+ σy(rt, τi) dzt,

where the drift rate µy and the volatility σy are model-specific functions. The variance of the

change in the yield over an infinitesimal time period is therefore

Vart (dȳ
τi

t ) = σy(rt, τi)
2 dt.

The covariance between changes in two different zero-coupon yields is

Covt (dȳ
τ1
t , dȳ

τ2
t ) = σy(rt, τ1)σy(rt, τ2) dt.

Hence the correlation between the yield changes is

Corrt (dȳ
τ1
t , dȳ

τ2
t ) =

Covt (dȳ
τ1
t , dȳ

τ2
t )

√

Vart (dȳ
τ1
t )
√

Vart (dȳ
τ2
t )

= 1.

This conflicts with empirical studies which demonstrate that the actual correlation between changes

in zero-coupon yields of different maturities is far from one. Table 8.1 shows correlations between

weekly changes in par yields on U.S. government bonds. The correlations are estimated by Can-

abarro (1995) from data over the period from January 1986 to December 1991. A similar pattern

has been documented by other authors, e.g. Rebonato (1996, Ch. 2) who uses data from the U.K.

bond market.

Intuitively, multi-factor models are more flexible and should be able to generate additional yield

curve shapes and yield curve movements relative to the one-factor models. Furthermore, multi-

factor models allow non-perfect correlations between different interest rate dependent variables, cf.

the discussion in Section 8.3.1 below.

Several empirical studies have investigated how many factors are necessary in order to obtain

a sufficiently precise description of the actual evolution of the term structure of interest rates

and the correlations between yields of different maturities. Of course, to some extent the result

of such an investigation will depend on the chosen data set, the observation period, and the

estimation procedure. However, all studies seem to indicate that two or three factors are needed.

One way to address this question is to perform a so-called principal component analysis of the

variance-covariance matrix of changes in zero-coupon yields of selected maturities. Canabarro
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(1995) finds that a single factor can describe at most 85.0% of the total variation in his data

from the period 1986–1991 on the U.S. bond market. The second-most important factor describes

an additional 10.3% of the variation, while the third-most and the fourth-most important factors

provide additional contributions of 1.9% and 1.2%, respectively. Additional factors contribute in

total with less than 1.6%. Similar results are reported by Litterman and Scheinkman (1991), who

also use U.S. bond market data, and by Rebonato (1996, Ch. 2), who applies U.K. data over the

period 1989–1992.

A principal component analysis does not provide a precise identification of which factors best

describe the evolution of the term structure, but it can give some indication of the factors. The

studies mentioned above give remarkably similar indications. They all find that the most important

factor affects yields of all maturities similarly and hence can be interpreted as a level factor. The

second-most important factor affects short-maturity yields and long-maturity yields in opposite

directions and can therefore be interpreted as a slope factor. Finally, the third-most important

factor affects yields of very short and long maturities in the same direction, but yields of inter-

mediate maturities (approx. 2-5 years) in the opposite direction. We can interpret this factor as

a curvature factor. Litterman and Scheinkman argue that the third factor can alternatively be

interpreted as a factor representing the term structure of yield volatilities, i.e. the volatilities of

the zero-coupon yields of different maturities.

Other empirical papers have studied how well specific multi-factor models can fit selected bond

market data. Empirical tests performed by Stambaugh (1988), Pearson and Sun (1991), Chen

and Scott (1993), Brenner, Harjes, and Kroner (1996), Andersen and Lund (1997), Vetzal (1997),

Balduzzi, Das, and Foresi (1998), Boudoukh, Richardson, Stanton, and Whitelaw (1999), and

Dai and Singleton (2000) all conclude that different multi-factor models provide a much better

description of the shape and movements of the term structure of interest rates than the one-factor

special cases of the models.

8.2 Multi-factor diffusion models of the term structure

In this section we review the notation and the general results in multi-factor diffusion models,

which were first discussed in Section 4.8. In a general n-factor diffusion model of the term structure

of interest rates, the fundamental assumption is that the state of the economy can be represented by

an n-dimensional vector process x = (x1, . . . , xn)
⊤ of state variables. In particular, the process x

follows a Markov diffusion process,

dxt = α(xt, t) dt+ β(xt, t) dzt, (8.1)

where z = (z1, . . . , zn)
⊤ is an n-dimensional standard Brownian motion. Denote by S ⊆ Rn the

value space of the process, i.e. the set of possible states. In the expression (8.1) above, α is a

function from S × R+ into Rn, and β is a function from S × R+ into the set of n × n matrices

of real numbers, i.e. β(xt, t) is an n × n matrix. The functions α and β must satisfy certain

regularity conditions to ensure that the stochastic differential equation (8.1) has a unique solution,

cf. Øksendal (1998). We can write (8.1) componentwise as

dxit = αi(xt, t) dt+
n∑

j=1

βij(xt, t) dzjt = αi(xt, t) dt+ βi(xt, t)
⊤ dzt.
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As discussed in Chapter 4, the absence of arbitrage will imply the existence of a vector process

λ = (λ1, . . . , λn)
⊤ of market prices of risk, so that for any traded asset we have the relation

µ(xt, t) = r(xt, t) +

n∑

j=1

σj(xt, t)λj(xt, t),

where µ denotes the expected rate of return on the asset, and σ1, . . . , σn are the volatility terms,

i.e. the price process is

dPt = Pt



µ(xt, t) dt+

n∑

j=1

σj(xt, t) dzjt



 .

See for example (4.53) on page 92.

We also know that the n-dimensional process zQ = (zQ
1 , . . . , z

Q
n )⊤ defined by

dzQ
jt = dzjt + λj(xt, t) dt, j = 1, . . . , n,

is a standard Brownian motion under the risk-neutral probability measure Q. With the notation

α̂(x, t) = α(x, t) − β(x, t)λ(x, t),

i.e.

α̂i(x, t) = αi(x, t) −
n∑

j=1

βij(x, t)λj(x, t),

we can write the dynamics of the state variables under Q as

dxt = α̂(xt, t) dt+ β(xt, t) dz
Q
t

or componentwise as

dxit = α̂i(xt, t) dt+
n∑

j=1

βij(xt, t) dz
Q
jt.

From the analysis in Section 4.8, we know that the price Pt = P (xt, t) of a traded asset of the

European type can be found as the solution to the partial differential equation

∂P

∂t
(x, t) +

n∑

i=1

α̂i(x, t)
∂P

∂xi
(x, t)

+
1

2

n∑

i=1

n∑

j=1

γij(x, t)
∂2P

∂xi∂xj
(x, t) − r(x, t)P (x, t) = 0, (x, t) ∈ S × [0, T ), (8.2)

with the appropriate terminal condition

P (x, T ) = H(x), x ∈ S.

Here, γij =
∑n
k=1 βikβjk is the (i, j)’th element of the variance-covariance matrix β β⊤. If ρij

denotes the correlation between changes in the i’th and the j’th state variables, we have that

γij = ρij ‖βi‖ ‖βj‖. Alternatively, the price can be computed from an expectation under the

risk-neutral (spot martingale) measure,

P (x, t) = EQ
x,t

[

e−
∫

T
t
r(xu,u) duH(xT )

]

,
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or from an expectation under the T -forward martingale measure

P (x, t) = BT (x, t) EQT

x,t [H(xT )] , (8.3)

or as an expectation under another convenient martingale measure.

Just as in the analysis of one-factor models in Chapter 7, we focus on the time homogeneous

models in which the functions α̂ and β, and also the short rate r, do not depend on time, but only

depend on the state variables. In particular,

dxt = α̂(xt) dt+ β(xt) dz
Q
t . (8.4)

8.3 Multi-factor affine diffusion models

We focus first on so-called affine models, which in a multi-factor setting were introduced by

Duffie and Kan (1996). In the affine multi-factor models the dynamics of the vector of state

variables is of the form

dxt =
(
ϕ̂− κ̂xt

)
dt+ Γ










√

ν1(xt) 0 . . . 0

0
√

ν2(xt) . . . 0
...

. . .
...

0 0 . . .
√

νn(xt)










dzQ
t , (8.5)

where

νj(x) = δj0 + δ⊤

j x = δj0 +

n∑

k=1

δjkxk, j = 1, . . . , n.

Here, ϕ̂ = (ϕ̂1, . . . , ϕ̂n)
⊤ and δj = (δj1, . . . , δjn)

⊤ for j = 1, . . . , n are all constant vectors,

δ10, . . . , δn0 are constant scalars, and κ̂ and Γ are constant n× n matrices.

A time homogeneous multi-factor diffusion model is said to be affine if the dynamics of the

state variables under the risk-neutral probability measure is of the form (8.5) and the short rate

rt = r(xt) is an affine function of x, i.e. a constant scalar ξ0 and a constant n-dimensional vector

ξ = (ξ1, . . . , ξn)
⊤ exist such that

r(x) = ξ0 + ξ⊤x = ξ0 +

n∑

i=1

ξixi. (8.6)

The condition on the short rate is trivially satisfied in the one-factor models in Chapter 7 since

they all take the short rate itself as the state variable. Similarly, the condition is satisfied in the

multi-factor models in which the short rate is one of the state variables. Note that if the vector

λ(x) of market prices of risk is also an affine function of x, the drift of the state variables will also

be affine under the real-world probability measure.

We will first consider two-factor affine models, both because the notation and the statement of

results are simpler and because most of the multi-factor models studied in the literature have two

factors. Subsequently, we will briefly extend the analysis to the general n-factor models.

8.3.1 Two-factor affine diffusion models

In a two-factor affine model the dynamics of the vector of state variables is of the form

dxt =
(
ϕ̂− κ̂xt

)
dt+ Γ

(√

ν1(xt) 0

0
√

ν2(xt)

)

dzQ
t , (8.7)
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which can be written componentwise as

dx1t = (ϕ̂1 − κ̂11x1t − κ̂12x2t) dt

+ Γ11

√

δ10 + δ11x1t + δ12x2t dz
Q
1t + Γ12

√

δ20 + δ21x1t + δ22x2t dz
Q
2t

(8.8)

dx2t = (ϕ̂2 − κ̂21x1t − κ̂22x2t) dt

+ Γ21

√

δ10 + δ11x1t + δ12x2t dz
Q
1t + Γ22

√

δ20 + δ21x1t + δ22x2t dz
Q
2t.

(8.9)

The short rate is given by

rt = ξ0 + ξ1x1t + ξ2x2t. (8.10)

To ensure that the square roots are well-defined, we require that

νj(x) = δj0 + δj1x1 + δj2x2 ≥ 0, j = 1, 2,

for all the values that x = (x1, x2)
⊤ can have, i.e. for all x ∈ S. Duffie and Kan state two

conditions on the parameters that imply both that the process x = (xt) is well-defined by the

stochastic differential equation above and that νj(xt) > 0 for all t (with probability 1). These

conditions are satisfied in the specific models we consider in the rest of the chapter.

Under the assumption (8.5) the drift α̂(x) = ϕ̂− κ̂x is clearly an affine function of x. Further-

more, the variance-covariance matrix β(x)β(x)⊤ is also affine in x, in the sense that any element of

the matrix is an affine function of x. To see this, we use (8.8) and (8.9) to derive that the variance

of the instantaneous change in each of the state variables is equal to VarQ
t (dxit) = γi(x1t, x2t)

2 dt,

where

γi(x1, x2)
2 = Γ2

i1 [δ10 + δ11x1 + δ12x2] + Γ2
i2 [δ20 + δ21x1 + δ22x2]

=
(
δ10Γ

2
i1 + δ20Γ

2
i2

)
+
(
δ11Γ

2
i1 + δ21Γ

2
i2

)
x1 +

(
δ12Γ

2
i1 + δ22Γ

2
i2

)
x2,

which is an affine function of the state variables. The covariance between instantaneous changes

in the two state variables is CovQ
t (dx1t, dx2t) = γ12(x1t, x2t) dt, where

γ12(x1, x2) = Γ11Γ21 [δ10 + δ11x1 + δ12x2] + Γ12Γ22 [δ20 + δ21x1 + δ22x2]

= (Γ11Γ21δ10 + Γ12Γ21δ20) + (Γ11Γ21δ11 + Γ12Γ21δ21)x1

+ (Γ11Γ21δ12 + Γ12Γ21δ22)x2,

which is also an affine function of the state variables. Hence, all the elements of the variance-

covariance matrix are affine in the state variables. In this way, the class of affine multi-factor

models is a natural generalization of the class of affine one-factor models.

Analogously to the one-factor analysis, we get that the price BTt of a zero-coupon bond maturing

at time T in a multi-factor affine diffusion model can be written as an exponential-affine function

of the vector of state variables. The following theorem states the precise result:

Theorem 8.1 In an affine two-factor diffusion model where the short rate is of the form (8.10)

and the state variables follow the process (8.7), the zero-coupon bond price BTt = BT (x1t, x2t, t) is

given by the function

BT (x1, x2, t) = exp {−a(T − t) − b1(T − t)x1 − b2(T − t)x2} , (8.11)
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where the functions b1, b2, and a solve the following system of ordinary differential equations

b′1(τ) = −κ̂11b1(τ) − κ̂21b2(τ) −
1

2
δ11 (Γ11b1(τ) + Γ21b2(τ))

2

− 1

2
δ21 (Γ12b1(τ) + Γ22b2(τ))

2
+ ξ1,

(8.12)

b′2(τ) = −κ̂12b1(τ) − κ̂22b2(τ) −
1

2
δ12 (Γ11b1(τ) + Γ21b2(τ))

2

− 1

2
δ22 (Γ12b1(τ) + Γ22b2(τ))

2
+ ξ2,

(8.13)

a′(τ) = ϕ̂1b1(τ) + ϕ̂2b2(τ) −
1

2
δ10 (Γ11b1(τ) + Γ21b2(τ))

2

− 1

2
δ20 (Γ12b1(τ) + Γ22b2(τ))

2
+ ξ0,

(8.14)

with the initial conditions a(0) = b1(0) = b2(0) = 0.

The result can be demonstrated by verifying that the function BT (x1, x2, t) given by (8.11) is a

solution to the partial differential equation (8.2) in the affine model if the functions a(τ), b1(τ),

and b2(τ) solve the ordinary differential equations (8.12)-(8.14). The terminal condition on the

price, BT (x1, x2, T ) = 1 for all (x1, x2) ∈ S, implies that a(0), b1(0), and b2(0) all have to be zero.

Except for the increased notational complexity, the proof is identical to the one-factor case and is

therefore omitted. Note that to determine a, b1, and b2, one must first solve the two differential

equations (8.12) and (8.13) simultaneously, and then a follows from the bi’s by an integration.

In the following sections we will look at specific affine models in which the Ricatti equa-

tions (8.12)-(8.14) have explicit solutions. This is the case in Gaussian models and so-called

multi-factor CIR models. For other specifications of the affine model, the Ricatti equations must

be solved numerically, see e.g. Duffie and Kan (1996). The Ricatti equations can be solved faster

numerically than the partial differential equation.

In an affine two-factor model the zero-coupon yields ȳτt = yt+τt = −(lnBt+τt )/τ take the form

ȳτ (x1, x2) =
a(τ)

τ
+
b1(τ)

τ
x1 +

b2(τ)

τ
x2,

and the forward rates f̄τt = f t+τt = −∂(lnBt+τt )/∂τ are of the form

f̄τ (x1, x2) = a′(τ) + b′1(τ)x1 + b′2(τ)x2.

Let us also look at the volatility of the price of a zero-coupon bond with a fixed maturity date T .

Since ∂BT

∂xi
(x1, x2, t) = −bi(T − t)BT (x1, x2, t), Itô’s Lemma for functions of several variables (see

Theorem 3.6 on page 60) implies that

dBTt
BTt

= r(x1t, x2t) dt+ σT1 (x1t, x2t, t) dz
Q
1t + σT2 (x1t, x2t, t) dz

Q
2t,

where

σT1 (x1, x2, t) = − (b1(T − t)Γ11 + b2(T − t)Γ21)
√

δ10 + δ11x1 + δ12x2,

σT2 (x1, x2, t) = − (b1(T − t)Γ12 + b2(T − t)Γ22)
√

δ20 + δ21x1 + δ22x2.

The volatility of the zero-coupon bond price is therefore ‖σT (x1, x2, t)‖, where

‖σT (x1, x2, t)‖2 = σT1 (x1, x2, t)
2 + σT2 (x1, x2, t)

2

= (b1(T − t)Γ11 + b2(T − t)Γ21)
2
(δ10 + δ11x1 + δ12x2)

+ (b1(T − t)Γ12 + b2(T − t)Γ22)
2
(δ20 + δ21x1 + δ22x2) .
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Similarly, the dynamics of the zero-coupon yield ȳτt will be of the form

dȳτt = . . . dt+ σy1(x1t, x2t, τ) dz
Q
1t + σy2(x1t, x2t, τ) dz

Q
2t,

where

σy1(x1, x2, τ) =

(
b1(τ)

τ
Γ11 +

b2(τ)

τ
Γ21

)
√

δ10 + δ11x1 + δ12x2,

σy2(x1, x2, τ) =

(
b1(τ)

τ
Γ12 +

b2(τ)

τ
Γ22

)
√

δ20 + δ21x1 + δ22x2,

and we have omitted the drift rate for clarity. We can see that, in a two-factor model, zero-coupon

yields with different maturities are not perfectly correlated since the covariance is

CovQ
t (dȳτ1t , dȳ

τ2
t ) = (σy1(x1t, x2t, τ1)σy1(x1t, x2t, τ2) + σy2(x1t, x2t, τ1)σy2(x1t, x2t, τ2)) dt,

and, hence, the correlation is

CorrQ
t (dȳτ1t , dȳ

τ2
t ) =

σy1(xt, τ1)σy1(xt, τ2) + σy2(xt, τ1)σy2(xt, τ2)
√

σy1(xt, τ1)2 + σy2(xt, τ1)2
√

σy1(xt, τ2)2 + σy2(xt, τ2)2
,

which in general will be less than 1.

The above analysis was based on two unspecified state variables x1 and x2. Due to the fact

that all prices, interest rates, volatilities, etc., are functions of x1 and x2, it is typically possible to

shift to another pair of state variables x̃1 and x̃2 and express prices, rates, etc., in terms of the new

variables. This is convenient if the new variables x̃1 and x̃2 are easier to observe than the original

variables x1 and x2 since the price expressions are then simpler to apply in practice, and it will be

easier to estimate the model parameters. Of course, we could have stated the model in terms of

x̃1 and x̃2 from the beginning, but it may be easier to develop the pricing formulas using x1 and

x2. See Section 8.5.2 for an important example.

8.3.2 n-factor affine diffusion models

In the general n-factor affine model where the vector of state variables follows the process (8.5),

and the short rate is given as in (8.6), the zero-coupon bond price BTt = BT (xt, t) is given by the

function

BT (x, t) = exp {−a(T − t) − b(T − t)⊤x} = exp






−a(T − t) −

n∑

j=1

bj(T − t)xj






, (8.15)

where the functions a(τ), b1(τ), . . . , bn(τ) solve the following system of ordinary differential equa-

tions:

b′i(τ) = −
n∑

j=1

κ̂jibj(τ) −
1

2

n∑

k=1

δki





n∑

j=1

Γjkbj(τ)





2

+ ξi, i = 1, . . . , n, (8.16)

a′(τ) =

n∑

j=1

ϕ̂jbj(τ) −
1

2

n∑

k=1

δk0





n∑

j=1

Γjkbj(τ)





2

+ ξ0, (8.17)

with the initial conditions a(0) = b1(0) = · · · = bn(0) = 0. Conversely, under certain regularity

conditions, the zero-coupon bond prices are only of the exponential-affine form if α̂, β β⊤, and r

are affine functions of x, cf. Duffie and Kan (1996).
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In an affine n-factor model the zero-coupon yields ȳτt = −(lnBt+τt )/τ are

ȳτ (x) =
a(τ)

τ
+

n∑

j=1

bj(τ)

τ
xj , (8.18)

and the forward rates f̄τt = f t+τt are

f̄τ (x) = a′(τ) +

n∑

j=1

b′(τ)xj .

The dynamics of the zero-coupon bond price BTt is

dBTt
BTt

= r(xt) dt+

n∑

j=1

σTj (xt, t) dz
Q
jt,

where the sensitivities σTj are given by

σTj (x, t) = −
√

δj0 + δj1x1 + . . . δjnxn

n∑

k=1

Γkjbk(T − t). (8.19)

8.3.3 European options on bonds

In Chapter 6 we discussed general methods for pricing a European call option on a zero-coupon

bond. One approach is based on the formula

CK,T,S(x, t) = BT (x, t) EQT

x,t

[
max

(
BS(xT , T ) −K, 0

)]
.

If xT is normally distributed, it follows from (8.15) that the bond price at the maturity of the

option is lognormally distributed and it is relatively easy to compute the above expectation and

hence the price of the call option. This is similar to the Black-Scholes-Merton model for stock

options and to the one-factor term structure models of Merton and Vasicek studied in Chapter 7.

We shall apply this approach in the following section. Alternatively, we can compute the price as

CK,T,S(xt, t) = BS(xt, t)Q
S
t (BS(xT , T ) > K) −KBT (xt, t)Q

T
t (BS(xT , T ) > K), (8.20)

cf. Equation 6.18. Using (8.15),

BS(xT , T ) > K ⇔
n∑

j=1

bj(S − T )xj < −a(S − T ) − lnK. (8.21)

As demonstrated in Section 7.2.3, the price of a European call option on a coupon bond is in the

one-factor affine models given as the price of a portfolio of European call options on zero-coupon

bonds, cf. (7.38) on page 157. This is the case whenever the price of any zero-coupon bond is a

monotonic function of the short rate. The same trick cannot be applied in multi-factor models

so that the prices of options on coupon bonds (and consequently also swaptions, cf. Section 6.5.2

on page 141) must be computed using numerical methods. However, it is possible to approximate

very accurately the price of a European option on a coupon bond by the price of a single European

option on a carefully selected zero-coupon bond. For details on the approximation, see Chapter 12

and Munk (1999). As we shall see below, several of the multi-factor models provide a closed-form

expression for the price of a European option on a zero-coupon bond so that the approximate price

of the coupon bond option is easily obtainable.
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Other techniques to approximating prices of European options on coupon bonds have been

suggested in the literature. For example, in the framework of affine models Collin-Dufresne and

Goldstein (2002) and Singleton and Umantsev (2002) introduce two approximations that may

dominate (with respect to accuracy and computational speed) the approximation outlined above,

but these approximations are much harder to understand. Another promising and relatively simple

approach was recently proposed by Schrager and Pelsser (2004).

8.4 Multi-factor Gaussian diffusion models

8.4.1 General analysis

The simplest affine multi-factor term structure models are the Gaussian models, which were

first studied by Langetieg (1980). A Gaussian model is an affine model of the form (8.5) where the

volatility functions νj(x) are constant so that the vectors δj are equal to zero. Since the diagonal

matrix is multiplied by the constant matrix Γ, we can and will assume that all the νj(x)’s are

equal to 1, i.e. δj0 = 1. In the Gaussian models the dynamics of the state variables is therefore

dxt =
(
ϕ̂− κ̂xt

)
dt+ Γ dzQ

t . (8.22)

Analogously to the analysis for one-dimensional Ornstein-Uhlenbeck processes in Section 3.8.2 on

page 53, we get that future values of the vector of state variables are n-dimensionally normally

distributed. In particular, the individual state variables are normally distributed. Since the short

rate is a linear combination of these state variables, it follows that future values of the short rate

are normally distributed in these models. The expressions for means, variances, and covariances of

the state variables (and hence of the short rate) will be simple only when the matrix κ̂ is diagonal.1

In a Gaussian model the sensitivities of the zero-coupon bond prices σTj defined in (8.19) depend

only on the time to maturity of the bond,

σTj (t) = −
n∑

k=1

Γkjbk(T − t).

Gaussian models are very tractable and allow analytical expressions for both bond prices and

prices of European options on zero-coupon bonds. The bond prices follow from (8.15). According

to (8.3), the price of a European call option on a zero-coupon bond is

Since the vector of state variables xT given xt = x is normally distributed, the zero-coupon

bond price is lognormally distributed, and we conclude that

CK,T,S(x, t) = BS(x, t)N (d1) −KBT (x, t)N (d2) ,

where

d1 =
1

v(t, T, S)
ln

(
BS(x, t)

KBT (x, t)

)

+
1

2
v(t, T, S), (8.23)

d2 = d1 − v(t, T, S), (8.24)

1Generally the moments depend on the eigenvalues and the eigenvectors of the matrix κ̂, cf. the discussion in

Langetieg (1980).
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and

v(t, T, S)2 = VarQT

t

[

lnFT,ST

]

=
n∑

j=1

∫ T

t

(
σSj (u) − σTj (u)

)2
du

=
n∑

j=1

∫ T

t

(
n∑

k=1

Γkj [bk(S − u) − bk(T − u)]

)2

du.

(8.25)

Let us focus on the case of two factors. In a Gaussian two-factor diffusion model the dynamics

of the state variables is of the form

dx1t = (ϕ̂1 − κ̂11x1t − κ̂12x2t) dt+ Γ11 dz
Q
1t + Γ12 dz

Q
2t, (8.26)

dx2t = (ϕ̂2 − κ̂21x1t − κ̂22x2t) dt+ Γ21 dz
Q
1t + Γ22 dz

Q
2t. (8.27)

The ordinary differential equations (8.12) and (8.13) reduce to

b′1(τ) = −κ̂11b1(τ) − κ̂21b2(τ) + ξ1, b1(0) = 0, (8.28)

b′2(τ) = −κ̂12b1(τ) − κ̂22b2(τ) + ξ2, b2(0) = 0, (8.29)

while the equation for the function a becomes

a′(τ) = ϕ̂1b1(τ) + ϕ̂2b2(τ) −
1

2
(Γ11b1(τ) + Γ21b2(τ))

2

− 1

2
(Γ12b1(τ) + Γ22b2(τ))

2
+ ξ0, a(0) = 0.

(8.30)

According to (8.25), the variance term in the option price is given by

v(t, T, S)2 =
(
Γ2

11 + Γ2
12

)
∫ T

t

[b1(S − u) − b1(T − u)]
2
du

+
(
Γ2

21 + Γ2
22

)
∫ T

t

[b2(S − u) − b2(T − u)]
2
du

+ 2 (Γ11Γ21 + Γ12Γ22)

∫ T

t

[b1(S − u) − b1(T − u)] [b2(S − u) − b2(T − u)] du.

(8.31)

8.4.2 A specific example: the two-factor Vasicek model

Beaglehole and Tenney (1991) and Hull and White (1994b) have suggested a Gaussian two-

factor model, which is a relatively simple extension of the one-factor Vasicek model. The Vasicek

model has

drt = κ
[

θ̂ − rt

]

dt+ β dzQ
t = (ϕ̂− κrt) dt+ β dzQ

t ,

cf. Section 7.4 on page 162. The extension is to let the long-term level θ̂ follow a similar stochastic

process. Hull and White formulate the generalized model as follows:

drt = (ϕ̂+ εt − κrrt) dt+ βr dz
Q
1t, (8.32)

dεt = −κεεt dt+ βερ dz
Q
1t + βε

√

1 − ρ2 dzQ
2t. (8.33)

The process ε = (εt) exhibits mean reversion around zero and represents the deviation of the

current view on the long-term level of the short rate from the average view. Here, βε is the
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volatility of the ε-process, and ρ is the correlation between changes in the short rate and changes

in ε. All constant parameters are assumed to be positive except ρ, which can have any value in the

interval [−1, 1]. This two-factor model is a special case of the general Gaussian two-factor model,

namely the special case given by the parameter restrictions

ϕ̂1 = ϕ̂, κ̂11 = κr,

κ̂12 = −1, Γ11 = βr,

Γ12 = 0, ϕ̂2 = 0,

κ̂21 = 0, κ̂22 = κε,

Γ21 = βερ, Γ22 = βε
√

1 − ρ2.

Since the short rate is itself the first state variable, we must in addition put ξ1 = 1 and ξ0 = ξ2 = 0.

After these substitutions the ordinary differential equations for b1 and b2 become

b′1(τ) = −κrb1(τ) + 1, b1(0) = 0, (8.34)

b′2(τ) = b1(τ) − κεb2(τ), b2(0) = 0. (8.35)

The first of these is identical to the differential equation solved in the original one-factor Vasicek

model, cf. Section 7.4.2 on page 165, so we know that the solution is

b1(τ) =
1

κr

(
1 − e−κrτ

)
.

Next, it can be verified that the solution to the equation for b2 is given by

b2(τ) =
1

κr[κr − κε]
e−κrτ − 1

κε[κr − κε]
e−κετ +

1

κrκε
.

Finally, the equation for the function a can be rewritten as

a′(τ) = ϕ̂b1(τ) −
1

2
β2
r b1(τ)

2 − 1

2
β2
εb2(τ)

2 − ρβrβεb1(τ)b2(τ), a(0) = 0,

from which it follows that

a(τ) = a(τ) − a(0) =

∫ τ

0

a′(u) du

= ϕ̂

∫ τ

0

b1(u) du− 1

2
β2
r

∫ τ

0

b1(u)
2 du− 1

2
β2
ε

∫ τ

0

b2(u)
2 du− ρβrβε

∫ τ

0

b1(u)b2(u) du

=
ϕ̂

κr
(τ − b1(τ)) −

1

κ2
r

(
1

2
β2
r −

ρβrβε
κr − κε

+
β2
ε

2(κr − κε)2

)(

τ − b1(τ) −
1

2
κrb1(τ)

2

)

− β2
ε

4κ3
ε(κr − κε)

(
2τκε − 3 + 4e−κετ − e−2κετ

)

− ρβrβε
κrκε(κr − κε)

(

τ − b1(τ) −
1 − e−κετ

κε
+

1 − e−(κr+κε)τ

κr + κε

)

.

The relevant variance v(t, T, S)2 entering the price of an option on a zero-coupon bond follows

from (8.31):

v(t, T, S)2 = β2
r

∫ T

t

[b1(S − u) − b1(T − u)]
2
du+ β2

ε

∫ T

t

[b2(S − u) − b2(T − u)]
2
du

+ 2ρβrβε

∫ T

t

[b1(S − u) − b1(T − u)] [b2(S − u) − b2(T − u)] du,
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where the integrals can be computed explicitly. Hull and White (1994b) show further how to

obtain a perfect fit of the model to an observed yield curve by replacing the constant ϕ̂ by a

suitable time-dependent function.

Other Gaussian multi-factor models have been studied by Langetieg (1980) and Beaglehole and

Tenney (1991).

8.5 Multi-factor CIR models

8.5.1 General analysis

A term structure model is said to be an n-factor CIR model if the short rate equals the sum

of the n state variables, rt =
∑n
j=1 xjt, and the risk-neutral dynamics of the n state variables is of

the form

dxjt = (ϕ̂j − κ̂jxjt) dt+ βj
√
xjt dz

Q
jt, j = 1, . . . , n,

where ϕ̂j , κ̂j , and βj are constants. Note that the state variables are mutually independent and

that each state variable follows a square root process, just as the short rate process in the one-

factor CIR model, cf. Section 7.5 on page 174. In particular, the processes will have non-negative

values at all points in time.2 Also note that a multi-factor CIR model is an affine model of the

form (8.5), where (i) the matrix κ̂ is diagonal with κ̂1, . . . , κ̂n in the diagonal and zeros in all other

entries, (ii) the matrix Γ is the identity matrix, i.e. the matrix with ones in the diagonal and zeros

in all other entries, and (iii) νj(xt) = β2
jxjt.

In the multi-factor CIR models the ordinary differential equations (8.16) and (8.17) can be

solved explicitly. The solutions can be computed from the known expressions for a(τ) and b(τ) in

the one-factor CIR model. To see this, first recall from Chapter 4 that the zero-coupon bond price

can be written as

BT (x, t) = EQ

[

exp

{

−
∫ T

t

ru du

}∣
∣
∣
∣
∣
xt = x

]

.

Using the relation ru = x1u+ · · ·+xnu and the independence of the state variables, we can rewrite

the zero-coupon bond price as

BT (x, t) = EQ



exp






−

n∑

j=1

∫ T

t

xju du







∣
∣
∣
∣
∣
∣

xt = x





= EQ





n∏

j=1

exp

{

−
∫ T

t

xju du

}
∣
∣
∣
∣
∣
∣

xt = x





=

n∏

j=1

EQ

[

exp

{

−
∫ T

t

xju du

}∣
∣
∣
∣
∣
xjt = xj

]

.

Because each state variable xj follows a process of the same type as the short rate in the one-factor

CIR model, we get

EQ

[

exp

{

−
∫ T

t

xju du

}∣
∣
∣
∣
∣
xjt = xj

]

= exp {−aj(T − t) − bj(T − t)xj} ,

2As in the one-factor CIR model, the process xj will be strictly positive if 2ϕ̂j ≥ β2
j .
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where

bj(τ) =
2(eγjτ − 1)

(γj + κ̂j)(eγjτ − 1) + 2γj
,

aj(τ) = −2ϕ̂j
β2
j

(

ln(2γj) +
1

2
(κ̂j + γj)τ − ln [(γj + κ̂j)(e

γjτ − 1) + 2γj ]

)

,

and γj =
√

κ̂2
j + 2β2

j , cf. (7.70), (7.73), and (7.74). Consequently, the zero-coupon bond price is

BT (x, t) =
n∏

j=1

exp {−aj(T − t) − bj(T − t)xj} = exp






−a(T − t) −

n∑

j=1

bj(T − t)xj






,

where a(τ) =
∑n
j=1 aj(τ). The risk-neutral dynamics of the zero-coupon bond price is

dBTt
BTt

= r(xt) dt+

n∑

j=1

σTj (xt, t) dz
Q
jt,

where the sensitivities σTj are given by

σTj (x, t) = −βj
√
xjbj(T − t). (8.36)

8.5.2 A specific example: the Longstaff-Schwartz model

Model description

The prevalent multi-factor CIR model is the two-factor model of Longstaff and Schwartz

(1992a). As the one-factor CIR model, the Longstaff-Schwartz model is a special case of the

general equilibrium model studied by Cox, Ingersoll, and Ross (1985a). With some empirical

support Longstaff and Schwartz assume that the economy has one state variable, x1, that affects

only expected returns on productive investments and another state variable, x2, that affects both

expected returns and the uncertainty about the returns on productive investments. The two state

variables x1 and x2 are assumed to follow the independent processes

dx1t = (ϕ1 − κ1x1t) dt+ β1
√
x1t dz1t,

dx2t = (ϕ2 − κ2x2t) dt+ β2
√
x2t dz2t

under the real-world probability measure. All the constants are positive.

Under certain specifications of preferences, endowments, etc., of the agents in the economy (and

an appropriate scaling of the two state variables), the equilibrium short rate is exactly the sum of

the two state variables,

rt = x1t + x2t. (8.37)

Furthermore, the market price of risk associated with x1, i.e. λ1(x, t), is equal to zero, while the

market price of risk associated with x2 is of the form λ2(x, t) = λ
√
x2/β2, where λ is a constant.

Hence, the standard Brownian motion under the risk-neutral probability measure Q is given by

dzQ
1t = dz1t, dzQ

2t = dz2t +
λ

β2

√
x2t dt. (8.38)

The dynamics of the state variables under the risk-neutral measure becomes

dx1t = (ϕ̂1 − κ̂1x1t) dt+ β1
√
x1t dz

Q
1t,

dx2t = (ϕ̂2 − κ̂2x2t) dt+ β2
√
x2t dz

Q
2t,

where ϕ̂1 = ϕ1, κ̂1 = κ1, ϕ̂2 = ϕ2, and κ̂2 = κ2 + λ.
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The yield curve

According to the analysis for general multi-factor CIR models, the zero-coupon bond price

BT (x1, x2, t) can be written as

BT (x1, x2, t) = exp {−a(T − t) − b1(T − t)x1 − b2(T − t)x2} , (8.39)

where a(τ) = a1(τ) + a2(τ),

bj(τ) =
2(eγjτ − 1)

(γj + κ̂j)(eγjτ − 1) + 2γj
, j = 1, 2,

aj(τ) = −2ϕ̂j
β2
j

(

ln(2γj) +
1

2
(κ̂j + γj)τ − ln [(γj + κ̂j)(e

γjτ − 1) + 2γj ]

)

, j = 1, 2,

and γj =
√

κ̂2
j + 2β2

j .

The state variables x1 and x2 are abstract variables that are not directly observable. Longstaff

and Schwartz perform a change of variables to the short rate, rt, and the instantaneous variance

rate of the short rate, vt. Strictly speaking, these variables cannot be directly observed either, but

they can be estimated from bond market data. In addition, the new variables seem important for

the pricing of bonds and interest rate derivatives, and it is easier to relate to prices as functions of

r and v instead of functions of x1 and x2. Since rt is given by (8.37), we get drt = dx1t + dx2t, i.e.

drt = (ϕ1 + ϕ2 − κ1x1t − κ2x2t) dt+ β1
√
x1t dz1t + β2

√
x2t dz2t.

The instantaneous variance is Vart(drt) = vt dt, where

vt = β2
1x1t + β2

2x2t, (8.40)

so that the dynamics of vt is

dvt =
(
β2

1ϕ1 + β2
2ϕ2 − β2

1κ1x1t − β2
2κ2x2t

)
dt+ β3

1

√
x1t dz1t + β3

2

√
x2t dz2t.

If β1 6= β2, the Equations (8.37) and (8.40) imply that

x1t =
β2

2rt − vt
β2

2 − β2
1

, x2t =
vt − β2

1rt
β2

2 − β2
1

. (8.41)

The dynamics of r and v can then be rewritten as

drt =

(

ϕ1 + ϕ2 −
κ1β

2
2 − κ2β

2
1

β2
2 − β2

1

rt −
κ2 − κ1

β2
2 − β2

1

vt

)

dt

+ β1

√

β2
2rt − vt
β2

2 − β2
1

dz1t + β2

√

vt − β2
1rt

β2
2 − β2

1

dz2t,

(8.42)

dvt =

(

β2
1ϕ1 + β2

2ϕ2 − β2
1β

2
2

κ1 − κ2

β2
2 − β2

1

rt −
β2

2κ2 − β2
1κ1

β2
2 − β2

1

vt

)

dt

+ β3
1

√

β2
2rt − vt
β2

2 − β2
1

dz1t + β3
2

√

vt − β2
1rt

β2
2 − β2

1

dz2t.

(8.43)

Since both x1 and x2 stay non-negative, it follows from (8.41) that vt at any point in time will lie

between β2
1rt and β2

2rt. It can be shown that (8.42) and (8.43) imply that changes in rt and vt are

positively correlated, which is in accordance with empirical observations of the relation between

the level and the volatility of interest rates.
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Substituting (8.41) into (8.39), we can write the zero-coupon bond price as a function of r

and v:

BT (r, v, t) = exp
{

−a(T − t) − b̃1(T − t)r − b̃2(T − t)v
}

, (8.44)

where

b̃1(τ) =
β2

2b1(τ) − β2
1b2(τ)

β2
2 − β2

1

,

b̃2(τ) =
b2(τ) − b1(τ)

β2
2 − β2

1

.

Note that the zero-coupon bond price involves six parameters, namely β1, β2, κ̂1, κ̂2, ϕ̂1, and ϕ̂2.

The partial derivatives ∂BT /∂r and ∂BT /∂v can be either positive or negative so, in contrast to

the one-factor models in Chapter 7, the zero-coupon bond price is not a monotonically decreasing

function of the short rate. According to Longstaff and Schwartz, the derivative ∂BT /∂r is typically

negative for short-term bonds, but it can be positive for long-term bonds. The derivative ∂BT /∂v

approaches zero for τ → 0 so that very short-term bonds are affected primarily by the short rate

and only to a small extent by the variance of the short rate. If the short rate rt at some point in

time is zero (in which case vt is also zero), it will become strictly positive immediately afterwards

and, hence, BT (0, 0, t) < 1. Finally, BT (r, v, t) → 0 for r → ∞ (in which case v → ∞).

The zero-coupon yield ȳτt = yt+τt is given by ȳτt = ȳτ (rt, vt), where

ȳτ (r, v) =
a(τ)

τ
+
b̃1(τ)

τ
r +

b̃2(τ)

τ
v,

which is an affine function of r and v. It can be shown that ȳτ (r, v) → r for τ → 0 and that the

asymptotic long rate is constant since

ȳτ (r, v) → ϕ̂1

β2
1

(γ1 − κ̂1) +
ϕ̂2

β2
2

(γ2 − κ̂2) for τ → ∞.

According to Longstaff and Schwartz, the yield curve τ 7→ ȳτ (r, v) can have many different shapes,

for example it can be monotonically increasing or decreasing, humped (i.e. first increasing, then

decreasing), it can have a trough (i.e. first decreasing, then increasing) or both a hump and a

trough. We can see most of these shapes in Figure 8.1. Note that for a given short rate the shape

of the yield curve may depend on the variance factor. Partial changes in r and v may imply a

significant change of the shape of the yield curve, for example a twist so that different maturity

segments of the yield curve move in opposite directions. The Longstaff-Schwartz model is therefore

much more flexible than the one-factor CIR model.

The forward rate f̄τt = f t+τt is given by f̄τt = f̄τ (rt, vt), where

f̄τ (r, v) = a′(τ) + b̃′1(τ)r + b̃′2(τ)v.

All zero-coupon yields and forward rates are non-negative in this model.
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Figure 8.1: Zero-coupon yield curves in the Longstaff-Schwartz model. The parameter values are

β1 = 0.1, β2 = 0.2, κ1 = 0.3, κ2 = 0.45, ϕ1 = ϕ2 = 0.01, and λ = 0. The asymptotic long rate is

5.20%. The very thick lines are for a high value of v, namely (0.75β2
2 + 0.25β2

1)r; the thin lines are for

a medium value of v, namely (0.5β2
2 + 0.5β2

1)r; and the medium thick lines are for a low value of v,

namely (0.25β2
2 + 0.75β2

1)r.
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The dynamics of the zero-coupon bond price is of the form

dBTt
BTt

= rt dt− β1
√
x1tb1(T − t) dzQ

1t − β2
√
x2tb2(T − t) dzQ

2t

= (rt − λx2tb2(T − t)) dt− β1
√
x1tb1(T − t) dz1t − β2

√
x2tb2(T − t) dz2t

=

(

rt +
λ

β2
2 − β2

1

b2(T − t)(β2
1rt − vt)

)

dt

− β1

√

β2
2rt − vt
β2

2 − β2
1

b1(T − t) dz1t − β2

√

vt − β2
1rt

β2
2 − β2

1

b2(T − t) dz2t,

where we have applied (8.36), (8.38), and (8.41). The so-called term premium, i.e. the expected

rate of return on a zero-coupon bond in excess of the short rate, is λb2(T − t)(β2
1rt−vt)/(β2

2 −β2
1),

which is positive if λ < 0. It is consistent with empirical studies that the term premium is affected

by two stochastic factors (r and v) and depends on the interest rate volatility. The volatility

‖σT (r, v, t)‖ of the zero-coupon bond price BTt is in the Longstaff-Schwartz model given by

‖σT (r, v, t)‖2 =
β2

1β
2
2

β2
2 − β2

1

(
b1(T − t)2 − b2(T − t)2

)
rt +

β2
2b2(T − t)2 − β2

1b1(T − t)2

β2
2 − β2

1

vt.

