TRINOMIAL TREES AND
FINITE-DIFFERENCE SCHEMES

1. Trinomial model

This chapter discusses the implementation of trinomial probability trees for pricing
derivative securities. These models have a lot more flexibility than binomial trees. As
shown (early on) by Cox, Ross and Rubinstein, binomial models for stock and equity
derivatives are dynamically complete. This may be one of the reasons for their popularity
among practitioners: not only can they be used for pricing but the price actually represents
the cost of a replicating strategy. However, a drawback of binomial trees is that they cannot
be used to model processes with local means and variances which depend on the value of the
underlying index. The reason is that there are not enough parameters to adjust or degrees
of freedom. Therefore, binomial models are only useful to model stochastic processes with
constant or, at best, with time-dependent parameters that do not vary with the underlying
index or other factors. In certain situations, we would prefer to describe the underlying
index by an Ito process with parameters that depend on the index itself or other factors.
This is where trinomial trees become a useful numerical tool.

Trinomial trees permit us to specify different local volatilities and drifts at each node of
a recombining tree. This means that we can model Ito processes of the form

ds
S
in which the local parameters are functions of the asset price and time, with a structure that

has O(N?) nodes if the number of periods is N. The elementary structure of the trinomial
tree is shown below.

= o(S,t)dZ + u(S, t)dt (1)
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This structure is reproduced at each time to generate a “tree” in which each vertex has
three offspring. A necessary and sufficient condition for the tree to recombine, i.e to have
3n nodes at time n, is that the parameters U, M and D satisfy

U-D = M? (2)

This constraint and the stochastic differential equation (1) lead us to parametrize the model
as follows:

D — e—a\/ﬁ—l—?dt‘ (2)

Here 7 and 7 are constants that will be determined and dt represents a (small) interval of
time between successive shocks, measured in years.

We shall assign conditional probabilities to each of the three outcomes, Py, Py, and
Pp. Let us denote by v dt and o? dt the mean and variance of the logarithm of the price
shock over a period. We have

vdt = 7Vdt- (Py — Pp) + vdt (3)

and

oldt = a*dt- (Py + Pp) — (vdt) (4)
We will always assume that dt < 1 and that the parameters o and v are O(1). Under

these conditions, we are only interested in keeping terms of order dt in the calculation of
the mean and variance.! In particular, we will replace equation (4) by the simpler equation

o*dt = a°dt- (Py + Pp) (5)

Equations (4) and (5) can be used to calculate the probabilities Py, Py and Pp in terms
of the mean and the variance of the logarithm of the shock over a period. In fact, we can

easily deduce from (3) and (5) that

1Lower-order terms of order dt?/? give a negligible contribution to the sum of the local variances.
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Financial considerations typically require adjusting the drift (S, t) of the process in
(1) to satisfy no-arbitrage conditions. For instance, in the world of currency derivatives,
( = rq — ry = the difference between the domestic and foreign interest rates. Thus,
in practice, we would like to treat u (i.e. the annualized expected return) as the input
parameter rather than v. Of course, we know from Ito calculus that

v = pu — Zo°. (9)

Let us rewrite equations (6) and (7) in terms of p. The result is:
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2. Stability analysis

We would like to derive conditions that must be satisfied so that the three probabilities
calculated above are non-negative. Introducing the parameters

b ==, 4= "= (12)



the equations for the probabilities become

oV dt o\ dt
PU:Z—’<1—” )+qa , (13)
2 2
P g/ dt g/ dt
Pr = =11 — 14
and
Py =1—-p. (15)

These expressions are useful to determine whether Py, Py and Pp are are nonnegative
and less than one. In fact, we conclude from (15) that we must have

0 < p< 1. (16)
Moreover, (from (13) with ¢ = 0),
(17)

must hold as well. A further condition, which guarantees that Py, Py and Pp are positive,
is that

2 |q| TV dt
> L‘ (18)
2 — TV/dt

3. Calibration

To calibrate our tree to given volatility and drift “surfaces” o(9, t) and u(S, t), we
consider the four numbers

Omin = inf o(S,t) |,  Omas = sup o(S,t)
St St



fmin = inf p(S,t) and  fimer = sup p(S, t) .
St St

We shall assume that these numbers are uniformly bounded. Regarding the volatility pa-
rameter, we assume that o,,;, > 0. This last requirement is not necessary — in fact, it is
possible to model using the trinomial tree processes with a local volatility which vanishes
at certain levels of spot prices.?

