
AFFINE TERM�STRUCTURE MODELS

We study in the present chapter a class of interest�rate models which have the property
that the forward rate curve can be represented as an a�ne function of Markov state
variables� These are the most important models for practical applications� due to their
computational tractability�

The forward rate curve for a�ne models has the form

f�t� T � �
NX
i��

ai�t� T �Xi�t� 	 b�t� T � �
�

where X�t� � �X��t�� X��t�� ���XN�t� � is a vector of state variables satisfying a system
of stochastic di�erential equations

dXi � �ik�X� t� dZk 	 �i�X� t� dt 
 � i � N� 
 � k � � � ���

�Here� the Zk 
s are independent Brownian motions��� Notice that the discount factors PT
t

are exponential functions of the state variables�
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pi�t�T �Xi�t� � qi�t�T �
� ���

Converserly� a term�structure model with the property that the discount factors are expo�
nential functions of a �multidimensional� di�usion process is an a�ne model�

A major advantage of a�ne models is that they can be implemented on the computer
using recombining lattices or �nite�di�erence schemes with relatively low dimensionality
�in practice N � 
� � or ��� This is a consequence of the fact that the state variables are

�We restrict this discussion to state variables which are Markov Ito processes� or di�usions� The study
of Markovian state�variables with jumps� which is relevant for the study of default risk� is beyond the
scope of these lectures�

�



a Markov process� Moreover� the a�ne form of the forward rate curve or� equivalently�
the exponential form of the discount factors� allows us to express any cash��ow which is
a function of forward rates as an elementary function � basically a sum or combination of
exponential functions of the state variables�� A�ne models are thus well�suited for pricing
and hedging American bond options� American swaptions� callable bonds� exotic interest
rate options� etc�� as well as European�style derivatives�

As we shall see� the requirement that the forward�rate curve is an a�ne function im�
plies strong constraints on the process X� In other words� we cannot assign arbitrary
probability distributions to the state variables X and expect to generate an a�ne model�
Roughly speaking� there are three �classes� of a�ne interest�rate models� namely� Gauss�
ian models� Cox�Ingersoll�Ross �CIR� square�root models and the so�called Li�Ritchken�
Sankarasubhramanyam �LRS� models� We will present each of these models in this lecture�

Another advantage of a�ne models is that the volatilities and correlations of forward
rates are easy to compute� Using It�os Formula� we obtain

df�t� T � �
�X

k��

��k�t� T � dZk 	 m�t� T � dt

where ��k�t� T � and m�t� T � are given respectively by

��k�t� T � �
NX
i��

�ik ai�t� T �

and

m�t� T � �
NX
i��

�
�ai�t� T �

�t
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�
	

�b�t� T �

�t
� ���

In particular� the standard deviation of the forward rate f�t� T � is given by

�f �t� T � �

vuut �X
k��

�
NX
i��

�ik ai�t� T �

��

and the correlation factors are

�Notice that� in constrast� the use of a �general� state variable model requires solving partial di�erential
equations to compute the values of the discount factors and forward rates in terms of the state�variables�
Hence� the valuation of interest rate derivatives� such as bond options� would require solving several PDEs
instead of only one�
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Hence the speci�cation of the correlation factors and volatilites �for instance� using a
principal component analysis� is relatively easy and consists in selecting the parameters of
the di�usion equations ��� in such a way that the corresponding coe�cients ai�t� T � lead
to the desired correlation structure �see previous chapter��

In the following sections� we charaterize the distributions for the state�variables that give
rise to a�ne models and compute the corresponding functions ai�t� T �� bi�t� T � pi�t� T �
and qi�t� T ��

�� A characterization of a�ne models

Let us study in more detail the conditions on the distribution of the state�variables X
which give rise to an a�ne model� The main point here is that we want equations �
�
or ��� to hold under a risk�neutral measure� In the interest rate context� a risk�neutral
measure is such that zero�coupon bond prices have a drift equal to the short�term interest
rate� This implies certain restrictions on the coe�cients �i and �ik� as we now show�

The �rst observation is that� since rt � f�t� t�� the short rate satis�es

rt �
NX
i��

ai�t�Xi�t� 	 b�t� � ���

where� for simplicity� we introduced the notation�

ai�t� � ai�t� t� � b�t� � b�t� t� �

We shall make use of the fact that each discount factor PT
t satis�es� under a risk�neutral

measure�

�It is often possible to �normalize� the functions ai
t� T � by imposing the condition ai
t� 
 �� In fact�
whenever ai
t� t� �
 �� this entails no loss of generality� since we can always rede�ne the state�variables
Xi using the trasformation Xi �� ai
t� t�Xi� Nevertheless� there are situations in which ai
t t� 
 �
for some indices i� This corresponds to models in which the short rate depends on a smaller number of
state variables than the entire forward rate curve� One important example is the LRS model�
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Applying It�o
s Formula to equation ���� we �nd that the �lognormal� drift of PT
t is given

by

� �
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where

Aij �
�X

k��

�ik �jk

is the di�usion matrix associated with the process X� Due to the exponential form of
PT
t � we can compute all partial derivatives in the last equation explicitly� The resulting

expression for the drift of the discount factor is

� � �
�

NX
i��

�piXi 	 �q
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Aij pi pj �
NX
i��

�i pi �

where dots represent derivatives with respect to �calendar time� t� Using equation ����
which states that � � rt � and the formula for the short�term interest rate in ���� we
conclude that

�
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Notice that equation ��� implies that the combination
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is an a�ne function of the variables Xi� This leads is to consider the following cases�

Case �� Aij and �i are a�ne functions of the state variables�

Case �� Aij and �i are not a�ne but the combination ��� is an a�ne function�

We shall analyze �rst Case 
 in detail and leave the study of Case � to the end of the
chapter� We set� accordingly�

Aij � A
���
ij 	

X
k

A
���
ij� kXk ��a�

and

�i � �
���
i 	

X
k

�
���
i� k Xk � ��b�

Equating the coe�cients of Xi and the constant terms in the resulting equation� we obtain
a system of ordinary di�erential equations for the coe�cients pi and q� namely�

�pi 	
X
k

�
���
ki pk 	 ai �
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X
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�
A
���
i j pi pj � �
�b�

In view of the fact that PT
T � 
 and equation ���� the functions pi and q must also satisfy

the conditions

pi�T � T � � � � and q�T � T � � � � �

�

Equations �
�a� and the �rst boundary conditions in �

� determine the coe�cients pi�
The last equation is used to obtain q by integating with respect to t and using �

�� In

the case of time�independent coe�cients ���� and A
���
ij � these equations can be solved in

closed form�

In order to characterize the class of a�ne models corresponding to Case 
� we must look
for conditions on Aij and �i which guarantee that the stochastic di�erential equations ���
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admit a solution for all times �so that the state�variables are well�de�ned quantities� and
� in addition to this� we must solve the ordinary di�erential equations satis�ed by the
coe�cients pi and q� For simplicity� we begin with the simplest instance where equations
��� can be solved� which is the Gaussian case�

�� Gaussian models� general case

If we assume that Aij � A
���
ij in equation ��a�� the process X satis�es a linear system

of stochastic di�erential equations

dXi � �i k dZk 	 �
���
i dt 	 �

�i�
i j Xj dt � �
��

Here �i k is the square root of Aij � To solve equation �
��� we introduce the auxillary
matrix�valued function ��t� T � �or transfer function � which solves the �matrix�valued�
di�erential equation

d

d T
��t� T � � �����T � ��t�T � � ��t� t� � I �

where I represents the identity matrix �Iij � 
 if i � j and Iij � � if i �� j�� It is easy
to verfy� using the method of variation of constants� that the solution of the SDE �
��
satis�es