Since the function T 7→ ‖σT (r, v, t)‖ depends on both of r and v, the two-factor model is able to

generate more flexible term structures of volatilities than the one-factor models. It can be shown

that the volatility ‖σT (r, v, t)‖ is an increasing function of the time to maturity T − t.

Options and other derivatives

The price of a European call on a zero-coupon bond can be computed using (8.20). In the

Longstaff-Schwartz model the two state variables are non-centrally χ2-distributed so, not surpris-

ingly, the relevant probabilities are taken from the two-dimensional non-central χ2-distribution.

Longstaff and Schwartz state the precise formula, which in our notation looks as follows:

CK,T,S(r, v, t) = BS(r, v, t)χ2
(
θ1, θ2; 4ϕ1/β

2
1 , 4ϕ2/β

2
2 , ω1[β

2
2r − v], ω2[v − β2

1r]
)

−KBT (r, v, t)χ2
(

θ̂1, θ̂2; 4ϕ1/β
2
1 , 4ϕ2/β

2
2 , ω̂1[β

2
2r − v], ω̂2[v − β2

1r]
)

,
(8.45)

where

θi =
−4γ2

i [a(S − T ) + lnK]

β2
i (e

γi[T−t] − 1)2b̂i(S − t)
, i = 1, 2,

θ̂i =
−4γ2

i [a(S − T ) + lnK]

β2
i (e

γi[T−t] − 1)2b̂i(T − t)b̂i(S − T )
, i = 1, 2,

ωi =
4γie

γi[T−t]b̂i(S − t)

β2
i (β

2
2 − β2

1)(eγi[T−t] − 1)b̂i(S − T )
, i = 1, 2,

ω̂i =
4γie

γi[T−t]b̂i(T − t)

β2
i (β

2
2 − β2

1)(eγi[T−t] − 1)
, i = 1, 2,

b̂i(τ) =
γibi(τ)

eγiτ − 1
, i = 1, 2.

Here χ2(·, ·) is the cumulative distribution function for a two-dimensional non-central χ2-distri-

bution. To be more precise, the value of the cumulative distribution function is

χ2(θ1, θ2; c1, c2, d1, d2) =

∫ θ1

0

fχ2(c1,d1)(u)

[
∫ θ2−uθ2/θ1

0

fχ2(c2,d2)(s) ds

]

du,
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where fχ2(c,d) is the probability density function for a one-dimensional random variable which is

non-centrally χ2-distributed with c degrees of freedom and non-centrality parameter d. Note that

the inner integral can be written as the cumulative distribution function for a one-dimensional

non-central χ2-distribution evaluated in the point θ2 − uθ2/θ1. As discussed in the context of the

one-factor CIR model, see page 178, this one-dimensional cumulative distribution function can

be approximated by the cumulative distribution function of a standard one-dimensional normal

distribution. The value of the two-dimensional χ2-distribution function can then be obtained by

a numerical integration. Chen and Scott (1992) provide a detailed analysis of the computation of

the two-dimensional χ2-distribution function. They conclude that, despite the necessary numerical

integration, the option price can be computed much faster using (8.45) than using Monte Carlo

simulation or numerical solution of the fundamental partial differential equation. Longstaff and

Schwartz state that the partial derivatives ∂C/∂r and ∂C/∂v can be either positive or negative,

which is not surprising considering the fact that the price of the underlying bond can also be either

positively or negatively related to r and v.

In the Longstaff-Schwartz model the prices of many derivative securities can only be computed

using numerical techniques. One approach is to numerically solve the fundamental partial differ-

ential equation with the appropriate terminal conditions, cf. Chapter 16. For that purpose the

formulation of the model in terms of the original state variables, x1 and x2, is preferable. The

PDE to be solved is

∂P

∂t
(x1, x2, t) + (ϕ̂1 − κ̂1x1)

∂P

∂x1

(x1, x2, t) + (ϕ̂2 − κ̂2x2)
∂P

∂x2

(x1, x2, t)

+
1

2
β2

1x1
∂2P

∂x2
1

(x1, x2, t) +
1

2
β2

2x2
∂2P

∂x2
2

(x1, x2, t)

− (x1 + x2)P (x1, x2, t) = 0, (x1, x2, t) ∈ R+ × R+ × [0, T ).

Note that since x1 and x2 are independent, there is no term with the mixed second-order derivative
∂2P

∂x1∂x2
. This fact simplifies the numerical solution. The PDE for the price function in terms of the

variables r and v will involve a mixed second-order derivative since r and v are not independent.

Furthermore, the value space for the variables x1 and x2 is simpler than the value space for r and v

since the possible values of v depend on the value of r. This will complicate the numerical solution

of the PDE involving r and v even further.

Additional remarks

To implement the Longstaff-Schwartz model the current values of the short rate and the current

variance rate of the short rate must be determined, and parameter values have to be estimated.

Longstaff and Schwartz discuss the estimation procedure both in the original article and in other

articles, cf. Longstaff and Schwartz (1993a, 1994). Clewlow and Strickland (1994) and Rebonato

(1996, Ch. 12) discuss several practical problems in the parameter estimation. Longstaff and

Schwartz (1993a) explain how to obtain a perfect fit of the model yield curve to the observed

yield curve by replacing the parameter κ̂2 with a suitable time-dependent function. However, this

extended version of the model exhibits time inhomogeneous volatilities, which is problematic as

will be discussed in Section 9.6. In Longstaff and Schwartz (1992b) the authors consider the pricing

of caps and swaptions within their two-factor model, while in Longstaff and Schwartz (1993b) they

discuss the importance of taking stochastic interest rate volatility into account when measuring
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the interest rate risk of bonds.

8.6 Other multi-factor diffusion models

8.6.1 Models with stochastic consumer prices

Cox, Ingersoll, and Ross (1985b) introduce several multi-factor versions of their famous one-

factor model. The short rate in their one-factor model is really the real short rate, the bonds

they price are real bonds promising delivery of certain prespecified consumption units, and the

prices are also stated in consumption units. To derive prices in monetary units (e.g. dollars) of

nominal securities, i.e. securities with payoff specified in monetary units, they focus on including

the consumer price index as an additional state variable. In their extensions they continue to

assume that the real short rate follows the process

drt = κ[θ − rt] dt+ β
√
rt dz1t,

as in the one-factor model. The first extension is to let the consumer price index It follow a

geometric Brownian motion

dIt = It [π dt+ βI dz2t] ,

where π denotes the expected inflation rate, and where the market price of risk associated with

the consumer price uncertainty is zero. A well-known application of Itô’s Lemma implies that

d(ln It) =

(

π − 1

2
β2
I

)

dt+ βI dz2t

so that the extended model is affine in rt and ln It. The price in monetary units of a nominal

zero-coupon bond maturing at time T is

BT (I, r, t) = I−1 exp

{

−
[

a(T − t) +

(

π − 1

2
β2
I

)

(T − t)

]

− b(T − t)r

}

,

where the functions a(τ) and b(τ) are exactly as in the one-factor CIR model, cf. (7.73) and (7.74)

on page 175.

In their second extension the expected inflation rate π is also assumed to be stochastic so that

dIt = It [πt dt+ βI
√
πt dz2t] ,

dπt = κπ[θπ − πt] dt+ ρβπ
√
πt dz2t +

√

1 − ρ2βπ
√
πt dz3t.

The resulting model is a three-factor affine model with the state variables rt, ln It, and πt. For the

precise expression of the price of a nominal zero-coupon bond we refer the reader to the article,

Cox, Ingersoll, and Ross (1985b).3 Other affine models of this type have been studied by Chen

and Scott (1993).

3In addition, Cox, Ingersoll, and Ross (1985b) state an explicit, but very complicated, pricing formula for the

nominal bond in the case where the expected inflation rate follows the process

dπt = κπ [θπ − πt] dt + ρβππ
3/2
t dz2t +

√

1 − ρ2βππ
3/2
t dz3t,

and the dynamics of rt and It are as before. This model does not belong to the affine class.
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8.6.2 Models with stochastic long-term level and volatility

The Longstaff-Schwartz model described in Section 8.5.2 is not the only model that includes

stochastic interest rate volatility. Vetzal (1997) considers the model

drt = (ϕ1 − κ1rt) dt+ βtr
γ
t dz1t,

d(lnβ2
t ) =

(
ϕ2 − κ2 lnβ2

t

)
dt+ ρξ dz1t +

√

1 − ρ2ξ dz2t,

while Andersen and Lund (1997) study the special case where the two processes are independent,

i.e. ρ = 0. Both articles focus on the estimation and testing of the models. None of the models are

affine or able to produce closed-form expressions for prices on bonds or options. Also Boudoukh,

Richardson, Stanton, and Whitelaw (1999) consider a model with stochastic volatility of the short

rate, but they use a non-parametric estimation technique in order to estimate the drift of the short

rate and both the drift and the volatility of the short rate volatility.

Balduzzi, Das, Foresi, and Sundaram (1996) suggest a three-factor affine model in which the

three state variables are the short rate rt, the long-term level θt of the short rate, and the in-

stantaneous variance vt of the short rate. They assume that the real-world dynamics is of the

form

drt = κr[θt − rt] dt+
√
vt dz1t,

dθt = κθ[θ̄ − θt] dt+ βθ dz2t,

dvt = κv[v̄ − vt] dt+ ρβv
√
vt dz1t +

√

1 − ρ2βv
√
vt dz3t.

Here, ρ is the correlation between changes in the short rate level and the variance of the short rate.

Furthermore, the market prices of risk are assumed to have a form that implies that the dynamics

under the risk-neutral measure is

drt = (κr[θt − rt] − λrvt) dt+
√
vt dz

Q
1t,

dθt =
(
κθ[θ̄ − θt] − λθβθ

)
dt+ βθ dz

Q
2t,

dvt = (κv[v̄ − vt] − λvvt) dt+ ρβv
√
vt dz

Q
1t +

√

1 − ρ2βv
√
vt dz

Q
3t,

where λr, λθ, and λv are constants. The model is affine so that the zero-coupon bond prices are

BT (r, θ, v, t) = exp {−a(T − t) − b1(T − t)r − b2(T − t)θ − b3(T − t)v} .

The authors find explicit expressions for b1 and b2, but a and b3 must be found by numerical

solution of the appropriate ordinary differential equations, cf. (8.16) and (8.17). The model can

produce a wide variety of interesting yield curve shapes. The estimation of the model is also

discussed.

Chen (1996) studies a three-factor model with the same three state variables rt, θt, and vt. In

the simplest version of the model, the dynamics under the real-world probability measure is given

as

drt = κr[θt − rt] dt+
√
vt dz1t,

dθt = κθ[θ̄ − θt] dt+ βθ
√

θt dz2t,

dvt = κv[v̄ − vt] dt+ βv
√
vt dz3t,
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and the market prices of risk are such that the dynamics of the state variables have the same

structure under the risk-neutral measure, but with different constants κr, κθ, θ̄, κv, and v̄. Since

the model is affine, the zero-coupon bond prices are of the form

BT (r, θ, v, t) = exp {−a(T − t) − b1(T − t)r − b2(T − t)θ − b3(T − t)v} .

Although the model is not a multi-factor CIR model, Chen is able to find explicit, but complicated,

expressions for the functions a, b1, b2, and b3. In addition, Chen considers a more general three-

factor model, which is not included in the affine class of models.

Dai and Singleton (2000) divide the class of affine models into subclasses, and for each subclass

they find the most general model that satisfies the conditions νj(x) ≥ 0 (j = 1, . . . , n) which ensure

that the process for the state variables is well-defined. They focus on the three-factor models and

show how the three-factor models suggested in the literature (e.g. the models of Chen and of

Balduzzi, Das, Foresi, and Sundaram) fit into this classification. They find that the suggested

models can be extended and, based on an empirical test using the historical evolution of zero-

coupon yields of three different maturities, they conclude that the extensions are important in

order for the models to be realistic. However, explicit expressions for the functions a, b1, b2, and b3

have not been found in the extended models.

8.6.3 A model with a short and a long rate

One of the very first two-factor term structure models was suggested by Brennan and Schwartz

(1979). They take the short rate rt and the long rate lt to be the state variables. The long rate is

the yield on a consol (an infinite maturity bond) which yields a continuous payment at a constant

rate c. The idea of the model is in line with empirical studies since the short rate can be seen as an

indicator for the level of the yield curve, while the difference between the long and the short rate

is a measure of the slope of the yield curve. The specific long rate dynamics assumed by Brennan

and Schwartz is unacceptable, however. The problem is that the long rate is given by lt = c/Lt,

where Lt is the price of the consol, and we know that this price follows from the short rate process

and the pricing formula

Lt = EQ
t

[∫ ∞

t

e−
∫

s
t
ru duc ds

]

.

The drift and the volatility of Lt, and hence of lt, are therefore closely related to the short rate rt.

Brennan and Schwartz assume for example that the volatility of the long rate is proportional to

the long rate and independent of the short rate. For a more detailed discussion of this issue, see

Hogan (1993) and Duffie, Ma, and Yong (1995). In addition to the model formulation problems,

the Brennan-Schwartz model does not allow closed-form pricing formulas for bonds or derivatives.

Although it should be possible to construct a theoretically acceptable model with the short and

the long rate as the state variables, no such model has apparently been suggested in the finance

literature.

8.6.4 Key rate models

In their analysis of affine multi-factor models Duffie and Kan (1996) focus on models in which

the state variables are zero-coupon yields of selected maturities, e.g. the 1-year, the 5-year, the
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10-year, and the 30-year zero-coupon yield. We will refer to the selected interest rates as key

rates. A clear advantage of such a model is that it is easy to observe (or at least estimate) the

state variables from market data, much easier than the short rate volatility for example. The

yield curve obtained in these models automatically matches the market yields for the selected

maturities. Other multi-factor models tend to have difficulties in matching the long end of the

yield curve, which is problematic for the pricing and hedging of long-term bonds and options on

long-term bonds. Many practitioners measure the sensitivity of different securities towards changes

in different maturity segments of the yield curve. For that purpose it is clearly convenient to use a

model that gives a direct relation between security prices and representative yields for the different

maturity segments.

As shown in (8.18), the zero-coupon yields ȳτt = yt+τt in a general n-factor affine diffusion model

are given by ȳτt = ȳτ (xt), where

ȳτ (x) =
a(τ)

τ
+

n∑

j=1

bj(τ)

τ
xj .

Here, the functions a, b1, . . . , bn solve the ordinary differential equations (8.16) and (8.17) with the

initial conditions a(0) = bj(0) = 0. If each state variable xj is the zero-coupon yield for a given

time to maturity τj , i.e.

ȳτj (x) = xj ,

we must have that

bj(τj) = τj , a(τj) = bi(τj) = 0, i 6= j. (8.46)

These conditions impose very complicated restrictions on the parameters in the drift and the

volatility terms in the dynamics of the state variables, i.e. the key rates. Explicit expressions for

the functions a and b1, . . . , bn can only be found in the Gaussian models. In general, the Ricatti

equations with the extra conditions (8.46) have to be solved numerically.

An alternative procedure is to start with an affine model with other state variables so that the

conditions (8.46) do not have to be imposed in the solution of the Ricatti equations. Subsequently,

the variables can be changed to the desired key rates. Since the zero-coupon yields are affine

functions of the original state variables, the model with the transformed state variables (i.e. the

key rates) is also an affine model.

8.6.5 Quadratic models

In Section 7.6 we gave a short introduction to quadratic one-factor models, i.e. models in which

the short rate is the square of a state variable which follows an Ornstein-Uhlenbeck process. There

are also multi-factor quadratic term structure models. The vector of state variables x follows a

multi-dimensional Ornstein-Uhlenbeck process

dxt = (ϕ̂− κ̂xt) dt+ Γ dzQ
t ,

and the short rate is a quadratic function of the state variables, i.e.

rt = ξ +ψ⊤xt + x⊤

t Θxt = ξ +
n∑

i=1

ψixit +
n∑

i=1

n∑

j=1

Θijxitxjt.
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The zero-coupon bond prices are then of the form

BT (x, t) = exp
{
−a(T − t) − b(T − t)⊤x− x⊤c(T − t)x

}

= exp






−a(T − t) −

n∑

i=1

bi(T − t)xi −
n∑

i=1

n∑

j=1

cij(T − t)xixj






,

where the functions a, bi, and cij can be found by solving a system of ordinary differential equations.

These equations have explicit solutions only in very simple cases, but efficient numerical solution

techniques exist. Special cases of this model class have been studied by Beaglehole and Tenney

(1992) and Jamshidian (1996), whereas Leippold and Wu (2002) provide a general characterization

of the quadratic models.

8.7 Final remarks

To give a precise description of the evolution of the term structure of interest rates over time,

it seems to be necessary to use models with more than one state variable. However, it is more

complicated to estimate and apply multi-factor models than one-factor models. Is the additional

effort worthwhile? Do multi-factor models generate prices and hedge ratios that are significantly

different from those generated by one-factor models? Of course, the answer will depend on the

precise results we want from the model.

Buser, Hendershott, and Sanders (1990) compare the prices on selected options on long-term

bonds computed with different time homogeneous models. They conclude that when the model

parameters are chosen so that the current short rate, the slope of the yield curve, and some interest

rate volatility measure are the same in all the models, the model prices are very close, except when

the interest rate volatility is large. However, they only consider specific derivatives and do not

compare hedge strategies, only prices.

For a comparison of derivative prices in different models to be fair, the models should produce

identical prices of the underlying assets, which in the case of interest rate derivatives are the

zero-coupon bonds of all maturities. As we will discuss in more detail in Chapter 9, the models

studied so far can be generalized in such a way that the term structure of interest rates produced

by the model and the observed term structure match exactly. The model is said to be calibrated

to the observed term structure. Basically, one of the model parameters has to be replaced by a

carefully chosen time-dependent function, which results in a time inhomogeneous version of the

model. The models can also be calibrated to match prices of derivative securities. Several authors

assume a presumably reasonable two-factor model and calibrate a simpler one-factor model to the

yield curve of the two-factor model using the extension technique described above. They compare

the prices on various derivatives and the efficiency of hedging strategies for the two-factor and

the calibrated one-factor model. We will take a closer a look at these studies in Section 9.9. The

overall conclusion is that the calibrated one-factor models should be used only for the pricing of

securities that resemble the securities to which the model is calibrated. For the pricing of other

securities and, in particular, for the construction of hedging strategies it is important to apply

multi-factor models that provide a good description of the actual evolution of the term structure

of interest rates.

Another conclusion of Chapter 9 is that the calibrated factor models should be used with
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caution. They have some unrealistic properties that may affect the prices of derivative securities.

In Chapters 10 and 11 we will consider models that from the outset are developed to match the

observed yield curve.

Just as at the end of Chapter 7 we will come to the defense of the time homogeneous diffusion

models. In practice, the zero-coupon yield curve is not directly observable, but has to be estimated,

typically by using observed prices on coupon bonds. Frequently, the estimation procedure is based

on a relatively simple parameterization of the discount function as e.g. a cubic spline or a Nelson-

Siegel parameterization described in Chapter 2. Probably, an equally good fit to the observed

market prices and an economically more appropriate yield curve estimate can be obtained by

applying the parameterization of the discount function T 7→ BTt that comes from an economically

founded model such as those discussed in this chapter. Hence, it may be better to use the time

homogeneous version of the model than to calibrate a time inhomogeneous version perfectly to an

estimate of the current yield curve.





Chapter 9

Calibration of diffusion models

9.1 Introduction

In Chapters 7 and 8 we have studied diffusion models in which the drift rates, the variance

rates, and the covariance rates of the state variables do not explicitly depend on time, but only on

the current value of the state variables. Such diffusion processes are called time homogeneous. The

drift rates, variances, and covariances are simple functions of the state variables and a small set of

parameters. The derived prices and interest rates are also functions of the state variables and these

few parameters. Consequently, the resulting term structure of interest rates will typically not fit

the currently observable term structure perfectly. It is generally impossible to find values of a small

number of parameters so that the model can perfectly match the infinitely many values that a term

structure consists of. This property appears to be inappropriate when the models are to be applied

to the pricing of derivative securities. If the model is not able to price the underlying securities

(i.e. the zero-coupon bonds) correctly, why trust the model prices for derivative securities? In order

to be able to fit the observable term structure we need more parameters. This can be obtained by

replacing one of the model parameters by a carefully chosen time-dependent function. The model

is said to be calibrated to the market term structure. The resulting model is time inhomogeneous.

The calibrated model is consistent with the observed term structure and is therefore a relative

pricing model (or pure no-arbitrage model), cf. the classification introduced in Section 6.7. The

model can also be calibrated to other market information such as the term structure of interest

rate volatilities. This requires that an additional parameter is allowed to depend on time.

For time homogeneous diffusion models the current prices and yields and the distribution of

future prices and yields do not depend directly on the calendar date, only on the time to maturity.

For example, the zero-coupon yield yt+τt does not depend directly on t, but is determined by the

maturity τ and value of the state variables xt. Consequently, if the state variables have the same

values at two different points in time, the yield curve will also be the same. Time homogeneity

seems to be a reasonable property of a term structure model. When interest rates and prices

change over time, it is due to changes in the economic environment (the state variables) rather

than the simple passing of time. In contrast, the time inhomogeneous models discussed in this

chapter involve a direct dependence on calendar time. We have to be careful not to introduce

unrealistic time dependencies that are likely to affect the prices of the derivative securities we are

interested in.

In this chapter we consider the calibration of the one-factor models discussed in Chapter 7.

213
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Similar techniques can be applied to the multi-factor models of Chapter 8, but in order to focus

on the ideas and keep the notation simple we will consider only one-factor models. The approach

taken in this chapter is basically to “stretch” an equilibrium model by introducing some particular

time-dependent functions in the dynamics of the state variable. A more natural approach for

obtaining a model that fits the term structure is taken in Chapters 10 and 11, where the dynamics

of the entire yield curve is modeled in an arbitrage-free way assuming that the initial yield curve

is the one currently observed in the market.

9.2 Time inhomogeneous affine models

Replacing the constants in the time homogeneous affine model (7.6) on page 150 by deterministic

functions, we get the short rate dynamics

drt = (ϕ̂(t) − κ̂(t)rt) dt+
√

δ1(t) + δ2(t)rt dz
Q
t (9.1)

under the risk-neutral probability measure Q. In this extended version of the model, the distri-

bution of the short rate rt+τ prevailing τ years from now will depend both on the time horizon τ

and the current calendar time t. In the time homogeneous models the distribution of rt+τ is inde-

pendent of t. Despite the extension we obtain more or less the same pricing results as for the time

homogeneous affine models. Analogously to Theorem 7.1, we have the following characterization

of bond prices:

Theorem 9.1 In the model (9.1) the time t price of a zero-coupon bond maturing at T is given

as BTt = BT (rt, t), where

BT (r, t) = e−a(t,T )−b(t,T )r (9.2)

and the functions a(t, T ) and b(t, T ) satisfy the following system of differential equations:

1

2
δ2(t)b(t, T )2 + κ̂(t)b(t, T ) − ∂b

∂t
(t, T ) − 1 = 0, (9.3)

∂a

∂t
(t, T ) + ϕ̂(t)b(t, T ) − 1

2
δ1(t)b(t, T )2 = 0 (9.4)

with the conditions a(T, T ) = b(T, T ) = 0.

The only difference relative to the result for time homogeneous models is that the functions a and

b (and hence the bond price) now depend separately on t and T , not just on the difference T − t.

The proof is almost identical to the proof of Theorem 7.1 and is therefore omitted. The functions

a(t, T ) and b(t, T ) can be determined from the Equations (9.3) and (9.4) by first solving (9.3) for

b(t, T ) and then substituting that solution into (9.4), which can then be solved for a(t, T ).

It follows immediately from the above theorem that the zero-coupon yields and the forward

rates are given by

yT (r, t) =
a(t, T )

T − t
+
b(t, T )

T − t
r (9.5)

and

fT (r, t) =
∂a

∂T
(t, T ) +

∂b

∂T
(t, T )r. (9.6)

Both expressions are affine in r.
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Next, let us look at the term structures of volatilities in these models, i.e. the volatilities on zero-

coupon bond prices Bt+τt , zero-coupon yields yt+τt , and forward rates f t+τt as functions of the time

to maturity τ . These volatilities involve the volatility of the short rate β(r, t) =
√

δ1(t) + δ2(t)r

and the function b(t, T ). The dynamics of the zero-coupon bond prices is

dBt+τt = Bt+τt [(rt − λ(rt, t)β(rt, t)b(t, t+ τ)) dt− b(t, t+ τ)β(rt, t) dzt] ,

while the dynamics of zero-coupon yields and forward rates is given by

dyt+τt = . . . dt+
b(t, t+ τ)

τ
β(rt, t) dzt (9.7)

and

df t+τt = . . . dt+
∂b(t, T )

∂T

∣
∣
∣
∣
T=t+τ

β(rt, t) dzt, (9.8)

respectively. Focusing on the volatilities, we have omitted the rather complicated drift terms.

From (9.3) we see that if the functions δ2(t) and κ̂(t) are constant, then we can write b(t, T ) as

b(T − t) where the function b(τ) solves the same differential equation as in the time homogeneous

affine models, i.e. the ordinary differential equation (7.8) on page 151. If δ1(t) is also constant,

the short rate volatility β(rt, t) =
√

δ1(t) + δ2(t)rt will be time homogeneous. Consequently, when

κ̂(t), δ1(t), and δ2(t) – but not necessarily ϕ̂(t) – are constants, the term structures of volatilities

of the model are time homogeneous in the sense that the volatilities of Bt+τt , yt+τt , and f t+τt

depend only on τ and the current short rate, not on t. Due to the time inhomogeneity, the future

volatility structure can be very different from the current volatility structure, even for a similar

yield curve. This property is inappropriate and not realistic. Furthermore, the prices of many

derivative securities are highly dependent on the evolution of volatilities, see e.g. Carverhill (1995)

and Hull and White (1995). A model with unreasonable volatility structures will probably produce

unreasonable prices and hedge strategies.

For these reasons it is typically only the parameter ϕ̂ that is allowed to depend on time. Below

we will discuss such extensions of the models of Merton, of Vasicek, and of Cox, Ingersoll, and

Ross. For a particular choice of the function ϕ̂(t) these extended models are able to match the

observed yield curve exactly, i.e. the models are calibrated to the market yield curve.

Note that if only ϕ̂ depends on time, the function b(τ) is just as in the original time homogeneous

version of the model, whereas the a function will be different. Since

a(T, T ) − a(t, T ) =

∫ T

t

∂a

∂u
(u, T ) du

and a(T, T ) = 0, Eq. (9.4) implies that

a(t, T ) =

∫ T

t

ϕ̂(u)b(T − u) du− δ1
2

∫ T

t

b(T − u)2 du.

In particular,

a(0, T ) =

∫ T

0

ϕ̂(t)b(T − t) dt− δ1
2

∫ T

0

b(T − t)2 dt. (9.9)

We want to pick the function ϕ̂(t) so that the current (time 0) model prices on zero-coupon bonds,

BT (r0, 0), are identical to the observed prices, B̄(T ), i.e.

a(0, T ) = −b(T )r0 − ln B̄(T ) (9.10)
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for any time-to-maturity T . We can then determine ϕ̂(t) by comparing (9.9) and (9.10). In the

extensions of the models of Merton and Vasicek we are able to find an explicit expression for ϕ̂(t),

while numerical methods must be applied in the extension of the CIR model.

9.3 The Ho-Lee model (extended Merton)

Ho and Lee (1986) developed a recombining binomial model for the evolution of the entire

yield curve taking the currently observed yield curve as given. Subsequently, Dybvig (1988) has

demonstrated that the continuous time limit of their binomial model is a model with

drt = ϕ̂(t) dt+ β dzQ
t , (9.11)

which extends Merton’s model described in Section 7.3. The prices of zero-coupon bonds are of

the form

BT (r, t) = e−a(t,T )−b(T−t)r,

where b(τ) = τ just as in Merton’s model, and

a(t, T ) =

∫ T

t

ϕ̂(u)(T − u) du− 1

2
β2

∫ T

t

(T − u)2 du, (9.12)

cf. the discussion in the preceding section. The following theorem shows how to choose the function

ϕ̂(t) in order to match any given initial yield curve.

Theorem 9.2 Let t 7→ f̄(t) be the current term structure of forward rates and assume that this

function is differentiable. Then the term structure of interest rates in the Ho-Lee model (9.11) with

ϕ̂(t) = f̄ ′(t) + β2t (9.13)

for all t will be identical to the current term structure. In this case we have

a(t, T ) = − ln

(
B̄(T )

B̄(t)

)

− (T − t)f̄(t) +
1

2
β2t(T − t)2, (9.14)

where B̄(t) = exp{−
∫ t

0
f̄(s) ds} denotes the current zero-coupon bond prices.

Proof: Substituting b(T − t) = T − t and δ1 = β2 into (9.9), we obtain

a(0, T ) =

∫ T

0

ϕ̂(t)(T − t) dt− 1

2
β2

∫ T

0

(T − t)2 dt =

∫ T

0

ϕ̂(t)(T − t) dt− 1

6
β2T 3.

Computing the derivative with respect to T , using Leibnitz’ rule,1 we obtain

∂a

∂T
(0, T ) =

∫ T

0

ϕ̂(t) dt− 1

2
β2T 2,

and another differentiation gives

∂2a

∂T 2
(0, T ) = ϕ̂(T ) − β2T. (9.15)

1If h(t, T ) is a deterministic function, which is differentiable in T , then

∂

∂T

(∫ T

0
h(t, T ) dt

)

= h(T, T ) +

∫ T

0

∂h

∂T
(t, T ) dt.
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We wish to satisfy the relation (9.10), i.e.

a(0, T ) = −Tr0 − ln B̄(T ).

Recall from (1.17) on page 7 the following relation between the discount function B̄ and the term

structure of forward rates f̄ :

−∂ ln B̄(T )

∂T
= − B̄

′(T )

B̄(T )
= f̄(T ).

Hence, a(0, T ) must satisfy that
∂a

∂T
(0, T ) = −r0 + f̄(T )

and therefore
∂2a

∂T 2
(0, T ) = f̄ ′(T ), (9.16)

where we have assumed that the term structure of forward rates is differentiable. Comparing (9.15)

and (9.16), we obtain the stated result.

Substituting (9.13) into (9.12), we get

a(t, T ) =

∫ T

t

f̄ ′(u)(T − u) du+ β2

∫ T

t

u(T − u) du− 1

2
β2

∫ T

t

(T − u)2 du.

Partial integration gives

∫ T

t

f̄ ′(u)(T − u) du = −(T − t)f̄(t) +

∫ T

t

f̄(u) du = −(T − t)f̄(t) − ln

(
B̄(T )

B̄(t)

)

,

where we have used the relation between forward rates and zero-coupon bond prices to conclude

that

∫ T

t

f̄(u) du =

∫ T

0

f̄(u) du−
∫ t

0

f̄(u) du = − ln B̄(T ) + ln B̄(t) = − ln

(
B̄(T )

B̄(t)

)

. (9.17)

Furthermore, tedious calculations yield that

β2

∫ T

t

u(T − u) du− 1

2
β2

∫ T

t

(T − u)2 du =
1

2
β2t(T − t)2.

Now, a(t, T ) can be written as stated in the Theorem. 2

In the Ho-Lee model the short rate follows a generalized Brownian motion (with a time-

dependent drift). From the analysis in Chapter 3 we get that the future short rate is normally

distributed, i.e. the Ho-Lee model is a Gaussian model. The pricing of European options is similar

to the original Merton model. The price of a call option on a zero-coupon bond is given by (7.47)

on page 161 with the same expression for the variance v(t, T, S)2. As usual, the price of a call

option on a coupon bond follows from Jamshidian’s trick.

9.4 The Hull-White model (extended Vasicek)

When we replace the parameter θ̂ in Vasicek’s model (7.55) by a time-dependent function θ̂(t),

we get the following short rate dynamics under the spot martingale measure:

drt = κ
[

θ̂(t) − rt

]

dt+ β dzQ
t . (9.18)
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This model was introduced by Hull and White (1990a) and is called the Hull-White model or the

extended Vasicek model. As in the original Vasicek model, the process has a constant volatility

β > 0 and exhibits mean reversion with a constant speed of adjustment κ > 0, but in the extended

version the long-term level is time-dependent. The risk-adjusted process (9.18) may be the result

of a real-world dynamics of

drt = κ [θ(t) − rt] dt+ β dzt,

and an assumption that the market price of risk depends at most on time, λ(t). In that case we

will have

θ̂(t) = θ(t) − β

κ
λ(t).

Despite the small extension, it follows from the discussion in Section 3.8.2 on page 53 that the

model remains Gaussian. To be more precise, the future short rate rT is normally distributed with

the same variance as in the original Vasicek model,

Varr,t[rT ] = VarQ
r,t[rT ] = β2

∫ T

t

e−2κ[T−u] du =
β2

2κ

(

1 − e−2κ[T−t]
)

,

but a different mean, namely

EQ
r,t[rT ] = e−κ[T−t]r + κ

∫ T

t

e−κ[T−u]θ̂(u) du

under the spot martingale measure and

Er,t[rT ] = e−κ[T−t]r + κ

∫ T

t

e−κ[T−u]θ(u) du

under the real-world probability measure.

According to Theorem 9.1 and the subsequent discussion, the zero-coupon bond prices in the

Hull-White model are given by

BT (r, t) = e−a(t,T )−b(T−t)r, (9.19)

where

b(τ) =
1

κ

(
1 − e−κτ

)
, (9.20)

a(t, T ) = κ

∫ T

t

θ̂(u)b(T − u) du+
β2

4κ
b(T − t)2 +

β2

2κ2
(b(T − t) − (T − t)) . (9.21)

This expression holds for any given function θ̂. Now assume that at time 0 we observe the current

short rate r0 and the entire discount function T 7→ B̄(T ) or, equivalently, the term structure of

forward rates T 7→ f̄(T ). The following result shows how to choose the function θ̂ so that the

model discount function matches the observed discount function exactly.

Theorem 9.3 Let t 7→ f̄(t) be the current (time 0) term structure of forward rates and assume

that this function is differentiable. Then the term structure of interest rates in the Hull-White

model (9.18) with

θ̂(t) = f̄(t) +
1

κ
f̄ ′(t) +

β2

2κ2

(
1 − e−2κt

)
(9.22)

will be identical to the current term structure of interest rates. In this case we have

a(t, T ) = − ln

(
B̄(T )

B̄(t)

)

− b(T − t)f̄(t) +
β2

4κ
b(T − t)2

(
1 − e−2κt

)
. (9.23)
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Proof: From Eq. (9.21) it follows that

a(0, t) = κ

∫ t

0

θ̂(u)b(t− u) du+
β2

4κ
b(t)2 +

β2

2κ2
(b(t) − t) . (9.24)

Repeated differentiations yield

∂a

∂t
(0, t) = κ

∫ t

0

θ̂(u)e−κ[t−u] du− 1

2
β2b(t)2 (9.25)

and

∂2a

∂t2
(0, t) = κθ̂(t) − κ2

∫ t

0

θ̂(u)e−κ[t−u] du− β2b(t)e−κt

= κθ̂(t) − κ
∂a

∂t
(0, t) − β2

2κ

(
1 − e−2κt

)
,

where we have applied Leibnitz’ rule (see footnote 1, page 216). Consequently,

θ̂(t) =
β2

2κ2

(
1 − e−2κt

)
+

1

κ

∂2a

∂t2
(0, t) +

∂a

∂t
(0, t). (9.26)

Differentiation of the expression (9.10), which we want to be satisfied, yields

∂a

∂t
(0, t) = − B̄

′(t)

B̄(t)
− r0e

−κt = f̄(t) − r0e
−κt (9.27)

and
∂2a

∂t2
(0, t) = f̄ ′(t) + κr0e

−κt.

Substituting these expressions into (9.26), we obtain (9.22).

Substituting (9.26) into (9.21), we get

a(t, T ) =

∫ T

t

f̄(u)
(

1 − e−κ[T−u]
)

du+
1

κ

∫ T

t

f̄ ′(u)
(

1 − e−κ[T−u]
)

du

+
β2

2κ2

∫ T

t

(
1 − e−2κu

) (

1 − e−κ[T−u]
)

du+
β2

4κ
b(T − t)2 +

β2

2κ2
(b(T − t) − (T − t)) .

Note that ∫ T

t

f̄ ′(u) du = f̄(T ) − f̄(t).

Partial integration yields

1

κ

∫ T

t

f̄ ′(u)e−κ[T−u] du =
1

κ
f̄(T ) − 1

κ
f̄(t)e−κ[T−t] −

∫ T

t

f̄(u)e−κ[T−u] du.

From (9.17) we get that

a(t, T ) = − ln

(
B̄(T )

B̄(t)

)

− f̄(t)b(T − t) +
β2

2κ2

∫ T

t

(
1 − e−2κu

) (

1 − e−κ[T−u]
)

du

+
β2

4κ
b(T − t)2 +

β2

2κ2
(b(T − t) − (T − t)) .

After some straightforward, but tedious, manipulations we arrive at the desired relation (9.23).

2

Due to the fact that the Hull-White model is Gaussian, the prices of European call options

on zero-coupon bonds can be derived just as in the Vasicek model. Since the b function and the
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variance of the future short rate are the same in the Hull-White model as in Vasicek’s model, we

obtain exactly the same option pricing formula, i.e.

CK,T,S(r, t) = BS(r, t)N (d1) −KBT (r, t)N (d2) , (9.28)

where

d1 =
1

v(t, T, S)
ln

(
BS(r, t)

KBT (r, t)

)

+
1

2
v(t, T, S),

d2 = d1 − v(t, T, S),

v(t, T, S) =
β√
2κ3

(

1 − e−κ[S−T ]
)(

1 − e−2κ[T−t]
)1/2

.

The only difference to the Vasicek case is that the Hull-White model justifies the use of observed

bond prices in this formula. Since the zero-coupon bond price is a decreasing function of the short

rate, we can apply Jamshidian’s trick stated in Theorem 7.3 for the pricing of European options

on coupon bonds in terms of a portfolio of European options on zero-coupon bonds.

9.5 The extended CIR model

Extending the CIR model analyzed in Section 7.5 in the same way as we extended the models

of Merton and Vasicek, the short rate dynamics becomes2

drt = (κθ(t) − κ̂rt) dt+ β
√
rt dz

Q
t . (9.29)

For the process to be well-defined θ(t) has to be non-negative. This will ensure a non-negative

drift when the short rate is zero so that the short rate stays non-negative and the square root term

makes sense. To ensure strictly positive interest rates we must further require that 2κθ(t) ≥ β2

for all t.

For an arbitrary non-negative function θ(t) the zero-coupon bond prices are

BT (r, t) = e−a(t,T )−b(T−t)r,

where b(τ) is exactly as in the original CIR model, cf. (7.73) on page 175, while the function a is

now given by

a(t, T ) = κ

∫ T

t

θ(u)b(T − u) du.

Suppose that the current discount function is B̄(T ) with the associated term structure of

forward rates given by f̄(T ) = −B̄′(T )/B̄(T ). To obtain B̄(T ) = BT (r0, 0) for all T , we have to

choose θ(t) so that

a(0, T ) = − ln B̄(T ) − b(T )r0 = κ

∫ T

0

θ(u)b(T − u) du, T > 0.

Differentiating with respect to T , we get

f̄(T ) = b′(T )r0 + κ

∫ T

0

θ(u)b′(T − u) du, T > 0.

2This extension was suggested already in the original article by Cox, Ingersoll, and Ross (1985b).
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According to Heath, Jarrow, and Morton (1992, p. 96) it can be shown that this equation has a

unique solution θ(t), but it cannot be written in an explicit form so a numerical procedure must

be applied. We cannot be sure that the solution complies with the conditions that guarantee a

well-defined short rate process. Clearly, a necessary condition for θ(t) to be non-negative for all t

is that

f̄(T ) ≥ r0b
′(T ), T > 0. (9.30)

Not all forward rate curves satisfy this condition, cf. Exercise 9.1. Consequently, in contrast to the

Merton and the Vasicek models, the CIR model cannot be calibrated to any given term structure.

No explicit option pricing formulas have been found in the extended CIR model. Option prices

can be computed by numerically solving the partial differential equation associated with the model,

e.g. using the techniques outlined in Chapter 16.

9.6 Calibration to other market data

Many practitioners want a model to be consistent with basically all “reliable” current market

data. The objective may be to calibrate a model to the prices of liquid bonds and derivative

securities, e.g. caps, floors, and swaptions, and then apply the model for the pricing of less liquid

securities. In this manner the less liquid securities are priced in a way which is consistent with the

indisputable observed prices. Above we discussed how an equilibrium model can be calibrated to

the current yield curve (i.e. current bond prices) by replacing the constant in the drift term with a

time-dependent function. If we replace other constant parameters by carefully chosen deterministic

functions, we can calibrate the model to further market information.

Let us take the Vasicek model as an example. If we allow both θ̂ and κ to depend on time, the

short rate dynamics becomes

drt = κ(t)
[

θ̂(t) − rt

]

dt+ β dzQ
t

= [ϕ̂(t) − κ(t)rt] dt+ β dzQ
t .

The price of a zero-coupon bond is still given by Theorem 9.1 as BT (r, t) = exp{−a(t, T )−b(t, T )r}.
According to Eqs. (15) and (16) in Hull and White (1990a), the functions κ(t) and ϕ̂(t) are

κ(t) = −∂
2b

∂t2
(0, t)

/∂b

∂t
(0, t),

ϕ̂(t) = κ(t)
∂a

∂t
(0, t) +

∂2a

∂t2
(0, t) −

(
∂b

∂t
(0, t)

)2 ∫ t

0

β2

(
∂b

∂u
(0, u)

)−2

du,

and can hence be determined from the functions t 7→ a(0, t) and t 7→ b(0, t) and their derivatives.

From (9.7) we get that the model volatility of the zero-coupon yield yt+τt = yt+τ (rt, t) is

σt+τy (t) =
β

τ
b(t, t+ τ).

In particular, the time 0 volatility is στy (0) = βb(0, τ)/τ . If the current term structure of zero-

coupon yield volatilities is represented by the function t 7→ σ̄y(t), we can obtain a perfect match

of these volatilities by choosing

b(0, t) =
τ

β
σ̄y(t).
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The function t 7→ a(0, t) can then be determined from b(0, t) and the current discount function

t 7→ B̄(t) as described in the previous sections. Note that the term structure of volatilities can be

estimated either from historical fluctuations of the yield curve or as “implied volatilities” derived

from current prices of derivative securities. Typically the latter approach is based on observed

prices of caps.

Finally, we can also let the short rate volatility be a deterministic function β(t) so that we get

the “fully extended” Vasicek model

drt = κ(t)[θ̂(t) − rt] dt+ β(t) dzQ
t . (9.31)

Choosing β(t) in a specific way, we can calibrate the model to further market data.

Despite all these extensions, the model remains Gaussian so that the option pricing for-

mula (9.28) still applies. However, the relevant volatility is now v(t, T, S), where

v(t, T, S)2 =

∫ T

t

β(u)2 [b(u, S) − b(u, T )]
2
du = [b(0, S) − b(0, T )]

2
∫ T

t

β(u)2
(
∂b

∂u
(0, u)

)−2

du,

cf. Hull and White (1990a). Jamshidian’s result (7.38) for European options on coupon bonds is

still valid if the estimated b(t, T ) function is positive.

