AFFINE TERM-STRUCTURE MODELS

We study in the present chapter a class of interest-rate models which have the property
that the forward rate curve can be represented as an affine function of Markov state
variables. These are the most important models for practical applications, due to their
computational tractability.

The forward rate curve for affine models has the form
FET) = > ai(t; T) Xi(t) + b(t: T) (1)
i=1

where X(t) = (X1(¢), Xa(t), ... Xn(t) ) is a vector of state variables satisfying a system
of stochastic differential equations

dX; = O'ik(X, t)de + ,ui(X, t)dt 1 <1 < N, 1 < k< wv. (2)

(Here, the Zj ’s are independent Brownian motions).! Notice that the discount factors PT
are exponential functions of the state variables:

M=
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(3)

Converserly, a term-structure model with the property that the discount factors are expo-
nential functions of a (multidimensional) diffusion process is an affine model.

A major advantage of affine models is that they can be implemented on the computer
using recombining lattices or finite-difference schemes with relatively low dimensionality
(in practice N = 1, 2 or 3). This is a consequence of the fact that the state variables are

LWe restrict this discussion to state variables which are Markov Ito processes, or diffusions. The study
of Markovian state-variables with jumps, which is relevant for the study of default risk, is beyond the
scope of these lectures.



a Markov process. Moreover, the affine form of the forward rate curve or, equivalently,
the exponential form of the discount factors, allows us to express any cash-flow which is
a function of forward rates as an elementary function — basically a sum or combination of
exponential functions of the state variables.? Affine models are thus well-suited for pricing
and hedging American bond options, American swaptions, callable bonds, exotic interest
rate options, etc., as well as European-style derivatives.

As we shall see, the requirement that the forward-rate curve is an affine function im-
plies strong constraints on the process X. In other words, we cannot assign arbitrary
probability distributions to the state variables X and expect to generate an affine model.
Roughly speaking, there are three “classes” of affine interest-rate models, namely: Gauss-
ian models, Cox-Ingersoll-Ross (CIR) square-root models and the so-called Li-Ritchken-
Sankarasubhramanyam (LRS) models. We will present each of these models in this lecture.

Another advantage of affine models is that the volatilities and correlations of forward
rates are easy to compute. Using [tos Formula, we obtain

v

df(t; T) = Y ox(t; T)dZ, + mi(t; T)dt
k=1

where 71 (t; T) and m(t; T) are given respectively by

N
or(t; T) = Y owai(t; T)
i=1

and

i) =Y (%xiw ot Tm) y 2T (4)

In particular, the standard deviation of the forward rate f(¢; T') is given by

of(t; T) = Z ( Z oir ai(t; T) )

k=1 =1

and the correlation factors are

2Notice that, in constrast, the use of a “general” state variable model requires solving partial differential
equations to compute the values of the discount factors and forward rates in terms of the state-variables.
Hence, the valuation of interest rate derivatives, such as bond options, would require solving several PDEs
instead of only one!



i Oik ai(t; T)
br(t; T) = =1 1

\/kél < zév:l ok ai(t; T) )2

Hence the specification of the correlation factors and volatilites (for instance, using a
principal component analysis) is relatively easy and consists in selecting the parameters of
the diffusion equations (2) in such a way that the corresponding coefficients a;(t; T') lead
to the desired correlation structure (see previous chapter).
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In the following sections, we charaterize the distributions for the state-variables that give
rise to affine models and compute the corresponding functions a;(t; T'), b;(t; T, pi(t; T')
and ¢;(¢; T).

1. A characterization of affine models

Let us study in more detail the conditions on the distribution of the state-variables X
which give rise to an affine model. The main point here is that we want equations (1)
or (3) to hold under a risk-neutral measure. In the interest rate context, a risk-neutral
measure is such that zero-coupon bond prices have a drift equal to the short-term interest
rate. This implies certain restrictions on the coefficients u; and o;x, as we now show.

The first observation is that, since r, = f(¢; t), the short rate satisfies

ry = Zai(t) X;(t) + b(t), (5)

where, for simplicity, we introduced the notation®

ai(t) = ai(t;t) . b(t) = bt 1) .