X�t�� � ��t� t�� � X�t� 	 �
t�Z
t

��s� t�� � �����s� ds 	

t�Z
t

��s� t�� � ��s� � dZ�s� � �
��

for all � � t 	 t�� This formula shows that X has Gaussian distribution�	

Let us compute the coe�cients pi�t� T �� Notice that equations �
�a� reduce to a linear
system of ordinary di�erential equations

d pi
d t

	
X
j

pj �
���
j i 	 ai � � �

�Solutions of linear stochastic di�erential equations such as 
�	� are called aGauss�Markov process�
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with boundary conditions � pi�t�T �  t�T � �� The solution of this system can be computed
as follows� let !�t� T � be the solution of the matrix�valued di�erential equation

d

d t
!�t� T � � � !�t� T ������t�

!�T � T � � I �

Using again the method of variation of constants and condition �

�� we �nd that p�t� T � �
�p��t� T �� ���pN �t� T � � is given by

p�t� T � �

TZ
t

a�s� � !�t� s� ds � �
��

where a�s� � �a��s�� ��� aN �s� ��

Given the expressions obtained for Xi and pi� we conclude that the forward rates satisfy
the SDE

df�t� T � �
X
i

�pi�t� T � dXi�t�

�
X
i�k

�pi�t� T ��i k dZk�t� 	 drift terms �

Recall that� from the HJM theorem� the instantaneous covariance structure of the forward
rates determines completey their dynamics under the risk�neutral measure� We conclude�
in particular� that the risk�neutral dynamics are independent of ���� and of the initial value
of the state�variables� Xi���� This allows us to simplify the calculations by introducing the
vector of �reduced state variables� Y � �Yi�t�� ���� YN�t�� such that

Y�t� �

tZ
�

��s� t� � ��s� � dZ�s� �

�Notice that these state variables satisfy the reduced linear SDE

dYi � �i k dZk 	 �
�i�
i k dt � Yi��� � �� �

�



The forward rate curve and discount factors can be expressed in the form

f�t� T � �
X
i

ai�t� T �Yi�t� 	 b�t� T � �
��

and

PT
t � exp �� pi�t� T �Yi�t� � qi�t� T �  � �
��

where b�t� T � and qi�t� T � depend only on ai � �i k� �
���
i k and the current forward rate curve

f��� T �� but not on �����


It remains to compute the coe�cient q�t� T �� This is done by integrating both sides of
equation �
�b� from t to T � assuming ���� � �� The result is

q�t� T � �

TZ
t

b�s� ds � 


�

TZ
t

X
i� j

A
���
ij �s� pi�s� T � pj�s� T � ds � �
��

Notice that we have not yet speci�ed the function b� We claim that �consistently with the
HJM theorem� this function is determined by the condition that the model prices correctly
all zero�coupon bonds PT

� � T 
 �� In fact� equating the forward rate curve at time t � �
to the a�ne function in �
�� de�ning the forward rate curve� we have

f��� T � � b��� T � �
�q��� T �

�T
�

We shall use this relation and equation �
�� to determine b� Di�erentiating equation �
��
with respect to T and setting t � �� we have

�q��� T �

�T
� b�T � � �

�T
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X
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A
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ij �s� pi�s� T � pj�s� T � ds

� b�T � �
TZ
�

X
i� j

A
���
ij �s�

�pi�s� T �

�T
pj�s� T � ds �

�Notice that we have kept the same notation for the coe�cients b
t� T � and q
t� T � in the reduced
representation� This is a harmless abuse of notation� since the latter functions have not yet been speci�ed�
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where we used the boundary conditions �

� and the symmetry of the matrix Aij �

Hence� we conclude that the function b is given by

b�T � � f��� T � �
TZ
�

X
i� j

A
���
ij �s�

�pi�s� T �

�T
pj�s� T � ds �

The coe�cient q�t� T � is recovered by substituting this expression into formula �
��� After
some computation� we obtain the following expression for q�t� T ��

q�t� T � �

TZ
t

f��� s� ds � 


�

tZ
�

X
i� j

A
���
ij �pi�s� T � pj�s� T � � pi�s� t� pj�s� t� � ds

�

TZ
t

f��� s� ds 	 q��t� T � �
��

where we set

q��t� T � � � 


�

tZ
�

X
i� j

A
���
ij �pi�s� T � pj�s� T � � pi�s� t� pj�s� t� � ds � �
��

This result shows that the term�structure of interest rates can be ��tted� to the Gaussian
term structure model with speci�ed volatility structure by choosing b �or� equivalently�
q�t� T �� or b�t� T � � as a function of ai� �ik� �

��� and the current forward rate curve� Some
practitioners call b�t� the �fudge factor� � it is the term that needs to added to the linear
combination of state variables in order to �t the current term�structure�

Gaussian models enjoy an interesting �factorization property� with regards to the dis�
count factor� In fact� recalling that

e
�

tR

�

f��� s� ds
�

PT
�

P t
�

�

we conclude from �
�� that the value of the discount factor at time t is given by

PT
t �

PT
�

P t
�

� exp

� X
i

� pi�t� T �Xi�t� � q��t� T �

�
����

�



This formula shows that the discount factor can be factorized into the product of a term
that depends on the current term�structure of interest rates PT

� �P
t
� �this is the �forward

price of a loan of "
 at the future time t for the period of time T � t � and an term that
depends only on the volatility of forward rates� This factorization will prove useful later
on for computing the values of caps�

�� Gaussian models� explicit formulas

In the previous section� we derived formulas for the discount factors of Gaussian models

for general parameters �
���
ij and A

���
ij � using the formalism of trasfer matrices� In this

section� we obtain more explicit expressions by making two simplifying assumptions� �rst�
that the matrix ���� is diagonal and second� that the parameters are constasnt in time��

Accordingly� we set

�
���
ij � � �i �ij �

and

A
���
ij � �i �j 
ij �

Under these assumptions� it is easy to check that the resolvents !�t� T � and ��t� T � are
diagonal� with

!ii�t� T � � �ii�t� T � � e��i�T � t� � i � 
� �� ��� N �

and that the functions pi�t� T � and ai�t� T � are given by

pi�t� T � �
ai
�i

�

 � e��i�T � t�

�
� ai�t� T � � ai e

��i �T�t� �

Notice that the SDE for the �reduced� state�variables is

dYi � ��i Yi dt 	 �i dZi �

�In practice� the latter assumption may not be appropriate if we wish to calibrate the model to a �term
structure� of option prices� Nevetheless� we discuss the constant coe�cients case because it leads to simple
mathematical expressions� The assumption that ���� is diagonal is bene�cial� in our opinion� because it
makes the speci�cation of the correlation structure more �transparent�� as we shall see�
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with E � dZi dZj � � 
ij dt � Each state variable behaves like a mean�reverting or mean�
repelling Gaussian process� according to the sign of �i�

Using equation �
��� we conclude after a straightforward �but tedious� calculation that

q�t� T � �

TZ
t

f��� s� ds �

X
i j

ai aj �i �j 
ij
��i �j




 � e��i �T�t�

�i
	


 � e��j �T�t�

�j
� 
 � e���i��j� �T�t�

�i 	 �j

�
�

The coe�cient b�t� T � is obtained by di�erentiating with respect to T � Accordingly�

b�t� T � � f��� T � �

X
i j

ai aj �i �j 
ij
��i �j

h
e��i �T�t� 	 e��j �T�t� � e���i��j� �T�t�

i
�

The expression for the �fudge factor� for the short�rate process� b� follows from setting
T � t in this last expression� We have

b�t� � f��� t� �

X
i j

ai aj �i �j 
ij
��i �j

h
e��i t 	 e��j t � e���i��j� t

i
�

We conclude that the short rate process for the Gaussian model with constant coe�cients
and diagona ���� has the form

rt � f��� t� 	
X
i

ai �i

tZ
�

e��i�t� s� dZi �

X
i� j

ai aj �i �j 
ij
��i �j

h
e��i t 	 e��j t � e���i��j� t

i
�

��



This formula is analogous to the one obtained in the previous chapter when we discussed
the Modi�ed Vasicek model�

Notice that the �mean�reversion parameters� �� determine the shape of the correlation
factors� as explained in the previous chapter�

�� Square�root models� probability distribution

of the state variables

Another imortant class of stochastic process that give rise to a�ne models are the
square�root processes� These processes are discussed in classical Probability textbooks
�e�g Feller� 
��#� and were introduced in term�structure modelling in Finance by Cox�
Ingersoll and Ross � � � See Longsta� and Schwartz � �� Scott � � and Du�e and Kan � �
for in�depth studies and extensiones of these models�� In this section� we concentrate on
one�factor square�root models� with emphasis in the probability distribution of the state
variable�

Historically� the use of square�root processes was motivated by the fact that the state�
variables are positive� This is an important advantage over Gaussian models� which lead
unavoidably to negative interest rates� In addition to the issue of positive rates� the square�
root processes o�er a greater variety of distributions for the state variables and hence for
the forward rates�

The material from this section draws from the classical discussion of the CIR model
�see� for instance� ####��Nevertheless� our presentation di�ers from classical discussions of
the CIR model because we treat the square�root process as a state�variable of an a�ne
term�structure model� rather than as the short�term interest rate�

Following the general classi�cation of a�ne models in x
� we consider the case of one�
factor models �N � 
� for which the di�usion coe�cient a � a� � is an a�ne function of
the state variable� i�e��

a � a��� 	 a���X �

According to this equation� X satis�es the SDE

dX �
p
a��� 	 a���X dZ 	

�
���� 	 ����X

�
dt �

�	



For simplicity� we shall assume that all the coe�cients appearing in the latter equation are
constant �independent of t�� This equation de�nes a stochastic process X�t� for all times
provided that a��� 	 a���X�t� remains positive for all times� We will investigate this
issue in detail now�

To �x ideas� assume that

a��� � �� 
 �

and set

Y �
a���

a���
	 X �

From � �� we see that the stochastic process Y satis�es formally the SDE

dY � �
p
Y dZ 	 � �� � Y � dt

where

� � � ���� and � � �����

����
	

a���

a���
�

Equation � � can thus be viewed as the �standard form� of a one�dimensional square�
root process� The main question of interest is to determine conditions on the coe�cients
�� � and � which ensure that Y �t� is well�de�ned for all t 
 �� Unlike the Gaussian case�
the solution of equation � � cannot be expressed in a simple form using Ito integrals� Nev�
ertheless� the distribution of Y �t� can be studied using the PDE satis�ed by its probability
density� The main result is sumarized in the following proposition�

Proposition �� Suppose that Y ��� 
 �� Then�

�i� the SDE � � admits a solution Y �t� which is strictly positive for all t 
 � if and
only if

� � 




�
�� �

�ii� If

� 	 � � � 


�
�� �

the process Y �t� vanishes with probability �� Nevertheless� there exists a unique solution of
equation � � which remains non�negative for all times t 
 ��

��



Assuming that � � 
 �� there are two subcases	 �a�� If � 
 � and � 
 �� the process
Y �t� has a long�term equilibrium Gamma distribution with density function

p�Y � �

�
��
��

�
$
�
���
�� � 


� � Y �� �
��

� � exp

�
� ��

��
Y

�
�

where $�p� �
�R
�

xp e� x dx is the Gamma function� �b� If � 	 � and � 	 �� then the

process Y �t� converges to 	� as t � � with probability ��

�iii� If � � � �� the process Y �t� vanishes at a 
nite time and is absorbed at zero with
probability ��

We give a proof of these statements in the Appendix� This proposition can be interpreted
intuitively as follows� for Y �t� � �� the contribution to the dynamics of Y �t� which comes
from the Brownian motion becomes negligible� The dynamics are therefore controlled by
the drift term� which is proportional to � �� A positive drift has the e�ect of �pushing� the
state variable into the half�line fY 
 �g� In contrast� a negative or vanishing drift will
not drive the state variable to positive values after Y � � is touched for the �rst time� This
means that the solution of the SDE cannot exist beyond the �rst time that that Y �t� � ��
�Unless a restoring mechanism is speci�ed exogenously� for instance using a jump process
at Y � ��� The distinction between cases �i� and �ii� is more subtle but can also be
uderstood heuristically� In fact� assume that the state variable is very near the boundary�
at a distance �� 
� The time required for di�using towards zero by Brownian motion is
proportional to the distance to zero��� divided by the di�usion coe�cient� Therefore� it is
of order �at least�

�diff 	 ��

�� �
�

�

��

On the other hand� the time rquired to drift upward �in the positive direction� by an
amount � is

�drift 	 �

� �
�

Therefore� the probability of hitting zero is controlled by the ratio
�diff
�drift

� � �
�� � This

argument is made more precise in the Appendix using PDE methods�

Notice that in case �i� the density function vanishes at Y � � whereas case �ii� gives

rise to an asymptotic distribution that has a singularity at Y � � if � � 	 ��

� and to

an exponential distribution in the �marginal case� � � � ��

� � It is easy to check that
p�Y � converges to a Dirac delta function at Y � � in the limit � � � �� which show

��



that for � � � � the process is absorbed with probability 
� The tails of the equilibrium
distribution are therefore controlled by the ratio � �

��
�

Next� we characterize the distribution of Y �t� at �nite times� Setting Y ��� � Y�� the
probability density can be represented as a function of three variables�

p �Y�� t� Y � �

This function is most easily characterized by its Laplace transform �or moment�generating
function�

�p�Y�� t� �� �

�Z
�

e�� Y p �Y�� t� Y � dY � E
n
e�� Y �t� j Y ��� � Y�

o
�

This moment�generating function can be computed in closed form�

Proposition �� Assume that Y� 
 � and that � � 
 �� Then

�p�Y�� t� �� �

�

	 � ��

�� �
 � e�� t �
� �� �

��

� exp

�
�� Y� e

�� t


 	 � ��

�� �
 � e�� t�

�
�

Proof� The calculation of �p�Y�� t� �� is done observing that the expectation

p�Y� t� T � � Et

n
e��Y �T � j Y �t� � Y

o

satis�es the partial di�erential equation

pt 	
�� Y

�
pY Y 	 � �� � Y � pY � �

p�Y� T� T � � e�� Y

A solution of this PDE can be sought in the form

p�Y� T� T � � exp � �r�t� T �Y � r�t� T � � �

��



Substitution of this function into the PDE � � shows that the functions r�t� T � and s�t� T �
satisfy the ordinary di�erential equations

�r � � r �



�
�� r�

�s 	 � � r � � �

with boundary conditions

r�T � T � � � � s�T � T � � �

These ordinary di�erential equations can be solved in closed form �the trasfomation y � �
r

can be used to liearize the �rst equation�� The �nal result is obtained by setting t � �� T �
t� and Y � Y�� We leave the details of the calculation to the reader�

The probability distribution corresponding to � � is called a non�central Chi�square with
	� �
��

degrees of freedom� �Footnote� the terminology comes from the fact that if � is an
integer� x�� x�� ���x� are standard normal random variables �with mean zero and variance

� and a and b are real numbers� then the random variable

�X
i��

�a xi 	 b��

has moment generating function




�
 	 �� a��
�
�
� e� � � b�

�� � ��a�� �

The case b � � corresponds to the standard Chi�square distribution �sum of squares of �
independent normals�� For b �� �� we have a non�central Chi�square with non�centrality
parameter b� The concept of a fractional number of degrees of freedom stems from analytic
continuation of the dimension � to arbitrary positive real numbers in the above formula��

From the Laplace transform of the distribution� we can compute the moments of the
distribution� as well as the behavior of the probability density for Y � 
�

Corollary� For � 
 �� � 
 �� we have

E fY �t� jY ��� � Y� g � e�� t Y� 	 �
�

 � e� t

�
	 Y� e

�� t

��



and

Var fY �t� jY ��� � Y� g �
��

��

�

 � e�� t

� 
 ��

��

�

 � e�� t

�
	

�� �

��
Y� e

�� t

�
�

Moreover�

p�Y�� t� Y � 	 Y
�� �
��

� � � Y � 
 �

It follows from � � that � corresponds to the long�term mean of Y �t� and the long�term

variance is
�
��

��

��
� Notice the di�erence with the Gauss�Markov case� where the asymptotic

variance is ��

�� � Notice also that the probability density of Y �t� behaves like a power of

Y �t� near Y � �� according to � �� Hence� the noncentral Chi�square with ���
�� 
 
 has

smaller tails than the Gaussian density with same mean and variance � the latter assigns
�nite mass to fY � �g� and fatter tails than the lognormal distribution �which vanishes
to all orders at Y � ���

	� The one�factor square�root model�

formulas for discount factors and forward rates

Having characterized the distribution of the state�variable Y � we compute the functions
p�t� T � and q�t� T � which satisfy the equation

PT
t � exp � � p�t� T �Y �t� � q�t� T �  

and� in particular�

PT
� � exp � � p��� T �Y ��� � q��� T �  �

From the general considerations in x
 �equations �
�a� and �
�b��� the functions p�t� T �
and q�t� T � satisfy the ordinary di�erential equations for p and q�

�p � � p 	 a �
��

�
p� p�T � T � � � �

��



�q 	 �� p 	 b � � � q�T � T � � � �

We observe that the transformations

Y 
 aY� � 
 a��� �� � 
 a�

have the e�ect of reducing the computation to the case a � 
� Thus� without loss of
generality� we assume assume in the sequel that a � a�t� t� � 
�

Equation � � which has a quadratic nonlinearity in p� is known as a Ricatti di�erential
equation� It is well known that Ricatti equations can be �linearized� via the transformation

p �
x

y
�

where x and y satisfy a linear system of ordinary di�erential equations of the form

�x � A� x 	 B� y

�y � A� x 	 B� y �

In fact� it follows from these two equations that

�
x

y

�	

�
�x

y
� x �y

y�

�
A� x 	 B� y

y
� x �A� x 	 B� y �

y�

� B� 	 �A� � B��

�
x

y

�
� A�

�
x

y

��

�

In particular� setting

A� � �B� �
�

�
� B� � �
 � A� � � ��

�
�

the function p � x�y satis�es the Ricatti equation � �� The solution of this equation can
thus be obtained by solving the system

�x �
�

�
x � ��

�
y

��



�y � � x � �

�
y

with the boundary conditions

x�T � T � � � and �x�T � T � 	 y�T � T � � � �

�The latter boundary condition arises from the fact that we assume that a � � � �p t�T �

��

A straightforward computation of the solution of the system � � gives the result

p�t� T � �
�
�

 � e� � �T�t�

�
�
�

 � e� � �T�t�

�
	 �

�

 	 e� � �T�t�

� �

where

� �
p
�� 	 ��� �

The function q�t� T � is obtained� by integrating both sides of equation � �� which gives

q�t� T � �

TZ
t

b�s� ds 	 ��

TZ
t

p�s� T � ds

�

TZ
t

b�s� ds 	 ��

�
��

��

�
log

�
�
�

 � e� � �T�t�

�
	 �

�

 	 e� � �T�t�

�
�� e�

�� �T�t�
� ��

�
�

As in the analysis of Gaussian models� b is determined by matching the value of the zero�
coupon bonds PT