We begin with the calibration of volatility. Since equation (5) tells us that

0-2 - p'Ezv (19)

we must have 02 < 2 in view of the restriction (16). We shall therefore make the choice

o = Tmax (20)

which corresponds to the minimal value of & compatible with the volatility range that we
are trying to model. Of course, any choice of & greater than o,,, is also possible.® It
follows from equation (19) that, by varying the parameter p in the interval

0.2

—min <oy <1, (21)

2
Tmax

we can achieve any value of o in the desired range.

Let us turn next to the drift. Equation (12) suggests that 7 should be chosen in the
range

i) < map (L2 T T i) 22)

Notice that the bound is tighter when we set

Hmax + Hmin
frnae ¥ i (23)
2This property will prove useful later in modeling the impact of transaction costs on hedging.
3We note, however, that the greater &, the smaller we have to choose dt in order to ensure that (17)

holds.



when it becomes

Hmax Hmin
< —  _ 24
lal < 522 (24)

Combining equations (21) and (24), we conclude that the stability condition (18) is satisfied
if we have

O-Enin < 20max \% dt . Hmazr — Hmin
O-?nax 2 — Omax vV dt 20—?na1:

or, more concisely, if

4 o? 2
dt < min ) - mar — HMmin - 25
O-?nax (U?nzn + 5/“L ) ’ : : : ( )

This condition is, in general, more restrictive than the one implied by (17), namely

dt <

- (26)

It reduces to the latter condition when the drift is constant (6 = 0). (In the latter case,
it is possible to implement a trinomial tree with volatility that vanishes at certain nodes
without generating negative probabilities.)

To construct a trinomial tree with transition probabilities corresponding to the diffusion
process (1), we calculate the parameters oumin, Omaz, min and fimq, and define the pa-
rameters o and v accordingly. We then select a time interval dt which satisfies the stability
condition (25). Once this is done, we obtain a trinomial tree, or lattice, that describes the
values of the index S in discrete increments. These values can be denoted by S7, where n
represents the time variable and j the “height” on the tree.

Next, we discretize the drift and volatility surfaces, setting

ol = (S}, ta) » w4

7

1(S5, tn) .

Finally, we set

o (o)
Pl = =
- — 2
n 0_2
j =
q] o Mn v
n 52

and define the probabilities at the node (n, j) according to equations (13), (14) and (15),
substituting pJ, for p and ¢}, for ¢. In this way, we have specified a discrete approximation
for the diffusion process (1) on a trinomial tree.



4. Finite-difference scheme for the Black-Scholes PDE

with prescribed volatility and drift surfaces o and p

Pricing contingent claims on the trinomial tree by discounting expected cash-flows leads
to a recursion relation for the value of the claim at the different nodes of the tree. This
relation is analogous to the Cox-Ross-Rubinstein “backward induction” method for the
binomial model, but we can incorporate volatility and drift “surfaces”. The discrete pricing
equation is

V] = F) +
i 1 . 7/ dt ; 1 . 7 \/dt i
em 5P (1— 5 )Véif+§p;2 (1+ 5 )Vﬁ’ﬂl
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+ (1= pl) Vi + 5@%5\/% <Vﬁ7111 - Vﬁ7+11> I (27)

where FJ represents a cash-flow due at time #, if the index value is S7. This equation
can be viewed as a finite-difference scheme for solving the Black-Scholes equation. The
construction of the previous sections guarantees the stability and convergence of the scheme
as dt — 0.

Of course, dynamic programming equations derived from (27) can be used for pricing
American options and other contingent claims which involve stopping times. In particular,
the trinomial tree provides a more accurate alternative than the binomial model for the
pricing of barrier options because the barrier can be made to coincide with a particular
level in the tree. This eliminates to some extent numerical roundoff error.

Other applications involve dynamical programming equations that are used in worst-
case scenario analyis of portfolios (Avellaneda, Levy and Paras (1994) and Avellaneda and
Paras (1995)), which will be discussed in other chapters.