If either κ or β (or both) are time-dependent, the volatility structure in the model becomes

time inhomogeneous, i.e. dependent on the calendar time, cf. the discussion in Section 9.2. Since

the volatility structure in the market seems to be pretty stable (when interest rates are stable),

this dependence on calendar time is inappropriate. Broadly speaking, to let κ or β depend on

time is to “stretch the model too much”. It should not come as a surprise that it is hard to find a

reasonable and very simple model which is consistent with both yield curves and volatility curves.

If only the parameter θ is allowed to depend on time, the volatility structure of the model is

time homogeneous. The drift rates of the short rate, the zero-coupon yields, and the forward rates

are still time inhomogeneous, which is certainly also unrealistic. The drift rates may change over

time, but only because key economic variables change, not just because of the passage of time.

However, Hull and White and other authors argue that time inhomogeneous drift rates are less

critical for option prices than time inhomogeneous volatility structures. See also the discussion in

Section 9.9 below.

9.7 Initial and future term structures in calibrated models

In the preceding section we have implicitly assumed that the current term structure of interest

rates is directly observable. In practice, the term structure of interest rates is often estimated from

the prices of a finite number of liquid bonds. As discussed in Chapter 2, this is typically done by

expressing the discount function or the forward rate curve as some given function with relatively

few parameters. The values of these parameters are chosen to match the observed prices as closely

as possible.

A cubic spline estimation of the discount function will frequently produce unrealistic estimates

for the forward rate curve and, in particular, for the slope of the forward rate curve. This is

problematic since the calibration of the equilibrium models depends on the forward rate curve and

its slope as can be seen from the earlier sections of this chapter. In contrast, the Nelson-Siegel
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parameterization

f̄(t) = c1 + c2e
−kt + c3te

−kt, (9.32)

cf. (2.13), ensures a nice and smooth forward rate curve and will presumably be more suitable in

the calibration procedure.

No matter which of these parameterizations is used, it will not be possible to match all the

observed bond prices perfectly. Hence, it is not strictly correct to say that the calibration pro-

cedure provides a perfect match between model prices and market prices of the bonds. See also

Exercise 9.2.

Recall that the cubic spline and the Nelson-Siegel parameterizations are not based on any

economic arguments, but are simply “curve fitting” techniques. The theoretically better founded

dynamic equilibrium models of Chapters 7 and 8 also result in a parameterization of the discount

function, e.g. (7.70) and the associated expressions for a and b in the Cox-Ingersoll-Ross model.

Why not use such a parameterization instead of the cubic spline or the Nelson-Siegel parameter-

ization? And if the parameterization generated by an equilibrium model is used, why not use

that equilibrium model for the pricing of fixed income securities rather than calibrating a different

model to the chosen parameterized form? In conclusion, the objective must be to use an equi-

librium model that produces yield curve shapes and yield curve movements that resemble those

observed in the market. If such a model is too complex, one can calibrate a simpler model to

the yield curve estimate stemming from the complex model and hope that the calibrated simpler

model provides prices and hedge ratios which are reasonably close to those in the complex model.

A related question is what shapes the future yield curve may have, given the chosen parameter-

ization of the current yield curve and the model dynamics of interest rates. For example, if we use

a Nelson-Siegel parameterization (9.32) of the current yield curve and let this yield curve evolve

according to a dynamic model, e.g. the Hull-White model, will the future yield curves also be of

the form (9.32)? Intuitively, it seems reasonable to use a parameterization which is consistent with

the model dynamics, in the sense that the possible future yield curves can be written on the same

parameterized from, although possibly with other parameter values.

Which parameterizations are consistent with a given dynamic model? This question was studied

by Björk and Christensen (1999) using advanced mathematics, so let us just list some of their

conclusions:

• The simple affine parameterization f̄(t) = c1+c2t is consistent with the Ho-Lee model (9.11),

i.e. if the initial forward rate curve is a straight line, then the future forward rate curves in

the model are also straight lines.

• The simplest parameterization of the forward rate curve, which is consistent with the Hull-

White model (9.18), is

f̄(t) = c1e
−kt + c2e

−2kt.

• The Nelson-Siegel parameterization (9.32) is consistent neither with the Ho-Lee model nor

the Hull-White model. However, the extended Nelson-Siegel parameterization

f̄(t) = c1 + c2e
−kt + c3te

−kt + c4e
−2kt

is consistent with the Hull-White model.
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Furthermore, it can be shown that the Nelson-Siegel parameterization is not consistent with any

non-trivial one-factor diffusion model, cf. Filipović (1999).

9.8 Calibrated non-affine models

In Section 7.6 on page 179 we looked at some non-affine one-factor models with constant param-

eters. These models can also be calibrated to market data by replacing the constant parameters

by time-dependent functions. The Black-Karasinksi model (7.84) can thus be extended to

d(ln rt) = κ(t)(θ(t) − ln rt) dt+ β(t) dzQ
t , (9.33)

where κ, θ, and β are deterministic functions of time. Despite the generalization, the future values

of the short rate remain lognormally distributed. Black and Karasinksi implement their model in

a binomial tree and choose the functions κ, θ, and β so that the yields and the yield volatilities

computed with the tree exactly match those observed in the market. There are no explicit pricing

formulas, and the construction of the calibrated binomial tree is quite complicated.

The BDT model introduced by Black, Derman, and Toy (1990) is the special case of the Black-

Karasinski model where β(t) is a differentiable function and

κ(t) =
β′(t)

β(t)
.

Still, no explicit pricing formulas have been found, and also this model is typically implemented in

a binomial tree.3 To avoid the difficulties arising from time-dependent volatilities, β(t) has to be

constant. In that case, κ(t) = 0 in the BDT model, and the model is reduced to the simple model

drt =
1

2
β2rt dt+ βrt dz

Q
t ,

which is a special case of the Rendleman-Bartter model (7.85) and cannot be calibrated to the

observed yield curve.

Theorem 7.6 showed that the time homogeneous lognormal models produce completely wrong

Eurodollar-futures prices. The time inhomogeneous versions of the lognormal models exhibit the

same unpleasant property.

9.9 Is a calibrated one-factor model just as good as a multi-factor model?

In the opening section of Chapter 8 we argued that more than one factor is needed in order

to give a reasonable description of the evolution of the term structure of interest rates. However,

multi-factor models are harder to estimate and apply than one-factor models. If there are no

significant differences in the prices and hedge ratios obtained in a multi-factor and a one-factor

model, it will be computationally convenient to use the one-factor model. But will a simple one-

factor model provide the same prices and hedge ratios as a more realistic multi-factor model? We

initiated the discussion of this issue in Section 8.7, where we focused on the time homogeneous

models. Intuitively, the prices of derivative securities in two different models should be closer when

the two models produce identical prices to the underlying assets. Several authors compare a time

3It is not clear from Black, Derman, and Toy (1990) how a calibrated tree can be constructed, but Jamshidian

(1991) fills this gap in their presentation.
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homogeneous two-factor model to a time inhomogeneous one-factor model which has been perfectly

calibrated to the yield curve generated by the two-factor model.

Hull and White (1990a) compare prices of selected derivative securities in different models that

have been calibrated to the same initial yield curve. They first assume that the time homogeneous

CIR model (with certain parameter values) provides a correct description of the term structure,

and they compute prices of European call options on a 5-year bullet bond and of various caps,

both with the original CIR model and the extended Vasicek model calibrated to the CIR yield

curve. They find that the prices in the two models are generally very close, but that the percentage

deviation for out-of-the-money options and caps can be considerable. Next, they compare prices

of European call options on a 5-year zero-coupon bond in the extended Vasicek model to prices

computed using two different two-factor models, namely a two-factor Gaussian model and a two-

factor CIR model. In each of the comparisons the two-factor model is assumed to provide the

true yield curve, and the extended Vasicek-model is calibrated to the yield curve of the two-factor

model. The price differences are very small. Hence, Hull and White conclude that although the

true dynamics of the yield curve is consistent with a complex one-factor (CIR) or a two-factor

model, one might as well use the simple extended Vasicek model calibrated to the true yield curve.

Hull and White consider only a few different derivative securities and only two relatively sim-

ple multi-factor models, and they compare only prices, not hedge strategies. Canabarro (1995)

performs a more adequate comparison. First, he argues that the two-factor models used in the

comparison of Hull and White are degenerate and describe the actual evolution of the yield curve

very badly. For example, he shows that, in the two-factor CIR model they use, one of the factors

(with the parameter values used by Hull and White) will explain more than 99% of the total

variation in the yield curve and hence the second factor explains less than 1%. As discussed in

Section 8.1 on page 187, he finds empirically that the most important factor can explain only 85%

and the second-most important factor more than 10% of the variation in the yield curve. Moreover,

Hull and White’s two-factor CIR model gives unrealistically high correlations between zero-coupon

yields of different maturities. For example, the correlation between the 3-month and the 30-year

par yields is as high as 0.96 in that model, which is far from the empirical estimate of 0.46, cf.

Table 8.1. Therefore, a comparison to this two-factor model will provide very little information on

whether it is reasonable or not to use a simple calibrated one-factor model to represent the com-

plex real-world dynamics. In his comparisons Canabarro also uses a different two-factor model,

namely the model of Brennan and Schwartz (1979), which was briefly described at the end of

Section 8.6. Despite the theoretical deficiencies of the Brennan-Schwartz model, Canabarro shows

that the model provides reasonable values for the correlations and the explanatory power of each

of the factors.

Each of the two two-factor models is compared to two calibrated one-factor models. The first

is the extended one-factor CIR model

drt = (ϕ̂(t) − κ̂(t)rt) dt+ β
√
rt dz

Q
t ,

and the second is the BDT model

d(ln rt) =
β′(t)

β(t)
(θ(t) − ln rt) dt+ β(t) dzQ

t .

The time-dependent functions in these models are chosen so that the models produce the same
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initial yield curve and the same prices of caps with a given cap-rate, but different maturities, as

the two-factor model which is assumed to be the “true” model. Note that both these calibrated

one-factor models exhibit time-dependent volatility structures, which in general should be avoided.

For both of the two benchmark two-factor models, Canabarro finds that using a calibrated one-

factor model instead of the correct two-factor model results in price errors that are very small for

relatively simple securities such as caps and European options on bonds. For so-called yield curve

options that have payoffs given by the difference between a short-term and a long-term zero-coupon

yield, the errors are much larger and non-negligible. These findings are not surprising since the one-

factor models do not allow for twists in the yield curve, i.e. yield curve movements where the short

end and the long end move in opposite directions. It is exactly those movements that make yield

curve options valuable. Regarding the efficiency of hedging strategies, the calibrated one-factor

models perform very badly. This is true even for the hedging of simple securities that resemble the

securities used in the calibration of the models. Both pricing errors and hedging errors are typically

larger for the BDT model than for the calibrated one-factor CIR model. In general, the errors are

larger when the one-factor models have been calibrated to the more realistic Brennan-Schwartz

model than to the rather degenerate two-factor CIR model used in the comparison of Hull and

White.

The conclusion to be drawn from these studies is that the calibrated one-factor models should

be used only for pricing securities that are closely related to the securities used in the calibration of

the model. For the pricing of other securities and, in particular, for the design of hedging strategies

it is important to apply multi-factor models that give a good description of the actual movements

of the yield curve.

9.10 Final remarks

This chapter has shown how one-factor equilibrium models can be perfectly fitted to the ob-

served yield curve by replacing constant parameters by certain time-dependent functions. However,

we have also argued that this calibration approach has inappropriate consequences and should be

used only with great caution.

Similar procedures apply to multi-factor models. Since multi-factor models typically involve

more parameters than one-factor models, they can give a closer fit to any given yield curve without

introducing time-dependent functions. In this sense the gain from a perfect calibration is less for

multi-factor models. In the following two chapters we will look at a more direct way to construct

models that are consistent with the observable yield curve.

9.11 Exercises

EXERCISE 9.1 (Calibration of the CIR model) Compute b′(τ) in the CIR model by differentiation

of (7.73) on page 175. Find out which types of initial forward rate curves the CIR model can be calibrated

to, by computing (using a spreadsheet for example) the right-hand side of (9.30) for reasonable values of

the parameters and the initial short rate. Vary the parameters and the short rate and discuss the effects.

EXERCISE 9.2 (The Hull-White model calibrated to the Vasicek yield curve) Suppose the observable
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bond prices are fitted to a discount function of the form

B̄(t) = e−a(t)−b(t)r0 , (*)

where

b(t) =
1

κ

(
1 − e−κt) ,

a(t) = y∞[t − b(t)] +
β2

4κ
b(t)2,

where y∞, κ, and β are constants. This is the discount function of the Vasicek model, cf. (7.56)–(7.58) on

page 165.

(a) Express the initial forward rates f̄(t) and the derivatives f̄ ′(t) in terms of the functions a and b.

(b) Show by substitution into (9.22) that the function θ̂(t) in the Hull-White model will be given by the

constant

θ̂(t) = y∞ +
β2

2κ2
,

when the initial “observable” discount function is of the form (*), i.e. as in the Vasicek model.





Chapter 10

Heath-Jarrow-Morton models

10.1 Introduction

In Chapter 7 and Chapter 8 we discussed various models of the term structure of interest

rates which assume that the entire term structure is governed by a low-dimensional Markov vector

diffusion process of state variables. Among other things, we concluded from those chapters that a

time-homogeneous diffusion model generally cannot produce a term structure consistent with all

observed bond prices, but as discussed in Chapter 9 a simple extension to a time-inhomogeneous

model allows for a perfect fit to any (or almost any) given term structure of interest rates. A

more natural way to achieve consistency with observed prices is to start from the observed term

structure and then model the evolution of the entire term structure of interest rates in a manner

that precludes arbitrage. This is the approach introduced by Heath, Jarrow, and Morton (1992),

henceforth abbreviated HJM.1 The HJM models are relative pricing models and focus on the

pricing of derivative securities.

This chapter gives an overview of the HJM class of term structure models. We will discuss

the main characteristics, advantages, and drawbacks of the general HJM framework and consider

several model specifications in more detail. In particular, we shall study the relationship between

HJM models and the diffusion models discussed in previous chapters. We take an applied per-

spective and, although the exposition is quite mathematical, we shall not go too deep into all

technicalities, but refer the interested reader to the original HJM paper and the other references

given below for details.

10.2 Basic assumptions

As before, we let fTt be the (continuously compounded) instantaneous forward rate prevailing

at time t for a loan agreement over an infinitesimal time interval starting at time T ≥ t. We shall

refer to fTt as the T -maturity forward rate at time t. Suppose that we know the term structure of

interest rates at time 0 represented by the forward rate function T 7→ fT0 . Assume that, for any

fixed T , the T -maturity forward rate evolves according to

dfTt = α (t, T, (fst )s≥t) dt+

n∑

i=1

βi (t, T, (f
s
t )s≥t) dzit, 0 ≤ t ≤ T, (10.1)

1The binomial model of Ho and Lee (1986) can be seen as a forerunner of the more complete and thorough

HJM-analysis.
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where z1, . . . , zn are n independent standard Brownian motions under the real-world probability

measure. The (fst )s≥t terms indicate that both the forward rate drift α and the forward rate

sensitivity terms βi at time t may depend on the entire forward rate curve present at time t.

We call (10.1) an n-factor HJM model of the term structure of interest rates. Note that n is

the number of random shocks (Brownian motions), and that all the forward rates are affected by

the same n shocks. The diffusion models discussed in Chapter 7 and Chapter 8 are based on the

evolution of a low-dimensional vector diffusion process of state variables. The general HJM model

does not fit into that framework. It is not possible to use the partial differential equation approach

for pricing in such general models, but we can still price by computing relevant expectations under

the appropriate martingale measures. However, we can think of the general model (10.1) as an

infinite-dimensional diffusion model, since the infinitely many forward rates can affect the dynamics

of any forward rate.2 In Section 10.6 we shall discuss when an HJM model can be represented by

a low-dimensional diffusion model.

The basic idea of HJM is to directly model the entire term structure of interest rates. Recall

from Chapter 1 that the term structure at some time t is equally well represented by the discount

function T 7→ BTt or the yield curve T 7→ yTt as by the forward rate function T 7→ fTt , due to the

following relations

BTt = e−
∫

T
t
fs

t ds = e−y
T
t (T−t), (10.2)

fTt = −∂ lnBTt
∂T

= yTt + (T − t)
∂yTt
∂T

, (10.3)

yTt =
1

T − t

∫ T

t

fst ds = − 1

T − t
lnBTt . (10.4)

We could therefore have specified the dynamics of the zero-coupon bond prices or the yield curve

instead of the forward rates. However, there are (at least) three reasons for choosing the forward

rates as the modeling object. Firstly, the forward rates are the most basic elements of the term

structure. Both the zero-coupon bond prices and yields involve sums/integrals of forward rates.

Secondly, we know from our analysis in Chapter 4 that one way of pricing derivatives is to find

the expected discounted payoff under the risk-neutral probability measure (i.e. the spot martingale

measure), where the discounting is in terms of the short-term interest rate rt. The short rate is

related to the forward rates, the yield curve, and the discount function as

rt = f tt = lim
T↓t

yTt = − lim
T↓t

∂ lnBTt
∂T

.

Obviously, the relation of the forward rates to the short rate is much simpler than that of both the

yield curve and the discount function, so this motivates the HJM choice of modeling basis. Thirdly,

the volatility structure of zero coupon bond prices is more complicated than that of interest rates.

For example, the volatility of the bond price must approach zero as the bond approaches maturity,

and, to avoid negative interest rates, the volatility of a zero coupon bond price must approach zero

as the price approaches one. Such restrictions need not be imposed on the volatilities of forward

rates.

2In fact, the results of Theorem 10.1, 10.2, and 10.4 below are valid in the more general setting, where the drift

and sensitivities of the forward rates also depend the forward rate curves at previous dates. Since no models with

that feature have been studied in the literature, we focus on the case where only the current forward rate curve

affects the dynamics of the curve over the next infinitesimal period of time.
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10.3 Bond price dynamics and the drift restriction

In this section we will discuss how we can change the probability measure in the HJM frame-

work to the risk-neutral measure Q. As a first step, the following theorem gives the dynamics

under the real-world probability measure of the zero coupon bond prices BTt under the HJM

assumption (10.1).

Theorem 10.1 Under the assumed forward rate dynamics (10.1), the price BTt of a zero coupon

bond maturing at time T evolves as

dBTt = BTt

[

µT (t, (fst )s≥t) dt+
n∑

i=1

σTi (t, (fst )s≥t) dzit

]

, (10.5)

where

µT (t, (fst )s≥t) = rt −
∫ T

t

α(t, u, (fst )s≥t) du+
1

2

n∑

i=1

(
∫ T

t

βi(t, u, (f
s
t )s≥t) du

)2

, (10.6)

σTi (t, (fst )s≥t) = −
∫ T

t

βi(t, u, (f
s
t )s≥t) du, (10.7)

Proof: For simplicity we only proof the claim for the case n = 1, where

dfTt = α(t, T, (fst )s≥t) dt+ β(t, T, (fst )s≥t) dzt, 0 ≤ t ≤ T,

for any T . Introduce the auxiliary stochastic process

Yt =

∫ T

t

fut du.

Then we have from (10.2) that the zero coupon bond price is given by BTt = e−Yt . If we can find

the dynamics of Yt, we can therefore apply Itô’s Lemma to derive the dynamics of the zero-coupon

bond price BTt . Since Yt is a function of infinitely many forward rates fut with dynamics given

by (10.1), it is however quite complicated to derive the dynamics of Yt. Due to the fact that t

appears both in the lower integration bound and in the integrand itself, we must apply Leibnitz’

rule for stochastic integrals stated in Theorem 3.4 on page 48, which in this case yields

dYt =

(

−rt +

∫ T

t

α(t, u, (fst )s≥t) du

)

dt+

(
∫ T

t

β(t, u, (fst )s≥t) du

)

dzt,

where we have applied that rt = f(t, t). Since BTt = g(Yt), where g(Y ) = e−Y with g′(Y ) = −e−Y
and g′′(Y ) = e−Y , Itô’s Lemma (see Theorem 3.5 on page 49) implies that the dynamics of the

zero coupon bond prices is

dBTt =






−e−Yt

(

−rt +

∫ T

t

α(t, u, (fst )s≥t) du

)

+
1

2
e−Yt

(
∫ T

t

β(t, u, (fst )s≥t) du

)2





dt

− e−Yt

(
∫ T

t

β(t, u, (fst )s≥t) du

)

dzt

= BTt

[

rt −
∫ T

t

α(t, u, (fst )s≥t) du+
1

2

(
∫ T

t

β(t, u, (fst )s≥t) du

)2

dt

−
(
∫ T

t

β(t, u, (fst )s≥t) du

)

dzt

]

,
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which gives the one-factor version of (10.5). 2

Now we turn to the behavior under the risk-neutral probability measure Q. The forward rate

will have the same sensitivity terms βi(t, T, (f
s
t )s≥t) as under the real-world probability measure,

but a different drift. More precisely, we have from Chapter 4 that the n-dimensional process

zQ = (zQ
1 , . . . , z

Q
n )⊤ defined by

dzQ
it = dzit + λit dt

is a standard Brownian motion under the risk-neutral probability measure Q, where the λi processes

are the market prices of risk. Substituting this into (10.1), we get

dfTt = α̂(t, T, (fst )s≥t) dt+

n∑

i=1

βi(t, T, (f
s
t )s≥t) dz

Q
it,

where

α̂(t, T, (fst )s≥t) = α(t, T, (fst )s≥t) −
n∑

i=1

βi(t, T, (f
s
t )s≥t)λit.

As in Theorem 10.1 we get that the drift rate of the zero coupon bond price becomes

rt −
∫ T

t

α̂(t, u, (fst )s≥t) du+
1

2

n∑

i=1

(
∫ T

t

βi(t, u, (f
s
t )s≥t) du

)2

under the risk-neutral probability measure Q. But we also know that this drift rate has to be equal

to rt. This can only be true if

∫ T

t

α̂(t, u, (fst )s≥t) du =
1

2

n∑

i=1

(
∫ T

t

βi(t, u, (f
s
t )s≥t) du

)2

.

Differentiating with respect to T , we get the following key result:

Theorem 10.2 The forward rate drift under the risk-neutral probability measure Q satisfies

α̂(t, T, (fst )s≥t) =
n∑

i=1

βi(t, T, (f
s
t )s≥t)

∫ T

t

βi(t, u, (f
s
t )s≥t) du. (10.8)

The relation (10.8) is called the HJM drift restriction. The drift restriction has important

consequences: Firstly, the forward rate behavior under the risk-neutral measure Q is fully charac-

terized by the initial forward rate curve, the number of factors n, and the forward rate sensitivity

terms βi(t, T, (f
s
t )s≥t). The forward rate drift is not to be specified exogenously. This is in contrast

to the diffusion models considered in the previous chapters, where both the drift and the sensitivity

of the state variables were to be specified.

Secondly, since derivative prices depend on the evolution of the term structure under the risk-

neutral measure and other relevant martingale measures, it follows that derivative prices depend

only on the initial forward rate curve and the forward rate sensitivity functions βi(t, T, (f
s
t )s≥t).

In particular, derivatives prices do not depend on the market prices of risk. We do not have to

make any assumptions or equilibrium derivations of the market prices of risk to price derivatives

in an HJM model. In this sense, HJM models are pure no-arbitrage models. Again, this is

in contrast with the diffusion models of Chapters 7 and 8. In the one-factor diffusion models, for

example, the entire term structure is assumed to be generated by the movements of the very short
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end and the resulting term structure depends on the market price of short rate risk. In the HJM

models we use the information contained in the current term structure and avoid to separately

specify the market prices of risk.

10.4 Three well-known special cases

Since the general HJM framework is quite abstract, we will in this section look at three speci-

fications that result in well-known models.

10.4.1 The Ho-Lee (extended Merton) model

Let us consider the simplest possible HJM-model: a one-factor model with β(t, T, (fst )s≥t) =

β > 0, i.e. the forward rate volatilities are identical for all maturities (independent of T ) and

constant over time (independent of t). From the HJM drift restriction (10.8), the forward rate

drift under the risk-neutral probability measure Q is

α̂(t, T, (fst )s≥t) = β

∫ T

t

β du = β2[T − t].

With this specification the future value of the T -maturity forward rate is given by

fTt = fT0 +

∫ t

0

β2[T − u] du+

∫ t

0

β dzQ
u ,

which is normally distributed with mean fT0 + β2t[T − t/2] and variance
∫ t

0
β2 du = β2t.

In particular, the future value of the short rate is

rt = f tt = f t0 +
1

2
β2t2 +

∫ t

0

β dzQ
u .

By Itô’s Lemma,

drt = ϕ̂(t) dt+ β dzQ
t , (10.9)

where ϕ̂(t) = ∂f t0/∂t + β2t. From (10.9), we see that this specification of the HJM model is

equivalent to the Ho-Lee extension of the Merton model, which was studied in Section 9.3 on

page 216. It follows that zero coupon bond prices are given in terms of the short rate by the

relation

BTt = e−a(t,T )−(T−t)rt ,

where

a(t, T ) =

∫ T

t

ϕ̂(u)(T − u) du− β2

6
(T − t)3.

Furthermore, the price CK,T,St of a European call option maturing at time T with exercise price K

written on the zero coupon bond maturing at S is

CK,T,St = BSt N (d1) −KBTt N (d2) , (10.10)

where

d1 =
1

v(t, T, S)
ln

(
BSt
KBTt

)

+
1

2
v(t, T, S), (10.11)

d2 = d1 − v(t, T, S), (10.12)

v(t, T, S) = β[S − T ]
√
T − t. (10.13)
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In addition, Jamshidian’s trick for the pricing of European options on coupon bonds (see Theo-

rem 7.3 on page 157) can be applied since BST is a monotonic function of rT .

10.4.2 The Hull-White (extended Vasicek) model

Next, let us consider the one-factor model with the forward rate volatility function

β(t, T, (fst )s≥t) = βe−κ[T−t] (10.14)

for some positive constants β and κ. Here the forward rate volatility is an exponentially decaying

function of the time to maturity. By the drift restriction, the forward rate drift under Q is

α̂(t, T, (fst )s≥t) = βe−κ[T−t]

∫ T

t

βe−κ[u−t] du =
β2

κ
e−κ[T−t]

(

1 − e−κ[T−t]
)

so that the future value of the T -maturity forward rate is

fTt = fT0 +

∫ t

0

β2

κ
e−κ[T−u]

(

1 − e−κ[T−u]
)

du+

∫ t

0

βe−κ[T−u] dzQ
u .

In particular, the future short rate is

rt = f tt = g(t) + βe−κt
∫ t

0

eκu dzQ
u ,

where the deterministic function g is defined by

g(t) = f t0 +

∫ t

0

β2

κ
e−κ[t−u]

(

1 − e−κ[t−u]
)

du

= f t0 +
β2

2κ2

(
1 − e−κt

)2
.

Again, the future values of the forward rates and the short rate are normally distributed.

Let us find the dynamics of the short rate. Writing Rt =
∫ t

0
eκu dzQ

u , we have rt = G(t, Rt),

where G(t, R) = g(t) + βe−κtR. We can now apply Itô’s Lemma with ∂G/∂t = g′(t) − κβe−κtR,

∂G/∂R = βe−κt, and ∂2G/∂R2 = 0. Since dRt = eκt dzQ
t and

g′(t) =
∂f t0
∂t

+
β2

κ
e−κt

(
1 − e−κt

)
,

we get

drt =
[
g′(t) − κβe−κtRt

]
dt+ βe−κteκt dzQ

t

=

[
∂f t0
∂t

+
β2

κ
e−κt

(
1 − e−κt

)
− κβe−κtRt

]

dt+ β dzQ
t .

Inserting the relation rt − g(t) = βe−κtRt, we can rewrite the above expression as

drt =

[
∂f t0
∂t

+
β2

κ
e−κt

(
1 − e−κt

)
− κ[rt − g(t)]

]

dt+ β dzQ
t

= κ[θ̂(t) − rt] dt+ β dzQ
t ,

where

θ̂(t) = f t0 +
1

κ

∂f t0
∂t

+
β2

2κ2

(
1 − e−2κt

)
.
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A comparison with Section 9.4 on page 217 reveals that the HJM one-factor model with forward

rate volatilities given by (10.14) is equivalent to the Hull-White (or extended-Vasicek) model.

Therefore, we know that the zero coupon bond prices are given by

BTt = e−a(t,T )−b(T−t)rt ,

where

b(τ) =
1

κ

(
1 − e−κτ

)
,

a(t, T ) = κ

∫ T

t

θ̂(u)b(T − u) du+
β2

4κ
b(T − t)2 +

β2

2κ2
(b(T − t) − (T − t)) .

The price of a European call on a zero coupon bond is again given by (10.10), but where

v(t, T, S) =
β√
2κ3

(

1 − e−κ[S−T ]
)(

1 − e−2κ[T−t]
)1/2

. (10.15)

Again, Jamshidian’s trick can be used for European options on coupon bonds.

10.4.3 The extended CIR model

We will now discuss the relation between the HJM models and the Cox-Ingersoll-Ross (CIR)

model studied in Section 7.5 with its extension examined in Section 9.5. In the extended CIR

model the short rate is assumed to follow the process

drt = (κθ(t) − κ̂rt) dt+ β
√
rt dz

Q
t

under the risk-neutral probability measure Q. The zero-coupon bond prices are of the form

BT (rt, t) = exp{−a(t, T ) − b(T − t)rt}, where

b(τ) =
2(eγτ − 1)

(γ + κ̂)(eγτ − 1) + 2γ

with γ =
√

κ̂2 + 2β2, and the function a is not important for what follows. Therefore, the volatility

of the zero-coupon bond price is (the absolute value of)

σT (rt, t) = −b(T − t)β
√
rt.

On the other hand, in a one-factor HJM set-up the zero-coupon bond price volatility is given in

terms of the forward rate volatility function β(t, T, (fst )s≥t) by (10.7). To be consistent with the

CIR model, the forward rate volatility must hence satisfy the relation

∫ T

t

β(t, u, (fst )s≥t) du = b(T − t)β
√
rt.

Differentiating with respect to T , we get

β(t, T, (fst )s≥t) = b′(T − t)β
√
rt.

A straightforward computation of b′(τ) allows this condition to be rewritten as

β(t, T, (fst )s≥t) =
4γ2eγ[T−t]

(
(γ + κ̂)(eγ[T−t] − 1) + 2γ

)2 β
√
rt. (10.16)

As discussed in Section 9.5, such a model does not make sense for all types of initial forward rate

curves.
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10.5 Gaussian HJM models

In the first two models studied in the previous section, the future values of the forward rates

are normally distributed. Models with this property are called Gaussian. Clearly, Gaussian models

have the unpleasant and unrealistic feature of yielding negative interest rates with a strictly positive

probability, cf. the discussion in Chapter 7. On the other hand, Gaussian models are highly

tractable.

An HJM model is Gaussian if the forward rate sensitivities βi are deterministic functions of

time and maturity, i.e.

βi(t, T, (f
s
t )s≥t) = βi(t, T ), i = 1, 2, . . . , n.

To see this, first note that from the drift restriction (10.8) it follows that the forward rate drift

under the risk-neutral probability measure Q is also a deterministic function of time and maturity:

α̂(t, T ) =

n∑

i=1

βi(t, T )

∫ T

t

βi(t, u) du.

It follows that, for any T , the T -maturity forward rates evolves according to

fTt = fT0 +

∫ t

0

α̂(u, T ) du+

n∑

i=1

∫ t

0

βi(u, T ) dzQ
iu.

Because βi(u, T ) at most depends on time, the stochastic integrals are normally distributed, cf. The-

orem 3.2 on page 47. The future forward rates are therefore normally distributed under Q. The

short-term interest rate is rt = f tt , i.e.

rt = f t0 +

∫ t

0

α̂(u, t) du+
n∑

i=1

∫ t

0

βi(u, t) dz
Q
iu, 0 ≤ t, (10.17)

which is also normally distributed under Q. In particular, there is a positive probability of negative

interest rates.3

To demonstrate the high degree of tractability of the general Gaussian HJM framework, the

following theorem provides a closed-form expression for the price CK,T,St of a European call on the

zero-coupon bond maturing at S.

Theorem 10.3 In the Gaussian n-factor HJM model in which the forward rate sensitivity coeffi-

cients βi(t, T, (f
s
t )s≥t) only depend on time t and maturity T , the price of a European call option

maturing at T written with exercise price K on a zero-coupon bond maturing at S is given by

CK,T,St = BSt N (d1) −KBTt N (d2) , (10.18)

where

d1 =
1

v(t, T, S)
ln

(
BSt
KBTt

)

+
1

2
v(t, T, S), (10.19)

d2 = d1 − v(t, T, S), (10.20)

v(t, T, S) =





n∑

i=1

∫ T

t

[
∫ S

T

βi(u, y) dy

]2

du





1/2

. (10.21)

3Of course, this does not imply that interest rates are necessarily normally distributed under the true, real-world

probability measure P, but since the probability measures P and Q are equivalent, a positive probability of negative

rates under Q implies a positive probability of negative rates under P.
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Proof: We will apply the same procedure as we did in the diffusion models of Chapter 7, see e.g.

the derivation of the option price in the Vasicek model in Section 7.4.5. The option price is given

by

CK,T,St = BTt EQT

t

[
max

(
BST −K, 0

)]
= BTt EQT

t

[

max
(

FT,ST −K, 0
)]

, (10.22)

where QT denotes the T -forward martingale measure introduced in Section 4.4.2 on page 81. We

will find the distribution of the underlying bond price BST at expiration of the option, which is

identical to the forward price of the bond with immediate delivery, FT,ST . The forward price for

delivery at T is given at time t as FT,St = BSt /B
T
t . We know that the forward price is a QT -

martingale, and by Itô’s Lemma we can express the sensitivity terms of the forward price by the

sensitivity terms of the bond prices, which according to (10.7) are given by σSi (t) = −
∫ S

t
βi(t, y) dy

and σTi (t) = −
∫ T

t
βi(t, y) dy. Therefore, we get that

dFT,St =

n∑

i=1

(
σSi (t) − σTi (t)

)
FT,St dzTit = −

(
∫ S

T

βi(t, y) dy

)

︸ ︷︷ ︸

hi(t)

FT,St dzTit .

It follows (see Chapter 3) that

lnFT,ST = lnFT,St − 1

2

n∑

i=1

∫ T

t

hi(u)
2 du+

n∑

i=1

∫ T

t

hi(u) dz
T
iu.

From Theorem 3.2 we get that lnBST = lnFT,ST is normally distributed with variance

v(t, T, S)2 =

n∑

i=1

∫ T

t

hi(u)
2 du =

n∑

i=1

∫ T

t

(
∫ S

T

βi(u, y) dy

)2

du.

The result now follows from an application of Theorem A.4 in Appendix A. 2

Consider, for example, a two-factor Gaussian HJM model with forward rate sensitivities

β1(t, T ) = β1 and β2(t, T ) = β2e
−κ[T−t],

where β1, β2, and κ are positive constants. This is a combination of two one-factor examples of

Section 10.4. In this model we have

v(t, T, S)2 =

∫ T

t

[
∫ S

T

β1 dy

]2

du+

∫ T

t

[
∫ S

T

β2e
−κ[y−u] dy

]2

du

= β2
1 [S − T ]2[T − t] +

β2
2

2κ3

(

1 − e−κ[S−T ]
)2 (

1 − e−2κ[T−t]
)

,

cf. (10.13) and (10.15).

It is generally not possible to express the future zero coupon bond price BST as a monotonic

function of rT , not even when we restrict ourselves to a Gaussian model. Therefore, we can

generally not use Jamshidian’s trick to price European options on coupon bonds.

10.6 Diffusion representations of HJM models

As discussed immediately below the basic assumption (10.1) on page 229, the HJM models are

generally not diffusion models in the sense that the relevant uncertainty is captured by a finite-

dimensional diffusion process. For computational purposes there is a great advantage in applying
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a low-dimensional diffusion model as we will argue below. As discussed earlier in this chapter, we

can think of the entire forward rate curve as following an infinite-dimensional diffusion process.

On the other hand, we have already seen some specifications of the HJM model framework which

imply that the short-term interest rate follows a diffusion process. In this section, we will discuss

when such a low-dimensional diffusion representation of an HJM model is possible.

10.6.1 On the use of numerical techniques for diffusion and non-diffusion models

For the purpose of using numerical techniques for derivative pricing, it is crucial whether or not

the relevant uncertainty can be described by some low-dimensional diffusion process. A diffusion

process can be approximated by a recombining tree, whereas a non-recombining tree must be used

for processes for which the future evolution can depend on the path followed thus far. The number

of nodes in a non-recombining tree explodes. A one-variable binomial tree with n time steps has

n + 1 endnodes if it is recombining, but 2n endnodes if it is non-recombining. This makes it

practically impossible to use trees to compute prices of long-term derivatives in non-diffusion term

structure models.

In a diffusion model we can use partial differential equations (PDEs) for pricing, cf. the analysis

in Section 4.8. Such PDEs can be efficiently solved by numerical methods for both European- and

American-type derivatives as long as the dimension of the state variable vector does not exceed

three or maybe four. If it is impossible to express the model in some low-dimensional vector of

state variables, the PDE approach does not work.

The third frequently used numerical pricing technique is the Monte Carlo simulation approach.

The Monte Carlo approach can be applied even for non-diffusion models. The basic idea is to

simulate, from now and to the maturity date of the contingent claim, the underlying Brownian

motions and, hence, the relevant underlying interest rates, bond prices, etc., under an appropriately

chosen martingale measure. Then the payoff from the contingent claim can be computed for this

particular simulated path of the underlying variables. Doing this a large number of times, the

average of the computed payoffs leads to a good approximation to the theoretical value of the

claim. In its original formulation, Monte Carlo simulation can only be applied to European-style

derivatives. The wish to price American-type derivatives in non-diffusion HJM models has recently

induced some suggestions on the use of Monte Carlo methods for American-style assets, see, e.g.,

Boyle, Broadie, and Glasserman (1997), Broadie and Glasserman (1997b), Carr and Yang (1997),

Andersen (2000), and Longstaff and Schwartz (2001). Generally, Monte Carlo pricing of even

European-style assets in non-diffusion HJM models is computationally intensive since the entire

term structure has to be simulated, not just one or two variables.

10.6.2 In which HJM models does the short rate follow a diffusion process?

We seek to find conditions under which the short-term interest rate in an HJM model follows

a Markov diffusion process. First, we will find the dynamics of the short rate in the general

HJM framework (10.1). For the pricing of derivatives it is the dynamics under the risk-neutral

probability measure or related martingale measures which is relevant. The following theorem gives

the short rate dynamics under the risk-neutral measure Q.
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Theorem 10.4 In the general HJM framework (10.1) the dynamics of the short rate rt under the

risk-neutral measure is given by

drt =

{
∂f t0
∂t

+

n∑

i=1

∫ t

0

∂βi(u, t, (f
s
u)s≥u)

∂t

[∫ t

u

βi(u, x, (f
s
u)s≥u) dx

]

du+

n∑

i=1

∫ t

0

βi(u, t, (f
s
u)s≥u)

2 du

+

n∑

i=1

∫ t

0

∂βi(u, t, (f
s
u)s≥u)

∂t
dzQ
iu

}

dt+

n∑

i=1

βi(t, t, (f
s
t )s≥t) dz

Q
it. (10.23)

Proof: For each T , the dynamics of the T -maturity forward rate under the risk-neutral measure Q

is

dfTt = α̂(t, T, (fst )s≥t) dt+

n∑

i=1

βi(t, T, (f
s
t )s≥t) dz

Q
it,

where α̂ is given by the drift restriction (10.8). This implies that

fTt = fT0 +

∫ t

0

α̂(u, T, (fsu)s≥u) du+

n∑

i=1

∫ t

0

βi(u, T, (f
s
u)s≥u) dz

Q
iu.

Since the short rate is simply the “zero-maturity” forward rate, rt = f tt , it follows that

rt = f t0 +

∫ t

0

α̂(u, t, (fsu)s≥u) du+

n∑

i=1

∫ t

0

βi(u, t, (f
s
u)s≥u) dz

Q
iu

= f t0 +

n∑

i=1

∫ t

0

βi(u, t, (f
s
u)s≥u)

[∫ t

u

βi(u, x, (f
s
u)s≥u) dx

]

du+

n∑

i=1

∫ t

0

βi(u, t, (f
s
u)s≥u) dz

Q
iu.

(10.24)

To find the dynamics of r, we proceed as in the simple examples of Section 10.4. Let Rit =
∫ t

0
βi(u, t, (f

s
u)s≥u) dz

Q
iu for i = 1, 2, . . . , n. Then

dRit = βi(t, t, (f
s
t )s≥t) dz

Q
it +

[∫ t

0

∂βi(u, t, (f
s
u)s≥u)

∂t
dzQ
iu

]

dt

by Leibnitz’ rule for stochastic integrals (see Theorem 3.4 on page 48). Define the function

Gi(t) =
∫ t

0
βi(u, t, (f

s
u)s≥u)Hi(u, t) du, where Hi(u, t) =

∫ t

u
βi(u, x, (f

s
u)s≥u) dx. By Leibnitz’ rule

for ordinary integrals,

G′
i(t) = βi(t, t, (f

s
t )s≥t)Hi(t, t) +

∫ t

0

∂

∂t
[βi(u, t, (f

s
u)s≥u)Hi(u, t)] du

=

∫ t

0

[
∂βi(u, t, (f

s
u)s≥u)

∂t
Hi(u, t) + βi(u, t, (f

s
u)s≥u)

∂Hi(u, t)

∂t

]

du

=

∫ t

0

[
∂βi(u, t, (f

s
u)s≥u)

∂t

∫ t

u

βi(u, x, (f
s
u)s≥u) dx+ βi(u, t, (f

s
u)s≥u)

2

]

du,

where we have used the chain rule and the fact that Hi(t, t) = 0. Note that

rt = f t0 +

n∑

i=1

Gi(t) +

n∑

i=1

Rit,

where the Gi’s are deterministic functions and Ri(t) are stochastic processes. By Itô’s Lemma, we

get

drt =

[

∂f t0
∂t

+

n∑

i=1

G′
i(t)

]

dt+

n∑

i=1

dRit.
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Substituting in the expressions for G′
i(t) and dRit, we arrive at the expression (10.23). 2

From (10.23) we see that the drift term of the short rate generally depends on past values of the

forward rate curve and past values of the Brownian motion. Therefore, the short rate process is

generally not a diffusion process in an HJM model. However, if we know that the initial forward

rate curve belongs to a certain family, the short rate may be Markovian. If, for example, the initial

forward rate curve is on the form generated by the original one-factor CIR diffusion model, then

the short rate in the one-factor HJM model with forward rate sensitivity given by (10.16) will, of

course, be Markovian since the two models are then indistinguishable.

Under what conditions on the forward rate sensitivity functions βi(t, T, (f
s
t )s≥t) will the short

rate follow a diffusion process for any initial forward rate curve? Hull and White (1993) and

Carverhill (1994) answer this question. Their conclusion is summarized in the following theorem.

Theorem 10.5 Consider an n-factor HJM model. Suppose that deterministic functions gi and h

exist such that

βi(t, T, (f
s
t )s≥t) = gi(t)h(T ), i = 1, 2, . . . , n,

and h is continuously differentiable, non-zero, and never changing sign.4 Then the short rate has

dynamics

drt =

[

∂f t0
∂t

+ h(t)2
n∑

i=1

∫ t

0

gi(u)
2 du+

h′(t)

h(t)
(rt − f t0)

]

dt+

n∑

i=1

gi(t)h(t) dz
Q
it, (10.25)

so that the short rate follows a diffusion process for any given initial forward rate curve.