We shall make use of the fact that each discount factor P satisfies, under a risk-neutral
measure,

31t is often possible to “normalize” the functions a;(¢; T') by imposing the condition @;(¢) = 1. In fact,
whenever a;(¢; t) # 0, this entails no loss of generality, since we can always redefine the state-variables
X; using the trasformation X; — a;(¢; t) X;. Nevertheless, there are situations in which a;(tt) = 0
for some indices 7. This corresponds to models in which the short rate depends on a smaller number of
state variables than the entire forward rate curve. One important example is the LRS model.



dP = PI | Y ow(t: T)dZy + redt | . (6)
k=1

Applying It6’s Formula to equation (3), we find that the (lognormal) drift of PT is given
by

1 aPT 1 & 02pPT al E)PT

Pr Aij 0X;0X;

where

v
= E Oik Ojk
k=1

is the diffusion matriz associated with the process X. Due to the exponential form of
PF, we can compute all partial derivatives in the last equation explicitly. The resulting
expression for the drift of the discount factor is

N | N N
- (;I%Xi + d) + 3 > Aipinj — ;Mipi,
= =

i,j=1

where dots represent derivatives with respect to “calendar time” ¢. Using equation (6),
which states that § = r; , and the formula for the short-term interest rate in (5), we
conclude that

N 1 N
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Notice that equation (7) implies that the combination
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| N N
3 > Aiypipg — Y mipi (8)
i=1

i,j=1
is an affine function of the variables X;. This leads is to consider the following cases:

Case 1: A;; and p; are affine functions of the state variables.

Case 2: A;; and p; are not affine but the combination (8) is an affine function.

We shall analyze first Case 1 in detail and leave the study of Case 2 to the end of the
chapter. We set, accordingly,

0 1
Aij = AE]) + Z A?Ej,)k X (9&)
k
and
0 ™ x o,
i = [y +Zui,k ko (9b)

k

Equating the coefficients of X; and the constant terms in the resulting equation, we obtain
a system of ordinary differential equations for the coefficients p; and ¢, namely,

: (1) _ 1 (1) :
pi + Z M Pk + @ = 5 Z Aklyipkpl 1 << N, (loa)
k k1
; Op + 5 =3 LA® pip, 10b
q + Zui bi + - 25 ij pbibj - ( )
i i j
In view of the fact that PX = 1 and equation (3), the functions p; and ¢ must also satisfy

the conditions

pi(T;T) = 0, and ¢(T;T) = 0 . (11)

Equations (10a) and the first boundary conditions in (11) determine the coefficients p;.
The last equation is used to obtain ¢ by integating with respect to ¢t and using (11). In

the case of time-independent coefficients p(*) and AS), these equations can be solved in
closed form.

In order to characterize the class of affine models corresponding to Case 1, we must look
for conditions on A;; and p; which guarantee that the stochastic differential equations (2)
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admit a solution for all times (so that the state-variables are well-defined quantities) and
, in addition to this, we must solve the ordinary differential equations satisfied by the
coefficients p; and ¢. For simplicity, we begin with the simplest instance where equations
(2) can be solved, which is the Gaussian case.

2. Gaussian models: general case

If we assume that A;; = AE?) in equation (9a), the process X satisfies a linear system
of stochastic differential equations

Here o, is the square root of A;j. To solve equation (12), we introduce the auxillary
matrix-valued function W(¢; T') (or transfer function ) which solves the (matrix-valued)
differential equation

d

o7 Y T) = p(T) W (4 T) Ut t) =1,

where I represents the identity matrix (I;; = 1if i = j and I;; = 0if i # j). It is easy
to verfy, using the method of variation of constants, that the solution of the SDE (12)
satisfies

t’

X(#) = Ut t) X (1) + -/\If(s; ¢y - O (s)ds +

t’
/ U(s: t) - o(s)- dZ(s) (13)
¢

forall0 < t < . This formula shows that X has Gaussian distribution.*

Let us compute the coefficients p;(¢; T'). Notice that equations (10a) reduce to a linear
system of ordinary differential equations

d p;
dt

1 _
+ Y pul +@ =0,
j

4Solutions of linear stochastic differential equations such as (12) are called a Gauss-Markov process.



with boundary conditions [ p;(¢;T') |,_y = 0. The solution of this system can be computed
as follows: let ®(¢; T') be the solution of the matrix-valued differential equation

e T) = (s 1) O (1)

OT;T) = 1.
Using again the method of variation of constants and condition (11), we find that p(¢t; T') =

(p1(t; T), ...pn(t; T) ) is given by

p(t: T) = / a(s) - Bt s) ds | (14)

where a(s) = (ai(s), ...an(s)).