� to the market prices� This can be expressed by equation � �� which is
equivalent to

q��� T � 	 p��� T �Y ��� �

TZ
�

f��� s� ds �

Setting t � � in equation � � and solving for
R T
� b gives therefore

��



TZ
�

b�s� ds �

TZ
�

f��� s� ds � p��� T �Y ��� �

����

��
log

�
�
�

 � e� � T

�
	 �

�

 	 e� � T

�
�� e�

�� T
� ��

�
�

Using this identity� we conclude that

q�t� T � �

TZ
t

f��� s�� ds � �p��� T � � p��� t�� Y ��� � logA�t� T �

where

A�t� T � �

�
�
�

 � e� � T

�
	 �

�

 	 e� � T

�
�� �
 � e� � t � 	 � �
 	 e� � t � � � �� �
 � e� � �T�t�

�
	 �

�

 	 e� � �T�t�

� �
� ����

��

We conclude from this that the value at time t of a zero�coupon bond paying "
 at time
T is

PT
t �

�
PT
�

P t
�

�
�A�t� T � � exp � � p�t� T �Y �t� 	 �p��� T � � p��� t�� Y ���  �

Therefore� the stochastic discount factor PT
t can be expressed as the product of the

forward price for derlivery at time t of a zero�coupon bond maturing at time T and a
model�dependent quantity which depends on the volatility of the forward rate curve�

Unlike in case of Gausssian models� the initial value of the state�variable Y ��� and the
long�term mean � appear in the expression of the discount factor� This is due to the fact
that the SDE that governs the dynamics of Y �t� is non�linear and hence the model is not
translation�invariant with respect to Y �

Let us derive formulas for the instantaneous forward rates and the short�term rate� We
have

f�t� T � � a�t� T �Y �t� 	 b�t� T �

	�



where a�t� T � � 
p�t�T �

T and and b�t� T � � 
q�t�T �


T � Therefore� di�erentiating equations
� � and � � with respect to T � we obtain

a�t� T � �
� �� e� � �T�t��

�
�

 � e� � �T�t�

�
	 �

�

 	 e� � �T�t�

� �� �

and� from � ��

b�t� T � � f��� T � � � �� e� � T Y ���

� � �
 � e� � T � 	 � �
 	 e� � T �  
� 	

�
��� � �� � �� �

��

�
�

�
e� � T

� �
 � e� � T � 	 � �
 	 e� � T �
� e� � �T�t�

�
�

 � e� � �T�t�

�
	 �

�

 	 e� � �T�t�

�
�
�

Setting T � t in this last formula� we conclude that the short rate process is given by

rt � Y �t� 	 f�� t� � � �� e� � t Y ���

� � �
 � e� � t � 	 � �
 	 e� � t �  �
�

�� � � �
 � e� � t�

� �
 � e� � t � 	 � �
 	 e� � t �

Notice that this function satis�es

a�t� T � � ���

�� 	 ���
e�� �T � t� for T � t � 
 �

This is in qualitative agreement with the Gaussian models� in which � is replaced by ��
Thus� the standard deviation of forward rates decays exponentially with rate � as the
maturity increases� We shall make use of this fact in the study of multifactor square�root
models� In the latter case� �square�root� state�variables with di�erent values of � can be
used to model a desired correlation structure�

	� Multi�factor square�root models

	�



The analysis presented in the previous section suggests the following multifactor model�

f�t� T � �
NX
i��

ai�t� T �Yi�t� 	 b�t� T �

where the state�variables Y��t�� ��� YN�t� satisfy the system of partial di�erential equations

dYi � �i
p
Yi dZi 	 �i ��i � Yi � dt 
 � i � N�

This is a special case of the general a�ne structure � � for which the di�usion matrix has
diagonal form

Ai j � �i� j Yi 
 leq i� j � N �

with coe�cients that depend linearly on the state�variables�

		