Proof: We will only consider the case n = 1 and show that rt indeed is a Markov diffusion process

when

β(t, T, (fst )s≥t) = g(t)h(T ), (10.26)

where g and h are deterministic functions and h is continuously differentiable, non-zero, and never

changing sign. First note that (10.24) and (10.26) imply that

rt = f t0 + h(t)

∫ t

0

g(u)2
[∫ t

u

h(x) dx

]

du+ h(t)

∫ t

0

g(u) dzQ
u , (10.27)

and, thus,
∫ t

0

g(u) dzQ
u =

1

h(t)
(rt − f t0) −

∫ t

0

g(u)2
[∫ t

u

h(x) dx

]

du. (10.28)

The dynamics of r in Equation (10.23) specializes to

drt =

[
∂f t0
∂t

+ h′(t)

∫ t

0

g(u)2
[∫ t

u

h(x) dx

]

du+ h(t)2
∫ t

0

g(u)2 du

+ h′(t)

∫ t

0

g(u) dzQ
u

]

dt+ g(t)h(t) dzQ
t ,

which by applying (10.28) can be written as the one-factor version of (10.25). 2

Note that the Ho-Lee model and the Hull-White model studied in Section 10.4 both satisfy the

condition (10.26).

4Carverhill claims that the h function can be different for each factor, i.e., βi(t, T, (fs
t )s≥t) = gi(t)hi(T ), but

this is incorrect.
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Obviously, the HJM models where the short rate is Markovian are members of the Gaussian class

of models discussed in Section 10.5. In particular, the price of a European call on a zero-coupon

bond is given by (10.18). It can be shown that with a volatility specification of the form (10.26), the

future price BTt of a zero-coupon bond can be expressed as a monotonic function of time and the

short rate rt at time t. It follows that Jamshidian’s trick introduced in Section 7.2.3 on page 155

can be used for pricing European options on coupon bonds in this special setting.

The Markov property is one attractive feature of a term structure model. We also want a model

to exhibit time homogeneous volatility structures in the sense that the volatilities of, e.g., forward

rates, zero-coupon bond yields, and zero-coupon bond prices do not depend on calendar time in

itself, cf. the discussion in Chapter 9. For the forward rate sensitivities in an HJM model to be time

homogeneous, βi(t, T, (f
s
t )s≥t) must be of the form βi(T − t, (fst )s≥t). It then follows from (10.7)

that the zero coupon bond prices BTt will also have time homogeneous sensitivities. Similarly for

the zero-coupon yields yTt . Hull and White (1993) have shown that there are only two models of

the HJM-class that have both a Markovian short rate and time homogeneous sensitivities, namely

the Ho-Lee model and the Hull-White model of Section 10.4.

As discussed above, the HJM models with a Markovian short rate are Gaussian models. While

Gaussian models have a high degree of computational tractability, they also allow negative rates,

which certainly is an unrealistic feature of a model. Furthermore, the volatility of the short rate

and other interest rates empirically seems to depend on the short rate itself. Therefore, we seek to

find HJM models with non-deterministic forward rate sensitivities that are still computationally

tractable.

10.6.3 A two-factor diffusion representation of a one-factor HJM model

Ritchken and Sankarasubramanian (1995) show that in a one-factor HJM model with a forward

rate volatility of the form

β(t, T, (fst )s≥t) = β(t, t, (fst )s≥t)e
−
∫

T
t
κ(x) dx (10.29)

for some deterministic function κ, it is possible to capture the path dependence of the short rate

by a single variable, and that this is only possible, when (10.29) holds. The evolution of the term

structure will depend only on the current value of the short rate and the current value of this

additional variable. The additional variable needed is

ϕt =

∫ t

0

β(u, t, (fsu)s≥u)
2 du =

∫ t

0

β(u, u, (fsu)s≥u)
2e−2

∫
t
u
κ(x) dx du,

which is the accumulated forward rate variance.

The future zero coupon bond price BTt can be expressed as a function of rt and ϕt in the

following way:

BTt = e−a(t,T )−b1(t,T )rt−b2(t,T )ϕt ,
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where

a(t, T ) = − ln

(
BT0
Bt0

)

− b1(t, T )f t0,

b1(t, T ) =

∫ T

t

e−
∫

u
t
κ(x) dx du,

b2(t, T ) =
1

2
b1(t, T )2.

The dynamics of r and ϕ under the risk-neutral measure Q is given by

drt =

(
∂f t0
∂t

+ ϕt − κ(t)[rt − f t0]

)

dt+ β(t, t, (fst )s≥t) dz
Q
t ,

dϕt =
(
β(t, t, (fst )s≥t)

2 − 2κ(t)ϕt
)
dt.

The two-dimensional process (r, ϕ) will be Markov if the short rate volatility depends on, at most,

the current values of rt and ϕt, i.e. if there is a function βr such that

β(t, t, (fst )s≥t) = βr(rt, ϕt, t).

In that case, we can price derivatives by two-dimensional recombining trees or by numerical so-

lutions of two-dimensional PDEs (no closed-form solutions have been reported).5 One allowable

specification is βr(r, ϕ, t) = βrγ for some non-negative constants β and γ, which, e.g., includes a

CIR-type volatility structure (for γ = 1
2 ).

The volatilities of the forward rates are related to the short rate volatility through the deter-

ministic function κ, which must be specified. If κ is constant, the forward rate volatility is an

exponentially decaying function of the time to maturity. Empirically, the forward rate volatility

seems to be a humped (first increasing, then decreasing) function of maturity. This can be achieved

by letting the κ(x) function be negative for small values of x and positive for large values of x.

Also note that the volatility of some T -maturity forward rate fTt is not allowed to depend on the

forward rate fTt itself, but only the short rate rt and time.

For further discussion of the circumstances under which an HJM model can be represented as

a diffusion model, the reader is referred to Jeffrey (1995), Cheyette (1996), Bhar and Chiarella

(1997), Inui and Kijima (1998), Bhar, Chiarella, El-Hassan, and Zheng (2000), and Björk and

Landén (2002).

10.7 HJM-models with forward-rate dependent volatilities

In the models considered until now, the forward rate volatilities are either deterministic func-

tions of time (the Gaussian models) or a function of time and the current short rate (the extended

CIR model and the Ritchken-Sankarasubramanian model). The most natural way to introduce

non-deterministic forward rate volatilities is to let them be a function of time and the current

value of the forward rate itself, i.e. of the form

βi(t, T, (f
s
t )s≥t) = βi(t, T, f

T
t ). (10.30)

5Li, Ritchken, and Sankarasubramanian (1995) show how to build a tree for this model, in which both European-

and American-type term structure derivatives can be efficiently priced.
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A model of this type, inspired by the Black-Scholes’ stock option pricing model, is obtained by

letting

βi(t, T, f
T
t ) = γi(t, T )fTt , (10.31)

where γi(t, T ) is a positive, deterministic function of time. The forward rate drift will then be

α̂(t, T, (fst )s≥t) =
n∑

i=1

γi(t, T )fTt

∫ T

t

γi(t, u)f
u
t du.

The specification (10.31) will ensure non-negative forward rates (starting with a term structure of

positive forward rates) since both the drift and sensitivities are zero for a zero forward rate. Such

models have a serious drawback, however. A process with the drift and sensitivities given above

will explode with a strictly positive probability in the sense that the value of the process becomes

infinite.6 With a strictly positive probability of infinite interest rates, bond prices must equal zero,

and this, obviously, implies arbitrage opportunities.

Heath, Jarrow, and Morton (1992) discuss the simple one-factor model with a capped forward

rate volatility,

β(t, T, fTt ) = βmin(fTt , ξ),

where β and ξ are positive constants, i.e. the volatility is proportional for “small” forward rates

and constant for “large” forward rates. They showed that with this specification the forward rates

do not explode, and, furthermore, they stay non-negative. The assumed forward rate volatility

is rather far-fetched, however, and seems unrealistic. Miltersen (1994) provides a set of sufficient

conditions for HJM-models of the type (10.30) to yield non-negative and non-exploding interest

rates. One of the conditions is that the forward rate volatility is bounded from above. This is,

obviously, not satisfied for proportional volatility models, i.e. models where (10.31) holds.

10.8 Concluding remarks

Empirical studies of various specifications of the HJM model framework have been performed

on a variety of data sets by, e.g., Amin and Morton (1994), Flesaker (1993), Heath, Jarrow, and

Morton (1990), Miltersen (1998), and Pearson and Zhou (1999). However, these papers do not

give a clear picture of how the forward rate volatilities should be specified.

To implement an HJM-model one must specify both the forward rate sensitivity functions

βi(t, T, (f
s
t )s≥t) and an initial forward rate curve u 7→ fu0 given as a parameterized function of

maturity. In the time homogeneous Markov diffusion models studied in the Chapters 7 and 8,

the forward rate curve in a given model can at all points in time be described by the same

parameterization although possibly with different parameters at different points in time due to

changes in the state variable(s). For example in the Vasicek one-factor model, we know from (7.62)

on page 170 that the forward rates at time t are given by

fTt =
(

1 − e−κ[T−t]
)(

y∞ +
β2

2κ2
e−κ[T−t]

)

+ e−κ[T−t]rt

= y∞ +

(
β2

2κ2
+ rt − y∞

)

e−κ[T−t] − β2

2κ2
e−2κ[T−t],

6This was shown by Morton (1988).
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which is always the same kind of function of time to maturity T − t, although the multiplier of

e−κ[T−t] is non-constant over time due to changes in the short rate. As discussed in Section 9.7 time

inhomogeneous diffusion models do generally not have this nice property, and neither do the HJM-

models studied in this chapter. If we use a given parameterization of the initial forward curve, then

we cannot be sure that the future forward curves can be described by the same parameterization

even if we allow the parameters to be different. We will not discuss this issue further but simply

refer the interested reader to Björk and Christensen (1999), who study when the initial forward

rate curve and the forward rate sensitivity are consistent in the sense that future forward rate

curves have the same form as the initial curve.

If the initial forward rate curve is taken to be of the form given by a time homogeneous diffusion

model and the forward rate volatilities are specified in accordance with that model, then the HJM-

model will be indistinguishable from that diffusion model. For example, the time 0 forward rate

curve in the one-factor CIR model is of the form

fT0 = r0 + κ̂
[

θ̂ − r
]

b(T ) − 1

2
β2rb(T )2,

cf. (7.75) on page 176, where the function b(T ) is given by (7.73). With such an initial forward

rate curve, the one-factor HJM model with forward rate volatility function given by (10.16) is

indistinguishable from the original time homogeneous one-factor CIR model.



Chapter 11

Market models

11.1 Introduction

The term structure models studied in the previous chapters have involved assumptions about

the evolution in one or more continuously compounded interest rates, either the short rate rt

or the instantaneous forward rates fTt . However, many securities traded in the money markets,

e.g. caps, floors, swaps, and swaptions, depend on periodically compounded interest rates such

as spot LIBOR rates lt+δt , forward LIBOR rates LT,T+δ
t , spot swap rates l̃δt , and forward swap

rates L̃T,δt . For the pricing of these securities it seems appropriate to apply models that are based

on assumptions on the LIBOR rates or the swap rates. Also note that these interest rates are

directly observable in the market, whereas the short rate and the instantaneous forward rates are

theoretical constructs and not directly observable.

We will use the term market models for models based on assumptions on periodically com-

pounded interest rates. All the models studied in this chapter take the currently observed term

structure of interest rates as given and are therefore to be classified as relative pricing or pure

no-arbitrage models. Consequently, they offer no insights into the determination of the current in-

terest rates. We will distinguish between LIBOR market models that are based on assumptions

on the evolution of the forward LIBOR rates LT,T+δ
t and swap market models that are based

on assumptions on the evolution of the forward swap rates. By construction, the market models

are not suitable for the pricing of futures and options on government bonds and similar contracts

that do not depend on the money market interest rates.

In the recent literature several market models have been suggested, but most attention has

been given to the so-called lognormal LIBOR market models. In such a model the volatilities of

a relevant selection of the forward LIBOR rates LT,T+δ
t are assumed to be proportional to the

level of the forward rate so that the distribution of the future forward LIBOR rates is lognormal

under an appropriate forward martingale measure. As discussed in Section 7.6 on page 179,

lognormally distributed continuously compounded interest rates have unpleasant consequences, but

Sandmann and Sondermann (1997) show that models with lognormally distributed periodically

compounded rates are not subject to the same problems. Below, we will demonstrate that a

lognormal assumption on the distribution of forward LIBOR rates implies pricing formulas for

caps and floors that are identical to Black’s pricing formulas stated in Chapter 6. Similarly,

lognormal swap market models imply European swaption prices consistent with the Black formula

for swaptions. Hence, the lognormal market models provide some support for the widespread use

245
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of Black’s formula for fixed income securities. However, the assumptions of the lognormal market

models are not necessarily descriptive of the empirical evolution of LIBOR rates, and therefore we

will also briefly discuss alternative market models.

11.2 General LIBOR market models

In this section we will introduce a general LIBOR market model, describe some of the model’s

basic properties, and discuss how derivative securities can be priced within the framework of the

model. The presentation is inspired by Jamshidian (1997) and Musiela and Rutkowski (1997,

Chapters 14 and 16).

11.2.1 Model description

As described in Section 6.4, a cap is a contract that protects a floating rate borrower against

paying an interest rate higher than some given rate K, the so-called cap rate. We let T1, . . . , Tn

denote the payment dates and assume that Ti−Ti−1 = δ for all i. In addition we define T0 = T1−δ.
At each time Ti (i = 1, . . . , n) the cap gives a payoff of

C
i
Ti

= Hδmax
(

lTi

Ti−δ
−K, 0

)

= Hδmax
(

LTi−δ,Ti

Ti−δ
−K, 0

)

,

where H is the face value of the cap. A cap can be considered as a portfolio of caplets, namely

one caplet for each payment date.

As discussed in Section 6.4 the value of the above payoff can be found as the product of the

expected payoff computed under the Ti-forward martingale measure and the current discount factor

for time Ti payments:

C
i
t = HδBTi

t EQTi

t

[

max
(

LTi−δ,Ti

Ti−δ
−K, 0

)]

, t < Ti − δ. (11.1)

The price of a cap can therefore be determined as

Ct = Hδ

n∑

i=1

BTi

t EQTi

t

[

max
(

LTi−δ,Ti

Ti−δ
−K, 0

)]

, t < T0. (11.2)

For t ≥ T0 the first-coming payment of the cap is known so that its present value is obtained by

multiplication by the riskless discount factor, while the remaining payoffs are valued as above. For

more details see Section 6.4. The price of the corresponding floor is

Ft = Hδ

n∑

i=1

BTi

t EQTi

t

[

max
(

K − LTi−δ,Ti

Ti−δ
, 0
)]

, t < T0. (11.3)

In order to compute the cap price from (11.2), we need knowledge of the distribution of LTi−δ,Ti

Ti−δ

under the Ti-forward martingale measure QTi for each i = 1, . . . , n. For this purpose it is natural

to model the evolution of LTi−δ,Ti

t under QTi . The following argument shows that under the QTi

probability measure the drift rate of LTi−δ,Ti

t is zero, i.e. LTi−δ,Ti

t is a QTi-martingale. Remember

from Eq. (1.14) on page 7 that

LTi−δ,Ti

t =
1

δ

(

BTi−δ
t

BTi

t

− 1

)

. (11.4)
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Under the Ti-forward martingale measure QTi the ratio between the price of any asset and the zero-

coupon bond price BTi

t is a martingale. In particular, the ratio BTi−δ
t /BTi

t is a QTi-martingale so

that the expected change of the ratio over any time interval is equal to zero under the QTi measure.

From the formula above it follows that also the expected change (over any time interval) in the

periodically compounded forward rate LTi−δ,Ti

t is zero under QTi . We summarize the result in the

following theorem:

Theorem 11.1 The forward rate LTi−δ,Ti

t is a QTi-martingale.

Consequently, a LIBOR market model is fully specified by the number of factors (i.e. the

number of standard Brownian motions) that influence the forward rates and the forward rate

volatility functions. For simplicity, we focus on the one-factor models

dLTi−δ,Ti

t = β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

dzTi

t , t < Ti − δ, i = 1, . . . , n, (11.5)

where zTi is a one-dimensional standard Brownian motion under the Ti-forward martingale measure

QTi . The symbol (L
Tj ,Tj+δ
t )Tj≥t indicates (as in Chapter 10) that the time t value of the volatility

function β can depend on the current values of all the modeled forward rates.1 In the lognormal

LIBOR market models we will study in Section 11.3, we have

β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

= γ(t, Ti − δ, Ti)L
Ti−δ,Ti

t

for some deterministic function γ. However, until then we continue to discuss the more general

specification (11.5).

We see from the general cap pricing formula (11.2) that the cap price also depends on the current

discount factors BT1
t , BT2

t , . . . , BTn

t . From (11.4) it follows that BTi

t = BTi−δ
t (1+δLTi−δ,Ti

t ) so that

the relevant discount factors can be determined from BT0
t and the current values of the modeled

forward rates, i.e. LT0,T1

t , LT1,T2

t , . . . , L
Tn−1,Tn

t . Similarly to the HJM models in Chapter 10, the

LIBOR market models take the currently observable values of these rates as given.

11.2.2 The dynamics of all forward rates under the same probability measure

The basic assumption (11.5) for the LIBOR market model involves n different forward martin-

gale measures. In order to better understand the model and to simplify the numerical computation

of some security prices we will describe the evolution of the relevant forward rates under the same

common probability measure. As discussed in the next subsection, Monte Carlo simulation is of-

ten used to compute prices of certain securities in LIBOR market models. It is much simpler to

simulate the evolution of the forward rates under a common probability measure than to simu-

late the evolution of each forward rate under the martingale measure associated with the forward

rate. One possibility is to choose one of the n different forward martingale measures used in the

assumption of the model. Note that the Ti-forward martingale measure only makes sense up to

time Ti. Therefore, it is appropriate to use the forward martingale measure associated with the last

payment date, i.e. the Tn-forward martingale measure QTn , since this measure applies to the entire

relevant time period. In this context QTn is sometimes referred to as the terminal measure.

1As for the HJM models in Chapter 10, the general results for the market models hold even when earlier values

of the forward rates affect the current dynamics of the forward rates, but such a generalization seems worthless.
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Another obvious candidate for the common probability measure is the spot martingale measure.

Let us look at these two alternatives in more detail.

The terminal measure

We wish to describe the evolution in all the modeled forward rates under the Tn-forward

martingale measure. For that purpose we shall apply the following theorem which outlines how to

shift between the different forward martingale measures of the LIBOR market model.

Theorem 11.2 Assume that the evolution in the LIBOR forward rates LTi−δ,Ti

t for i = 1, . . . , n,

where Ti = Ti−1 + δ, is given by (11.5). Then the processes zTi−δ and zTi are related as follows:

dzTi

t = dzTi−δ
t +

δβ
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

1 + δLTi−δ,Ti

t

dt. (11.6)

Proof: From Section 4.4.2 we have that the Ti-forward martingale measure QTi is characterized

by the fact that the process zTi is a standard Brownian motion under QTi , where

dzTi

t = dzt +
(

λt − σTi

t

)

dt.

Here, σTi

t denotes the volatility of the zero-coupon bond maturing at time Ti, which may itself be

stochastic. Similarly,

dzTi−δ
t = dzt +

(

λt − σTi−δ
t

)

dt.

A simple computation gives that

dzTi

t = dzTi−δ
t +

[

σTi−δ
t − σTi

t

]

dt. (11.7)

As shown in Theorem 11.1, LTi−δ,Ti

t is a QTi-martingale and, hence, has an expected change of

zero under this probability measure. According to (11.4) the forward rate LTi−δ,Ti

t is a function

of the zero-coupon bond prices BTi−δ
t and BTi

t so that the volatility follows from Itô’s Lemma. In

total, the dynamics is

dLTi−δ,Ti

t =
BTi−δ
t

δBTi

t

(

σTi−δ
t − σTi

t

)

dzTi

t

=
1

δ
(1 + δLTi−δ,Ti

t )
(

σTi−δ
t − σTi

t

)

dzTi

t .

Comparing with (11.5), we can conclude that

σTi−δ
t − σTi

t =
δβ
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

1 + δLTi−δ,Ti

t

. (11.8)

Substituting this relation into (11.7), we obtain the stated relation between the processes zTi and

zTi−δ. 2

Using (11.6) repeatedly, we get that

dzTn

t = dzTi

t +
n−1∑

j=i

δβ
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δfs(t, Tj , Tj+1)
dt.
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Consequently, for each i = 1, . . . , n, we can write the dynamics of LTi−δ,Ti

t under the QTn-measure

as

dLTi−δ,Ti

t = β
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)

dzTi

t

= β
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)



dzTn

t −
n−1∑

j=i

δβ
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δL
Tj ,Tj+1

t

dt





= −
n−1∑

j=i

δβ
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)

β
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δL
Tj ,Tj+1

t

dt

+ β
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)

dzTn

t .

(11.9)

Note that the drift may involve some or all of the other modeled forward rates. Therefore, the vector

of all the forward rates (LT0,T1

t , . . . , L
Tn−1,Tn

t ) will follow an n-dimensional diffusion process so that

a LIBOR market model can be represented as an n-factor diffusion model. Security prices are

hence solutions to a partial differential equation (PDE), but in typical applications the dimension

n, i.e. the number of forward rates, is so big that neither explicit nor numerical solution of the PDE

is feasible.2 For example, to price caps, floors, and swaptions that depend on 3-month interest

rates and have maturities of up to 10 years, one must model 40 forward rates so that the model is

a 40-factor diffusion model!

Next, let us consider an asset with a single payoff at some point in time T ∈ [T0, Tn]. The payoff

HT may in general depend on the value of all the modeled forward rates at and before time T .

Let Pt denote the time t value of this asset (measured in monetary units, e.g. dollars). From the

definition of the Tn-forward martingale measure QTn it follows that

Pt

BTn

t

= EQTn

t

[

HT

BTn

T

]

,

and hence

Pt = BTn

t EQTn

t

[

HT

BTn

T

]

.

In particular, if T is one of the time points of the tenor structure, say T = Tk, we get

Pt = BTn

t EQTn

t

[

HTk

BTn

Tk

]

.

From (11.4) we have that

1

BTn

Tk

=
BTk

Tk

B
Tk+1

Tk

B
Tk+1

Tk

B
Tk+2

Tk

. . .
B
Tn−1

Tk

BTn

Tk

=
[

1 + δL
Tk,Tk+1

Tk

] [

1 + δL
Tk+1,Tk+2

Tk

]

. . .
[

1 + δL
Tn−1,Tn

Tk

]

=
n−1∏

j=k

[

1 + δL
Tj ,Tj+1

Tk

]

2However, Andersen and Andreasen (2000) introduce a trick that may reduce the computational complexity

considerably.
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so that the price can be rewritten as

Pt = BTn

t EQTn

t



HTk

n−1∏

j=k

[

1 + δL
Tj ,Tj+1

Tk

]



 . (11.10)

The right-hand side may be approximated using Monte Carlo simulations in which the evolution

of the forward rates under QTn is used, as outlined in (11.9).

If the security matures at time Tn, the price expression is even simpler:

Pt = BTn

t EQTn

t [HTn
] . (11.11)

In that case it suffices to simulate the evolution of the forward rates that determine the payoff of

the security.

The spot LIBOR martingale measure

The risk-neutral or spot martingale measure Q, which we defined and discussed in Chapter 4,

is associated with the use of a bank account earning the continuously compounded short rate as

the numeraire, cf. the discussion in Section 4.4. However, the LIBOR market model does not at

all involve the short rate so the traditional spot martingale measure does not make sense in this

context. The LIBOR market counterpart is a roll over strategy in the shortest zero-coupon bonds.

To be more precise, the strategy is initiated at time T0 by an investment of one dollar in the

zero-coupon bond maturing at time T1, which allows for the purchase of 1/BT1

T0
units of the bond.

At time T1 the payoff of 1/BT1

T0
dollars is invested in the zero-coupon bond maturing at time T2,

etc. Let us define

I(t) = min {i ∈ {1, 2, . . . , n} : Ti ≥ t}

so that TI(t) denotes the next payment date after time t. In particular, I(Ti) = i so that TI(Ti) = Ti.

At any time t ≥ T0 the strategy consists of holding

Nt =
1

BT1

T0

1

BT2

T1

. . .
1

B
TI(t)

TI(t)−1

units of the zero-coupon bond maturing at time TI(t). The value of this position is

A∗
t = B

TI(t)

t Nt = B
TI(t)

t

I(t)−1
∏

j=0

1

B
Tj+1

Tj

= B
TI(t)

t

I(t)−1
∏

j=0

[

1 + δL
Tj ,Tj+1

Tj

]

, (11.12)

where the last equality follows from the relation (11.4). Since A∗
t is positive, it is a valid numeraire.

The corresponding martingale measure is called the spot LIBOR martingale measure and is

denoted by Q∗.

Let us look at a security with a single payment at a time T ∈ [T0, Tn]. The payoff HT may

depend on the values of all the modeled forward rates at and before time T . Let us by Pt denote

the dollar value of this asset at time t. From the definition of the spot LIBOR martingale measure

Q∗ it follows that
Pt
A∗
t

= EQ∗

t

[
HT

A∗
T

]

,

and hence

Pt = EQ∗

t

[
A∗
t

A∗
T

HT

]

.
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From the calculation

A∗
t

A∗
T

=
B
TI(t)

t

∏I(t)−1
j=0

[

1 + δL
Tj ,Tj+1

Tj

]

B
TI(T )

T

∏I(T )−1
j=0

[

1 + δL
Tj ,Tj+1

Tj

]

=
B
TI(t)

t

B
TI(T )

T

I(T )−1
∏

j=I(t)

[

1 + δL
Tj ,Tj+1

Tj

]−1

,

we get that the price can be rewritten as

Pt = B
TI(t)

t EQ∗

t




HT

B
TI(T )

T

I(T )−1
∏

j=I(t)

[

1 + δL
Tj ,Tj+1

Tj

]−1



 . (11.13)

In particular, if T is one of the dates in the tenor structure, say T = Tk, we get

Pt = B
TI(t)

t EQ∗

t



HTk

k−1∏

j=I(t)

[

1 + δL
Tj ,Tj+1

Tj

]−1



 (11.14)

since I(Tk) = k and B
TI(Tk)

Tk
= BTk

Tk
= 1.

In order to compute (typically by simulation) the expected value on the right-hand side, we need

to know the evolution of the forward rates L
Tj ,Tj+1

t under the spot LIBOR martingale measure Q∗.

It can be shown that the process z∗ defined by

dz∗t = dzTi

t −
[

σ
TI(t)

t − σTi

t

]

dt

is a standard Brownian motion under the probability measure Q∗. As usual, σTt denotes the

volatility of the zero-coupon bond maturing at time T . Repeated use of (11.8) yields

σ
TI(t)

t − σTi

t =
i−1∑

j=I(t)

δβ
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δL
Tj ,Tj+1

t

so that

dz∗t = dzTi

t −
i−1∑

j=I(t)

δβ
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δL
Tj ,Tj+1

t

dt. (11.15)

Substituting this relation into (11.5), we can rewrite the dynamics of the forward rates under the

spot LIBOR martingale measure as

dLTi−δ,Ti

t = β
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)

dzTi

t

= β
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)



dz∗t +

i−1∑

j=I(t)

δβ
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δL
Tj ,Tj+1

t

dt





=

i−1∑

j=I(t)

δβ
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)

β
(

t, Tj , Tj+1, (L
Tk,Tk+δ
t )Tk≥t

)

1 + δL
Tj ,Tj+1

t

dt

+ β
(

t, Ti − δ, Ti, (L
Tk,Tk+δ
t )Tk≥t

)

dz∗t .

(11.16)

Note that the drift in the forward rates under the spot LIBOR martingale measure follows from

the specification of the volatility function β and the current forward rates. The relation between

the drift and the volatility is the market model counterpart to the drift restriction of the HJM

models, cf. (10.8) on page 232.
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11.2.3 Consistent pricing

As indicated above, the model can be used for the pricing of all securities that only have payment

dates in the set {T1, T2, . . . , Tn}, and where the size of the payment only depends on the modeled

forward rates and no other random variables. This is true for caps and floors on δ-period interest

rates of different maturities where the price can be computed from (11.2) and (11.3). The model

can also be used for the pricing of swaptions that expire on one of the dates T0, T1, . . . , Tn−1, and

where the underlying swap has payment dates in the set {T1, . . . , Tn} and is based on the δ-period

interest rate. For European swaptions the price can be written as (11.14). For Bermuda swaptions

that can be exercised at a subset of the swap payment dates {T1, . . . , Tn}, one must maximize the

right-hand side of (11.14) over all feasible exercise strategies. See Andersen (2000) for details and

a description of a relatively simple Monte Carlo based method for the approximation of Bermuda

swaption prices.

The LIBOR market model (11.5) is built on assumptions about the forward rates over the

time intervals [T0, T1], [T1, T2], . . . , [Tn−1, Tn]. However, these forward rates determine the forward

rates for periods that are obtained by connecting succeeding intervals. For example, we have from

Eq. (1.14) on page 7 that the forward rate over the period [T0, T2] is uniquely determined by the

forward rates for the periods [T0, T1] and [T1, T2] since

LT0,T2

t =
1

T2 − T0

(

BT0
t

BT2
t

− 1

)

=
1

T2 − T0

(

BT0
t

BT1
t

BT1
t

BT2
t

− 1

)

=
1

2δ

([

1 + δLT0,T1

t

] [

1 + δLT1,T2

t

]

− 1
)

,

(11.17)

where δ = T1 −T0 = T2 −T1 as usual. Therefore, the distributions of the forward rates LT0,T1

t and

LT1,T2

t implied by the LIBOR market model (11.18), determine the distribution of the forward rate

LT0,T2

t . A LIBOR market model based on three-month interest rates can hence also be used for the

pricing of contracts that depend on six-month interest rates, as long as the payment dates for these

contracts are in the set {T0, T1, . . . , Tn}. More generally, in the construction of a model, one is only

allowed to make exogenous assumptions about the evolution of forward rates for non-overlapping

periods.

11.3 The lognormal LIBOR market model

11.3.1 Model description

The market standard for the pricing of caplets is Black’s formula, i.e. formula (6.37) on page 135.

As discussed in Section 4.8, the traditional derivation of Black’s formula is based on inappropriate

assumptions. The lognormal LIBOR market model provides a more reasonable framework in which

the Black cap formula is valid. The model was originally developed by Miltersen, Sandmann, and

Sondermann (1997), while Brace, Gatarek, and Musiela (1997) sort out some technical details

and introduce an explicit, but approximative, expression for the prices of European swaptions in

the lognormal LIBOR market model. Whereas Miltersen, Sandmann, and Sondermann derive the

cap price formula using PDEs, we will follow Brace, Gatarek, and Musiela and use the forward
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martingale measure technique discussed in Chapter 4 since this simplifies the analysis considerably.

Looking at the general cap pricing formula (11.2), it is clear that we can obtain a pricing

formula of the same form as Black’s formula by assuming that LTi−δ,Ti

Ti−δ
is lognormally distributed

under the Ti-forward martingale measure QTi . This is exactly the assumption of the lognormal

LIBOR market model:

dLTi−δ,Ti

t = LTi−δ,Ti

t γ(t, Ti − δ, Ti) dz
Ti

t , i = 1, 2, . . . , n, (11.18)

where γ(t, Ti−δ, Ti) is a bounded, deterministic function. Here we assume that the relevant forward

rates are only affected by one Brownian motion, but below we shall briefly consider multi-factor

lognormal LIBOR market models.

A familiar application of Itô’s Lemma implies that

d(lnLTi−δ,Ti

t ) = −1

2
γ(t, Ti − δ, Ti)

2 dt+ γ(t, Ti − δ, Ti) dz
Ti

t ,

from which we see that

lnLTi−δ,Ti

Ti−δ
= lnLTi−δ,Ti

t − 1

2

∫ Ti−δ

t

γ(u, Ti − δ, Ti)
2 du+

∫ Ti−δ

t

γ(u, Ti − δ, Ti) dz
Ti
u .

Because γ is a deterministic function, it follows from Theorem 3.2 on page 47 that

∫ Ti−δ

t

γ(u, Ti − δ, Ti) dz
Ti
u ∼ N

(

0,

∫ Ti−δ

t

γ(u, Ti − δ, Ti)
2 du

)

under the Ti-forward martingale measure. Hence,

lnLTi−δ,Ti

Ti−δ
∼ N

(

lnLTi−δ,Ti

t − 1

2

∫ Ti−δ

t

γ(u, Ti − δ, Ti)
2 du,

∫ Ti−δ

t

γ(u, Ti − δ, Ti)
2 du

)

so that LTi−δ,Ti

Ti−δ
is lognormally distributed under QTi . The following result should now come as

no surprise:

Theorem 11.3 Under the assumption (11.18) the price of the caplet with payment date Ti at any

time t < Ti − δ is given by

C
i
t = HδBTi

t

[

LTi−δ,Ti

t N(d1i) −KN(d2i)
]

, (11.19)

where

d1i =
ln
(

LTi−δ,Ti

t /K
)

vL(t, Ti − δ, Ti)
+

1

2
vL(t, Ti − δ, Ti), (11.20)

d2i = d1i − vL(t, Ti − δ, Ti), (11.21)

vL(t, Ti − δ, Ti) =

(
∫ Ti−δ

t

γ(u, Ti − δ, Ti)
2 du

)1/2

. (11.22)

Proof: It follows from Theorem A.4 in Appendix A that

EQTi

t

[

max
(

LTi−δ,Ti

Ti−δ
−K, 0

)]

= EQTi

t

[

LTi−δ,Ti

Ti−δ

]

N(d1i) −KN(d2i)

= LTi−δ,Ti

t N(d1i) −KN(d2i),
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where the last equality is due to the fact that LTi−δ,Ti

t is a QTi-martingale. The claim now follows

from (11.1). 2

Note that vL(t, Ti−δ, Ti)2 is the variance of lnLTi−δ,Ti

Ti−δ
under the Ti-forward martingale measure

given the information available at time t. The expression (11.19) is identical to Black’s formula

(6.37) if we insert σi = vL(t, Ti − δ, Ti)/
√
Ti − δ − t. An immediate consequence of the theorem

above is the following cap pricing formula in the lognormal one-factor LIBOR market model:

Theorem 11.4 Under the assumption (11.18) the price of a cap at any time t < T0 is given as

Ct = Hδ

n∑

i=1

BTi

t

[

LTi−δ,Ti

t N(d1i) −KN(d2i)
]

, (11.23)

where d1i and d2i are as in (11.20) and (11.21).

For t ≥ T0 the first-coming payment of the cap is known and is therefore to be discounted with

the riskless discount factor, while the remaining payments are to be valued as above. For details,

see Section 6.4.

Analogously, the price of a floor under the assumption (11.18) is

Ft = Hδ
n∑

i=1

BTi

t

[

KN (−d2i) − LTi−δ,Ti

t N (−d1i)
]

, t < T0. (11.24)

The deterministic function γ(t, Ti − δ, Ti) remains to be specified. We will discuss this matter

in Section 11.6.

If the term structure is affected by d exogenous standard Brownian motions, the assump-

tion (11.18) is replaced by

dLTi−δ,Ti

t = LTi−δ,Ti

t

d∑

j=1

γj(t, Ti − δ, Ti) dz
Ti

jt , (11.25)

where all γj(t, Ti − δ, Ti) are bounded and deterministic functions. Again, the cap price is given

by (11.23) with the small change that vL(t, Ti − δ, Ti) is to be computed as

vL(t, Ti − δ, Ti) =





d∑

j=1

∫ Ti−δ

t

γj(u, Ti − δ, Ti)
2 du





1/2

. (11.26)

11.3.2 The pricing of other securities

No exact, explicit solution for European swaptions has been found in the lognormal LIBOR

market setting. In particular, Black’s formula for swaptions is not correct under the assump-

tion (11.18). The reason is that when the forward LIBOR rates have volatilities proportional to

their level, the volatility of the forward swap rate will not be proportional to the level of the for-

ward swap rate. As described in Section 11.2, the swaption price can be approximated by a Monte

Carlo simulation, which is often quite time-consuming. Brace, Gatarek, and Musiela (1997) derive

the following Black-type approximation to the price of a European payer swaption with expiration

date T0 and exercise rate K under the lognormal LIBOR market model assumptions:

Pt = Hδ

n∑

i=1

BTi

t

[

LTi−δ,Ti

t N(d∗1i) −KN(d∗2i)
]

, t < T0, (11.27)



11.4 Alternative LIBOR market models 255

where d∗1i and d∗2i are quite complicated expressions involving the variances and covariances of the

time T0 values of the forward rates involved. These variances and covariances are determined by

the γ-function of the assumption (11.18). This approximation delivers the price much faster than

a Monte Carlo simulation. Brace, Gatarek, and Musiela provide numerical examples in which the

price computed using the approximation (11.27) is very close to the correct price (computed using

Monte Carlo simulations). Of course, a similar approximation applies to the European receiver

swaption. The market models are not constructed for the pricing of bond options, but due to the

link between caps/floors and European options on zero-coupon bonds it is possible to derive some

bond option pricing formulas, cf. Exercise 11.1.

As argued in Section 11.2, in any LIBOR market model based on the δ-period interest rates

one can also price securities that depend on interest rates over periods of length 2δ, 3δ, etc., as

long as the payment dates of these securities are in the set {T0, T1, . . . , Tn}. Of course, this is also

true for the lognormal LIBOR market model. For example, let us consider contracts that depend

on interest rates covering periods of length 2δ. From (11.17) we have that

LT0,T2

t =
1

2δ

([

1 + δLT0,T1

t

] [

1 + δLT1,T2

t

]

− 1
)

.

According to the assumption (11.18) of the lognormal δ-period LIBOR market model, each of the

forward rates on the right-hand side has a volatility proportional to the level of the forward rate.

An application of Itô’s Lemma to the above relation shows that the same proportionality does not

hold for the 2δ-period forward rate LT0,T2

t . Consequently, Black’s cap formula cannot be correct

both for caps on the 3-month rate and caps on the 6-month rate. To price caps on the 6-month

rate consistently with the assumptions of the lognormal LIBOR market model for the 3-month

rate one must resort to numerical methods, e.g. Monte Carlo simulation.

It follows from the above considerations that the model cannot justify practitioners’ frequent

use of Black’s formula for both caps and swaptions and for contracts with different frequencies δ.

Of course, the differences between the prices generated by Black’s formula and the correct prices

according to some reasonable model may be so small that this inconsistency can be ignored, but

so far this issue has not been satisfactorily investigated in the literature.

11.4 Alternative LIBOR market models

The lognormal LIBOR market model specifies the forward rate volatility in the general LIBOR

market model (11.5) as

β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

= LTi−δ,Ti

t γ(t, Ti − δ, Ti),

where γ is a deterministic function. As we have seen, this specification has the advantage that

the prices of (some) caps and floors are given by Black’s formula. However, alternative volatility

specifications may be more realistic (see Section 11.6). Below we will consider a tractable and

empirically relevant alternative LIBOR market model.

European stock option prices are often transformed into implicit volatilities using the Black-

Scholes-Merton formula. Similarly, for each caplet we can determine an implicit volatility for the

corresponding forward rate as the value of the parameter σi that makes the caplet price computed

using Black’s formula (6.37) identical to the observed market price. Suppose that several caplets
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are traded on the same forward rate and with the same payment date, but with different cap rates

(i.e. exercise rates) K. Then we get a relation σi(K) between the implicit volatilities and the cap

rate. If the forward rate has a proportional volatility, Black’s model will be correct for all these

caplets. In that case all the implicit volatilities will be equal so that σi(K) corresponds to a flat

line. However, according to Andersen and Andreasen (2000), σi(K) is typically decreasing in K,

which is referred to as a volatility skew. Such a skew is inconsistent with the volatility assumption

of the LIBOR market model (11.18).3

Andersen and Andreasen (2000) consider a so-called CEV LIBOR market model where the

forward rate volatility is given as

β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

=
(
LTi−δ,Ti

t

)α
γ(t, Ti − δ, Ti), i = 1, . . . , n,

so that each forward rate follows a CEV process4

dLTi−δ,Ti

t =
(

LTi−δ,Ti

t

)α

γ(t, Ti − δ, Ti) dz
Ti

t .

Here α is a positive constant and γ is a bounded, deterministic function, which in general may

be vector-valued, but here we have assumed that it takes values in R. For α = 1, the model is

identical to the lognormal LIBOR market model. Andersen and Andreasen first discuss properties

of CEV processes. When 0 < α < 1/2, several processes may have the dynamics given above, but

a unique process is fixed by requiring that zero is an absorbing boundary for the process. Imposing

this condition, the authors are able to state in closed form the distribution of future values of the

process for any positive α. For α 6= 1, this distribution is closely linked to the distribution of a

non-centrally χ2-distributed random variable.

Based on their analysis of the CEV process, Andersen and Andreasen next show that the price

of a caplet will have the form

C
i
t = HδBTi

t

[

LTi−δ,Ti

t

(
1 − χ2(a; b, c)

)
−Kχ2(c; b′, a)

]

(11.28)

for some auxiliary parameters a, b, b′, and c that we leave unspecified here. The pricing formula

is very similar to Black’s formula, but the relevant probabilities are given by the distribution

function for a non-central χ2-distribution. Their numerical examples document that a CEV model

with α < 1 can generate the volatility skew observed in practice. In addition, they give an explicit

approximation to the price of a European swaption in their CEV LIBOR market model. Also this

pricing formula is of the same form as Black’s formula, but involves the distribution function for

the non-central χ2-distribution instead of the normal distribution.

3Hull (2003, Ch. 15) has a detailed discussion of the similar phenomenon for stock and currency options.
4CEV is short for Constant Elasticity of Variance. This term arises from the fact that the elasticity of the

volatility with respect to the forward rate level is equal to the constant α since

∂β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

/β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

∂L
Ti−δ,Ti
t /L

Ti−δ,Ti
t

=
∂β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

∂L
Ti−δ,Ti
t

L
Ti−δ,Ti
t

β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

)

= α
(

L
Ti−δ,Ti
t

)α−1
γ(t, Ti − δ, Ti)

L
Ti−δ,Ti
t

β
(

t, Ti − δ, Ti, (L
Tj ,Tj+δ
t )Tj≥t

) = α.

Cox and Ross (1976) study a similar variant of the Black-Scholes-Merton model for stock options.
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11.5 Swap market models

Jamshidian (1997) introduced the so-called swap market models that are based on assumptions

about the evolution of certain forward swap rates. Under the assumption of a proportional volatility

of these forward swap rates, the models will imply that Black’s formula for European swaptions,

i.e. (6.56) on page 142, is correct, at least for some swaptions.

Given time points T0, T1, . . . , Tn, where Ti = Ti−1 + δ for all i = 1, . . . , n. We will refer to a

payer swap with start date Tk and final payment date Tn (i.e. payment dates Tk+1, . . . , Tn) as a

(k, n)-payer swap. Here we must have 1 ≤ k < n. Let us by L̃Tk,δ
t denote the forward swap rate

prevailing at time t ≤ Tk for a (k, n)-swap. Analogous to (6.50) on page 140, we have that

L̃Tk,δ
t =

BTk

t −BTn

t

δGk,nt
, (11.29)

where we have introduced the notation

Gk,nt =
n∑

i=k+1

BTi

t , (11.30)

which is the value of an annuity bond paying 1 dollar at each date Tk+1, . . . , Tn.