Given the expressions obtained for X; and p;, we conclude that the forward rates satisfy
the SDE

df (t; T) = Y pi(t; T) dX;(t)
= Z pi(t; T)oir dZi(t) + drift terms .

ik

Recall that, from the HIJM theorem, the instantaneous covariance structure of the forward
rates determines completey their dynamics under the risk-neutral measure. We conclude,
in particular, that the risk-neutral dynamics are independent of (%) and of the initial value
of the state-variables, X;(0). This allows us to simplify the calculations by introducing the
vector of “reduced state variables” Y = (Y;(¢), ..., Yn(t)) such that

Y(t) = /\I/(s; t) - o(s)- dZ(s) .

(Notice that these state variables satisfy the reduced linear SDE

dY; = oipdZs + pDdt , Y;(0) = 0.)

7



The forward rate curve and discount factors can be expressed in the form
FET) = ) ailts T)Yi(t) + b(t; T) (15)

and

Pl = exp [-pi(; T)Yi(t) — ai(T) ], (16)
where b(t; T') and ¢;(¢t; T') depend only on @; , o, p,l(.? and the current forward rate curve
£(0; T), but not on pu(®.°

It remains to compute the coefficient g(¢; 7). This is done by integrating both sides of
equation (10b) from ¢ to T, assuming x(®) = 0. The result is

T
:/Esd
t

Notice that we have not yet specified the function b. We claim that (consistently with the
HJM theorem) this function is determined by the condition that the model prices correctly
all zero-coupon bonds PI, T > 0. In fact, equating the forward rate curve at time t = 0
to the affine function in (15) defining the forward rate curve, we have

[N

7/7

[ S A pilos T T ds (17)

dq(0; T)

f0;T) = b(0;T) = 5T

We shall use this relation and equation (17) to determine b. Differentiating equation (17)
with respect to T" and setting ¢ = 0, we have

5Notice that we have kept the same notation for the coefficients b(t; T) and q(¢; T) in the reduced
representation. This is a harmless abuse of notation, since the latter functions have not yet been specified.



where we used the boundary conditions (11) and the symmetry of the matrix A;;.

Hence, we conclude that the function b is given by

W) = 10:1) — [ AP 2D ) ds

The coefficient g(¢; T') is recovered by substituting this expression into formula (17). After
some computation, we obtain the following expression for ¢(¢; T'):

ot 7) = [0 s)ds = 5 [ 304D s Dyl ) — il s ) ) ds
= /f(O; s)ds +qo(t; T) (18)
where we set
w(t: T) = % ZA” (il T pi(s: T) = pilss Opilss ) )ds . (19)

©,J

This result shows that the term-structure of interest rates can be “fitted” to the Gaussian
term structure model with specified volatility structure by choosing b (or, equivalently,
q(t; T), or b(t; T) ) as a function of @;, o4, u(*) and the current forward rate curve. Some
practitioners call b(¢) the “fudge factor” — it is the term that needs to added to the linear
combination of state variables in order to fit the current term-structure.

Gaussian models enjoy an interesting “factorization property” with regards to the dis-
count factor. In fact, recalling that

[ foi9yds  pT
0 fd

e [
t
PO

we conclude from (18) that the value of the discount factor at time ¢ is given by

Pl = P° cexp | > =ity T) Xi(t) — qo(t; T) (20)



This formula shows that the discount factor can be factorized into the product of a term
that depends on the current term-structure of interest rates PZ /Pt (this is the “forward
price of a loan of $1 at the future time ¢ for the period of time T'— ¢ ) and an term that
depends only on the volatility of forward rates. This factorization will prove useful later
on for computing the values of caps.