A European payer (k, n)-swaption gives the right at time Tk to enter into a (k, n)-payer swap

where the fixed rate K is identical to the exercise rate of the swaption. From (6.53) on page 141

we know that the value of this swaption at the expiration date Tk is given by

P
k,n
Tk

= Gk,nTk
Hδmax

(

L̃Tk,δ
Tk

−K, 0
)

. (11.31)

As discussed in Section 6.5.2, it is computationally convenient to use the annuity as the numeraire.

We refer to the corresponding martingale measure Qk,n as the (k, n)-swap martingale measure.

Since Gk,k+1
t = B

Tk+1

t , we have in particular that the (k, k + 1)-swap martingale measure Qk,k+1

is identical to the Tk+1-forward martingale measure QTk+1 .

By the definition of Qk,n, the time t price Pt of a security paying HTk
at time Tk is given by

Pt

Gk,nt
= EQk,n

t

[

HTk

Gk,nTk

]

,

and hence

Pt = Gk,nt EQk,n

t

[

HTk

Gk,nTk

]

. (11.32)

The pricing formula (11.32) is particularly convenient for the (k, n)-swaption. Inserting the payoff

from (11.31), we obtain a price of

P
k,n
t = Gk,nt Hδ EQk,n

t

[

max
(

L̃Tk,δ
Tk

−K, 0
)]

. (11.33)

To price the swaption it suffices to know the distribution of the swap rate L̃Tk,δ
Tk

under the (k, n)-

swap martingale measure Qk,n. Here the following result comes in handy:

Theorem 11.5 The forward swap rate L̃Tk,δ
t is a Qk,n-martingale.
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Proof: According to (11.29), the forward swap rate is given as

L̃Tk,δ
t =

BTk

t −BTn

t

δGk,nt
=

1

δ

(

BTk

t

Gk,nt
− BTn

t

Gk,nt

)

.

By definition of the (k, n)-swap martingale measure the price of any security relative to the annuity

is a martingale under this probability measure. In particular, both BTk

t /Gk,nt and BTn

t /Gk,nt are

Qk,n-martingales. Therefore, the expected change in these ratios is zero under Qk,n. It follows from

the above formula that the expected change in the forward swap rate L̃Tk,δ
t is also zero under Qk,n

so that L̃Tk,δ
t is a Qk,n-martingale. 2

Consequently, the evolution in the forward swap rate L̃Tk,δ
t is fully specified by (i) the number

of Brownian motions affecting this and other modeled forward swap rates and (ii) the sensitivity

functions that show the forward swap rates react to the exogenous shocks. Let us again focus on

a one-factor model. A swap market model is based on the assumption

dL̃Tk,δ
t = βk,n

(

t, (L̃
Tj ,δ
t )Tj≥t

)

dzk,nt ,

where zk,n is a Brownian motion under the (k, n)-swap martingale measure Qk,n, and the volatility

function βk,n through the term (L̃
Tj ,δ
t )Tj≥t can depend on the current values of all the modeled

forward swap rates.

Under the assumption that βk,n is proportional to the level of the forward swap rate, i.e.

dL̃Tk,δ
t = L̃Tk,δ

t γk,n(t) dzk,nt (11.34)

where γk,n(t) is a bounded, deterministic function, we get that the future value of the forward

swap rate is lognormally distributed. This model is therefore referred to as the lognormal swap

market model. In such a model the swaption price in formula (11.33) can be computed explicitly:

Theorem 11.6 Under the assumption (11.34) the price of a European (k, n)-payer swaption is

given by

P
k,n
t =

(
n∑

i=k+1

BTi

t

)

Hδ
[

L̃Tk,δ
t N(d1) −KN(d2)

]

, t < Tk, (11.35)

where

d1 =
ln
(

L̃Tk,δ
t /K

)

vk,n(t)
+

1

2
vk,n(t),

d2 = d1 − vk,n(t),

vk,n(t) =

(
∫ Tk

t

γk,n(u)2 du

)1/2

.

The proof of this result is analogous to the proof of Theorem 11.3 and is therefore omitted. The

pricing formula is identical to Black’s formula (6.56) with σ given by σ = vk,n(t)/
√
Tk − t. Hence,

the lognormal swap market model provides some theoretical support of the Black swaption pricing

formula.

In a previous section we concluded that in a LIBOR market model it is not justifiable to

exogenously specify the processes for all forward rates, only the processes for non-overlapping



11.6 Further remarks 259

periods. In a swap market model Musiela and Rutkowski (1997, Section 14.4) demonstrate that

the processes for the forward swap rates L̃T1,δ
t , L̃T2,δ

t , . . . , L̃
Tn−1,δ
t can be modeled independently.

These are forward swap rates for swaps with the same final payment date Tn, but with different start

dates T1, . . . , Tn−1 and hence different maturities. In particular, the lognormal assumption (11.34)

can hold for all these forward swap rates, which implies that all the swaption prices P
1,n
t , . . . ,Pn−1,n

t

are given by Black’s swaption pricing formula. However, under such an assumption neither the

forward LIBOR rates L
Ti−1,Ti

t nor the forward swap rates for swaps with other final payment dates

can have proportional volatilities. Consequently, Black’s formula cannot be correct neither for

caps, floors nor swaptions with other maturity dates. The correct prices of these securities must

be computed using numerical methods, e.g. Monte Carlo simulation. Also in this case it is not

clear by how much the Black pricing formulas miss the theoretically correct prices.

In the context of the LIBOR market models we have derived relations between the different

forward martingale measures. For the swap market models we can derive similar relations be-

tween the different swap martingale measures and hence describe the dynamics of all the forward

swap rates L̃T1,δ
t , L̃T2,δ

t , . . . , L̃
Tn−1,δ
t under the same probability measure. Then all the relevant

processes can be simulated under the same probability measure. For details the reader is referred

to Jamshidian (1997) and Musiela and Rutkowski (1997, Section 14.4).

11.6 Further remarks

De Jong, Driessen, and Pelsser (2001) investigate the extent to which different lognormal LIBOR

and swap market models can explain empirical data consisting of forward LIBOR interest rates,

forward swap rates, and prices of caplets and European swaptions. The observations are from the

U.S. market in 1995 and 1996. For the lognormal one-factor LIBOR market model (11.18) they

find that it is empirically more appropriate to use a γ-function which is exponentially decreasing

in the time-to-maturity Ti − δ − t of the forward rates,

γ(t, Ti − δ, Ti) = γe−κ[Ti−δ−t], i = 1, . . . , n,

than to use a constant, γ(t, Ti − δ, Ti) = γ. This is related to the well-documented mean reversion

of interest rates that makes “long” interest rates relatively less volatile than “short” interest rates.

They also calibrate two similar model specifications perfectly to observed caplet prices, but find

that in general the prices of swaptions in these models are further from the market prices than

are the prices in the time homogeneous models above. In all cases the swaption prices computed

using one of these lognormal LIBOR market models exceed the market prices, i.e. the lognormal

LIBOR market models overestimate the swaption prices. All their specifications of the lognormal

one-factor LIBOR market model give a relatively inaccurate description of market data and are

rejected by statistical tests. De Jong, Driessen, and Pelsser also show that two-factor lognormal

LIBOR market models are not significantly better than the one-factor models and conclude that

the lognormality assumption is probably inappropriate. Finally, they present similar results for

lognormal swap market models and find that these models are even worse than the lognormal

LIBOR market models when it comes to fitting the data.
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11.7 Exercises

EXERCISE 11.1 (Caplets and options on zero-coupon bonds) Assume that the lognormal LIBOR market

model holds. Use the caplet formula (11.19) and the relations between caplets, floorlets, and European

bond options known from Chapter 6 to show that the following pricing formulas for European options on

zero-coupon bonds are valid:

CK,Ti−δ,Ti
t = (1 − K)BTi

t N(e1i) − K[BTi−δ
t − BTi

t ]N(e2i),

πK,Ti−δ,Ti
t = K[BTi−δ

t − BTi
t ]N(−e2i) − (1 − K)BTi

t N(−e1i),

where

e1i =
1

vL(t, Ti − δ, Ti)
ln

(

(1 − K)BTi
t

K[BTi−δ
t − BTi

t ]

)

+
1

2
vL(t, Ti − δ, Ti),

e2i = e1i − vL(t, Ti − δ, Ti),

and vL(t, Ti − δ, Ti) is given by (11.22) in the one-factor setting and by (11.26) in the multi-factor setting.

Note that these pricing formulas only apply to options expiring at one of the time points T0, T1, . . . , Tn−1,

and where the underlying zero-coupon bond matures at the following date in this sequence. In other words,

the time distance between the maturity of the option and the maturity of the underlying zero-coupon bond

must be equal to δ.



Chapter 12

The measurement and management of

interest rate risk

12.1 Introduction

The values of bonds and other fixed income securities vary over time primarily due to changes in

the term structure of interest rates. Most investors want to measure and compare the sensitivities of

different securities to term structure movements. The interest rate risk measures of the individual

securities are needed in order to obtain an overview of the total interest rate risk of the investors’

portfolio and to identify the contribution of each security to this total risk. Many institutional

investors are required to produce such risk measures for regulatory authorities and for publication

in their accounting reports. In addition, such risk measures constitute an important input to the

portfolio management.

In this chapter we will discuss how to quantify the interest rate risk of bonds and how these

risk measures can be used in the management of the interest rate risk of portfolios. We will

first describe the traditional, but still widely used, duration and convexity measures and discuss

their relations to the dynamics of the term structure of interest rates. Then we will consider risk

measures that are more directly linked to the dynamic term structure models we have analyzed

in the previous chapters. Here we focus on diffusion models and emphasize models with a single

state variable. We will compare the different risk measures and their use in the construction of

so-called immunization strategies. Finally, we will show how the duration measure can be useful

for the pricing of European options on bonds and hence the pricing of European swaptions.

12.2 Traditional measures of interest rate risk

12.2.1 Macaulay duration and convexity

The Macaulay duration of a bond was defined by Macaulay (1938) as a weighted average of the

time distance to the payment dates of the bond, i.e. an “effective time-to-maturity”. As shown by

Hicks (1939), the Macaulay duration also measures the sensitivity of the bond value with respect to

changes in its own yield. Let us consider a bond with payment dates T1, . . . , Tn, where we assume

that T1 < · · · < Tn. The payment at time Ti is denoted by Yi. The time t value of the bond

is denoted by Bt. We let yBt denote the yield of the bond at time t, computed using continuous
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compounding so that

Bt =
∑

Ti>t

Yie
−yB

t (Ti−t),

where the sum is over all the future payment dates of the bond.

The Macaulay duration DMac
t of the bond is defined as

DMac
t = − 1

Bt

dBt
dyBt

=

∑

Ti>t
(Ti − t)Yie

−yB
t (Ti−t)

Bt
=
∑

Ti>t

wMac(t, Ti)(Ti − t), (12.1)

where wMac(t, Ti) = Yie
−yB

t (Ti−t)/Bt, which is the ratio between the value of the i’th payment and

the total value of the bond. Since wMac(t, Ti) > 0 and
∑

Ti>t
wMac(t, Ti) = 1, we see from (12.1)

that the Macaulay duration has the interpretation of a weighted average time-to-maturity. For a

bond with only one remaining payment the Macaulay duration is equal to the time-to-maturity.

A simple manipulation of the definition of the Macaulay duration yields

dBt
Bt

= −DMac
t dyBt

so that the relative price change of the bond due to an instantaneous, infinitesimal change in its

yield is proportional to the Macaulay duration of the bond.

Frequently, the Macaulay duration is defined in terms of the bond’s annually computed yield

ŷBt . By definition,

Bt =
∑

Ti>t

Yi(1 + ŷBt )−(Ti−t)

so that
dBt
dŷBt

= −
∑

Ti>t

(Ti − t)Yi(1 + ŷBt )−(Ti−t)−1.

The Macaulay duration is then often defined as

DMac
t = −1 + ŷBt

Bt

dBt
dŷBt

=

∑

Ti>t
(Ti − t)Yi(1 + ŷBt )−(Ti−t)

Bt
=
∑

Ti>t

wMac(t, Ti)(Ti − t), (12.2)

where the weights wMac(t, Ti) are the same as before since ey
B
t = (1 + ŷBt ). Therefore the two

definitions provide precisely the same value for the Macaulay duration. Because yBt = ln(1 + ŷBt )

and hence dyBt /dŷ
B
t = 1/(1 + ŷBt ), we have that

dBt
Bt

= −DMac
t

dŷBt
1 + ŷBt

.

For bullet bonds, annuity bonds, and serial bonds an explicit expression for the Macaulay duration

can be derived.1 In many newspapers the Macaulay duration of each bond is listed next to the

price of the bond.

The Macaulay duration is defined as a measure of the price change induced by an infinitesimal

change in the yield of the bond. For a non-infinitesimal change, a first-order approximation gives

that

∆Bt ≈
dBt
dyBt

∆yBt ,

1The formula for the Macaulay duration of a bullet bond can be found in many textbooks, e.g. Fabozzi (2000)

and van Horne (2001).
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and hence
∆Bt
Bt

≈ −DMac
t ∆yBt .

An obvious way to obtain a better approximation is to include a second-order term:

∆Bt ≈
dBt
dyBt

∆yBt +
1

2

d2Bt
d(yBt )2

(
∆yBt

)2
.

Defining the Macaulay convexity by

KMac
t =

1

2Bt

d2Bt
d(yBt )2

=
1

2

∑

Ti>t

wMac(t, Ti)(Ti − t)2, (12.3)

we can write the second-order approximation as

∆Bt
Bt

≈ −DMac
t ∆yBt +KMac

t

(
∆yBt

)2
.

Note that the approximation only describes the price change induced by an instantaneous change in

the yield. In order to evaluate the price change over some time interval, the effect of the reduction

in the time-to-maturity of the bond should be included, e.g. by adding the term ∂Bt

∂t ∆t on the

right-hand side.

The Macaulay measures are not directly informative of how the price of a bond is affected by a

change in the zero-coupon yield curve and are therefore not a valid basis for comparing the interest

rate risk of different bonds. The problem is that the Macaulay measures are defined in terms of

the bond’s own yield, and a given change in the zero-coupon yield curve will generally result in

different changes in the yields of different bonds. It is easy to show (see e.g. Ingersoll, Skelton, and

Weil (1978, Thm. 1)) that the changes in the yields of all bonds will be the same if and only if the

zero-coupon yield curve is always flat. In particular, the yield curve is only allowed to move by

parallel shifts. Such an assumption is not only unrealistic, it also conflicts with the no-arbitrage

principle, as we shall demonstrate in Section 12.2.3.

12.2.2 The Fisher-Weil duration and convexity

Macaulay (1938) defined an alternative duration measure based on the zero-coupon yield curve

rather than the bond’s own yield. After decades of neglect this duration measure was revived by

Fisher and Weil (1971), who demonstrated the relevance of the measure for constructing immu-

nization strategies. We will refer to this duration measure as the Fisher-Weil duration. The

precise definition is

DFW
t =

∑

Ti>t

w(t, Ti)(Ti − t), (12.4)

where w(t, Ti) = Yie
−y

Ti
t (Ti−t)/Bt. Here, yTi

t is the zero-coupon yield prevailing at time t for the

period up to time Ti. Relative to the Macaulay duration, the weights are different. w(t, Ti) is

computed using the true present value of the i’th payment since the payment is multiplied by

the market discount factor for time Ti payments, BTi

t = e−y
Ti
t (Ti−t). In the weights used in the

computation of the Macaulay measures the payments are discounted using the yield of the bond.

However, for typical yield curves the two set of weights and hence the two duration measures will

be very close, see e.g. Table 12.1 on page 271.
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If we think of the bond price as a function of the relevant zero-coupon yields yT1
t , . . . , yTn

t ,

Bt =
∑

Ti>t

Yie
−y

Ti
t (Ti−t),

we can write the relative price change induced by an instantaneous change in the zero-coupon

yields as
dBt
Bt

=
∑

Ti>t

1

Bt

∂Bt

∂yTi

t

dyTi

t = −
∑

Ti>t

w(t, Ti)(Ti − t)dyTi

t .

If the changes in all the zero-coupon yields are identical, the relative price change is proportional to

the Fisher-Weil duration. Consequently, the Fisher-Weil duration represents the price sensitivity

towards infinitesimal parallel shifts of the zero-coupon yield curve. Note that an infinitesimal paral-

lel shift of the curve of continuously compounded yields corresponds to an infinitesimal proportional

shift in the curve of yearly compounded yields. This follows from the relation yTi

t = ln(1+ ŷTi

t ) be-

tween the continuously compounded zero-coupon rate yTi

t and the yearly compounded zero-coupon

rate ŷTi

t , which implies that dyTi

t = dŷTi

t /(1 + ŷTi

t ) so that dyTi

t = k implies dŷTi

t = k(1 + ŷTi

t ).

We can also define the Fisher-Weil convexity as

KFW
t =

1

2

∑

Ti>t

w(t, Ti)(Ti − t)2. (12.5)

The relative price change induced by a non-infinitesimal parallel shift of the yield curve can then

be approximated by
∆Bt
Bt

≈ −DFW
t ∆y∗t +KFW

t (∆y∗t )
2
,

where ∆y∗t is the common change in all the zero-coupon yields. Again the reduction in the time-

to-maturity should be included to approximate the price change over a given period.

12.2.3 The no-arbitrage principle and parallel shifts of the yield curve

In this section we will investigate under which assumptions the zero-coupon yield curve can

only change in the form of parallel shifts. The analysis follows Ingersoll, Skelton, and Weil (1978).

If the yield curve only changes in form of infinitesimal parallel shifts, the curve must have exactly

the same shape at all points in time. Hence, we can write any zero-coupon yield yt+τt as a sum of

the current short rate and a function which only depends on the “time-to-maturity” of the yield,

i.e.

yTt = rt + h(T − t),

where h(0) = 0. In particular, the evolution of the yield curve can be described by a model where

the short rate is the only state variable and follows a process of the type

drt = α(rt, t) dt+ β(rt, t) dzt

in the real world and hence

drt = α̂(rt, t) dt+ β(rt, t) dz
Q
t

in a hypothetical risk-neutral world.

In such a model the price of any fixed income security will be given by a function solving the

fundamental partial differential equation (7.3) on page 150. In particular, the price function of any
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zero-coupon bond BT (r, t) satisfies

∂BT

∂t
(r, t) + α̂(r, t)

∂BT

∂r
(r, t) +

1

2
β(r, t)2

∂2BT

∂r2
(r, t) − rBT (r, t) = 0, (r, t) ∈ S × [0, T ),

and the terminal condition BT (r, T ) = 1. However, we know that the zero-coupon bond price is

of the form

BT (r, t) = e−y
T
t (T−t) = e−r[T−t]−h(T−t)[T−t].

Substituting the relevant derivatives into the partial differential equation, we get that

h′(T − t)(T − t) + h(T − t) = α̂(r, t)(T − t) − 1

2
β(r, t)2(T − t)2, (r, t) ∈ S × [0, T ).

Since this holds for all r, the right-hand side must be independent of r. This can only be the case

for all t if both α̂ and β are independent of r. Consequently, we get that

h′(T − t)(T − t) + h(T − t) = α̂(t)(T − t) − 1

2
β(t)2(T − t)2, t ∈ [0, T ).

The left-hand side depends only on the time difference T − t so this must also be the case for the

right-hand side. This will only be true if neither α̂ nor β depend on t. Therefore α̂ and β have to

be constants.

It follows from the above arguments that the dynamics of the short rate is of the form

drt = α̂ dt+ β dzQ
t ,

otherwise non-parallel yield curve shifts would be possible. This short rate dynamics is the basic

assumption of the Merton model studied in Section 7.3. There we found that the zero-coupon

yields are given by

yt+τt = r +
1

2
α̂τ − 1

6
β2τ2,

which corresponds to h(τ) = 1
2 α̂τ − 1

6β
2τ2. We can therefore conclude that all yield curve shifts

will be infinitesimal parallel shifts if and only if the yield curve at any point in time is a parabola

with downward sloping branches and the short-term interest rate follows the dynamics described

in Merton’s model. These assumptions are highly unrealistic. Furthermore, Ingersoll, Skelton,

and Weil (1978) show that non-infinitesimal parallel shifts of the yield curve conflict with the

no-arbitrage principle. The bottom line is therefore that the Fisher-Weil risk measures do not

measure the bond price sensitivity towards realistic movements of the yield curve. The Macaulay

risk measures are not consistent with any arbitrage-free dynamic term structure model.

12.3 Risk measures in one-factor diffusion models

12.3.1 Definitions and relations

To obtain measures of interest rate risk that are more in line with a realistic evolution of the

term structure of interest rates, it is natural to consider uncertain price movements in reasonable

dynamic term structure models. In a model with one or more state variables we focus on the

sensitivity of the prices with respect to a change in the state variable(s). In this section we

consider the one-factor diffusion models studied in Chapters 7 and 9.
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We assume that the short rate rt is the only state variable, and that it follows a process of the

form

drt = α(rt, t) dt+ β(rt, t) dzt.

For an asset with price Bt = B(rt, t), Itô’s Lemma implies that

dBt =

(
∂B

∂t
(rt, t) + α(rt, t)

∂B

∂r
(rt, t) +

1

2
β(rt, t)

2 ∂
2B

∂r2
(rt, t)

)

dt+
∂B

∂r
(rt, t)β(rt, t) dzt,

and hence

dBt
Bt

=

(
1

B(rt, t)

∂B

∂t
(rt, t) + α(rt, t)

1

B(rt, t)

∂B

∂r
(rt, t) +

1

2
β(rt, t)

2 1

B(rt, t)

∂2B

∂r2
(rt, t)

)

dt

+
1

B(rt, t)

∂B

∂r
(rt, t)β(rt, t) dzt.

For a bond the derivative ∂B
∂r (r, t) is negative in the models we have considered so the volatility

of the bond is given by2 − 1
B(rt,t)

∂B
∂r (rt, t)β(rt, t). It is natural to use the asset-specific part of the

volatility as a risk measure. Therefore we define the duration of the asset as

D(r, t) = − 1

B(r, t)

∂B

∂r
(r, t). (12.6)

Note the similarity to the definition of the Macaulay duration. The unexpected return on the asset

is equal to minus the product of its duration, D(r, t), and the unexpected change in the short rate,

β(rt, t) dzt.

Furthermore, we define the convexity as

K(r, t) =
1

2B(r, t)

∂2B

∂r2
(r, t) (12.7)

and the time value as

Θ(r, t) =
1

B(r, t)

∂B

∂t
(r, t). (12.8)

Consequently, the rate of return on the asset over the next infinitesimal period of time can be

written as

dBt
Bt

=
(
Θ(rt, t) − α(rt, t)D(rt, t) + β(rt, t)

2K(rt, t)
)
dt−D(rt, t)β(rt, t) dzt. (12.9)

The duration of a portfolio of interest rate dependent securities is given by a value-weighted

average of the durations of the individual securities. For example, let us consider a portfolio of two

securities, namely N1 units of asset 1 with a unit price of B1(r, t) and N2 units of asset 2 with a

unit price of B2(r, t). The value of the portfolio is Π(r, t) = N1B1(r, t) +N2B2(r, t). The duration

DΠ(r, t) of the portfolio can be computed as

DΠ(r, t) = − 1

Π(r, t)

∂Π

∂r
(r, t)

= − 1

Π(r, t)

(

N1
∂B1

∂r
(r, t) +N2

∂B2

∂r
(r, t)

)

=
N1B1(r, t)

Π(r, t)

(

− 1

B1(r, t)

∂B1

∂r
(r, t)

)

+
N2B2(r, t)

Π(r, t)

(

− 1

B2(r, t)

∂B2

∂r
(r, t)

)

= η1(r, t)D1(r, t) + η2(r, t)D2(r, t),

(12.10)

2Recall that the volatility of an asset is defined as the standard deviation of the return on the asset over the next

instant.



12.3 Risk measures in one-factor diffusion models 267

where ηi(r, t) = NiBi(r, t)/Π(r, t) is the portfolio weight of the i’th asset, and Di(r, t) is the

duration of the i’th asset, i = 1, 2. Obviously, we have η1(r, t) + η2(r, t) = 1. Similarly for the

convexity and the time value. In particular, the duration of a coupon bond is a value-weighted

average of the durations of the zero-coupon bonds maturing at the payment dates of the coupon

bond.

By definition of the market price of risk λ(rt, t), we know that the expected rate of return on

any asset minus the product of the market price of risk and the volatility of the asset must equal

the short-term interest rate. From (12.9) we therefore obtain

Θ(r, t) − α(r, t)D(r, t) + β(r, t)2K(r, t) − (−D(r, t)β(r, t))λ(r, t) = r

or

Θ(r, t) − α̂(r, t)D(r, t) + β(r, t)2K(r, t) = r, (12.11)

where α̂(r, t) = α(r, t) − β(r, t)λ(r, t) is the risk-neutral drift of the short rate. We could arrive at

the same relation by substituting into the partial differential equation

∂B

∂t
(r, t) + α̂(r, t)

∂B

∂r
(r, t) +

1

2
β(r, t)2

∂2B

∂r2
(r, t) − rB(r, t) = 0

that we know B(r, t) solves. The relation (12.11) between the time value, the duration, and the

convexity holds for all interest rate dependent securities and hence also for all portfolios of interest

rate dependent securities.3

Note that the rate of return on the security over the next instant can be rewritten as

dBt
Bt

= (rt − λ(rt, t)β(rt, t)D(rt, t)) dt−D(rt, t)β(rt, t) dzt,

which only involves the duration, but neither the convexity nor the time value. We also know that

in order to replicate a given fixed income security in a one-factor model, one must form a portfolio

that, at any point in time, has the same volatility and therefore the same duration as that security.

This is a consequence of the proof of the fundamental partial differential equation, cf. Theorem 4.10

on page 87 and the subsequent discussion of hedging on page 89. However, a perfect hedge requires

continuous rebalancing of the portfolio. Due to transaction costs and other practical issues such a

continuous rebalancing is not implementable. Straightforward differentiation implies that

∂D

∂r
(r, t) = D(r, t)2 − 2K(r, t) (12.12)

so that the convexity can be seen as a measure of the interest rate sensitivity of the duration. If,

at each time the portfolio is rebalanced, the convexities of the portfolio and of the position to be

hedged are matched, their durations will probably stay close until the following rebalancing of the

portfolio. The convexity is therefore also of practical use in the interest rate risk management.

The duration, the convexity, and the time value can also be used for speculation, i.e. for setting

up a portfolio which will provide a high return if some specific expectations of the future term

structure are realized. For example, by constructing a portfolio with a zero duration and a large

3In the Black-Scholes-Merton model the time value and the so-called ∆ and Γ values are related in a similar way,

cf. Hull (2003, Section 14.7). Apparently, Christensen and Sørensen (1994) were the first to discover this relation in

the context of term structure models and the importance of taking the time value into account in the construction

of interest rate risk hedging strategies.



268 Chapter 12. The measurement and management of interest rate risk

positive convexity, one will obtain a high return over a period with a large change (positive or

negative) in the short rate. It follows from the relation (12.11) that for such a portfolio the time

value will be negative. Consequently, the portfolio will give a negative return over a period where

the short rate does not change significantly.

The Macaulay duration, defined in (12.1), and the Fisher-Weil duration, defined in (12.4), are

measured in time units (typically years) and can be interpreted as measures of the “effective” time-

to-maturity of a bond. The duration defined in (12.6) is not measured in time units, but it can

be transformed into a time-denominated duration. Following Cox, Ingersoll, and Ross (1979), we

define the time-denominated duration of a coupon bond as the time-to-maturity of the zero-

coupon bond that has the same duration as the coupon bond. If we denote the time-denominated

duration by D∗(r, t), the defining relation can be stated as

1

B(r, t)

∂B

∂r
(r, t) =

1

Bt+D∗(r,t)(r, t)

∂Bt+D
∗(r,t)

∂r
(r, t).

For bonds with only one remaining payment the time-denominated duration is equal to the time-

to-maturity, just as for the Macaulay-duration and the Fisher-Weil duration.

Cox, Ingersoll, and Ross (1979) used the term stochastic duration for the time-denominated

duration D∗(r, t) to indicate that this duration measure is based on the stochastic evolution of the

term structure. Other authors use the term stochastic duration for the original duration D(r, t).

Note that both these duration concepts are defined in relation to a specific term structure model,

and the duration measures therefore indicate the sensitivity of the bond price to the yield curve

movements consistent with the model. The traditional Macaulay and Fisher-Weil durations can

be computed without reference to a specific model, but, on the other hand, they only measure

the price sensitivity to a particular type of yield curve movements that is not consistent with

any reasonable interest rate dynamics. Another advantage of the risk measures introduced in this

section is that they are well-defined for all types of interest rate dependent securities, whereas the

Macaulay and Fisher-Weil risk measures are only meaningful for bonds.4 For the risk management

of portfolios of many different fixed income securities we need risk measures for all the individual

securities, e.g. futures, caps/floors, and swaptions.

12.3.2 Computation of the risk measures in affine models

In the time homogeneous affine one-factor diffusion models, e.g. the Vasicek model and the CIR

model, the zero-coupon bond prices are of the form

BTi(r, t) = e−a(Ti−t)−b(Ti−t)r.

The price of a coupon bond with payment Yi at time Ti, i = 1, . . . , n, is

B(r, t) =
∑

Ti>t

YiB
Ti(r, t).

Consequently, the duration of the coupon bond is

D(r, t) = − 1

B(r, t)

∂B

∂r
(r, t) =

1

B(r, t)

∑

Ti>t

b(Ti − t)YiB
Ti(r, t) =

∑

Ti>t

w(r, t, Ti)b(Ti − t),

4The duration D(r, t) is well-defined by (12.6) for any security. Since the volatilities of zero-coupon bonds are

bounded from above in many models, the time-denominated duration can only be defined for securities with a

volatility below that upper bound. This is always true for coupon bonds, but not for all derivative securities.
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where w(r, t, Ti) = YiB
Ti(r, t)/B(r, t) is the i’th payment’s share of the total present value of the

bond. Note that the duration of a zero-coupon bond maturing at time T is b(T − t), which is

different from T − t (except in the unrealistic Merton model). The convexity can be computed as

K(r, t) =
1

2

∑

Ti>t

w(r, t, Ti)b(Ti − t)2.

The time value of the coupon bond is given by

Θ(r, t) =
∑

Ti>t

w(r, t, Ti) (a′(Ti − t) + b′(Ti − t)r) =
∑

Ti>t

w(r, t, Ti)f
Ti(r, t),

where fTi(r, t) is the forward rate at time t for the maturity date Ti. The time-denominated

duration D∗(r, t) is the solution to the equation

∑

Ti>t

w(r, t, Ti)b(Ti − t) = b(D∗(r, t)).

If b is invertible, we can write the time-denominated duration of a coupon bond explicitly as

D∗(r, t) = b−1

(
∑

Ti>t

w(r, t, Ti)b(Ti − t)

)

. (12.13)

Example 12.1 In the Vasicek model we know from Section 7.4 that the b-function is given by

b(τ) =
1

κ

(
1 − e−κτ

)

so that the duration of a coupon bond is

D(r, t) =
∑

Ti>t

w(r, t, Ti)
1

κ

(

1 − e−κ[Ti−t]
)

=
1

κ

(

1 −
∑

Ti>t

w(r, t, Ti)e
−κ[Ti−t]

)

.

Since
1

κ

(
1 − e−κτ

)
= y ⇔ τ = − 1

κ
ln(1 − κy),

we have that

b−1(y) = − 1

κ
ln(1 − κy),

and by (12.13) the time-denominated duration of a coupon bond is

D∗(r, t) = − 1

κ
ln

(

1 − κ
∑

Ti>t

w(r, t, Ti)b(Ti − t)

)

= − 1

κ
ln

(

1 −
∑

Ti>t

w(r, t, Ti)(1 − e−κ[Ti−t])

)

= − 1

κ
ln

(
∑

Ti>t

w(r, t, Ti)e
−κ[Ti−t]

)

.

For the extended Vasicek model (the Hull-White model) we get the same expression since the

b-function in that model is the same as in the original Vasicek model. 2

Example 12.2 In the CIR model studied in Section 7.5 the b-function is given by

b(τ) =
2(eγτ − 1)

(γ + κ̂)(eγτ − 1) + 2γ
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so that the duration of a coupon bond is

D(r, t) =
∑

Ti>t

w(r, t, Ti)
2(eγ[Ti−t] − 1)

(γ + κ̂)(eγ[Ti−t] − 1) + 2γ
.

Since

b−1(y) =
1

γ
ln

(

1 +
2γy

2 − (κ̂+ γ)y

)

=
1

γ
ln

(

1 + 2γ

[
2

y
− (κ̂+ γ)

]−1
)

,

the time-denominated duration of a coupon bond is

D∗(r, t) =
1

γ
ln



1 + 2γ

[

2
∑

Ti>t
w(r, t, Ti)b(Ti − t)

− (κ̂+ γ)

]−1


 . (12.14)

2

12.3.3 A comparison with traditional durations

Munk (1999) shows analytically that for any bond the time-denominated duration in the Vasicek

model is smaller than the Fisher-Weil duration. This is also true for the CIR model if the parameter

κ̂ = κ+ λ is positive, which is consistent with typical parameter estimates. Therefore the Fisher-

Weil duration over-estimates the interest rate risk of coupon bonds. Except for extreme yield

curves, the Macaulay duration and the Fisher-Weil duration will be very, very close so that the

above conclusion also applies to the Macaulay duration.

Table 12.1 shows the different duration measures for bullet bonds of different maturities under

the assumption that the yield curve and its dynamics are consistent with the CIR model with given,

realistic parameter values. It is clear from the table that, for all bonds, the Macaulay duration and

the Fisher-Weil duration are very close. For relatively short-term bonds the time-denominated

duration is close to the traditional durations, but for longer-term bonds the time-denominated

duration is significantly lower than the Macaulay and Fisher-Weil durations. In particular, we

see that the interest rate sensitivity, and therefore also the time-denominated duration, for bullet

bonds first increases and then decreases as the time-to-maturity increases.

What is the explanation for the differences in the duration measures? As discussed in Sec-

tion 12.2.3, the Fisher-Weil duration is only a reasonable interest rate risk measure if the yield

curve evolves as in the Merton model where both the drift and the volatility of the short rate

are assumed to be constant. In the Merton model the volatility of a zero-coupon bond is pro-

portional to the time-to-maturity of the bond, cf. (7.17) and (7.45). On the other hand, in the

CIR model the volatility of a zero-coupon bond with time-to-maturity τ equals b(τ)β
√
r, where

the b-function is given by (7.73) on page 175. It can be shown that b is an increasing, concave

function with b′(τ) < 1 for all τ . Hence, the volatility of the zero-coupon bonds increases with the

time-to-maturity, but less than proportionally. It can also be shown that the b-function in the CIR

model is a decreasing function of the speed-of-adjustment parameter κ so the stronger the mean-

reversion, the further apart the bond volatilities in the two models. Consequently, the distance
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time-to-maturity in years price yield DMac DFW D∗ D

1 100.48 4.50% 1.00 1.00 1.00 0.89

2 100.31 4.84% 1.95 1.95 1.95 1.56

3 99.70 5.11% 2.86 2.86 2.83 2.05

4 98.81 5.34% 3.72 3.72 3.63 2.41

5 97.75 5.53% 4.54 4.54 4.34 2.67

6 96.60 5.68% 5.32 5.31 4.95 2.86

8 94.24 5.93% 6.74 6.72 5.86 3.09

10 91.96 6.10% 8.01 7.97 6.40 3.21

12 89.87 6.22% 9.14 9.07 6.68 3.26

15 87.15 6.35% 10.57 10.45 6.83 3.28

20 83.63 6.48% 12.39 12.16 6.80 3.28

25 81.13 6.56% 13.65 13.30 6.71 3.26

Table 12.1: A comparison of duration measures for different bonds under the assumption that the

CIR model with the parameters κ = 0.36, θ = 0.05, β = 0.1185, and λ = −0.1302 provides a

correct description of the yield curve and its dynamics. The current short rate is 0.04. The bonds

are bullet bonds with a coupon rate of 5%, a face value of 100, one annual payment date, and

exactly one year until the next payment date.

between the time-denominated duration D∗
t and the Fisher-Weil duration will typically increase

with the speed-of-adjustment parameter, although this probably cannot be proved analytically due

to the complicated expression for D∗
t in (12.14).

12.4 Immunization

12.4.1 Construction of immunization strategies

In many situations an individual or corporate investor will invest in the bond market either

in order to ensure that some future liabilities can be met or just to obtain some desired future

cash flow. For example, a pension fund will often have a relatively precise estimate of the size and

timing of the future pension payments to its customers. For such an investor it is important that

the value of the investment portfolio remains close to the value of the liabilities. Some financial

institutions are even required by law to keep the value of the investment portfolio at any point in

time above the value of the liabilities by some percentage margin.

A cash flow or portfolio is said to be immunized (against interest rate risk) if the value of

the cash flow or portfolio is not negatively affected by any possible change in the term structure

of interest rates. An investor who has to pay a given cash flow can obtain an immunized total

position by investing in a portfolio of interest rate dependent securities that perfectly replicates

that cash flow. For example, if an investor has to pay 10 million dollars in 5 years, he can make

sure that this will be possible by investing in 5-year zero-coupon bonds with a total face value of

10 million dollars. The present value of his total position will be completely immune to interest

rate movements. An investor who has a desired cash flow consisting of several future payments
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can obtain perfect immunization by investing in a portfolio of zero-coupon bonds that exactly

replicates the cash flow. In many cases, however, all the necessary zero-coupon bonds are neither

traded on the bond market nor possible to construct by a static portfolio of traded coupon bonds.

Therefore, the desired cash flow can only be matched by constructing a dynamically rebalanced

portfolio of traded securities.

We know from the discussion in Section 4.8 that if the term structure follows a one-factor

diffusion model, any interest rate dependent security (or portfolio) can be perfectly replicated by a

particular portfolio of any two other interest rate dependent securities. The portfolio weights have

to be adjusted continuously so that the volatility of the portfolio value will always be identical to

the volatility of the value of the cash flow which is to be replicated. In other words, the duration

of the portfolio must match the duration of the desired cash flow at any point in time. If we let

η(r, t) denote the value weight of the first security in the immunizing portfolio, the second security

will have a value weight of 1 − η(r, t). According to (12.10), the duration of the portfolio is

DΠ(r, t) = η(r, t)D1(r, t) + (1 − η(r, t))D2(r, t),

where D1(r, t) and D2(r, t) are the durations of each of the securities in the portfolio. If D̄(r, t)

denotes the duration of the cash flow to be matched, we want to make sure that

η(r, t)D1(r, t) + (1 − η(r, t))D2(r, t) = D̄(r, t)

for all r and t. This relation will hold if the portfolio weight η(r, t) is chosen so that

η(r, t) =
D̄(r, t) −D2(r, t)

D1(r, t) −D2(r, t)
. (12.15)

If (i) the portfolio is initially constructed with these relative weights and scaled so that the total

amount invested is equal to the present value of the cash flow to be matched, and (ii) the portfolio

is continuously rebalanced so that (12.15) holds at any point in time, then the desired cash flow will

be matched with certainty, i.e. the position is perfectly immunized against interest rate movements.

Of course, continuous rebalancing of a portfolio is not practically implementable (or desirable

considering real-world transaction costs). If the portfolio is only rebalanced periodically, a perfect

immunization cannot be guaranteed. The durations may be matched each time the portfolio is

rebalanced, but between these dates the durations may diverge due to interest rate movements

and the passage of time. With different durations the portfolio and the desired cash flow will not

have the same sensitivity towards another interest rate change.

As shown in (12.12), the convexity measures the sensitivity of the duration towards changes in

the term structure of interest rates. If both the durations and the convexities of the portfolio and

the cash flow are matched each time the portfolio is rebalanced, the durations are likely to stay

close even after several interest rate changes. Therefore, matching the convexities should improve

the effectiveness of the immunization strategy. Note that when both durations and convexities are

matched, it follows from (12.11) that the time values are also identical. Matching both durations

and convexities requires a portfolio of three securities. Let us write the durations and convexities

of the three securities in the portfolio as Di(r, t) and Ki(r, t), respectively. The value weights of

the three securities are denoted by ηi(r, t), and the convexity of the desired cash flow is denoted by

K̄(r, t). Since η3(r, t) = 1 − η1(r, t) − η2(r, t), durations and convexities will be matched if η1(r, t)
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and η2(r, t) are chosen such that

η1(r, t)D1(r, t) + η2(r, t)D2(r, t) + [1 − η1(r, t) − η2(r, t)]D3(r, t) = D̄(r, t),

η1(r, t)K1(r, t) + η2(r, t)K2(r, t) + [1 − η1(r, t) − η2(r, t)]K3(r, t) = K̄(r, t).

This equation system has the unique solution

η1(r, t) =
(D̄(r, t) −D3(r, t))(K2(r, t) −K3(r, t)) − (D2(r, t) −D3(r, t))(K̄(r, t) −K3(r, t))

(D1(r, t) −D3(r, t))(K2(r, t) −K3(r, t)) − (D2(r, t) −D3(r, t))(K1(r, t) −K3(r, t))
,

(12.16)

η2(r, t) =
(D1(r, t) −D3(r, t))(K̄(r, t) −K3(r, t)) − (D̄(r, t) −D3(r, t))(K1(r, t) −K3(r, t))

(D1(r, t) −D3(r, t))(K2(r, t) −K3(r, t)) − (D2(r, t) −D3(r, t))(K1(r, t) −K3(r, t))
.

(12.17)

If only durations are matched, the convexity of the portfolio and hence the effectiveness of the

immunization strategy will be highly dependent on which two securities the portfolio consists of.

If the convexity of the investment portfolio is larger than the convexity of the cash flow, a big

change (positive or negative) in the short rate will induce an increase in the net value of the total

position. On the other hand, if the short rate stays almost constant, the net value of the position

will decrease since the time value of the portfolio is then lower than the time value of the cash

flow, cf. (12.11). The converse conclusions hold in case the convexity of the portfolio is less than

the convexity of the cash flow.

Traditionally, immunization strategies have been constructed on the basis of Macaulay durations

instead of the stochastic durations as above. The Macaulay duration of a portfolio is typically very

close to, but not exactly equal to, the value-weighted average of the Macaulay durations of the

securities in the portfolio. We will ignore the small errors induced by this approximation, just as

practitioners seem to. The immunization strategy based on Macaulay durations is then defined by

Eq. (12.15) where Macaulay durations are used on the right-hand side. Immunization strategies

based on the Fisher-Weil duration can be constructed in a similar manner. In earlier sections of

this chapter we have argued that the Macaulay and Fisher-Weil risk measures are inappropriate for

realistic yield curve movements. Consequently, immunization strategies based on those measures

are likely to be ineffective. Below we perform an experiment that illustrates how far off the mark

the traditional immunization strategies are.

12.4.2 An experimental comparison of immunization strategies

For simplicity, let us consider an investor who seeks to match a payment of 1000 dollars exactly

10 years from now. We assume that the CIR model

drt = κ[θ − rt] dt+ β
√
rt dzt = (κθ − [κ+ λ]rt) dt+ β

√
rt dz

Q
t

with the parameter values κ = 0.3, θ = 0.05, β = 0.1, and λ = −0.1 provides a correct description

of the evolution of the term structure of interest rates. The asymptotic long-term yield y∞ is

then 6.74%. The zero-coupon yield curve will be increasing if the current short rate is below 6.12%

and decreasing if the current short rate is above 7.50%. For intermediate values of the short rate,

the yield curve will have a small hump.
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Duration matching immunization

In the following we will compare the effectiveness of duration matching immunization strategies

based on the Macaulay duration, the Fisher-Weil duration, and the stochastic duration derived

from the CIR model. In addition to the duration measure applied, the immunization strategy

is characterized by the rebalancing frequency and by the securities that constitute the portfolio.

We will consider strategies with 2, 12, and 52 equally spaced annual portfolio adjustments. We

consider only portfolios of two bullet bonds of different maturities. The bonds have a coupon rate

of 5%, one annual payment date, and exactly one year to the next payment date. We assume

that the investor is free to pick two such bonds among the bonds that have time-to-maturities in

the set {1, 2, . . . } at the time when the strategy is initiated. We apply two criteria for the choice

of maturities. One criterion is to choose the maturity of one of the bonds so that the Macaulay

duration of the bond is less than, but as close as possible to, the Macaulay duration of the liability

to be matched. The other bond is chosen to be the bond with Macaulay duration above, but as

close as possible to, the Macaulay duration of the liability. This criterion has the nice implication

that the Macaulay convexities of the portfolio and the liability will be close, which should improve

the effectiveness of periodically adjusted immunization portfolios. We will refer to this criterion

as the Macaulay criterion. The other criterion is to choose a short-term bond and a long-term

bond so that the convexity of the portfolio will be significantly higher than the convexity of the

liability. The short-term bond has a time-to-maturity of one year at the most, while the long

bond matures five years after the liability is due. We will refer to this criterion as the short-long

criterion. Irrespective of the criterion used, we assume that one year before the liability is due,

the portfolio is replaced by a position in the bond with only one year to maturity. Consequently,

the strategies are not affected by interest rate movements in the final year.

The effectiveness of the different immunization strategies is studied by performing 30000 sim-

ulations of the evolution of the yield curve in the CIR model over the 10-year period to the due

date of the liability. In the simulations we use 360 time steps per year. Table 12.2 illustrates the

effectiveness of the different immunization strategies. The left part of the table contains results

based on the Macaulay bond selection criterion, whereas the right part is based on the short-long

bond second criterion. In order to explain the numbers in the table, let us take the right-most

column as an example. The numbers in this column are from an immunization strategy based on

matching CIR durations using a portfolio of a short-term and a long-term bond. For two annual

portfolio adjustments the average of the 30000 simulated terminal portfolio values was 1000.01,

which is very close to the desired value of 1000. The average absolute deviation was 0.124% of the

desired portfolio value. In 29.1% of the 30000 simulated outcomes the absolute deviation was less

than 0.05%. In 53.3% of the simulated outcomes the absolute deviation was less than 0.1%, etc.5

The strategies based on the Macaulay and the Fisher-Weil durations generate results very

similar to each other due to the fact that these duration measures typically are very close. The

effectiveness of these strategies seems independent of the rebalancing frequency. The choice of

bonds applied in the strategy is more important. The deviations from the target are generally

significantly larger for a portfolio of a short and a long bond (a high convexity portfolio) than for

5Even with 30000 simulations the specific fractiles are quite uncertain, but the averages are quite reliable.

Experiments with other sequences of random numbers and a larger number of simulations have resulted in very

similar fractiles.
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2 portfolio adjustments per year

Macaulay criterion short-long criterion

Macaulay Fisher-Weil CIR Macaulay Fisher-Weil CIR

Avg. terminal value 994.41 994.42 999.99 968.32 968.41 1000.01

Avg. absolute deviation 1.28% 1.27% 0.072% 5.65% 5.60% 0.124%

Dev. < 0.05% 2.2% 2.2% 45.2% 0.4% 0.4% 29.1%

Dev. < 0.1% 4.3% 4.3% 76.2% 0.9% 0.8% 53.3%

Dev. < 0.5% 21.5% 21.5% 99.7% 4.5% 4.5% 98.6%

Dev. < 1.0% 42.4% 42.6% 100.0% 8.9% 8.9% 99.9%

Dev. < 5.0% 99.6% 99.6% 100.0% 45.9% 46.2% 100.0%

12 portfolio adjustments per year

Macaulay criterion short-long criterion

Macaulay Fisher-Weil CIR Macaulay Fisher-Weil CIR

Avg. terminal value 994.54 994.43 1000.00 968.62 968.53 1000.01

Avg. absolute deviation 1.28% 1.27% 0.032% 5.61% 5.59% 0.053%

Dev. < 0.05% 2.2% 2.2% 80.5% 0.4% 0.4% 59.6%

Dev. < 0.1% 4.5% 4.4% 97.1% 0.9% 0.8% 86.0%

Dev. < 0.5% 21.7% 21.5% 100.0% 4.5% 4.5% 100.0%

Dev. < 1.0% 42.7% 42.7% 100.0% 9.0% 9.0% 100.0%

Dev. < 5.0% 99.6% 99.6% 100.0% 46.4% 46.3% 100.0%

52 portfolio adjustments per year

Macaulay criterion short-long criterion

Macaulay Fisher-Weil CIR Macaulay Fisher-Weil CIR

Avg. terminal value 994.50 994.47 1000.00 968.55 968.53 1000.01

Avg. absolute deviation 1.27% 1.26% 0.015% 5.61% 5.58% 0.026%

Dev. < 0.05% 2.1% 2.2% 97.3% 0.4% 0.4% 87.1%

Dev. < 0.1% 4.3% 4.4% 99.9% 0.9% 0.9% 98.6%

Dev. < 0.5% 21.2% 21.3% 100.0% 4.3% 4.3% 100.0%

Dev. < 1.0% 42.7% 42.8% 100.0% 8.7% 8.6% 100.0%

Dev. < 5.0% 99.7% 99.7% 100.0% 46.8% 47.0% 100.0%

Table 12.2: Results from the immunization of a 10-year liability based on 30000 simulations of the

CIR model. The current short rate is 5%.
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a portfolio of bonds with very similar maturities (a low convexity portfolio). The high convexity

strategy deviates by more than five percent in more than half of all cases.

The CIR strategy of matching stochastic durations is far more effective than matching Macaulay

or Fisher-Weil durations. This can be seen both from the average terminal portfolio value, the

average absolute deviation, and the listed fractiles from the distribution of the absolute deviations.

Even with just two annual portfolio adjustments the CIR strategy will miss the target by less than

0.5 percent in more than 98% of all outcomes, no matter which bond selection criterion is used. The

Macaulay and Fisher-Weil strategies miss the mark by more than one percent in more than 50%

of all outcomes, even when the bonds are selected according to their Macaulay durations. Clearly,

the effectiveness of the CIR strategy increases with the frequency of the portfolio adjustments.

In particular, frequent rebalancing is advantageous if the immunization portfolio has a relatively

high convexity. However, the effectiveness of the CIR strategy seems to depend less on the bonds

chosen than does the effectiveness of the traditional strategies.

Simulations using other initial short rates and therefore different initial yield curves have shown

that the average terminal value of the Macaulay strategy is highly dependent on the initial short

rate. For a nearly flat initial yield curve the average terminal value is very close to the targeted

value of 1000, but the average absolute deviation is not smaller than for other initial yield curves.

The CIR strategy is far more effective than the Macaulay strategy, also for a nearly flat initial

yield curve. The effectiveness of the strategies decreases with the current interest rate level due

to the fact that the interest rate volatility is assumed to increase with the level in the CIR model.

Furthermore, the accuracy of the immunization strategies will typically be decreasing in β and θ

and increasing in κ.

Duration and convexity matching immunization strategies

In the following we consider the case where both the duration and the convexity of the liability

are matched by the investment portfolio. In our experiment we assume that the portfolio consists

of a bond with a time-to-maturity of at most one year, a bond maturing two years after the liability

is due, and a bond maturing ten years after the liability is due. Table 12.3 illustrates the gain

in efficiency by matching both duration and convexity instead of just matching duration using

a portfolio of the short and the long bond. For the Macaulay strategy the average deviation is

reduced by a factor 10. The Fisher-Weil strategy generates almost identical results and is therefore

omitted. For the CIR strategy the relative improvement is even more dramatic and in all of the

30000 simulated outcomes the deviation is less than 0.05% although the portfolio is only rebalanced

once a month! The numbers under the column heading Hull-White are explained below.

Model uncertainty

The results above clearly show that if the CIR model gives a correct description of the term

structure dynamics, an immunization strategy based on the CIR risk measures is far more effective

than strategies based on the traditional risk measures. However, if the CIR model does not provide

a good description of the evolution of the term structure, an immunization strategy based on the

stochastic durations computed using the CIR model will be less successful. Since the CIR model

in any case is closer to the true dynamics of the short rate than the Merton model underlying

the Fisher-Weil duration, the CIR strategy is still expected to be more effective than traditional
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12 portfolio adjustments per year

Identical durations Identical durations and convexities

Macaulay CIR Hull-White Macaulay CIR Hull-White

Avg. terminal value 968.62 1000.01 1005.39 997.11 1000.00 999.78

Avg. absolute deviation 5.61% 0.053% 0.98% 0.57% 0.0002% 0.33%

Dev. < 0.05% 0.4% 59.6% 2.5% 4.7% 100.0% 10.1%

Dev. < 0.1% 0.9% 86.0% 5.0% 9.5% 100.0% 19.7%

Dev. < 0.5% 4.5% 100.0% 26.1% 47.6% 100.0% 77.6%

Dev. < 1.0% 9.0% 100.0% 53.4% 86.9% 100.0% 97.5%

Dev. < 5.0% 46.4% 100.0% 100.0% 100.0% 100.0% 100.0%

Table 12.3: Results from the immunization of a 10-year liability of 1000 dollars based on 30000

simulations of the CIR model. The current short rate is 5%.

strategies.

Our analysis indicates that for immunization purposes it is important to apply risk measures

that are related to the dynamics of the term structure. Therefore, it is important to identify an

empirically reasonable model and then to implement immunization strategies (and hedge strategies

in general) based on the relevant risk measures associated with the model.

How effective is an immunization strategy based on risk measures associated with a model

which does not give a correct description of the yield curve dynamics? To investigate this issue,

we assume that the CIR model is correct, but that the immunization strategy is constructed using

risk measures from the Hull-White model (the extended Vasicek model). Just before each portfolio

adjustment the Hull-White model is calibrated to the true yield curve, i.e. the yield curve of the

CIR model. Table 12.3 shows the results of such an immunization strategy. As expected the

strategy is far less effective than the strategy based on the true yield curve dynamics, but the Hull-

White strategy is still far better than the traditional Macaulay strategy. So even though we base

our immunization strategy on a model which, in some sense, is far from the true model, we still

obtain a much more effective immunization than we would by using the traditional immunization

strategy.

12.5 Risk measures in multi-factor diffusion models

12.5.1 Factor durations, convexities, and time value

In multi-factor diffusion models it is natural to measure the sensitivity of a security price with

respect to changes in the different state variables. Let us consider a two-factor diffusion model

where the state variables x1 and x2 are assumed to develop as

dx1t = α1(x1t, x2t) dt+ β11(x1t, x2t) dz1t + β12(x1t, x2t) dz2t, (12.18)

dx2t = α2(x1t, x2t) dt+ β21(x1t, x2t) dz1t + β22(x1t, x2t) dz2t. (12.19)
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For a security with the price Bt = B(x1t, x2t, t), Itô’s Lemma implies that

dBt
Bt

= . . . dt−D1(x1t, x2t, t) [β11(x1t, x2t) dz1t + β12(x1t, x2t) dz2t]

−D2(x1t, x2t, t) [β21(x1t, x2t) dz1t + β22(x1t, x2t) dz2t] ,

(12.20)

where we have omitted the drift and introduced the notation

D1(x1, x2, t) = − 1

B(x1, x2, t)

∂B

∂x1

(x1, x2, t),

D2(x1, x2, t) = − 1

B(x1, x2, t)

∂B

∂x2

(x1, x2, t).

We will refer to D1 and D2 as the factor durations of the security. In such a two-factor model

any interest rate dependent security can be perfectly replicated by a portfolio that always has the

same factor durations as the given security. Again continuous rebalancing is needed.

In the practical implementation of hedge strategies it is relevant to include second-order deriva-

tives just as we did in the one-factor models above. In a two-factor model we have three relevant

second-order derivatives that lead to the following factor convexities:

K1(x1, x2, t) =
1

2B(x1, x2, t)

∂2B

∂x2
1

(x1, x2, t),

K2(x1, x2, t) =
1

2B(x1, x2, t)

∂2B

∂x2
2

(x1, x2, t),

K12(x1, x2, t) =
1

B(x1, x2, t)

∂2B

∂x1∂x2
(x1, x2, t).

Defining the time value as

Θ(x1, x2, t) =
1

B(x1, x2, t)

∂B

∂t
(x1, x2, t),

we get the following relation:

Θ(x1, x2, t) − α̂1(x1, x2)D1(x1, x2, t) − α̂2(x1, x2)D2(x1, x2, t)

+ γ1(x1, x2)
2K1(x1, x2, t) + γ2(x1, x2)

2K2(x1, x2, t) + γ12(x1, x2)K12(x1, x2, t) = r(x1, x2).

Here the terms γ2
1 = β2

11 +β2
12 and γ2

2 = β2
21 +β2

22 are the variance rates of changes in the first and

the second state variables, and γ12 = β11β21 +β12β22 is the covariance rate between these changes.

In a two-factor affine model the prices of zero-coupon bonds are of the form

BT (x1, x2, t) = e−a(T−t)−b1(T−t)x1−b2(T−t)x2 .

Therefore, the factor durations of a zero-coupon bond are given by Dj(x1, x2, t) = bj(T − t)

for j = 1, 2. For a coupon bond with the price B(x1, x2, t) =
∑

Ti>t
YiB

Ti(x1, x2, t) the factor

durations are

Dj(x1, x2, t) = − 1

B(x1, x2, t)

∂B

∂xj
(x1, x2, t) =

∑

Ti>t

w(x1, x2, t, Ti)bj(Ti − t),
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where w(x1, x2, t, Ti) = YiB
Ti(x1, x2, t)/B(x1, x2, t). The convexities and the time value are

Kj(x1, x2, t) =
∑

Ti>t

w(x1, x2, t, Ti)bj(Ti − t)2, j = 1, 2,

K12(x1, x2, t) =
∑

Ti>t

w(x1, x2, t, Ti)b1(Ti − t)b2(Ti − t),

Θ(x1, x2, t) =
∑

Ti>t

w(x1, x2, t, Ti) (a′(Ti − t) + b′1(Ti − t)x1 + b′2(Ti − t)x2) .

The factor durations defined above can be transformed into time-denominated factor durations

in the following manner. For each state variable or factor j we define the time-denominated factor

duration D∗
j = D∗

j (x1, x2, t) as the time-to-maturity of the zero-coupon bond with the same price

sensitivity and hence the same factor duration relative to this state variable:

1

B(x1, x2, t)

∂B

∂xj
(x1, x2, t) =

1

Bt+D
∗

j (x1, x2, t)

∂Bt+D
∗

j

∂xj
(x1, x2, t).

In an affine model this equation reduces to

∑

Ti>t

w(x1, x2, t, Ti)bj(Ti − t) = bj(D
∗
j )

so that

D∗
j = D∗

j (x1, x2, t) = b−1
j

(
∑

Ti>t

w(x1, x2, t, Ti)bj(Ti − t)

)

under the assumption that bj is invertible.

12.5.2 One-dimensional risk measures in multi-factor models

For practical purposes it may be relevant to summarize the risks of a given security in a single

(one-dimensional) risk measure. The volatility of the security is the most natural choice. By

definition the volatility of a security is the standard deviation of the rate of return on the security

over the next instant. In the two-factor model given by (12.18) and (12.19) the variance of the

rate of return can be computed from (12.20):

Vart

(
dBt
Bt

)

= Vart ([D1β11 +D2β21] dz1t + [D1β12 +D2β22] dz2t)

=
(

[D1β11 +D2β21]
2

+ [D1β12 +D2β22]
2
)

dt

=
(
D2

1γ
2
1 +D2

2γ
2
2 + 2D1D2γ12

)
dt,

where we for notational simplicity have omitted the arguments of the D- and β-functions. The

volatility is thus given by

σB(x1, x2, t) =
(

D1(x1, x2, t)
2γ1(x1, x2)

2 +D2(x1, x2, t)
2γ2(x1, x2)

2

+ 2D1(x1, x2, t)D2(x1, x2, t)γ12(x1, x2)
)1/2

.

Also this risk measure can be transformed into a time-denominated risk measure, namely the

time-to-maturity of the zero-coupon bond having the same volatility as the security considered.
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Letting σT (x1, x2, t) denote the volatility of the zero-coupon bond maturing at time T , the time-

denominated duration D∗(x1, x2, t) is given as the solution D∗ = D∗(x1, x2, t) to the equation

σB(x1, x2, t) = σt+D
∗

(x1, x2, t)

or, equivalently,

σB(x1, x2, t)
2 = σt+D

∗

(x1, x2, t)
2.

This equation can only be solved numerically. For an affine two-factor model the equation is of

the form

(
∑

Ti>t

wib1(Ti − t)

)2

γ2
1+

(
∑

Ti>t

wib2(Ti − t)

)2

γ2
2+2

(
∑

Ti>t

wib1(Ti − t)

)(
∑

Ti>t

wib2(Ti − t)

)

γ12

= b1(D
∗)2γ2

1 + b2(D
∗)2γ2

2 + 2b1(D
∗)b2(D

∗)γ12,

where we again have simplified the notation, e.g. wi represents w(x1, x2, t, Ti). Some basic proper-

ties of the time-denominated duration were derived by Munk (1999). The time-denominated dura-

tion is a theoretically better founded one-dimensional risk measure than the traditional Macaulay

and Fisher-Weil durations. Furthermore, the time-denominated duration is closely related to the

volatility concept, which most investors are familiar with.

Table 12.4 lists different duration measures based on the two-factor model of Longstaff and

Schwartz (1992a) studied in Section 8.5.2 on page 200. The parameters of the models are fixed at

the values estimated by Longstaff and Schwartz (1992b), which generates a reasonable distribution

of the future values of the state variables r and v. For 5% bullet bonds of different maturities

the table shows the price, the yield, the Macaulay duration DMac, the Fisher-Weil duration DFW,

the time-denominated factor durations D∗
1 and D∗

2 , and the one-dimensional time-denominated

duration D∗. Also in this case the traditional duration measures are overestimating the risk of

long-term bonds. Also note that with the parameter values applied in the computations, the first

time-denominated factor duration D∗
1 and the one-dimensional time-denominated duration D∗ are

basically identical. The reason is that the sensitivity to the second factor depends very little on

the time-to-maturity. This is not necessarily the case for other parameter values.

12.6 Duration-based pricing of options on bonds

12.6.1 The general idea

In the framework of one-factor diffusion models Wei (1997) suggests that the price of a Euro-

pean call option on a coupon bond can be approximated by the price of a European call option

on a particular zero-coupon bond, namely the zero-coupon bond having the same (stochastic) du-

ration as the coupon bond underlying the option to be priced. According to Section 6.5.2, this

approximation can also be applied to the pricing of European swaptions. As usual, we let CK,T,St

be the time t price of a European call option with expiration time T and exercise price K, written

on a zero-coupon bond maturing at time S > T . Furthermore, CK,T,cpn
t is the time t price of

a European call option with expiration time T and exercise price K, written on a given coupon

bond. We denote by Bt the time t value of the payments of the coupon bonds after expiration of
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maturity, years price yield DMac DFW D∗
1 D∗

2 D∗

1 99.83 5.18% 1.00 1.00 1.00 1.00 1.00

2 98.94 5.58% 1.95 1.95 1.94 1.21 1.94

3 97.60 5.90% 2.86 2.86 2.81 1.21 2.81

4 96.01 6.16% 3.72 3.71 3.59 1.21 3.59

5 94.30 6.37% 4.53 4.52 4.25 1.21 4.25

6 92.56 6.54% 5.30 5.29 4.79 1.21 4.79

8 89.20 6.79% 6.70 6.68 5.52 1.20 5.52

10 86.15 6.97% 7.94 7.89 5.87 1.20 5.87

12 83.45 7.09% 9.01 8.94 5.99 1.20 5.99

15 80.07 7.22% 10.36 10.23 6.00 1.20 6.00

20 75.88 7.34% 11.99 11.75 5.89 1.19 5.89

Table 12.4: Duration measures for 5% bullet bonds with one annual payment date assuming the

Longstaff-Schwartz model with the parameter values β2
1 = 0.005, β2

2 = 0.0814, κ1 = 0.3299,

κ̂2 = 14.4277, ϕ1 = 0.020112, and ϕ2 = 0.26075 provides a correct description of the yield curve

dynamics. The current short rate is r = 0.05 with an instantaneous variance rate of v = 0.002.

the option, i.e. Bt =
∑

Ti>T
YiB

Ti

t where Yi is the payment at time Ti. Wei’s approximation is

then given by the following relation:

CK,T,cpn
t ≈ C̃K,T,cpn

t =
Bt

B
t+D∗

t

t

C
K∗,T,t+D∗

t

t , (12.21)

where K∗ = KB
t+D∗

t

t /Bt, and where D∗
t denotes the time-denominated duration of the cash flow

of the underlying coupon bonds after expiration of the option.

Wei does not motivate the approximation, but shows by numerical examples in the one-factor

models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985b) that the approximation is very

accurate. The advantage of using the approximation in these two models is that the price of

only one call option on a zero-coupon bond needs to be computed. To apply Jamshidian’s trick

(see Section 7.2.3 on page 155) we have to compute a zero-coupon bond option price for each of

the payment dates of the coupon bond after the expiration date of the option. In addition, one

equation in one unknown has to be solved numerically to determine the critical interest rate r∗.

Nevertheless, the exact price can be very quickly computed by Jamshidian’s formula, but if many

options on coupon bonds (or swaptions) have to priced, the slightly faster approximation may be

relevant to use.

The intuition behind the accuracy of the approximation is that the underlying zero-coupon

bond of the approximating option is chosen to match the volatility of the underlying coupon bond

for the option we want to price. Since we know that the volatility of the underlying asset is an

extremely important factor for the price of an option, this choice makes good sense.

Munk (1999) studies the approximation in more detail, gives an analytical argument for its

accuracy, and illustrates the precision in multi-factor models in several numerical examples. Note

that the computational advantage of using the approximation is much bigger in multi-factor models

than in one-factor models since no explicit formula for European options on coupon bonds has
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been found for any multi-factor model. Whereas the alternative to the approximation in the

one-factor models is a slightly more complicated explicit expression, the alternative in the multi-

factor models is to use a numerical technique, e.g. Monte Carlo simulation or numerical solution

of the relevant multi-dimensional partial differential equation. Below we go through the analytical

argument for the applicability of the approximation. After that we will illustrate the accuracy of

the approximation in numerical examples.

It should be noted that several other techniques to approximating prices of European op-

tions on coupon bonds have been suggested in the literature. For example, in the framework of

affine models Collin-Dufresne and Goldstein (2002) and Singleton and Umantsev (2002) introduce

two approximations that may dominate (with respect to accuracy and computational speed) the

duration-based approach discussed here, but these approximations are much harder to understand.

12.6.2 A mathematical analysis of the approximation

Let us first study the error in using the approximation

CK,T,cpn
t ≈ Bt

BSt
CKS ,T,S
t , (12.22)

where S is any given maturity date of the underlying zero-coupon bond of the approximating

option, and where KS = KBSt /Bt. Afterwards we will argue that the error will be small when

S = t+D∗
t , which is exactly the approximation (12.21).

Both the correct option price and the price of the approximating option can be written in terms

of expected values under the S-forward martingale measure QS . Under this measure the price of

any asset relative to the zero-coupon bond price BSt is by definition a martingale. Hence, the

correct price of the option can be written as

CK,T,cpn
t = BSt EQS

t

[
max(BT −K, 0)

BST

]

,

while the price of the approximating option is

CKS ,T,S
t = BSt EQS

t




max

(

BST − KBS
t

Bt
, 0
)

BST



 = BSt EQS

t

[

max

(

1 − KBSt
BtBST

, 0

)]

.

The dollar error incurred by using the approximation (12.22) is therefore equal to

CK,T,cpn
t − Bt

BSt
CKS ,T,S
t = BSt

(

EQS

t

[
max(BT −K, 0)

BST

]

− Bt
BSt

EQS

t

[

max

(

1 − KBSt
BtBST

, 0

)])

= BSt EQS

t

[

max

(
BT
BST

− K

BST
, 0

)

− max

(
Bt
BSt

− K

BST
, 0

)]

. (12.23)

From the definition of the S-forward martingale measure it follows also that

EQS

t

[
BT
BST

]

=
Bt
BSt

(12.24)

and that

EQS

t

[
K

BST

]

=
KBTt
BSt

. (12.25)

For deep-in-the-money call options both max-terms in (12.23) will with a high probability

return the first argument, and it follows then from (12.24) that the dollar error will be close to
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zero. Since the option price in this case is relatively high, the percentage error will be very close to

zero. For deep-out-of-the-money call options both max-terms will with a high probability return

zero so that the dollar error again is close to zero. The option price will also be close to zero, so

the percentage error may be substantial.

The error is due to the outcomes where only one and not both max-terms is different from zero.

This will be the case when the realized values of BT and BST are such that the ratio K/BST lies

between BT /B
S
T and Bt/B

S
t . As indicated by (12.24) and (12.25) this affects the value of forward

near-the-money options where Bt ≈ KBTt . We will therefore expect the dollar pricing errors to be

largest for such options.

The considerations above are valid for any S. In order to reduce the probability of ending up

in the outcomes that induce the error, we seek to choose S so that BT /Bt and BST /B
S
t are likely

to end up close to each other. As a first attempt to achieve this we could try to pick S such that

the variance VarQS

t

[
BT /Bt −BST /B

S
t

]
is minimized, but this idea is not implementable due to the

typically very complicated expressions for BST and, in particular, for BT . Alternatively, we can

choose S so that the relative changes in Bt and BSt over the next instant are close to each other.

This is exactly what we achieve by using S = t+D∗
t .

Another promising choice is S = Tmv which is the value of S that minimizes the variance of

the difference in the relative price change over the next instant, i.e. VarQS

t

[
dBt

Bt
− dBS

t

BS
t

]

. This idea

also gives rise to an alternative time-denominated duration measure, Dmv
t = Tmv − t, which we

could call the variance-minimizing duration. It can be shown (see Munk (1999)) that for one-

factor models the two duration measures are identical, D∗
t = Dmv

t . In multi-factor models the two

measures will typically be close to each other, and consequently the accuracy of the approximation

will typically be the same no matter which duration measure is used to fix the maturity of the

zero-coupon bond. In the extreme cases where the measures differ significantly, the approximation

based on D∗
t seems to be more accurate.

Note that the analysis in this subsection applies to all term structure models. We have not

assumed that the evolution of the term structure can be described by a one-factor diffusion model.

Therefore we can expect the approximation to be accurate in all models. Below we will investigate

the accuracy of the approximation in a specific term structure model, namely the two-factor model

of Longstaff and Schwartz discussed in Section 8.5.2. These results are taken from Munk (1999),

who also presents similar results for a two-factor Gaussian Heath-Jarrow-Morton model (see Chap-

ter 10 for an introduction to these models). Wei (1997) studies the accuracy of the approximation

in the one-factor models of Vasicek and of Cox, Ingersoll, and Ross.

12.6.3 The accuracy of the approximation in the Longstaff-Schwartz model

According to (8.45), the price of a European call option on a zero-coupon bond in the Longstaff-

Schwartz model can be written as

CK,T,St = BSt χ
2
1 −KBTt χ

2
2,

where χ2
1 and χ2

2 are two probabilities taken from the two-dimensional non-central χ2-distribution.

No explicit formula for the price of a European call option on a coupon bond has been found.

Consequently, an approximation like (12.21) will be very valuable if it is sufficiently accurate.
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two-month options six-month options

K appr. price abs. dev. rel. dev. std. dev. K appr. price abs. dev. rel. dev. std. dev.

86 5.08407 0.1·10−5 0.000% 1.8·10−4 91 4.45364 2.0·10−5 0.000% 4.8·10−4

87 4.10368 0.2·10−5 0.000% 1.7·10−4 92 3.53250 4.9·10−5 0.001% 4.0·10−4

88 3.12553 0.7·10−5 0.000% 1.5·10−4 93 2.63434 8.2·10−5 0.003% 3.4·10−4

89 2.16242 2.1·10−5 0.001% 1.2·10−4 94 1.79287 9.6·10−5 0.005% 3.2·10−4

90 1.26608 3.2·10−5 0.003% 1.0·10−4 95 1.06678 5.5·10−5 0.005% 3.1·10−4

91 0.56030 0.7·10−5 0.001% 0.9·10−4 96 0.52036 -3.3·10−5 -0.006% 2.4·10−4

92 0.15992 -2.7·10−5 -0.017% 0.7·10−4 97 0.19074 -9.6·10−5 -0.050% 2.0·10−4

93 0.02442 -2.0·10−5 -0.083% 0.7·10−4 98 0.04576 -7.7·10−5 -0.168% 2.0·10−4

94 0.00163 -0.4·10−5 -0.253% 0.4·10−4 99 0.00576 -2.7·10−5 -0.474% 1.5·10−4

95 0.00001 -0.0·10−5 -1.545% 0.1·10−4 100 0.00021 -0.2·10−5 -1.051% 0.5·10−4

Table 12.5: Prices of two- and six-month European call options on a two-year bullet 8% bond in

the Longstaff-Schwartz model. The underlying bond has a current price of 89.3400, a two-month

forward price of 91.2042, a six-month forward price of 95.7687, and a time-denominated stochastic

duration of 1.9086 years.

To estimate the accuracy, we will compare the approximate price C̃K,T,cpn
t to a “correct”

price CK,T,cpn
t computed using Monte Carlo simulation.6 Of course, in the practical use of the

approximation the approximate price will be computed using the explicit formula for the price of the

option on the zero-coupon bond. But to make a fair comparison, we will compute the approximate

price using the same simulated sample paths as used for computing the correct option price. In

this way our evaluation of the approximation is not sensitive to a possible bias in the correct price

induced by the simulation technique.

We will consider European call options with an expiration time of two or six months written

on an 8% bullet bond with a single annual payment date and a time-to-maturity of two or ten

years. The parameters in the dynamics of the state variables, see (8.42) and (8.43), are taken to

be β2
1 = 0.01, β2

2 = 0.08, ϕ1 = 0.001, ϕ2 = 1.28, κ1 = 0.33, κ2 = 14, and λ = 0. These values

are close to the parameter values estimated by Longstaff and Schwartz in their original article.

The current short rate is assumed to be r = 0.08 with an instantaneous variance of v = 0.002.

The accuracy of the approximation does not seem to depend on these values in any systematic

way. Table 12.5 lists results for options on the two-year bond for various exercise prices around

the forward-at-the-money value of K, i.e. Bt/B
T
t . The corresponding results for options on the

ten-year bond are shown in Table 12.6. The absolute deviation shown in the tables is defined as

the approximate price minus the correct price, whereas the relative deviation is computed as the

absolute deviation divided by the correct price. The tables also show the standard deviation of

the simulated difference between the correct and the approximate price.

All the approximate prices are correct to three decimals, and the percentage deviations are also

6The results shown are based on simulations of 10000 pairs of antithetic sample paths of the two state variables

r and v. The time period until the expiration date of the option is divided into approximately 100 subintervals per

year.
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two-month options six-month options

K appr. price abs. dev. rel. dev. std. dev. K appr. price abs. dev. rel. dev. std. dev.

74 4.42874 1.2·10−4 0.003% 1.9·10−3 78 4.27344 1.1·10−3 0.027% 4.4·10−3

75 3.46569 2.5·10−4 0.007% 1.6·10−3 79 3.42836 1.3·10−3 0.037% 4.3·10−3

76 2.53643 3.9·10−4 0.015% 1.4·10−3 80 2.64289 1.2·10−3 0.045% 4.3·10−3

77 1.69005 4.0·10−4 0.024% 1.4·10−3 81 1.93654 0.8·10−3 0.042% 4.2·10−3

78 0.98799 1.8·10−4 0.018% 1.3·10−3 82 1.33393 0.2·10−3 0.015% 3.8·10−3

79 0.48542 -1.7·10−4 -0.036% 1.0·10−3 83 0.85064 -0.5·10−3 -0.063% 3.1·10−3

80 0.19080 -3.9·10−4 -0.202% 0.9·10−3 84 0.49430 -1.1·10−3 -0.220% 2.8·10−3

81 0.05666 -3.2·10−4 -0.570% 0.9·10−3 85 0.25641 -1.3·10−3 -0.508% 2.6·10−3

82 0.01267 -1.6·10−4 -1.263% 0.8·10−3 86 0.11491 -1.2·10−3 -1.001% 2.7·10−3

83 0.00185 -0.5·10−4 -2.424% 0.5·10−3 87 0.04372 -0.8·10−3 -1.786% 2.6·10−3

Table 12.6: Prices on two- and six-month European call options on a ten-year bullet 8% bond in

the Longstaff-Schwartz model. The underlying bond has a current price of 76.9324, a two-month

forward price of 78.5377, a six-month forward price of 82.4682, and a time-denominated stochastic

duration of 4.8630 years.

very small. In all cases the absolute deviation is considerably smaller than the standard deviation

of the Monte Carlo simulated differences. Based on the mathematical analysis of the approximation

we expect the errors to be smaller for shorter maturities of the option and the underlying bond

than for longer maturities. This expectation is confirmed by our examples. Also in line with our

discussion, we see that the absolute deviation is largest for forward-near-the-money options and

smallest for deep-in- and deep-out-of-the-money options.

Figure 12.1 illustrates how the precision of the approximation depends on the exercise price

for different time-to-maturities of the zero-coupon bond underlying the approximating option.

The figure is based on two-month options on the two-year bullet bond, but a similar picture can

be drawn for the other options considered. For deep-out-of- and deep-in-the-money options the

approximation is very accurate no matter which zero-coupon bond is used in the approximation,

but for near-the-money options it is important to choose the right zero-coupon bond, namely the

zero-coupon bond with a time-to-maturity equal to the time-denominated stochastic duration of

the underlying coupon bond. Also these results are consistent with the analytical arguments and

the discussion in the preceding subsection.

12.7 Alternative measures of interest rate risk

In this chapter we have focused on measures of interest rate risk in arbitrage-free dynamic

diffusion models of the term structure. Similar risk measures can be defined in Heath-Jarrow-

Morton (HJM) models and market models which, as discussed in Chapters 10 and 11, do not

necessarily fit into the diffusion setting. In an HJM model where all the instantaneous forward

rates are affected by a single Brownian motion,

dfTt = α(t, T, (fst )s≥t) dt+ β(t, T, (fst )s≥t) dzt,
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Figure 12.1: The absolute price errors for two-month options on two-year bullet bonds in the

Longstaff-Schwartz-model for different maturities of the zero-coupon bond underlying the approx-

imating option. The time-denominated stochastic duration of the underlying coupon bond is

D∗
t = 1.9086 years, and the two-month forward price of the coupon bond is 91.2042.

the price of any fixed income security will have a dynamics of the form

dBt
Bt

= µB(t, (fst )s≥t) dt+ σB(t, (fst )s≥t) dzt.

Here the volatility σB is an obvious candidate for measuring the interest rate risk of the security,

and the time-denominated duration D∗ = D∗(t, (fst )s≥t) can be defined implicitly by the equation

σB(t, (fst )s≥t) = σt+D
∗

(t, (fst )s≥t),

where σT (t, (fst )s≥t) = −
∫ T

t
β(t, u, (fst )s≥t) du is the volatility of the zero-coupon bond maturing

at time T , cf. Theorem 10.1 on page 231.7 Similar risk measures can be defined for HJM models

involving more than one Brownian motion.

In the more practically oriented part of the literature several alternative measures of interest

rate risk have been suggested. A seemingly popular approach is to use the so-called key rate

durations introduced by Ho (1992). The basic idea is to select a number of key interest rates, i.e.

zero-coupon yields for certain representative maturities, e.g. 1, 2, 5, 10, and 20 years. A change

in one of these key rates is assumed to affect the yields for nearby maturities. For example, with

the key rates listed above, a change in the two-year zero-coupon yield is assumed to affect all

zero-coupon yields of maturities between one year and five years. The change in those yields is

assumed to be proportional to the maturity distance to the key rate. For example, a change of 0.01

(100 basis points) in the two-year rate is assumed to cause a change of 0.005 (50 basis points) in the

1.5-year rate since 1.5 years is halfway between two years and the preceding key rate maturity of

one year. Similarly, the change in the two-year rate is assumed to cause a change of approximately

7If β is positive, the volatility of the zero-coupon bond is strictly speaking −σT .
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0.0033 (33 basis points) in the four-year rate. A simultaneous change in several key rates will

cause a piecewise linear change in the entire yield curve. With sufficiently many key rates, any

yield curve change can be well approximated in this way. It is relatively simple to measure the

sensitivities of zero-coupon and coupon bonds with respect to changes in the key rates. These

sensitivities are called the key rate durations. When different bonds and positions in derivative

securities are combined, the total key rate durations of a portfolio can be controlled so that the

investor can hedge against (or speculate in) specific yield curve movements.

The key rate durations are easy to compute and relate to, but there are several practical

and theoretical problems in applying these durations. The individual key rates do not move

independently, and hence we have to consider which combinations of key rate changes that are

realistic and do not conflict with the no-arbitrage principle. Furthermore, to evaluate the interest

rate risk of a security or a portfolio, we must specify the probability distribution of the possible key

rate changes. Practitioners often assume that the changes in the different key rates can be described

by a multi-variate normal distribution and estimate the means, variances, and covariances of the

distribution from historical data. While the normal distribution is very tractable, empirical studies

cannot support such a distributional assumption.

An investor who believes that the yield curve dynamics can be represented by the evolution

of some selected key rates should use a theoretically better founded model for pricing and risk

management, e.g. an arbitrage-free dynamic model using these key rates as state variables, cf.

the short discussion in Section 8.6.4 on page 208. In such a model all yield curve movements are

consistent with the no-arbitrage principle. Furthermore, for the points on the yield curve that lie

in between the key rate maturities, such a model will give a more reasonable description than does

the simple linear interpolation assumed in the computation of the key rate durations. Finally, the

model can be specified using relatively few parameters and still provide a good description of the

covariance structure of the key rates.

Other authors suggest duration measures that represent the price sensitivity towards changes

in the level, the slope, and the curvature of the yield curve, see e.g. Willner (1996) and Phoa and

Shearer (1997). This seems like a good idea since these factors empirically provide a good descrip-

tion of the shape and movements of the yield curve, cf. the discussion in Section 8.1. However, also

these duration measures should be computed in the setting of a realistic, arbitrage-free dynamics

of these characteristic variables. This can be ensured by constructing a term structure model using

these factors as state variables.





Chapter 13

Mortgage-backed securities

13.1 Introduction

A mortgage is a loan offered by a financial institution to the owner of a given real estate property,

which is then used as collateral for the loan. In some countries, mortgages are typically financed

by the issuance of bonds. A large number of similar mortgages are pooled either by the original

lending institution or by some other financial institution. The pooling institution issue bonds with

payments that are closely linked to the payments on the underlying mortgages. Afterwards, the

bonds are traded publicly. The primary purpose of this chapter is to discuss the valuation of these

mortgage-backed bonds.

Mortgage-backed bonds deviate from government bonds in several respects. Most importantly,

the cash flow to the bond owners depend on the payments that borrowers make on the underlying

mortgages. While a mortgage specifies an amortization schedule, most mortgages allow the borrow

to pay back outstanding debt earlier than scheduled. This will, for example, be relevant after a

drop in market interest rates, where some borrowers will prepay their existing high-rate mortgage

and refinance at a lower interest rate. As we will discuss later in this chapter, mortgages are also

prepaid for other reasons. The biggest challenge in the valuation of mortgage-backed bonds is to

model the prepayment behavior of the borrowers, whose mortgages are backing the bonds. Once

the state-dependent cash flow of the bond has been specified, the standard valuation tools can be

applied.

Section 13.2 gives an overview of some typical mortgages. Section 13.3 describes the standard

class of mortgage-backed bonds, the so-called pass-throughs. Section 13.4 focuses on the prepay-

ment option embedded in most mortgages and lists various factors that are likely to affect the

prepayment activity. There are two distinct approaches to the modeling of prepayment behavior

and the effects on the valuation of mortgage-backed bonds. The option-based approach discussed

in Section 13.5 focuses on determining the rational prepayment behavior of a borrower. Since the

prepayment option can be interpreted as an American call option on an interest rate dependent

security, the optimal prepayment strategy can be determined exactly as one determines an optimal

exercise strategy for an American option. However, this will only capture prepayments due to a

drop in interest rates, while a borrower may rationally prepay for other reasons. Hence, various

modifications of the basic option-based approach are also considered. The empirical approach

outlined in Section 13.6 is based on historical records of actual prepayment behavior and tries to

derive a relation between the prepayment activity and various explanatory variables. Measures of

289
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the risk of investments in mortgage-backed bonds are discussed in Section 13.7. Section 13.8 offers

a short introduction to other mortgage-backed securities than the standard pass-throughs.

13.2 Mortgages

A mortgage is a loan for which a specified real estate property serves as collateral. The lender

is a financial institution, the borrower is the owner of the property. The borrower commits to

pay back the lender according to a specified payment schedule. If the borrower fails to meet any

of these payments, the lender has the right to take over the property. Typically, the mortgage

is initiated when the property is traded and the new owner needs to finance the purchase, but

sometimes the existing owner of a property may also want to take out a (new) mortgage. Before

offering a mortgage, the financial institution will typically assess the market value of the property

and the creditworthiness of the potential borrower. Legislation may impose restrictions on the

mortgages that can be offered, e.g. require that the original face value of the mortgage can be at

most 80% of the market value of the property.

Mortgage loans are typically long-term (e.g. 30-year) loans with a prespecified schedule of reg-

ular (e.g. monthly or quarterly) interest rate payments and repayments of the principal. Different

types of mortgages are offered. Below we describe the most popular types. First, let us introduce

some common notation. Let time 0 denote the date where the mortgage was originally issued. The

scheduled payment dates of the mortgage are denoted by t1, t2, . . . , tN and we assume that the

payment dates are equally spaced so that a δ > 0 exists with ti+1 − ti = δ for all i. Consequently,

ti = iδ. For example δ = 1/12 reflects monthly payments and δ = 1/4 reflects quarterly payments.

We let D(t) denote the outstanding debt at time t (immediately after any payments at time t). In

particular, D(0) is the original face value of the mortgage. The scheduled payment of the borrower

on the mortgage at any time tn can be split into three parts:

• an interest payment I(tn),

• a partial repayment of principal P (tn),

• a fee F (tn).

The total scheduled payment at time tn is thus Y (tn) = I(tn) + P (tn) + F (tn).

The interest payment is determined as the product of the nominal rate (also known as the

mortgage rate or the contract rate) of the loan and the outstanding debt after the previous payment

date. The nominal rate is either fixed for the entire maturity of the loan (a fixed-rate mortgage)

or adjusted according to some clearly specified conditions (an adjustable-rate mortgage).

The repayment of the original face value of the loan is typically split over several dates into

partial repayments. Clearly, the sum of all the partial repayments must equal the original face

value, D(0) =
∑N
n=1 P (tn), and we have D(tn+1) = D(tn) − P (tn), and D(tN ) = 0 since the loan

has to be paid off in full.