3. Gaussian models: explicit formulas

In the previous section, we derived formulas for the discount factors of Gaussian models

for general parameters ;1,1(.]1-) and Al(.?), using the formalism of trasfer matrices. In this

section, we obtain more explicit expressions by making two simplifying assumptions: first,
that the matrix p(!) is diagonal and second, that the parameters are constasnt in time.5
Accordingly, we set

1
g = = midy

and
0
AEJ) = 0304 Pij -

Under these assumptions, it is easy to check that the resolvents ®(¢; T') and ¥(t; T') are
diagonal, with

(I)zz(ta T) = \Ijm(ta T) = e_K’i(T_t) ’ = ]-72a"7N7
and that the functions p;(¢; T) and a;(¢; T') are given by

pilt; T) = - (1 — el - t)) L at; T) = me s (T
K

Notice that the SDE for the (reduced) state-variables is

dY; = —lil'Y;;dt + O'idZi,

6In practice, the latter assumption may not be appropriate if we wish to calibrate the model to a “term
structure” of option prices. Nevetheless, we discuss the constant coefficients case because it leads to simple
mathematical expressions. The assumption that p(1) is diagonal is beneficial, in our opinion, because it
makes the specification of the correlation structure more “transparent”, as we shall see.
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with E (dZ; dZ; ) = pi;jdt . Each state variable behaves like a mean-reverting or mean-
repelling Gaussian process, according to the sign of ;.

Using equation (18), we conclude after a straightforward (but tedious) calculation that

Zaiaj 0; 05 Pij 1 — e Hi (T—t) " 1 — e " (T—t) 1 — 6_(Ki+mj)(T_t)
2%1; K4 Kj K4 K; + K4

ij

The coefficient b(t; T') is obtained by differentiating with respect to T'. Accordingly,

b(t; T) = f(0;T) —

Zmﬂjamj Pij [ pmri(T—t) L p=r; (T=t) _ ,—(kity) (T—t)
o 2/4,1' K4

The expression for the “fudge factor” for the short-rate process, b, follows from setting
T = t in this last expression. We have

b(t) = f(0;t) —

ZaiajUz'Uj Pij et 4 emhit _ o= (Kitr,)t
— 2%1; Hj
1

We conclude that the short rate process for the Gaussian model with constant coefficients
and diagona ) has the form

t
o= 500+ Yo [entaz, -
‘ 0

Zaiajo—mj Pij [e_m LoeRit _ o= (RitRy)t
— 2%1; Hj

W)
b
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This formula is analogous to the one obtained in the previous chapter when we discussed
the Modified Vasicek model.

Notice that the “mean-reversion parameters” x; determine the shape of the correlation
factors, as explained in the previous chapter.

4. Square-root models: probability distribution

of the state variables

Another imortant class of stochastic process that give rise to affine models are the
square-root processes. These processes are discussed in classical Probability textbooks
(e.g Feller, 1957) and were introduced in term-structure modelling in Finance by Cox,
Ingersoll and Ross () ( See Longstaff and Schwartz ( ), Scott ( ) and Duffie and Kan ()
for in-depth studies and extensiones of these models). In this section, we concentrate on
one-factor square-root models, with emphasis in the probability distribution of the state
variable.

Historically, the use of square-root processes was motivated by the fact that the state-
variables are positive. This is an important advantage over Gaussian models, which lead
unavoidably to negative interest rates. In addition to the issue of positive rates, the square-
root, processes offer a greater variety of distributions for the state variables and hence for
the forward rates.

The material from this section draws from the classical discussion of the CIR model
(see, for instance, 7777).Nevertheless, our presentation differs from classical discussions of
the CIR model because we treat the square-root process as a state-variable of an affine
term-structure model, rather than as the short-term interest rate.

Following the general classification of affine models in §1, we consider the case of one-
factor models (N = 1) for which the diffusion coefficient a = a7 is an affine function of
the state variable, i.e.,

a = a® + oM X .

According to this equation, X satisfies the SDE

dX = Va® + a0 X dz + (u(‘]) + u(l)X> dt .

12



For simplicity, we shall assume that all the coefficients appearing in the latter equation are
constant (independent of ¢). This equation defines a stochastic process X (¢) for all times
provided that a(® + () X (#) remains positive for all times. We will investigate this
issue in detail now.

To fix ideas, assume that

aV = 52 >0

and set
a(0)

From ( ), we see that the stochastic process Y satisfies formally the SDE

dY = oVY dZ + k(0 — Y) dt
where

(0) a(©)
k= —pM  and 9:—%+m.

Equation () can thus be viewed as the “standard form” of a one-dimensional square-
root process. The main question of interest is to determine conditions on the coefficients
o, £ and 0 which ensure that Y (¢) is well-defined for all ¢ > 0. Unlike the Gaussian case,
the solution of equation () cannot be expressed in a simple form using Ito integrals. Nev-
ertheless, the distribution of Y'(¢) can be studied using the PDE satisfied by its probability
density. The main result is sumarized in the following proposition.

Proposition 1: Suppose that Y (0) > 0. Then,

(i) the SDE () admits a solution Y (t) which is strictly positive for all t > 0 if and
only if

kKl > — o

(ii) If

—_

0 < kO < =02,

[\]

the process Y (t) vanishes with probability 1. Nevertheless, there exists a unique solution of
equation () which remains non-negative for all timest > 0.

13



Assuming that k6 > 0, there are two subcases: (a): If & >0 and @ > 0, the process
Y (t) has a long-term equilibrium Gamma distribution with density function

(2—”’) 260 _ 2K
2;@2902_ 1) Y o2 1exp<—§Y>,

p(Y) =

I (

(o2

where T'(p) = [ zPe”*dx is the Gamma function. (b) If k < 0 and < 0, then the
0

process Y (t) converges to +0o ast — oo with probability 1.

(iii) If K 6 < 0, the process Y (t) vanishes at a finite time and is absorbed at zero with
probability 1.

We give a proof of these statements in the Appendix. This proposition can be interpreted
intuitively as follows: for Y (¢) ~ 0, the contribution to the dynamics of Y (¢) which comes
from the Brownian motion becomes negligible. The dynamics are therefore controlled by
the drift term, which is proportional to . A positive drift has the effect of “pushing” the
state variable into the half-line {Y > 0}. In contrast, a negative or vanishing drift will
not drive the state variable to positive values after Y = 0 is touched for the first time. This
means that the solution of the SDE cannot exist beyond the first time that that Y (¢) = 0.
(Unless a restoring mechanism is specified exogenously, for instance using a jump process
at Y = 0.) The distinction between cases (i) and (ii) is more subtle but can also be
uderstood heuristically. In fact, assume that the state variable is very near the boundary,
at a distance € < 1. The time required for diffusing towards zero by Brownian motion is
proportional to the distance to zero(e) divided by the diffusion coefficient. Therefore, it is
of order (at least)

62 €

Tdiff X = —
s o2e o2

On the other hand, the time rquired to drift upward (in the positive direction) by an
amount € is

€
Tdrift X .

Kk 0

Therefore, the probability of hitting zero is controlled by the ratio Z44L =~ &8 This

Tdrift o?
argument is made more precise in the Appendix using PDE methods.

Notice that in case (i) the density function vanishes at Y = 0 whereas case (ii) gives
rise to an asymptotic distribution that has a singularity at ¥ = 0if K < ”—; and to
an exponential distribution in the “marginal case” k 0 = "72 It is easy to check that

p(Y) converges to a Dirac delta function at ¥ = 0 in the limit k@ — 0, which show

14



that for k@ = 0 the process is absorbed with probability 1. The tails of the equilibrium

distribution are therefore controlled by the ratio ';—2.

Next, we characterize the distribution of Y (¢) at finite times. Setting Y (0) = Yj, the
probability density can be represented as a function of three variables:

This function is most easily characterized by its Laplace transform (or moment-generating
function)

(Yo, t; \) /e—” (Yo, t: Y) dY = E{ “AY®) | y(0) = YO} .
0

This moment-generating function can be computed in closed form.