The fee is intended to cover the costs due to servicing the loan, e.g. the actual collection of

payments from borrowers, preparing information on the fiscal implications of the mortgage, etc.

The servicing of the mortgage may be done directly by the original lending institution or some

other institution. Usually the fee to be paid at a given date is some percentage of the outstanding
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debt. It may be incorporated by increasing the nominal rate of the mortgage, in which case there

is really no separate fee payment.

13.2.1 Level-payment fixed-rate mortgages

A relatively simple and popular mortgage is a loan where the sum of the interest payment and

the principal repayment is the same for all payment dates. The interest payment at any given

payment date is the product of a fixed periodic contract rate (the nominal rate on the loan) and

the current outstanding debt. This is an annuity loan. In the U.S. these mortgages are called

level-payment fixed-rate mortgages.

Let R denote the fixed periodic contract rate of the mortgage. Usually an annualized nominal

rate is specified in the contract and the periodic rate is then given by the annualized rate divided

by the number of payment date per year. Let A denote the constant periodic payment comprising

the interest payment and the principal repayment. Using R as the discount rate, the present value

of a sequence of N payments equal to A is given by

A(1 +R)−1 +A(1 +R)−2 + · · · +A(1 +R)−N = A
1 − (1 +R)−N

R
.

To obtain a present value equal to D(0), the periodic payment must thus be

A = D(0)
R

1 − (1 +R)−N
.

Immediately after the n’th payment date, the remaining cash flow is an annuity with N − n

payments, so that the outstanding debt must be

D(tn) = A
1 − (1 +R)−(N−n)

R
. (13.1)

The part of the payment that is due to interest is

I(tn+1) = RD(tn) = A
(

1 − (1 +R)−(N−n)
)

= RD(0)
1 − (1 +R)−(N−n)

1 − (1 +R)−N

so that the repayment must be

P (tn+1) = A− I(tn+1) = A−A
(

1 − (1 +R)−(N−n)
)

= A(1+R)−(N−n) = RD(0)
(1 +R)−(N−n)

1 − (1 +R)−N
.

In particular, P (tn+1) = (1 +R)P (tn) so that the periodic repayment increases geometrically over

the term of the mortgage.

Note that the above equations give the scheduled cash flow and outstanding debt over the life

of the mortgage, but as already mentioned the actual evolution of cash flow and outstanding debt

can be different due to unscheduled prepayments.

13.2.2 Adjustable-rate mortgages

The contract rate of an adjustable-rate mortgage is reset at prespecified dates and prespecified

terms. The reset is typically done at regular intervals, for example once a year or once very five

years. The contract rate is reset to reflect current market rates so that the new contract rate is

linked to some observable interest rates, for example the yield on a relatively short-term government
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bond or a money market rate. Some adjustable-rate mortgages come with a cap, i.e. a maximum

on the contract rate, either for the entire term of the mortgage or for some fixed period in the

beginning of the term.

13.2.3 Other mortgage types

“Balloon mortgage”: the contract rate is renegotiated at specific dates.

“Interest only mortgage”, “endowment mortgage”: the borrower pays only interest on the loan,

at least for some initial period.

For more details, see Fabozzi (2000, Chap. 10).

13.2.4 Points

Above we have described various types of mortgages that borrowers may choose among. The

borrowers may also choose between different maturities for a given type of a loan, e.g. 20 years or

30 years. Of course, the choice of maturity will typically affect the mortgage rate offered. In the

U.S., the lending institutions offer additional flexibility. For a given loan type of a given maturity,

the borrower may choose between different loans characterized by the contract rate and the so-

called points. A mortgage with 0.5 points mean that the borrower has to pay 0.5% of the mortgage

amount up front. The compensation is that the mortgage rate is lowered. Some lending institutions

offer a menu of loans with different combinations of mortgage rates and points. Of course, the

higher the points, the lower the mortgage rate. It is even possible to take a loan with negative

points, but then the mortgage rate will be higher than the advertised rate which corresponds to

zero points.

When choosing between different combinations, the borrower has to consider whether he can

afford to make the upfront payment and also the length of the period that he is expected to keep

the mortgage since he will benefit more from the lowered interest rate over long periods. For this

reason one can expect a link between the prepayment probability of a mortgage and the number

of points paid. LeRoy (1996) constructs a model in which the points serve to separate borrowers

with high prepayment probabilities (low or no points and relatively high mortgage coupon rate)

from borrowers with low prepayment probabilities (pay points and lower mortgage coupon rate).

Stanton and Wallace (1998) provide a similar analysis.

13.3 Mortgage-backed bonds

In some countries, mortgages are often pooled either by the lending institution or other financial

institutions, who then issue mortgage-backed securities that have an ownership interest in a specific

pool of mortgage loans. A mortgage-backed security is thus a claim to a specified fraction of the cash

flows coming from a certain pool of mortgages. Usually the mortgages that are pooled together

are very similar, at least in terms of maturity and contract rate, but they are not necessarily

completely identical.

Mortgage-backed bonds is by far the largest class of securities backed by mortgage payments.

Basically, the payments of the borrowers in the pool of mortgages are passed through to the

owners of the bonds. Therefore, standard mortgage-backed bonds are also referred to as pass-
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through bonds. Only the interest and principal payments on the mortgages are passed on to the

bond holders, not the servicing fees. In particular, if the servicing fee of the borrower is included

in the contract rate, this part is filtered out before the interest is passed through to bond holders.

Moreover, the costs of issuance of the bonds etc. must be covered. Hence, the coupon rate of the

bond will be lower (usually by half a percentage point) than the contract rate on the mortgage.

The total nominal amount of the bond issued equals the total principal of all the mortgages in the

pool. If the mortgages in the pool are level-payment fixed-rate mortgages with the same term and

the same contract rate, then the scheduled payments to the bond holders will correspond to an

annuity. There can be a slight timing mismatch of payments, in the sense that the payments that

the bond issuer receives from the borrowers at a given due date are paid out to bond holders with

a delay of some weeks.

Apparently the idea of issuing bonds to finance the construction or purchase of real estate

dates back to 1797, where a large part of the Danish capital Copenhagen was destroyed due to a

fire creating a sudden need for substantial financing of reconstruction. Currently, well-developed

markets for mortgage-backed securities exist in the United States, Germany, Denmark, and Sweden.

The U.S. market initiated in the 1970s is by now far the largest of these markets. The mid-2002 total

notional amount of U.S. mortgage-backed securities was more than 3,900 billion U.S.-dollars, even

higher than the 3,500 billion U.S.-dollars notional amount of publicly traded U.S. government bonds

(Longstaff 2002). The largest European market for mortgage-backed bonds is the German market

for so-called Pfandbriefe, but relative to GDP the mortgage-backed bond markets in Denmark and

Sweden are larger since in those countries a larger fraction of the mortgages are funded by the

issuance of mortgage-backed bonds.

In the U.S., most mortgage-backed bonds are issued by three agencies: the Government National

Mortgage Association (called Ginnie Mae), the Federal Home Loan Mortgage Corporation (Freddie

Mac), and the Federal National Mortgage Association (Fannie Mae). The issuing agency guarantees

the payments to the bond holders even if borrowers default.1 Ginnie Mae pass-throughs are even

guaranteed by the U.S. government, but the bonds issued by the two other institutions are also

considered virtually free of default risk. If a borrower defaults, the mortgage is prepaid by the

agency. Some commercial banks and other financial institutions also issue mortgage-backed bonds.

The credit quality of these bond issues are rated by the institutions that rate other bond issues

such as corporate bonds, e.g. Standard & Poors and Moody’s.

In Denmark, the institutions issuing the mortgage-backed bonds guarantee the payments to

bond owners so the relevant default risk is that of the issuing institution, which currently seems

to be negligible.

In the U.S., the pass-through bonds are issued at par. In Denmark, the annualized coupon

rate of pass-through bonds is required to be an integer so that the bond is slightly below par when

issued. The purpose of this practice is to form relatively large and liquid bond series in stead of

many smaller bond series.

1There are two types of guarantees. The owners of a fully modified pass-through are guaranteed a timely payment

of both interest and principal. The owners of a modified pass-through are guaranteed a timely payment of interest,

whereas the payment of principal takes place as it is collected from the borrowers, although with a maximum delay

relative to schedule.
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13.4 The prepayment option

Most mortgages come with a prepayment option. At basically any point in time the borrower

may choose to make a repayment which is larger than scheduled. In particular, the borrower may

terminate the mortgage by repaying the total outstanding debt. In addition, a prepaying borrower

has to cover some prepayment costs. Typically, the smaller part of these costs can be attributed

to the actual repayment of the existing mortgage, while the larger part is really linked to the new

mortgage that normally follows a full prepayment, e.g. application fees, origination fees, credit

evaluation charges, etc. Some of the costs are fixed, while other costs are proportional to the loan

amount. The effort required to determine whether or not to prepay and to fill out forms and so

on should also be taken into account.

In order to value a mortgage, we have to model the prepayment probability throughout the

term of the mortgage. If the borrower decides to prepay the mortgage in the interval (tn−1, tn] we

assume that he has to pay the scheduled payment Y (tn) for the current period, the outstanding

debt D(tn) after the scheduled mortgage repayment at time tn, and the associated prepayment

costs. Recall that Y (tn) = I(tn)+P (tn)+F (tn) and D(tn) = D(tn−1)−P (tn). Hence, the time tn

payment following a prepayment decision at time t ∈ (tn−1, tn] can be written as Y (tn) +D(tn) =

D(tn−1) + I(tn) + F (tn), again with the addition of prepayment costs.

Suppose that Πtn is the probability that a mortgage is prepaid in the time period (tn−1, tn]

given that it was not prepaid at or before time tn−1. Then the expected repayment at time tn is

ΠtnD(tn−1) + (1 − Πtn)P (tn) = P (tn) + ΠtnD(tn)

and the total expected payment at time tn is

I(tn) + P (tn) + ΠtnD(tn) + F (tn) = Y (tn) + ΠtnD(tn)

plus the expected prepayment costs. If all mortgages in a pool are prepaid with the same prob-

ability, but the actual prepayment decisions of individuals are independent of each other, we can

also think of Πtn as the fraction of the pool which (1) was not prepaid at or before tn−1 and (2) is

prepaid in the time period (tn−1, tn]. This is known as the (periodic) conditional prepayment rate

of the pool. Some models specifies an instantaneous conditional prepayment rate also known as a

hazard rate. Given a hazard rate πt for each t ∈ [0, tN ], the periodic conditional prepayment rates

can be computed from

Πtn = 1 − e
−
∫

tn
tn−1

πt dt ≈
∫ tn

tn−1

πt dt ≈ (tn − tn−1)πtn = δπtn . (13.2)

Since the prepayments of mortgages will affect the cash flow of pass-through bonds, it is impor-

tant for bond investors to identify the factors determining the prepayment behavior of borrowers.

Below, we list a number of factors that can be assumed to influence the prepayment of individual

mortgages and hence the prepayments from a entire pool of mortgages backing a pass-through

bond.

Current refinancing rate. When current mortgage rates are below the contract rate of a

borrower’s mortgage, the borrower may consider prepaying the existing mortgage in full and take

a new mortgage at the lower borrowing rate. In the absence of prepayment costs it is optimal to
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refinance if the current refinancing rate is below the contract rate. Here the relevant refinancing rate

is for a mortgage identical to the existing mortgage except for the coupon rate, e.g. it should have

the same time to maturity. This refinancing rate takes into account possible future prepayments.

We can think of the prepayment option as the option to buy a cash flow identical to the

remaining scheduled of the mortgage. This corresponds to the cash flow of a hypothetical non-

callable bond – an annuity bond in the case of a level-payment fixed-rate mortgage. So the

prepayment option is like an American call option on a bond with an exercise price equal to the

face value of the bond. It is well-known from option pricing theory that an American option

should not be exercised as soon as it moves into the money, but only when it is sufficiently in the

money. In the present case means that the present value of the scheduled future payments (the

hypothetical non-callable bond) should be sufficiently higher than the outstanding debt (the face

value of the hypothetical non-callable bond) before exercise is optimal. Intuitively, this will be the

case when current interest rates are sufficiently low. Option pricing models can help quantify the

term “sufficiently low” and hence help explain and predict this type of prepayments. We discuss

this in detail in Section 13.5.

Previous refinancing rates. Not only the current refinancing rate, but also the entire history

of refinancing rates since origination of the mortgage will affect the prepayment activity in a given

pool of mortgages. The current refinancing rate may well be very low relative to the contract

rate, but if the refinancing rate was as low or even lower previously, a large part of the mortgages

originally in the pool may have been prepaid already. The remaining mortgages are presumably

given to borrowers that for some reasons are less likely to prepay. This phenomenon is referred to as

burnout. On the other hand, if the current refinancing rate is historically low, a lot of prepayments

can be expected.

If we want to include the burnout feature in a model, we have to quantify it somehow. One

measure of the burnout of a pool at time t is the ratio between the currently outstanding debt in

the pool, Dt, and what the outstanding debt would have been in the absence of any prepayments,

D∗
t . The latter can be found from an equation like (13.1).

Slope of the yield curve. The borrower should not only consider refinancing the original mort-

gage with a new, but similar mortgage. He should also consider shifting to alternative mortgages.

For example, when the yield curve is steeply upward-sloping a borrower with a long-term fixed-rate

mortgage may find it optimal to prepay the existing mortgage and refinance with an adjustable-

rate mortgage with a contract rate that is linked to short-term interest rates. Other borrowers that

consider a prepayment may take an upward-sloping yield curve as a predictor of declining interest

rates, which will make a prepayment more profitable in the future. Hence they will postpone the

prepayment.

House sales. In the U.S., mortgages must be prepaid whenever the underlying property is being

sold. In Denmark, the new owner can take over the existing loan, but will often choose to pay

off the existing loan and take out a new loan. There are seasonal variations in the number of

transactions of residential property with more activity in the spring and summer months than in

the fall and winter. This is also reflected in the number of prepayments.
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Development in house prices. The prepayment activity is likely to be increasing in the level

of house prices. When the market value of the property increases significantly, the owner may want

to prepay the existing mortgage and take a new mortgage with a higher principal to replace other

debt, to finance other investments, or simply to increase consumption. Conversely, if the market

value of the property decreases significantly, the borrower may be more or less trapped. Since

the mortgages offered are restricted by the market value of the property, it may not be possible

to obtain a new mortgage that is large enough for the proceeds to cover the prepayment of the

existing mortgage.

General economic situation of the borrower. A borrower that experiences a significant

growth in income may want to sell his current house and buy a larger or better house, or he

may just want to use his improved personal finances to eliminate debt. Conversely, a borrower

experiencing decreasing income may want to move to a cheaper house, or he may want to refinance

his existing house, e.g. to cut down mortgage payments by extending the term of the mortgage.

Also, financially distressed borrowers may be tempted to prepay a loan when the prepayment

option is only somewhat in-the-money, although not deep enough according to the optimal exercise

strategy. Note, however, that the borrower needs to qualify for a new loan. If he is in financial

distress, he may only be able to obtain a new mortgage at a premium rate. As emphasized by

Longstaff (2002), this may (at least in part) explain why some mortgages are not prepaid even when

the current mortgage rate (for quality borrowers) is way below the contract rate. If the prepayments

due to these reasons can be captured by some observable business-cycle related macroeconomic

variables, it may be possible to include these in the models for the valuation of mortgage-backed

bonds.

Bad advice or lack of knowledge. Most borrowers will not be aware of the finer details of

American option models. Hence, they tend to consult professionals. At least in Denmark, borrowers

are primarily advised by the lending institutions. Since these institutions benefit financially from

every prepayment, their recommendations are not necessarily unbiased.

Pool characteristics. The precise composition of mortgages in a pool may be important for

the prepayment activity. Other things equal, you can expect more prepayment activity in a pool

based on large individual loans than in a pool with many small loans since the fixed part of the

prepayment costs are less important for large loans. Also, some pools may have a larger fraction

of non-residential (commercial) mortgages than other pools. Non-residential mortgages are often

larger and the commercial borrowers may be more active in monitoring the profitability of a

mortgage prepayment. In the U.S. there are also regional differences so that some pools are based

on mortgages in a specific area or state. To the extent that there are different migration patterns

or economic prospects of different regions, potential bond investors should take this into account,

if possible.
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13.5 Rational prepayment models

13.5.1 The pure option-based approach

The prepayment option essentially gives the borrower the option to buy the remaining part of

the scheduled mortgage payments by paying the outstanding debt plus prepayment costs. This

can be interpreted as an American call option on a bond. For a level-payment fixed-rate mortgage,

the underlying bond is an annuity bond. A rather obvious strategy for modeling the prepayment

behavior of the borrowers is therefore to specify a dynamic term structure model and find the

optimal exercise strategy of an American call according to this model. For a diffusion model of the

term structure, the optimal exercise strategy and the present value of the mortgage can be found by

solving the associated partial differential equation numerically or by constructing an approximating

tree. Note that partial prepayments are not allowed (or not optimal) in this setting.

The prepayment costs affect the effective exercise price of the option. As discussed earlier, a

prepayment may involve some fixed costs and some costs proportional to the outstanding debt. As

before, we let D(t) denote the outstanding debt at time t. Denote by X(t) = X(D(t)) the costs of

prepaying at time t. Then the effective exercise price is D(t) +X(t).

The borrower will maximize the value of his prepayment option. This corresponds to minimizing

the present value of his mortgage. Let Mt denote the time t value of the mortgage, i.e. the

present value of future mortgage payments using the optimal prepayment strategy. Let us assume

a one-factor diffusion model with the short-term interest rate rt as the state variable. Then

Mt = M(rt, t). Note that r is not the refinancing rate, i.e. the contract rate for a new mortgage,

but clearly lower short rates mean lower refinancing rates.

Suppose the short rate process under the risk-neutral probability measure is

drt = α̂(rt) dt+ β(rt) dz
Q
t .

Then we know from Section 4.8 that in time intervals without both prepayments and schedule mort-

gage payments, the mortgage value function M(r, t) must satisfy the partial differential equation

(PDE)
∂M

∂t
(r, t) + α̂(r)

∂M

∂r
(r, t) +

1

2
β(r)2

∂2M

∂r2
(r, t) − rM(r, t) = 0. (13.3)

Immediately after the last mortgage payment at time tN , we have M(r, tN ) = 0, which serves as a

terminal condition. At any payment date tn there will be a discrete jump in the mortgage value,

M(r, tn−) = M(r, tn) + Y (tn). (13.4)

The standard approach to solving a PDE like (13.3) numerically is the finite difference approach.

This is based on a discretization of time and state. For example, the valuation and possible exercise

is only considered at time points t ∈ T̄ ≡ {0,∆t, 2∆t, . . . , N̄∆t}, where N̄∆t = tN . The value space

of the short rate is approximated by the finite space S̄ ≡ {rmin, rmin + ∆r, rmin + 2∆r, . . . , rmax}.
Hence we restrict ourselves to combinations of time points and short rates in the grid S̄×T̄. For the

mortgage considered here, it is helpful to have tn ∈ T̄ for all payment dates tn, which is satisfied

whenever the time distance between payment dates, δ, is some multiple of the grid size, ∆t. For

simplicity, let us assume that these distances are identical so that we only consider prepayment

and value the mortgage at the payment dates. As before, we assume that if the borrower at time
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tn decides to prepay the mortgage (in full), he still has to pay the scheduled payment Y (tn) for

the period that has just passed, in addition to the outstanding debt D(tn) immediately after tn,

and the prepayment costs X(tn).

The first step in the finite difference approach is to impose that

M(r, tN ) = 0, r ∈ S̄,

and therefore

M(r, tN−) = Y (tN ), r ∈ S̄.

Using the finite difference approximation to the PDE, we can move backwards in time, period

by period. In each time step we check whether prepayment is optimal for any interest rate level.

Suppose we have computed the possible values of the mortgage immediately before time tn+1, i.e.

we know M(r, tn+1−) for all r ∈ S̄. In order to compute the mortgage values at time tn, we first

use the finite difference approximation to compute the values M c(r, tn) if we choose not to prepay

at time tn and make optimal prepayment decisions later. (Superscript ‘c’ for ‘continue’.) Then we

check for prepayment. For a given interest rate level r ∈ S̄, it is optimal to prepay at time tn, if

that leads to a lower mortgage value, i.e.

M c(r, tn) > D(tn) +X(tn).

The corresponding conditional prepayment probability Πtn ≡ Π(rtn , tn) is

Π(r, tn) =







1 if M c(r, tn) > D(tn) +X(tn),

0 if M c(r, tn) ≤ D(tn) +X(tn).
(13.5)

The mortgage value at time tn is

M(r, tn) = min {M c(r, tn),D(tn) +X(tn)}
= (1 − Π(r, tn))M

c(r, tn) + Π(r, tn)(D(tn) +X(tn)), r ∈ S̄.
(13.6)

The value just before time tn is

M(r, tn−) = M(r, tn) + Y (tn), r ∈ S̄.

Since the mortgage value will be decreasing in the interest rate level, there will be a critical

interest rate r∗(tn) defined by the equality M c(r∗(tn), tn) = D(tn) +X(tn) so that prepayment is

optimal at time tn if and only if the interest rate is below the critical level, rtn < r∗(tn). Note that

r∗(tn) will depend on the magnitude of the prepayment costs. The higher the costs, the lower the

critical rate.

The mortgage-backed bond can be valued at the same time as the mortgage itself. We have

to keep in mind that the prepayment decision is made by the borrower and that the bond holders

do not receive the prepayment costs. We assume that the entire scheduled payments are passed

through to the bond holders, although in practice part of the mortgage payment may be retained by

the original lender or the bond issuer. The analysis can easily be adapted to allow for differences in

the scheduled payments of the two parties. Let B(r, t) denote the value of the bond at time t when

the short rate is r. If the underlying mortgage has not been prepaid, the bond value immediately

before the last scheduled payment date is given by

B(r, tN−) = Y (tN ), r ∈ S̄.
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At any previous scheduled payment date tn, we first compute the continuation values of the bond,

i.e. Bc(r, tn), r ∈ S̄, by the finite difference approximation. Then the bond value excluding the

payment at tn is

B(r, tn) = (1 − Π(r, tn))B
c(r, tn) + Π(r, tn)D(tn)

=







Bc(r, tn) if M c(r, tn) ≤ D(tn) +X(tn),

D(tn) if M c(r, tn) > D(tn) +X(tn),

(13.7)

for any r ∈ S̄. Then the scheduled payment can be added:

B(r, tn−) = B(r, tn) + Y (tn), r ∈ S̄.

While the discussion above was based on a finite difference approach, readers familiar with

tree-approximations to diffusion models will realize that a similar backward iterative valuation

technique applies in an interest rate tree approximating the assumed interest rate process. For an

introduction to the construction of interest rates, see Hull (2003, Ch. 23).

In the Danish mortgage financing system, mortgages come with an additional option feature

if they are part of a pool upon which pass-through bonds have been issued. Not only can the

borrower prepay the outstanding debt (plus costs) in cash, he can also prepay by buying pass-

through bonds (based on that particular pool) with a total face value equal to the outstanding

debt of his mortgage. These bonds have to be delivered to the mortgage lender, which in the Danish

system is also the bond issuer. This additional option will be valuable if the borrower wants to

prepay (for “inoptimal” reasons) in a situation where the market price of the bond is below the

outstanding debt, which is the case for sufficiently high market interest rates. If we assume that a

prepayment by bond purchase generates costs of X̂(tn), such a prepayment is preferred to a cash

prepayment whenever B(r, tn) + X̂(tn) < D(tn) + X(tn). This should be accounted for in the

backwards iterative procedure.

In practice, the borrower may have to notify the lender some time before the prepayment will

be effective. If the borrower wants the time tn mortgage to be the last payment date on the

mortgage, the notification may be due at time tn − h for some fixed time period h > 0. Then the

above equations have to be modified slightly. Let us assume that tn−h > tn−1. It will be optimal

to decide to prepay at the notification date tn − h, if

M c(r, tn − h) > (D(tn) +X(tn) + Y (tn))B
tn(r, tn − h).

Here the right-hand side is the value at time tn−h of the total payment at time tn if the borrower

decides to prepay. The left-hand side is the value of the mortgage at time tn − h if the borrower

decides not to prepay now and makes optimal prepayment decisions in the future. This value

includes the present value of the upcoming scheduled payment Y (tn). The bond values can be

modified similarly.

According to the above analysis, all borrowers with identical mortgages and identical pre-

payment costs should prepay in the same states and same points in time, essentially when the

refinancing rate is sufficiently low. The conditional prepayment rate will be one if rtn < r∗(tn) and

zero otherwise. In practice, simultaneous prepayments of all mortgages in a given pool is never

observed. One potential explanation is that the mortgages in a given pool are not completely
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identical and hence may not have the same critical interest rate. Another explanation is that

borrowers prepay for other reasons than just low refinancing rates, as discussed in Section 13.4. In

the following subsections we discuss how these features can be incorporated into the option-based

approach.

13.5.2 Heterogeneity

The mortgages in a pool are never completely identical. In particular the prepayment costs may

be different for different mortgages. To study the implications of different costs, we assume that

all the mortgages have the same contract rate and the same term so that the stream of scheduled

payments (relative to the outstanding debt of the mortgage) is the same for all mortgages. Suppose

that the pool can be divided into M sub-pools so that at any point in time all the mortgages in

a given sub-pool have identical prepayment behavior. If the prepayment costs on any individual

mortgage can be assumed to be some fixed fraction of the outstanding debt, then we must divide

the pool according to the value of this fraction. All mortgages for which the costs are a fraction

xm of the outstanding debt is put into sub-pool number m. In this case the mortgages in a given

sub-pool may have different face values. On the other hand, if there is also a fixed cost element

of the prepayment costs, we have to divide the mortgages according to the face value of the loans.

In any case let us assume that the prepayment costs for mortgages in sub-pool m are given by

Xm(tn).

Note that it may be difficult to obtain the information that is necessary to implement such a

categorization of the individual mortgages in a pool, but in some countries at least some useful

summary statistics are published for each mortgage pool. In order to estimate the cost parameters,

we need data on observed prepayments for each sub-pool. If the mortgages are newly issued, it will

be necessary to use prepayment data on similar, but more mature mortgages. In order to avoid

the separate estimation of cost parameters for each sub-pool, one can assume that the variations in

prepayment costs across the mortgages in the pool can be described by a distribution involving only

one or two parameters that may then be estimated from actual prepayment behavior. For example,

Stanton (1995) assumes that prepayment costs on each mortgage is some constant proportion of

the outstanding debt, but the magnitude of this constant varies across mortgages according to a

so-called beta distribution on the interval [0, 1]. The beta distribution is completely determined

by two parameters. For implementation purposes, the distribution is approximated by a discrete

distribution with M possible values x1, . . . , xM given by certain quantiles of the full distribution.

Using the approach of the previous subsection, we can derive a critical interest rate boundary

r∗m(tn) for each sub-pool. Note that if Xm(tn) is sufficiently high, it may be inoptimal to prepay

the mortgage at time tn no matter what the interest rate will be. In that case r∗m(tn) must be set

below the minimum possible interest rate.

How do we value a pass-through bond backed by such a heterogenous pool of mortgages? We

can think of a pass-through bond backed by the entire pool as a portfolio of hypothetical sub-pool

specific pass-through bonds. The hypothetical bond for any sub-pool m can be valued exactly as

discussed in the previous subsection, acknowledging the optimal prepayments of mortgages in that

sub-pool. Let Bm(r, t) be the time t price of that bond (normalized to a given face value, say 100)

for a short rate of r. Suppose that wmt denotes the fraction of the pool that belongs to sub-pool
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m at time t. By definition,
∑M
m=1 wmt = 1. The value of the bond backed by the entire pool is

then a weighted average of the values of the hypothetical sub-pool bonds:

B(r, t) =

M∑

i=1

wmtBm(r, t). (13.8)

It is important to realize that the sub-pool weights wmt vary over time, depending on the evolution

of interest rates. The sub-pool weights at a given point in time depend on the entire history of

interest rates since the original issuance of the bonds.

While it is certainly an improvement of the model to allow for heterogeneity in the prepayment

costs, it is still not consistent with empirically observed prepayment behavior. According to the

model, all mortgages in the same sub-pool should be prepaid simultaneously. The first time the

interest rate drops to the critical level for a given prepayment cost, all the mortgages in the sub-

pool will be prepaid immediately – and all mortgages with lower prepayment costs have already

been prepaid. If the interest rate then rises and drops to the same critical level, no prepayments

will take place. The simultaneous exercise of a large number of mortgages will generate large,

sudden moves in the bond price, when the interest rate hits a critical level for some sub-pool. This

is not observed in practice.

13.5.3 Allowing for seemingly irrational prepayments

The pure option-based approach described above can by construction only generate rational

prepayments, which simply means prepayments caused by the fact that the prepayment option

is deep enough in the money to warrant early exercise. As discussed extensively in Section 13.4,

borrowers may prepay for other reasons. Several authors have suggested minor modifications of the

option-based approach in order to incorporate the seemingly irrational prepayments in a simple

manner.

Dunn and McConnell (1981a, 1981b) assume that for each mortgage an inoptimal prepayment

can be described by a hazard rate λt. Given that the mortgage has not been prepaid at time tn−1,

there is a probability of

Πe
tn ≡ 1 − e

−
∫

tn
tn−1

λt dt ≈
∫ tn

tn−1

λt dt ≈ (tn − tn−1)λtn = δλtn (13.9)

that the borrower will prepay the mortgage in the interval (tn−1, tn] for “exogenous” reasons,

i.e. whether or not it is optimal from an interest rate perspective. This can easily be included in

the option-based approach as long as the hazard rate λt at most depends on time and the current

interest rate, i.e. λt = λ(rt, t). If λt is the same for all mortgages in a reasonably large pool (or

sub-pool), this implies that a fraction of λt∆t of the mortgages can be expected to be prepaid over

a ∆t period in any case. This introduces a minimum level of prepayment activity.

Stanton (1995) adds a second source of inoptimality. He assumes that borrowers will not

constantly evaluate whether a prepayment is advantageous or not. If prepayment is considered

according to a hazard rate ηt, then the probability that the borrower will check for optimal pre-

payment over (tn−1, tn] is

1 − e
−
∫

tn
tn−1

ηt dt ≈
∫ tn

tn−1

ηt dt ≈ (tn − tn−1)ηtn = δηtn .
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Continuous prepayment evaluation corresponds to ηt = ∞. The non-continuous decision-making

may reflect the costs and difficulties of considering whether prepayment is optimal or not. Again,

for tractability, the hazard rate ηt is assumed to depend at most on time and the interest rate level,

ηt = η(rt, t). We can interpret ηt as the (expected) fraction of the pool (or sub-pool) for which the

optimal prepayment rule applies. With this modification, not all mortgages will be prepaid even

though prepayment is optimal from an interest rate perspective.

Combining these two modifications, the probability that a mortgage is not prepaid in a time

interval [t, t+ ∆t] even though it is optimal must be

Prob(no prepayment) = Prob ((no optimal prepayment) AND (no inoptimal prepayment))

= Prob ((no optimal prepayment)) × Prob ((no inoptimal prepayment))

= e−ηt∆te−λt∆t

= e−(ηt+λt)∆t.

Hence, the probability that a rational prepayment takes place in (tn−1, tn] is

Πr
tn = 1 − e

−
∫

tn
tn−1

(ηt+λt) dt ≈
∫ tn

tn−1

(ηt + λt) dt ≈ δ(ηtn + λtn). (13.10)

If we assume that the hazard rates ηt and λt are functions of at most time and the short

rate, and we use the right-most approximations in Equations (13.9) and (13.10) – which would be

natural approximations in an implementation – the periodic conditional prepayment rate Πtn over

the period (tn−1, tn] will be a function of tn and rtn . It will be Πe when prepayment is inoptimal

and Πr when prepayment is optimal, i.e.

Π(r, tn) =







Πe(r, tn) if M c(r, tn) ≤ D(tn) +X(tn),

Πr(r, tn) if M c(r, tn) > D(tn) +X(tn).
(13.11)

In the backwards valuation iterative procedure, we replace Equation (13.6) by

M(r, tn) = (1 − Π(r, tn))M
c(r, tn) + Π(r, tn)(D(tn) +X(tn))

=







(1 − Πe(r, tn))M
c(r, tn) + Πe(r, tn)(D(tn) +X(tn)), if M c(r, tn) ≤ D(tn) +X(tn),

(1 − Πr(r, tn))M
c(r, tn) + Πr(r, tn)(D(tn) +X(tn)), if M c(r, tn) > D(tn) +X(tn),

(13.12)

There will still be a critical interest rate level r∗(tn) that gives the maximum interest rate for which

it is optimal to prepay at time tn, but it will be different than in the pure option-based approach

since the continuation value takes into account the possibility for making inoptimal prepayments

or missing optimal prepayments in the future. Similarly, Equation (13.7) in the valuation of the

bond has to be replaced by

B(r, tn) = (1 − Π(r, tn))B
c(r, tn) + Π(r, tn)D(tn)

=







(1 − Πe(r, tn))B
c(r, tn) + Πe(r, tn)D(tn) if M c(r, tn) < D(tn) +X(tn),

(1 − Πr(r, tn))B
c(r, tn) + Πr(r, tn)D(tn) if M c(r, tn) ≥ D(tn) +X(tn).

(13.13)

The other steps in the iterative valuation procedure are unaltered and it is still possible to divide

mortgages into sub-pools.
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The model of Stanton (1995) incorporates both heterogeneity, inoptimal prepayments, and

non-continuous decision-making. He implements the model assuming that the hazard rates λt and

ηt are constant. He estimates the values of the various parameters so that the prepayment rates

predicted by the model come as close as possible to observed prepayment rates in a given sample.

The estimated prepayment cost distribution has an average cost equal to 41% of the outstanding

debt, which is very high, even if we take into account the implicit costs that may be associated

with prepayments (time consumption, etc.). The estimate for the hazard rate η implies that the

average time between two successive checks for optimal prepayment (which is 1/η) is eight months,

which seems to be an unreasonably long period. The estimate for λ implies that approximately

3.4% of mortgages are prepaid in a given year for exogenous reasons. Using the estimated model,

Stanton predicts future prepayment rates of a given pool and compare the predictions with the

realized prepayment rates. The predictions of the model are reasonably accurate and slightly better

than the predictions from a purely empirical prepayment model suggested by Schwartz and Torous

(1989), which we will study below.

13.5.4 The option to default

The borrower also has an option to default on the mortgage. It may be optimal for the borrower

to default if the market value of the mortgage exceeds the market value of the house. In order to

include optimal defaults into the model, it is necessary to include some measure of house prices

as another state variable. Both Kau, Keenan, Muller, and Epperson (1992) and Deng, Quigley,

and Van Order (2000) find that it is important to consider the prepayment option and the default

option simultaneously. According to Deng, Quigley, and Van Order (2000), the inclusion of the

default option is helpful in explaining empirical behavior.

13.5.5 Other rational models

The option-pricing approach described above is focused on minimizing the value of the current

mortgage. In most cases the prepayment of a mortgage is immediately followed by a new mortgage.

In the presence of prepayment costs, it is really not reasonable to look separately at one mortgage.

The timing of the prepayment decision for the current mortgage influences the contract rate of the

next mortgage and, hence, the potential profitability of prepayments of that mortgage. Borrowers

should have a life-time perspective and minimize the life-time mortgage costs, e.g. they probably

want to make relatively few prepayments over their life in order to reduce the total prepayment

costs. The life-cycle perspective is advocated by, e.g., Stanton and Wallace (1998) and Longstaff

(2002).

The mortgage prepayment decision is only one of many financial decisions in the life of any

borrower. The borrower has to decide on investments in financial assets, transactions of property

and other durable consumption goods, etc. For a rational individual all these decisions are taken in

order to maximize the expected life-time utility from consumption of various goods, both perishable

goods (food, entertainment, etc.) and durable goods (house, car, etc.). The prepayment decisions

of a borrower are not taken independently of other financial decisions. Hence, it could be useful

to build a model incorporating the prepayment decisions into an optimal consumption-portfolio

framework. This might give a better picture of the rational prepayments of an individual mortgage,
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e.g. it has the potential to point out in which economic scenarios the borrower will choose to default

on the mortgage or will prepay for liquidity reasons, etc. Such models could also address the choice

of mortgage, e.g. who should prefer fixed-rate mortgages and who should prefer adjustable-rate

mortgages. However, such models are bound to be quite complex. The model of Campbell and

Cocco (2003) is a good starting point.

13.6 Empirical prepayment models

Historical records of prepayments clearly show that actual mortgage prepayments cannot be

fully explained by the basic American option pricing models. This observation lead Green and

Shoven (1986) and Schwartz and Torous (1989, 1992) to suggest a purely empirical model for

prepayment behavior. The conditional prepayment rate for a mortgage pool is assumed to be a

function of some explanatory state variables that have to be specified, i.e. Πt = Π(t,vt) where v is

a vector of explanatory variables. Section 13.4 offers a list of relevant candidates for explanatory

variables. Given the history of the explanatory variables, the parameters of the function are

determined so that it comes as close as possible to the historic prepayment rates for the pool

(or a similar pool). Then the function with the estimated parameters is used to predict future

prepayment rates contingent on the future values of the explanatory variables. This will determine

the state-dependent cash flow of the mortgage-backed bonds. This cash flow can then be valued

by standard valuation methods.

At least some of the explanatory variables will evolve stochastically over the life of the mortgage.

In order to do the valuation we have to make some assumptions about the stochastic dynamics of

these variables. For any reasonable empirical model the actual valuation has to be done using one

of our standard numerical techniques, i.e. by constructing a tree or finite-difference based lattice or

by performing Monte Carlo simulations. Below we will discuss how the valuation technique to be

used may depend on the explanatory variables included. Regardless of which of these techniques

we want to implement, we will have to discretize the time span so that we only look at time points

t ∈ T̄ ≡ {0,∆t, 2∆t, . . . , N̄∆t}, where N̄∆t = tN is the final payment date.

The original suggestion of Schwartz and Torous (1989) was to model the prepayment hazard

rate as

π(t,vt) = π0(t)e
θ

⊤
vt , (13.14)

where θ is a vector of parameters and π0(t) is the deterministic function

π0(t) =
γp(γt)p−1

1 + (γt)p

giving a “base-line” prepayment rate. This function has π0(0) = 0 and limt→∞ π0(t) = 0, and

it is increasing from t = 0 to t = (p − 1)1/p/γ after which it decreases. This is consistent with

the empirically observation that conditional prepayment rates tend to be very low for new and for

old mortgages and higher for intermediate mortgage ages. From the prepayment hazard rate, the

conditional prepayment rate over any period can be derived as in Equation (13.2). The explanatory

variables chosen by Schwartz and Torous are the following:

1. the difference between the coupon rate and the current long-term interest rate (slightly

lagged), reflecting the gain from refinancing,
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2. the same difference raised to the power 3, reflecting a non-linearity in the relation between

the potential interest rate savings and the prepayment rate,

3. the degree of burn-out measured by (the log of) the ratio between the currently outstanding

debt in the pool and what the outstanding debt would have been in the absence of any

prepayments,

4. a seasonal dummy, reflecting that more real estate transactions – with associated prepayments

– take place in spring and summer than in winter and fall.

In the sample considered by Schwartz and Torous this prepayment function comes reasonably close

to the observed prepayment rates. Note however that this is an in-sample comparison in the sense

that the parameters of the function have been estimated on the basis of the same data sample.

The real test of the prepayment function is to what extent it can predict prepayment behavior

after the estimation period.

Many recent empirical prepayment models are based on a periodic conditional prepayment rate

of the form

Π(t,vt) = N(f(vt;θ)), (13.15)

where N(·) is the cumulative standard normal distribution function and f is some function to be

specified. A very simple example is to let

Π(t, gt) = N(θ0 + θ1gt),

where θ0 and θ1 are constants and gt is a measure for the present value gain from a prepayment

at time t.

If a heterogeneous pool of mortgages can be divided into M sub-pools of homogeneous mort-

gages, it may be worthwhile to specify sub-pool specific prepayment functions, Πm(t,vt). Then the

conditional prepayment rate for the entire pool is a weighted average of the sub-pool prepayment

functions,

Π(t,vt) =

M∑

m=1

wmtΠm(t,vt), (13.16)

where wmt is the relative weight of sub-pool m at time t.

It is important to realize that some of the potential explanatory variables are forward-looking

and others are backward-looking and it will be difficult to include variables of both types in the same

valuation model. For example, any reasonable measure of the monetary gain from a prepayment

is forward-looking since it includes the present value of future payments. Such variables cannot be

handled easily in a Monte Carlo based valuation technique, but is better suited for the backwards

iterative procedure in lattices and trees. On the other hand the burnout factor is inherently a

backward-looking variable since it depends on the previous prepayment activity, e.g. the path

taken by interest rates. This is also true for the relative weighting of different sub-pools. Such

variables are difficult to handle in a backward iterative scheme, but better suited for Monte Carlo

simulation. However, as mentioned earlier, the burnout factor can be approximated by the ratio

of current outstanding debt to the total outstanding debt if no prepayments have taken place so

far. Since the denominator in this ratio is deterministic, the burnout factor may be captured by

including the currently outstanding debt as a state variable in a tree- or lattice-based valuation.
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Clearly, the main limitation of the purely empirical prepayment models is that the prepayment

behavior in the future might be very different from the prepayment behavior in the estimation

period. If the underlying economic environment changes and this is not captured by the explanatory

variables included, the empirical prepayment models might generate very poor predictions of future

prepayment rates.

For studies on the Danish mortgage-backed bond market, see Jakobsen (1992)...

13.7 Risk measures for mortgage-backed bonds

To be added in a later version...

13.8 Other mortgage-backed securities

Collateralized Mortgage Obligations (CMO’s): McConnell and Singh (1994), Childs, Ott, and

Riddiough (1996)

13.9 Concluding remarks

Difficult problem to solve!

Any model must be based on assumptions about interest rate dynamics and prepayment vari-

ables over a 30-year horizon.

Due to the difficulties in predicting prepayment behavior, bond investors may incorporate a

“safety margin” in their valuation of mortgage-backed bonds. This will lead to lower bond prices

and higher borrowing rates.

Other references: Boudoukh, Richardson, Stanton, and Whitelaw (1995), Boudoukh, Whitelaw,

Richardson, and Stanton (1997)



Chapter 14

Credit risky securities

Bonds issued by corporations are credit risky. Two types of models are used for pricing corporate

bonds.

Structural models that are based on assumptions about the specific issuing firm, e.g. an un-

certain flow of earnings and a given or optimally derived capital structure: Merton (1974), Black

and Cox (1976), Shimko, Tejima, and van Deventer (1993), Leland (1994), Longstaff and Schwartz

(1995), Goldstein, Ju, and Leland (2001), Christensen, Flor, Lando, and Miltersen (2002).

Reduced form models: Jarrow, Lando, and Turnbull (1997), Lando (1998), Duffie and Singleton

(1999).
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Chapter 15

Stochastic interest rates and the pricing

of stock and currency derivatives

15.1 Introduction

In the preceding chapters we have focused on securities with payments and values that only

depend on the term structure of interest rates, not on any other random variables. However, the

shape and the dynamics of the yield curve will also affect the prices of securities with payments

that depend on other random variables, e.g. stock prices and currency rates. The reason is that

the present value of a security involves the discounting of the future payments, and the appropriate

discount factors depend on the interest rate uncertainty and the correlations between interest rates

and the random variables that determine the payments of the security.

We will in this chapter first consider the pricing of stock options when we allow for the uncer-

tain evolution of interest rates, in contrast to the classical Black-Scholes-Merton model. We show

that for Gaussian term structure models the price of a European stock option is given by a sim-

ple generalization of the Black-Scholes-Merton formula. This generalized formula corresponds to

the way which practitioners often implement the Black-Scholes-Merton formula. In the Gaussian

interest rate setting we will also derive similar pricing formulas for European options on forwards

and futures on stocks. Subsequently, we consider securities with payments related to a foreign

exchange rate. With a lognormal foreign exchange rate and Gaussian interest rates we obtain sim-

ple expressions for currency futures prices and European currency option prices. Throughout the

chapter we focus on European call options. The prices of the corresponding European put options

follow from the relevant version of the put-call parity. As always, to price American options we

generally have to resort to numerical methods.

15.2 Stock options

15.2.1 General analysis

Let us look at a European call option that expires at time T > t, is written on a stock with

price process (St), and has an exercise price on K. We know from Section 4.4 that the time t price

of this option is given by

Ct = BTt EQT

t [max (ST −K, 0)] , (15.1)
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where QT is the T -forward martingale measure. For simplicity we assume that the underlying

asset does not provide any payments in the life of the option. The forward price of the underlying

asset for delivery at date T is given by FTt = St/B
T
t . In particular, FTT = ST so that the option

price can be rewritten as

Ct = BTt EQT

t

[
max

(
FTT −K, 0

)]
.

Recall that, by definition of the T -forward martingale measure, we have that EQT

t [FTT ] = FTt =

St/B
T
t . To compute the expected value either in closed form or by simulation, we have to know

the distribution of ST = FTT under the T -forward martingale measure. This distribution will follow

from the dynamics of the forward price FTt . But first we will set up a model for the price of the

underlying stock and for the relevant discount factors, i.e. the zero-coupon bond prices.

As usual, we will stick to models where the basic uncertainty is represented by one or several

standard Brownian motions. In a model with a single Brownian motion, all stochastic processes

will be instantaneously perfectly correlated, cf. the discussion in the introduction to Chapter 8.

To price stock options in a setting with stochastic interest rates, we have to model both the stock

price and the appropriate discount factor. Since these two variables are not perfectly correlated,

we have to include more than one Brownian motion in our model.

Under the risk-neutral or spot martingale measure Q the drift of the price of any traded asset

(in time intervals with no dividend payments) is equal to the short-term interest rate, rt. The

dynamics of the price of the underlying asset is assumed to be of the form

dSt = St

[

rt dt+
(
σst
t

)
⊤

dzQ
t

]

, (15.2)

where zQ is a multi-dimensional standard Brownian motion under the risk-neutral measure Q, and

where σst
t is a vector representing the sensitivity of the stock price with respect to the exogenous

shocks. We will refer to σst as the sensitivity vector of the stock price. In general, σst
t may itself

be stochastic, e.g. depend on the level of the stock price, but we will only derive explicit option

prices in the case where σst
t is a deterministic function of time and then we will use the notation

σst(t). It is hard to imagine that the volatility of a stock will depend directly on calendar time,

so the most relevant example of a deterministic volatility is a constant sensitivity vector. We can

also write (15.2) as

dSt = St



rt dt+
n∑

j=1

σst
jt dz

Q
jt



 ,

where n is the number of independent one-dimensional Brownian motions in the model, and

σst
1 , . . . , σ

st
n are the components of the sensitivity vector.

Similarly, we will assume that the price of the zero-coupon bond maturing at time T will evolve

according to

dBTt = BTt

[

rt dt+
(
σTt
)⊤

dzQ
t

]

, (15.3)

where the sensitivity vector σTt of the bond may depend on the current term structure of interest

rates (and in theory also on previous term structures). Equivalently, we can write the bond price

dynamics as

dBTt = BTt



rt dt+

n∑

j=1

σTjt dz
Q
jt



 .



15.2 Stock options 311

In the model given by (15.2) and (15.3) the variance of the instantaneous rate of return on the

stock is given by

VarQ
t (dSt/St) = VarQ

t





n∑

j=1

σst
jt dz

Q
jt



 =

n∑

j=1

(
σst
jt

)2
dt

so that the volatility of the stock is equal to the length of the vector σst
t , i.e. ‖σst

t ‖ =
√
∑n
j=1

(
σst
jt

)2
.

Similarly, the volatility of the zero-coupon bond is given by ‖σTt ‖. The covariance between the rate

of return on the stock and the rate of return on the zero-coupon bond is (σst
t )

⊤

σTt =
∑n
j=1 σ

st
jtσ

T
jt.

Consequently, the instantaneous correlation is (σst
t )

⊤

σTt /
[
‖σst

t ‖ · ‖σTt ‖
]
.

Note that if we just want to model the prices of this particular stock and this particular bond,

a model with n = 2 is sufficient to capture the imperfect correlation. For example, if we specify

the dynamics of prices as

dSt = St

[

rt dt+ vst
t dz

Q
1t

]

, (15.4)

dBTt = BTt

[

rt dt+ ρvTt dz
Q
1t +

√

1 − ρ2vTt dz
Q
2t

]

, (15.5)

the volatilities of the stock and the bond are given by vst
t and vTt , respectively, while ρ ∈ [−1, 1]

is the instantaneous correlation. However, we will stick to the more general notation introduced

earlier.

Given the dynamics of the stock price and the bond price in Equations (15.2) and (15.3), we

obtain the dynamics of the forward price FTt = St/B
T
t under the QT probability measure by an

application of Itô’s Lemma for functions of two stochastic processes, cf. Theorem 3.6 on page 60.

Knowing that FTt is a QT -martingale so that its drift is zero, we do not have to compute the drift

term from Itô’s Lemma. Therefore, we just have to find the sensitivity vector, which we know

is the same under all the martingale measures. Writing FTt = g(St, B
T
t ), where g(S,B) = S/B,

the relevant derivatives are ∂g/∂S = 1/B and ∂g/∂B = −S/B2 so that we obtain the following

forward price dynamics:

dFTt =
∂g

∂S
(St, B

T
t )St

(
σst
t

)
⊤

dzTt +
∂g

∂B
(St, B

T
t )BTt

(
σTt
)⊤

dzTt

= FTt
(
σst
t − σTt

)⊤

dzTt .

A standard calculation yields

d(lnFTt ) = −1

2
‖σst

t − σTt ‖2 dt+
(
σst
t − σTt

)⊤

dzTt ,

and hence

lnST = lnFTT = lnFTt − 1

2

∫ T

t

‖σst
u − σTu ‖2 du+

∫ T

t

(
σst
u − σTu

)⊤

dzTu . (15.6)

In general, σst and σT will be stochastic, in which case we cannot identify the distribution of

lnST and hence ST , but Equation (15.6) provides the basis for Monte Carlo simulations of ST

and thus an approximation of the option price. Below, we discuss the case where σst and σT are

deterministic. In that case we can obtain an explicit option pricing formula.
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15.2.2 Deterministic volatilities

If we assume that both σst
t and σTt are deterministic functions of time t, it follows from (15.6)

and Theorem 3.2 on page 47 that lnST = lnFTT is normally distributed, i.e. ST = FTT is lognormally

distributed, under the T -forward martingale measure. Theorem A.4 in Appendix A implies that

the price of the stock option given in Equation (15.1) can be written in closed form as

Ct = BTt

{

EQT

t [FTT ]N(d1) −KN(d2)
}

,

where

d1 =
1

vF (t, T )
ln

(

EQT

t [FTT ]

K

)

+
1

2
vF (t, T ),

d2 = d1 − vF (t, T ),

vF (t, T )2 ≡ VarQT

t [lnFTT ].

By the martingale property, EQT

t [FTT ] = FTt = St/B
T
t . We can compute the variance as

vF (t, T )2 = VarQT

t [lnFTT ] = VarQT

t

[
∫ T

t

(
σst(u) − σT (u)

)⊤

dzTu

]

= VarQT

t





∫ T

t

n∑

j=1

(
σst
j (u) − σTj (u)

)
dzTju





=

n∑

j=1

VarQT

t

[
∫ T

t

(
σst
j (u) − σTj (u)

)
dzTju

]

=

n∑

j=1

∫ T

t

(
σst
j (u) − σTj (u)

)2
du,

=

∫ T

t

n∑

j=1

(
σst
j (u) − σTj (u)

)2
du,

=

∫ T

t

∥
∥σst(u) − σT (u)

∥
∥

2
du

=

∫ T

t

‖σst(u)‖2 du+

∫ T

t

‖σT (u)‖2 du− 2

∫ T

t

σst(u)⊤σT (u) du,

where the third equality follows from the independence of the Brownian motions zT1 , . . . , z
T
n , and

the fourth equality follows from Theorem 3.2. Clearly, the first term in the final expression for the

variance is due to the uncertainty about the future price of the underlying stock, the second term

is due to the uncertainty about the discount factor, and the third term is due to the covariance of

the stock price and the discount factor. The price of the option can be rewritten as

Ct = StN(d1) −KBTt N(d2), (15.7)

where

d1 =
1

vF (t, T )
ln

(
St

KBTt

)

+
1

2
vF (t, T ),

d2 = d1 − vF (t, T ).
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If the sensitivity vector of the stock is constant, we get

vF (t, T )2 = ‖σst‖2(T − t) +

∫ T

t

‖σT (u)‖2 du− 2

∫ T

t

(
σst
)

⊤

σT (u) du. (15.8)

The Black-Scholes-Merton model is the special case in which the short-term interest rate r

is constant, which implies a constant, flat yield curve and deterministic zero-coupon bond prices

of BTt = e−r[T−t] with σT (u) ≡ 0. Under these additional assumptions, the option pricing for-

mula (15.7) reduces to the famous Black-Scholes-Merton formula

C(t) = StN(d1) −Ke−r[T−t]N(d2), (15.9)

where

d1 =
1

‖σst‖
√
T − t

ln

(
St

Ke−r[T−t]

)

+
1

2
‖σst‖

√
T − t,

d2 = d1 − ‖σst‖
√
T − t.

The more general formula (15.7) was first shown by Merton (1973). It holds for all Gaussian

term structure models, e.g. in the Vasicek model and the Gaussian HJM models, because the

sensitivity vector and hence the volatility of the zero-coupon bonds are then deterministic functions

of time. In a reduced equilibrium model as Vasicek’s the bond price BTt entering the option

pricing formula is given by the well-known expression for the zero-coupon bond price in the model,

e.g. (7.56) on page 165 in the one-factor Vasicek model. For the extended Vasicek model and the

Gaussian HJM models the currently observed zero-coupon bond price is used in the option pricing

formula. This latter approach is consistent with practitioners’ use of the Black-Scholes-Merton

formula since, instead of a fixed interest rate r for options of all maturities, they use the observed

zero-coupon yield yTt until the maturity date of the option. However, also the relevant variance

vF (t, T )2 in Merton’s formula (15.9) differs from the Black-Scholes-Merton formula. The first of

the three terms in (15.8) is exactly the variance expression that enters the Black-Scholes-Merton

formula. The other two terms have to be added to take into account the variation of interest rates

and the covariation of interest rates and the stock price. Practitioners seem to disregard these

two terms. For typical parameter values the two latter terms will be much smaller than the first

term so that the errors implied by neglecting the two last terms will be insignificant. Therefore

Merton’s generalization supports practitioners’ use of the Black-Scholes-Merton formula. However,

the assumptions underlying Merton’s extension are problematic since Gaussian term structure

models are highly unrealistic.

For other term structure models one must resort to numerical methods for the computation

of the stock option prices. One possibility is to approximate the expected value in (15.1) by an

average of payoffs generated by Monte Carlo simulations of the terminal stock price under the

T -forward martingale measure, e.g. based on (15.6). Note that if, for example, σTu depends on

the short rate ru, the evolution in the short rate over the time period [t, T ] has to be simulated

together with the stock price. Alternatively, the fundamental partial differential equation can be

solved numerically.

Apparently, the effects of stochastic interest rates on stock option pricing and hedge ratios have

not been subject to much research. Based on the analysis of a model allowing for both a stochastic

stock price volatility and stochastic interest rates, Bakshi, Cao, and Chen (1997) conclude that
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typical European option prices are more sensitive to fluctuations in stock price volatilities than to

fluctuations in interest rates. For the pricing of short- and medium-term stock options it seems to

be unimportant to incorporate interest rate uncertainty. On the other hand, taking interest rate

uncertainty into account does seem to make a difference for the purposes of constructing efficient

option hedging strategies and pricing long-term stock options. Whether this conclusion generalizes

to other model specifications and stock options with other contractual terms, e.g. American options,

remains an unanswered question.

15.3 Options on forwards and futures

In this section we will discuss the pricing of options on forwards and futures on a security

traded at the price St. As before, we assume that this underlying asset has no dividend payments.

We will derive explicit formulas for European call options in the case where all price volatilities

are deterministic. Amin and Jarrow (1992) obtain similar results for the special case where the

dynamics of the term structure is given by a Gaussian HJM model, which implies that the volatili-

ties of the zero-coupon bonds are deterministic. We will let T denote the expiry time of the option

and let T̄ denote the time of delivery (or final settlement) of the forward or the futures contract.

Here, T ≤ T̄ .

15.3.1 Forward and futures prices

As shown in Section 6.2, the forward price for delivery at time T̄ is given by F T̄t = St/B
T̄
t ,

while the futures price ΦT̄t for final settlement at time T̄ is characterized by

ΦT̄t = EQ
t [ST̄ ] = EQ

t

[

F T̄T̄

]

.

As in the preceding section, we assume that the dynamics under the risk-neutral measure Q is

dSt = St

[

rt dt+
(
σst
t

)
⊤

dzQ
t

]

for the price of the security underlying the forward and the futures and

dBT̄t = BT̄t

[

rt dt+
(

σT̄t

)
⊤

dzQ
t

]

for the price of the zero-coupon bond maturing at T̄ . Itô’s Lemma yields first that

dF T̄t = F T̄t

[

−
(

σT̄t

)
⊤
(

σst
t − σT̄t

)

dt+
(

σst
t − σT̄t

)
⊤

dzQ
t

]

, (15.10)

and, subsequently, that

d(lnF T̄t ) =

[

−1

2
‖σst

t − σT̄t ‖2 −
(

σT̄t

)
⊤
(

σst
t − σT̄t

)]

dt+
(

σst
t − σT̄t

)
⊤

dzQ
t .

It follows that

lnF T̄T̄ = lnF T̄t +

∫ T̄

t

[

−1

2
‖σst

u − σT̄u ‖2 −
(

σT̄u

)
⊤
(

σst
u − σT̄u

)]

du+

∫ T̄

t

(

σst
u − σT̄u

)
⊤

dzQ
u .

Equivalently,

ST̄ = F T̄T̄ = F T̄t exp

{
∫ T̄

t

[

−1

2
‖σst

u − σT̄u ‖2 −
(

σT̄u

)
⊤
(

σst
u − σT̄u

)]

du+

∫ T̄

t

(

σst
u − σT̄u

)
⊤

dzQ
u

}

.
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Therefore the futures price can be written as

ΦT̄t = F T̄t EQ
t

[

exp

{
∫ T̄

t

[

−1

2
‖σst

u − σT̄u ‖2 −
(

σT̄u

)
⊤
(

σst
u − σT̄u

)]

du+

∫ T̄

t

(

σst
u − σT̄u

)
⊤

dzQ
u

}]

.

For the case where the volatilities σst and σT̄ are deterministic, the futures price is given in

closed form as

ΦT̄t = F T̄t exp

{
∫ T̄

t

[

−1

2
‖σst(u) − σT̄ (u)‖2 − σT̄ (u)⊤

(

σst(u) − σT̄ (u)
)]

du

}

× EQ
t

[

exp

{
∫ T̄

t

(

σst(u) − σT̄ (u)
)

⊤

dzQ
u

}]

= F T̄t exp

{

−
∫ T̄

t

σT̄ (u)⊤

(

σst(u) − σT̄ (u)
)

du

}

,

(15.11)

where the last equality is a consequence of Theorem 3.2 and Theorem A.2. If the volatilities are

not deterministic, no explicit expression for the futures price is available.

15.3.2 Options on forwards

From the analysis in Section 4.4 we know that the price of a European call option on a forward

is

Ct = BTt EQT

t

[

max(F T̄T −K, 0)
]

, (15.12)

where T is the expiry time and K is the exercise price. Let us find the dynamics in the forward

price F T̄t under the T -forward martingale measure QT . From (4.26) we can shift the probability

measure from Q to QT by applying the relation

dzTt = dzQ
t − σTt dt. (15.13)

Substituting this into (15.10), we can write the dynamics in F T̄t under QT as

dF T̄t = F T̄t

[(

σTt − σT̄t
)

⊤
(

σst
t − σT̄t

)

dt+
(

σst
t − σT̄t

)
⊤

dzTt

]

.

Note that only if T̄ = T , the drift will be zero and F T̄t will be a QT -martingale. It follows that

lnF T̄T = lnF T̄t +

∫ T

t

(

σTu − σT̄u
)

⊤
(

σst
u − σT̄u

)

du

− 1

2

∫ T

t

‖σst
u − σT̄u ‖2 du+

∫ T

t

(

σst
u − σT̄u

)
⊤

dzTu .

Under the assumption that σst
u , σTu , and σT̄u are all deterministic functions of time, we have

that lnF T̄T (given F T̄t ) is normally distributed under QT with mean value

µF ≡ EQT

t

[

lnF T̄T

]

= lnF T̄t +

∫ T

t

(

σT (u) − σT̄ (u)
)

⊤
(

σst(u) − σT̄ (u)
)

du

− 1

2

∫ T

t

‖σst(u) − σT̄ (u)‖2 du

and variance

v2
F ≡ VarQT

t

[

lnF T̄T

]

=

∫ T

t

∥
∥
∥σst(u) − σT̄ (u)

∥
∥
∥

2

du.
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Applying Theorem (A.4) in Appendix A, we can compute the option price from (15.12) as

Ct = BTt

{

eµF + 1
2 v

2
FN(d1) −KN(d2)

}

,

where

d1 =
µF − lnK

vF
+ vF =

µF + 1
2v

2
F − lnK

vF
+

1

2
vF ,

d2 = d1 − vF .

Since

µF +
1

2
v2
F = lnF T̄t +

∫ T

t

(

σT (u) − σT̄ (u)
)

⊤
(

σst(u) − σT̄ (u)
)

du,

we can replace eµF + 1
2v

2
F by F T̄t e

ξ, where

ξ =

∫ T

t

(

σT (u) − σT̄ (u)
)

⊤
(

σst(u) − σT̄ (u)
)

du.

Hence, the option price can be rewritten as

Ct = BTt F
T̄
t e

ξN(d1) −KBTt N(d2), (15.14)

and d1 can be rewritten as

d1 =
ln(F T̄t /K) + ξ

vF
+

1

2
vF .

15.3.3 Options on futures

A European call option on a futures has a value of

Ct = BTt EQT

t

[

max(ΦT̄T −K, 0)
]

. (15.15)

With deterministic volatilities we can apply (15.11) and insert ΦT̄T = F T̄T e
−ψ(T,T̄ ,T̄ ), where we have

introduced the notation

ψ(T,U, T̄ ) =

∫ U

T

σT̄ (u)⊤

(

σst(u) − σT̄ (u)
)

du.

Consequently, the option price can be written as

Ct = BTt EQT

t

[

max(F T̄T e
−ψ(T,T̄ ,T̄ ) −K, 0)

]

= BTt e
−ψ(T,T̄ ,T̄ ) EQT

t

[

max(F T̄T −Keψ(T,T̄ ,T̄ ), 0)
]

.

We see that, under these assumptions, a call option on a futures with the exercise price K is

equivalent to e−ψ(T,T̄ ,T̄ ) call options on a forward with the exercise price Keψ(T,T̄ ,T̄ ). From (15.14)

it follows that the price of the futures option is

Ct = e−ψ(T,T̄ ,T̄ )
[

BTt F
T̄
t e

ξN(d1) −Keψ(T,T̄ ,T̄ )BTt N(d2)
]

,

which can be rewritten as

Ct = F T̄t B
T
t e

ξ−ψ(T,T̄ ,T̄ )N(d1) −KBTt N(d2), (15.16)
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where

d1 =
ln(F T̄t /K) + ξ − ψ(T, T̄ , T̄ )

vF
+

1

2
vF ,

d2 = d1 − vF ,

vF =

(
∫ T

t

∥
∥
∥σst(u) − σT̄ (u)

∥
∥
∥

2

du

)1/2

.

Applying F T̄t = ΦT̄t e
ψ(t,T̄ ,T̄ ) and ψ(t, T̄ , T̄ )−ψ(T, T̄ , T̄ ) = ψ(t, T, T̄ ), we can also express the option

price as

Ct = ΦT̄t B
T
t e

ξ−ψ(t,T,T̄ )N(d1) −KBTt N(d2) (15.17)

with

d1 =
ln(ΦT̄t /K) + ξ − ψ(t, T, T̄ )

vF
+

1

2
vF .

15.4 Currency derivatives

Corporations and individuals who operate internationally are exposed to currency risk since

most foreign exchange rates fluctuate in an unpredictable manner. The exposure can be reduced

or eliminated by investments in suitable financial contracts. Both on organized exchanges and in

the OTC markets numerous contracts with currency dependent payoffs are traded. Some of these

contracts also depend on other economic variables, e.g. interest rates or stock prices. However, we

will focus on currency derivatives whose payments only depend on a single forward exchange rate.

This is the case for standard currency forwards, futures, and options.

Before we go into the valuation of the currency derivatives, we will introduce some notation.

The time t spot price of one unit of the foreign currency is denoted by εt. This is the number

of units of the domestic currency that can be exchanged for one unit of the foreign currency. As

before, rt denotes the short-term domestic interest rate and BTt denotes the price (in the domestic

currency) of a zero-coupon bond that delivers one unit of the domestic currency at time T . By

B̌Tt we will denote the price in units of the foreign currency of a zero-coupon bond that delivers

one unit of the foreign currency at time T . Similarly, řt and y̌Tt denote the foreign short rate and

the foreign zero-coupon yield for maturity T , respectively.

15.4.1 Currency forwards

The simplest currency derivative is a forward contract on one unit of the foreign currency. This

is a binding contract of delivery of one unit of the foreign currency at time T at a prespecified

exchange rate K so that the payoff at time T is εT − K. The no-arbitrage value at time t < T

of this payoff is B̌Tt εt − BTt K since this is the value of a portfolio that provides the same payoff

as the forward, namely a portfolio of one unit of the foreign zero-coupon bond maturing at T and

a short position in K units of the domestic zero-coupon bond maturing at time T . The forward

exchange rate at time t for delivery at time T is denoted by FTt and it is defined as the value of

the delivery price K that makes the present value equal to zero, i.e.

FTt =
B̌Tt
BTt

εt. (15.18)
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This relation is consistent with the results on forward prices derived in Chapter 6. The forward

exchange rate can be expressed as

FTt = εte
(yT

t −y̌T
t )(T−t),

where yTt and y̌Tt denote the domestic and the foreign zero-coupon rates for maturity date T ,

respectively. If yTt > y̌Tt , the forward exchange rate will be higher than the spot exchange rate,

otherwise an arbitrage will exist. Conversely, if yTt < y̌Tt , the forward exchange rate will be lower

than the spot exchange rate. The stated expressions for the forward exchange rate are based only

on the no-arbitrage principle and hold independently of the dynamics in the spot exchange rate

and the interest rates of the two countries.

15.4.2 A model for the exchange rate

In order to be able to price currency derivative securities other than currency forwards, as-

sumptions about the evolution of the spot exchange rate are necessary. As always we focus on

models where the fundamental uncertainty is represented by Brownian motions. Since we have to

model the evolution in both the exchange rate and the term structures of the two countries, and

these objects are not perfectly correlated, the model has to involve a multi-dimensional Brownian

motion.

Foreign currency can be held in a deposit account earning the foreign short-term interest rate.

Therefore, we can think of foreign currency as an asset providing a continuous dividend at a rate

equal to the foreign short rate, řt. Under the domestic risk-neutral measure Q the total expected

rate of return on any asset will equal the domestic short rate. Since foreign currency provides a

cash rate of return of řt, the expected percentage increase in the price of foreign currency, i.e. the

exchange rate, must equal rt− řt. The dynamics of the spot exchange rate will therefore be of the

form

dεt = εt

[

(rt − řt) dt+ (σεt )
⊤

dzQ
t

]

, (15.19)

where zQ is a multi-dimensional standard Brownian motion under the risk-neutral measure Q,

and where σεt is a vector of the sensitivities of the spot exchange rate towards the changes in the

individual Brownian motions. Note that, in general, r, ř, and σε in (15.19) will be stochastic

processes.

Define Yt = B̌Tt εt, i.e. Yt is the price of the foreign zero-coupon bond measured in units of the

domestic currency. If we let σ̌Tt denote the sensitivity vector of the foreign zero-coupon bond, i.e.

dB̌Tt = B̌Tt

[

. . . , dt+
(
σ̌Tt
)⊤

dzQ
t

]

,

it follows from Itô’s Lemma that the sensitivity vector for Yt can be written as σεt + σ̌Tt . Further-

more, we know that, measured in the domestic currency, the expected return on any asset under

the risk-neutral probability measure Q will equal the domestic short rate, rt. Hence, we have

dYt = Yt

[

rt dt+
(
σεt + σ̌Tt

)⊤

dzQ
t

]

.

For the domestic zero-coupon bond the price dynamics is of the form

dBTt = BTt

[

rt dt+
(
σTt
)⊤

dzQ
t

]

.
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According to (15.18), the forward exchange rate is given by FTt = Yt/B
T
t . An application of Itô’s

Lemma yields that the dynamics of the forward exchange rate is

dFTt = FTt

[

−
(
σTt
)⊤ (

σεt + σ̌Tt − σTt
)
dt+

(
σεt + σ̌Tt − σTt

)⊤

dzQ
t

]

. (15.20)

This is identical to the dynamics of the forward price on a stock, except that the stock price

sensitivity vector σst
t has been replaced by the sensitivity vector for Yt, which is σεt + σ̌Tt . It

follows that

εT = FTT = FTt exp

{
∫ T

t

[

−1

2

∥
∥σεu + σ̌Tu − σTu

∥
∥

2 −
(
σTu
)⊤ [

σεu + σ̌Tu − σTu
]
]

du

+

∫ T

t

[
σεu + σ̌Tu − σTu

]⊤

dzQ
u

}

.

(15.21)

Here σε, σ̌T , and σT will generally be stochastic processes.

As mentioned above, we may think of FTt as the forward price of a traded asset (the foreign

zero-coupon bond) with no payments before maturity. We know that the forward price process

(FTt ) is a QT -martingale. In particular, EQT

t [FTT ] = FTt , and the drift in FTt is zero under the QT

measure. Consequently, the dynamics of the forward price FTt under the T -forward martingale

measure QT is

dFTt = FTt
(
σεt + σ̌Tt − σTt

)⊤

dzTt . (15.22)

This can also be seen by substituting (15.13) into (15.20).

In order to obtain explicit expressions for the prices on currency derivative securities we will in

the following two subsections focus on the case where σε, σ̌T , and σT are all deterministic functions

of time. As discussed earlier, deterministic volatilities on zero-coupon bonds are obtained only in

Gaussian term structure models, e.g. the one- or two-factor Vasicek models and Gaussian HJM

models.

15.4.3 Currency futures

Let ΦTt denote the futures price of the foreign currency with final settlement at time T .

From (6.3) on page 123 we have that

ΦTt = EQ
t [εT ] ,

where we can insert (15.21). In general the expectation cannot be computed explicitly, but if we

assume that σε, σ̌T , and σT are all deterministic, we get

ΦTt = FTt exp

{

−
∫ T

t

σT (u)⊤
(
σε(u) + σ̌T (u) − σT (u)

)
du

}

.

Amin and Jarrow (1991) demonstrate this under the assumption that both the domestic and the

foreign term structure are correctly described by Gaussian HJM models. In particular, we recover

the well-known result that ΦTt = FTt when σT (u) = 0, i.e. when the domestic term structure is

non-stochastic.

15.4.4 Currency options

Let us consider a European call option on one unit of foreign currency. Let T denote the expiry

date of the option and K the exercise price (expressed in the domestic currency). The option
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grants its owner the right to obtain one unit of the foreign currency at time T in return for a

payment of K units of the domestic currency, i.e. the option payoff is max(εT −K, 0). According

to the analysis in Section 4.4, the value of this option at time t < T is given by

Ct = BTt EQT

t [max (εT −K, 0)] ,

where QT is the T -forward martingale measure. This relation can be used for approximating the

option price by Monte Carlo simulations of the terminal exchange rate εT under the QT measure.

Substituting the relation (15.13) into (15.19), we obtain

dεt = εt
[(
rt − řt + (σεt )

⊤

σTt
)
dt+ (σεt )

⊤

dzTt
]
.

Therefore, in the general case, we have to simulate not just the exchange rate, but also the short-

term interest rates in both countries.

Let us now assume that σεt , σ̌
T
t , and σTt are all deterministic functions of time. By definition,

the forward price with immediate delivery is equal to the spot price so that εT can be replaced by

FTT :

Ct = BTt EQT

t

[
max

(
FTT −K, 0

)]
. (15.23)

It follows from (15.22) that the future forward exchange rate FTT is lognormally distributed with

vF (t, T )2 ≡ VarQT

t

[
lnFTT

]
=

∫ T

t

∥
∥σε(u) + σ̌T (u) − σT (u)

∥
∥

2
du.

Note that the future spot exchange rate under these volatility assumptions is also lognormally dis-

tributed both under the risk-neutral measure Q and under the T -forward martingale measure QT ,

but not necessarily under the real-world probability measure. In line with earlier computations,

the option price becomes

Ct = BTt F
T
t N(d1) −KBTt N(d2), (15.24)

where

d1 =
ln(FTt /K)

vF (t, T )
+

1

2
vF (t, T ),

d2 = d1 − vF (t, T ).

We can also insert FTt = B̌Tt εt/B
T
t and write the option price as

Ct = εtB̌
T
t N(d1) −KBTt N(d2), (15.25)

where d1 can be expressed as

d1 =
1

vF (t, T )
ln

(
εtB̌

T
t

KBTt

)

+
1

2
vF (t, T ).

Another alternative is obtained by substituting in BTt = e−y
T
t (T−t) and B̌Tt = e−y̌

T
t (T−t), which

yields

Ct = εte
−y̌T

t (T−t)N(d1) −Ke−y
T
t (T−t)N(d2), (15.26)

where d1 can be written as

d1 =
ln(εt/K) + [yTt − y̌Tt ](T − t)

vF (t, T )
+

1

2
vF (t, T ).
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Similar formulas were first derived by Grabbe (1983). Amin and Jarrow (1991) demonstrate the

result for the case where both the domestic and the foreign term structure of interest rates can be

described by Gaussian HJM models.

In the best known model for currency option pricing, Garman and Kohlhagen (1983) assume

that the short rate in both countries is constant, which implies a constant and flat yield curve in

both countries. In that case we have BTt = e−r[T−t], B̌Tt = e−ř[T−t], and σT (t) = σ̌T (t) = 0.

In addition, the sensitivity vector of the exchange rate, i.e. σε(t), is assumed to be a constant.

Hence, the model can be viewed as a simple variation of the Black-Scholes-Merton model for stock

options. Under these restrictive assumptions, the option pricing formula stated above will simplify

to

Ct = εte
−ř[T−t]N(d1) −Ke−r[T−t]N(d2), (15.27)

where

d1 =
ln(εt/K) + (r − ř)(T − t)

‖σε‖
√
T − t

+
1

2
‖σε‖

√
T − t,

d2 = d1 − ‖σε‖
√
T − t.

This option pricing formula is called the Garman-Kohlhagen formula. If we compare with

Equation (15.25), we see that the extension from constant interest rates to Gaussian interest

rates implies (just as for stock options) that the interest rates r and ř in the Garman-Kohlhagen

formula (15.27) must be replaced by the zero-coupon yields yTt and y̌Tt . Furthermore, the relevant

variance has to reflect the fluctuations in both the exchange rate and the discount factors. As

discussed earlier, the extra terms in the variance tend to be insignificant for stock options, but for

currency options the extra terms are typically not negligible.

15.4.5 Alternative exchange rate models

For exchange rates that are not freely floating, the above model for the exchange rate dynamics

is inappropriate. For countries participating in a so-called target zone, the exchange rates are only

allowed to fluctuate in a fixed band around some central parity. The central banks of the countries

are committed to intervening in the financial markets in order to keep the exchange rate within the

band. If a target zone is perfectly credible, the exchange rate model has to assign zero probability

to future exchange rates outside the band.1 Clearly, this is not the case when the exchange rate is

lognormally distributed. Krugman (1991) suggests a more appropriate model for the dynamics of

exchange rates within a credible target zone. However, most target zones are not perfectly credible

in the sense that the central parities and the bands may be changed by the countries involved.

The possibility of these so-called realignments may have large effects on the pricing of currency

derivatives. Christensen, Lando, and Miltersen (1997) propose a model for exchange rates in a

target zone with possible realignments and show how currency options may be priced numerically

within that model. See also Dumas, Jennergren, and Näslund (1995) for a different, but related,

model specification.

1This must hold under the real-world probability measure, and since the martingale measures are equivalent to

the real-world measure, it will also hold under the martingale measures.
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15.5 Final remarks

In this chapter we have focused on the pricing of forwards, futures, and European options on

stocks and foreign exchange, when we take the stochastic nature of interest rates into account.

Under rather restrictive assumptions we have derived Black-Scholes-Merton-type formulas for op-

tion prices. Explicit pricing formulas for other securities can be derived under similar assumptions.

For example, Miltersen and Schwartz (1998) study the pricing of options on commodity forwards

and futures under stochastic interest rates. In contrast to stocks, bonds, exchange rates, etc.,

commodities will typically be valuable as consumption goods or production inputs. This value

is modeled in terms of a convenience yield, cf. Hull (2003, Chap. 3). In order to be able to

price options on commodity forwards and futures the dynamics of both the commodity price and

the convenience yield has to be modeled. Miltersen and Schwartz obtain Black-Scholes-Merton-

type pricing formulas for such options under assumptions similar to those we have applied in this

chapter, e.g. a Gaussian process for the convenience yield of the underlying commodity.

Another class of securities traded in the international OTC markets is options on foreign secu-

rities, e.g. an option that pays off in euro, but the size of the payoff is determined by a U.S. stock

index. The payoff is transformed into euro either by using the dollar/euro exchange rate prevailing

at the expiration of the option or a prespecified exchange rate (in that case the option is called a

quanto). Under particular assumptions on the dynamics of the relevant variables, Black-Scholes-

Merton-type pricing formulas can be obtained. Consult Musiela and Rutkowski (1997, Chap. 17)

for examples.

In the OTC markets some securities are traded which involve both the exchange rate between

two currencies and the yield curves of both countries. A simple example is a currency swap where

the two parties exchange two cash flows of interest rate payments, one cash flow determined by a

floating interest rate in the first country and the other cash flow determined by a floating interest

rate in the other country. Many variations of such currency swaps and also options on these

swaps are traded on a large scale. Some of these securities are described in more detail in Musiela

and Rutkowski (1997, Chap. 17), who also provide pricing formulas for the case of deterministic

volatilities.



Chapter 16

Numerical techniques

Numerical solution of PDE’s. See Ames (1977), Johnson (1990), Wilmott, Dewynne, and

Howison (1993), Christiansen (1995), Thomas (1995), and Dydensborg (1999). Schwartz (1977)

and Brennan and Schwartz (1977) were the first papers applying a finite difference method to price

options.

Tree models. First application in finance: Cox, Ross, and Rubinstein (1979), Rendleman and

Bartter (1979).

“Born” tree-models of the term structure of interest rates: Ho and Lee (1986), Pedersen, Shiu,

and Thorlacius (1989), Black, Derman, and Toy (1990).

Tree-models as approximations to one-factor continuous-time term structure models: Tian

(1993), Hull and White (1990b, 1993, 1994a, 1996), Hull (2003, Ch. 23).

Tree-models as approximations to multi-factor continuous-time term structure models: Hull

and White (1994b).

See He (1990) for a general approach to approximating an n-factor diffusion model by an

(n+ 1)-nomial discrete-time model, i.e. a tree with n+ 1 branches from each node.

Monte Carlo simulation. For models which cannot be formulated as diffusion models with

relatively few state variables neither approximating trees or numerical solutions to PDE’s are

usually applicable in practice. But many problems can be solved using Monte Carlo simulation.

Introduction to Monte Carlo simulation: Hull (2003, Sec. 18.6-18.7).

First application to option pricing: Boyle (1977).

Monte Carlo simulation for assets with more than one exercise opportunity, e.g. American

options and Bermuda swaptions: Tilley (1993), Barraquand and Martineau (1995), Boyle, Broadie,

and Glasserman (1997), Broadie and Glasserman (1997a, 1997b), Broadie, Glasserman, and Jain

(1997), Carr and Yang (1997), Andersen (2000), Longstaff and Schwartz (2001).
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Appendix A

Results on the lognormal distribution

A random variable Y is said to be lognormally distributed if the random variable X = lnY is

normally distributed. In the following we let m be the mean of X and s2 be the variance of X, so

that

X = lnY ∼ N(m, s2).

The probability density function for X is given by

fX(x) =
1√

2πs2
exp

{

− (x−m)2

2s2

}

, x ∈ R.

Theorem A.1 The probability density function for Y is given by

fY (y) =
1√

2πs2y
exp

{

− (ln y −m)2

2s2

}

, y > 0,

and fY (y) = 0 for y ≤ 0.

This result follows from the general result on the distribution of a random variable which is given

as a function of another random variable; see any introductory text book on probability theory

and distributions.

Theorem A.2 For X ∼ N(m, s2) and γ ∈ R we have

E
[
e−γX

]
= exp

{

−γm+
1

2
γ2s2

}

.

Proof: Per definition we have

E
[
e−γX

]
=

∫ +∞

−∞

e−γx
1√

2πs2
e−

(x−m)2

2s2 dx.

Manipulating the exponent we get

E
[
e−γX

]
= e−γm+ 1

2γ
2s2
∫ +∞

−∞

1√
2πs2

e−
1

2s2
[(x−m)2+2γ(x−m)s2+γ2s4] dx

= e−γm+ 1
2γ

2s2
∫ +∞

−∞

1√
2πs2

e−
(x−[m−γs2])2

2s2 dx

= e−γm+ 1
2γ

2s2 ,
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where the last equality is due to the fact that the function

x 7→ 1√
2πs2

e−
(x−[m−γs2])2

2s2

is a probability density function, namely the density function for an N(m − γs2, s2) distributed

random variable. 2

Using this theorem, we can easily compute the mean and the variance of the lognormally distributed

random variable Y = eX . The mean is (let γ = −1)

E[Y ] = E
[
eX
]

= exp

{

m+
1

2
s2
}

. (A.1)

With γ = −2 we get

E
[
Y 2
]

= E
[
e2X

]
= e2(m+s2),

so that the variance of Y is

Var[Y ] = E
[
Y 2
]
− (E[Y ])2

= e2(m+s2) − e2m+s2

= e2m+s2
(

es
2 − 1

)

.

(A.2)

The next theorem provides an expression of the truncated mean of a lognormally distributed

random variable, i.e. the mean of the part of the distribution that lies above some level. We define

the indicator variable 1{Y >K} to be equal to 1 if the outcome of the random variable Y is greater

than the constant K and equal to 0 otherwise.

Theorem A.3 If X = lnY ∼ N(m, s2) and K > 0, then we have

E
[
Y 1{Y >K}

]
= em+ 1

2 s
2

N

(
m− lnK

s
+ s

)

= E [Y ]N

(
ln (E[Y ]/K)

s
+

1

2
s

)

.

Proof: Because Y > K ⇔ X > lnK, it follows from the definition of the expectation of a random

variable that

E
[
Y 1{Y >K}

]
= E

[
eX1{X>lnK}

]

=

∫ +∞

lnK

ex
1√

2πs2
e−

(x−m)2

2s2 dx

=

∫ +∞

lnK

1√
2πs2

e−
(x−[m+s2])2

2s2 e
2ms2+s4

2s2 dx

= em+ 1
2 s

2

∫ +∞

lnK

fX̄(x) dx,

where

fX̄(x) =
1√

2πs2
e−

(x−[m+s2])2

2s2
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is the probability density function for an N(m+ s2, s2) distributed random variable. The calcula-

tions
∫ +∞

lnK

fX̄(x) dx = Prob(X̄ > lnK)

= Prob

(
X̄ − [m+ s2]

s
>

lnK − [m+ s2]

s

)

= Prob

(
X̄ − [m+ s2]

s
< − lnK − [m+ s2]

s

)

= N

(

− lnK − [m+ s2]

s

)

= N

(
m− lnK

s
+ s

)

= N

(
m+ 1

2s
2 − lnK

s
+

1

2
s

)

= N

(
ln (E[Y ]/K)

s
+

1

2
s

)

complete the proof. 2

Theorem A.4 If X = lnY ∼ N(m, s2) and K > 0, we have

E [max (0, Y −K)] = em+ 1
2 s

2

N

(
m− lnK

s
+ s

)

−KN

(
m− lnK

s

)

= E [Y ]N

(
ln (E[Y ]/K)

s
+

1

2
s

)

−KN

(
ln (E[Y ]/K)

s
− 1

2
s

)

.

Proof: Note that

E [max (0, Y −K)] = E
[
(Y −K)1{Y >K}

]

= E
[
Y 1{Y >K}

]
−KProb (Y > K) .

The first term is known from Theorem A.3. The second term can be rewritten as

Prob (Y > K) = Prob (X > lnK)

= Prob

(
X −m

s
>

lnK −m

s

)

= Prob

(
X −m

s
< − lnK −m

s

)

= N

(

− lnK −m

s

)

= N

(
m− lnK

s

)

= N

(
m+ 1

2s
2 − lnK

s
− 1

2
s

)

= N

(
ln (E[Y ]/K)

s
− 1

2
s

)

.

The claim now follows immediately. 2
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Dumas, B., L. P. Jennergren, and B. Näslund (1995). Realignment Risk and Currency Option

Pricing in Target Zones. European Economic Review 39, 1323–1344.

Dunn, K. B. and J. J. McConnell (1981a). A Comparison of Alternative Models for Pricing

GNMA Mortage-Backed Securities. The Journal of Finance 36 (2), 471–484.

Dunn, K. B. and J. J. McConnell (1981b). Valuation of GNMA Mortage-Backed Securities. The

Journal of Finance 36 (3), 599–616.

Dybvig, P. H. (1988). Bond and Bond Option Pricing Based on the Current Term Structure.

Working paper, School of Business, Washington University, St. Louis.

Dydensborg, L. (1999). Numerical Methods for Option Pricing. Ph. D. thesis, University of

Southern Denmark – Odense University.

Fabozzi, F. J. (2000). Bond Markets, Analysis and Strategies (Fourth ed.). Prentice-Hall, Inc.

Fama, E. F. (1981). Stock Returns, Real Activity, Inflation, and Money. American Economic

Review 71, 545–565.

Fama, E. F. and M. Gibbons (1982). Inflation, Real Returns and Capital Investment. Journal

of Mathematical Economics 9, 297–323.
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