Proposition 2: Assume that Yo > 0 and that k6 > 0. Then

p(Yo, t; A) = . g © XD
[+ 5% (1 —emt)]-

_AY, e nt ]

1 + >‘222(1 — e~rt)

Proof: The calculation of p(Yy, t; A) is done observing that the expectation

p(Y, 1, T) = Et{e—”m Y () = Y}

satisfies the partial differential equation

oY

pt + 5

pyy + k(@ —Y)py =0

p(Y,T,T) = e Y
A solution of this PDE can be sought in the form

pY,T,T) = exp(—r(t; T)Y — r(t;T)) .

15



Substitution of this function into the PDE () shows that the functions r(¢; T') and s(¢; T')
satisfy the ordinary differential equations

1
7 — KT = 5021"2

s+ kOr =0,

with boundary conditions

r(T;T) =X , s(T;T) =0

These ordinary differential equations can be solved in closed form (the trasfomation y =
can be used to liearize the first equation). The final result is obtained by setting ¢t =0, T
t, and Y =Y,. We leave the details of the calculation to the reader.

1
r

The probability distribution corresponding to () is called a non-central Chi-square with
4;'29 degrees of freedom. (Footnote: the terminology comes from the fact that if v is an
integer, x1, Ta, ...x, are standard normal random variables (with mean zero and variance

1) and a and b are real numbers, then the random variable

v

Z (ax; + b)?

has moment generating function

1 Avb?

e 0+ 2xaY
(1 + 2Xa?)?

The case b = 0 corresponds to the standard Chi-square distribution (sum of squares of v
independent normals). For b # 0, we have a non-central Chi-square with non-centrality
parameter b. The concept of a fractional number of degrees of freedom stems from analytic
continuation of the dimension v to arbitrary positive real numbers in the above formula.)

From the Laplace transform of the distribution, we can compute the moments of the
distribution, as well as the behavior of the probability density for ¥ < 1.

Corollary: Forx > 0, 6 > 0, we have

E{Y(#)|Y(0) = Yo} = e "'Yy + 0 (1 — ") + Ype **

16



and

2 2 4 9
Var {Y(£)|Y(0) = Yo} = (1 —e ™) | == (1 — e ") + %Yoe_’”

Moreover,

pYo, V) o Y5O "1V <« 1.

It follows from () that 6 corresponds to the long-term mean of Y (¢) and the long-term

2
variance is (%) . Notice the difference with the Gauss-Markov case, where the asymptotic

variance is ‘2’—2 Notice also that the probability density of Y (¢) behaves like a power of

Y (t) near Y = 0, according to ( ). Hence, the noncentral Chi-square with 22¢ > 1 has

o2
smaller tails than the Gaussian density with same mean and variance ( the latter assigns
finite mass to {Y < 0}) and fatter tails than the lognormal distribution (which vanishes

to all orders at Y = 0).

5. The one-factor square-root model:

formulas for discount factors and forward rates

Having characterized the distribution of the state-variable Y, we compute the functions
p(t; T) and q(t; T') which satisfy the equation

Bl = exp[—pt; T)Y(t) — q(t; T) |
and, in particular,

Py = exp[—p(0; T)Y(0) — q(0;7)] .

From the general considerations in §1 (equations (10a) and (10b)), the functions p(¢; T')
and q(t; T') satisfy the ordinary differential equations for p and ¢:

. _ g
p—kp+a=p p(I;T) = 0,



g+ kp +b =0 , q(T;T) = 0.

We observe that the transformations

Y & ay, o & 61/20, K < ak
have the effect of reducing the computation to the case @ = 1. Thus, without loss of
generality, we assume assume in the sequel that @ = a(t; t) = 1.

Equation ( ) which has a quadratic nonlinearity in p, is known as a Ricatti differential
equation. It is well known that Ricatti equations can be “linearized” via the transformation

p:

Y

x

)

where x and y satisfy a linear system of ordinary differential equations of the form
T = A1 xr + B 1Y

y:A2$+Bzy

In fact, it follows from these two equations that

DR
Y Y y?

8

In particular, setting

Alz—BZZg;Blz—l

the function p = z/y satisfies the Ricatti equation ( ). The solution of this equation can
thus be obtained by solving the system



with the boundary conditions

z(T;T) =0 and z(T;7) + y(I;T) = 0.
The latter boundary condition arises from the fact that we assume thata = — [p|,_,. =
t=T
1.)

A straightforward computation of the solution of the system () gives the result

2(1 — e~v(T1)

P(t; T) = o (1 _ e_V(T_t)) + v (1 + e—u(T—t)) ’

where

v = VK2 + 202 .

The function ¢(¢; T') is obtained, by integrating both sides of equation ( ), which gives

g(t; T) = /T b(s)ds + K0 /T p(s; T) ds

a2 (r—t)
e Tk Fv

- 1 — e~ v(T-1) 1 —v(T—t)
o

t

As in the analysis of Gaussian models, b is determined by matching the value of the zero-
coupon bonds PI to the market prices. This can be expressed by equation ( ), which is
equivalent to

4(0; T) + p(0; T)Y(0) = / £(0; ) ds

Setting ¢ = 0 in equation ( ) and solving for fOT b gives therefore
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/5(3) ds = / f(0; 8)ds — p(0; T)Y (0) —

0-2 2T

e ® +v

2wkK0 k(1 —e?T) +v (1 + et
Using this identity, we conclude that

ot T) = / £(0: 8),ds — (p(0; T) — p(0; 8) Y(0) — log A(t; T)

where

K (1 — e_”T) + v (1 + e_”T) o

AT = [(n L —ev)+v@+er)) (s —evTN) + v (l+ e v@N))

We conclude from this that the value at time ¢ of a zero-coupon bond paying $1 at time
T is

PtT — (%i;) A T) -exp [ —p(t; T)Y (t) + (p(0; T) — p(0;¢) Y(0) ] .

Therefore, the stochastic discount factor PT can be expressed as the product of the
forward price for derlivery at time t of a zero-coupon bond maturing at time 7" and a
model-dependent quantity which depends on the volatility of the forward rate curve.

Unlike in case of Gausssian models, the initial value of the state-variable Y (0) and the
long-term mean 6 appear in the expression of the discount factor. This is due to the fact
that the SDE that governs the dynamics of Y (¢) is non-linear and hence the model is not
translation-invariant with respect to Y.

Let us derive formulas for the instantaneous forward rates and the short-term rate. We
have

f&T) = alt; T)Y(t) + b(t; T)
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where a(t; T) = % and and b(¢; T) = %. Therefore, differentiating equations
() and () with respect to T, we obtain

4 p2e v (T—t)

a(t; T) = 5
[k (1 — emvT=D) 4 v (1 + e (T-D)]
and, from ( ),
) _ . B 4 v2e~vTY(0) 202 k(v — k)0 y
b(t; T) = f(0;T) hl 7)1 o (Lt TP + < - )

e_UT e_V(T_t)
k(1 —e*T) + v (1l +evT) g (1 — e v@T-D) + v (1 + e vT=D) |~

Setting T' =t in this last formula, we conclude that the short rate process is given by

o= Y(t) + f(0t) — . ejlyljt)e;”tyY((f)+ punTEE _

20k0 (1 — e v?)
k(1 —evt) + v (1 + e ¥t)

Notice that this function satisfies

42 (T —
a(t,T)%me (T'—1t) for T —t > 1.

This is in qualitative agreement with the Gaussian models, in which v is replaced by k.
Thus, the standard deviation of forward rates decays exponentially with rate v as the
maturity increases. We shall make use of this fact in the study of multifactor square-root
models. In the latter case, “square-root” state-variables with different values of v can be
used to model a desired correlation structure.

5. Multi-factor square-root models
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The analysis presented in the previous section suggests the following multifactor model:

F6T) = ailt; T)Yi(t) + b(t; T)

=1

where the state-variables Y1 (t), ... Yy (t) satisfy the system of partial differential equations

in:a“/YidZier(Gi—Yi)dt 1 SZSN

This is a special case of the general affine structure () for which the diffusion matrix has
diagonal form

Aij = 0i,;Y; Llegi,j < N,

with coefficients that depend linearly on the state-variables.
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