THE HEATH-JARROW-MORTON THEOREM
EDITED March/Laurence

This chapter describes the fundamentals of term-structure modeling from the point of
view of Arbitrage Pricing Theory. The main question that we address is how to construct
a risk-neutral probability measure for the evolution of the the term-structure of interest
rates. The term-structure is represented by the collection of discount factors

(1) PtT:Ef{e—ftT’“st}, T >t

or, equivalently, by the instantaneous forward rates

P — [T r,ds
. L B {e . ’ } _1 _ 8109(PtT)
At — 0 At Ef { o= ftT+At r. ds } = 78T .

The main theoretical result of the chapter is the Heath-Jarrow-Morton (HJM) charater-
ization of the risk-neutral measure for the evolution of forward rates. This can be seen as
the analogue of the Black-Scholes-Merton characterization of the risk-neutral measures of
for equities, in the fixed-income context. Following the derivation of the HJM theorem, we
present a few examples which can be solved in closed-form. We then discuss “multifactor”
models: i.e., the modeling of correlations between different sectors of the forward rate
curve.

1. The Heath-Jarrow-Morton Theorem

In addition to the basic postulates of Arbitrage Pricing Theory we assume that
(i) agents have the highest credit quality and can borrow and lend at the same rates; and
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(ii) at any time, there is a liquid market in zero-coupon bonds of arbitrary forward maturities
(“yield-curve completeness”).

The last assumption is new. It postulates that the market is “complete” with respect
to (optionless) loans of arbitrary maturities. The expression “arbitrary maturities” is
understood here as meaning a continuum of maturities T < Tp,... From a practical
point of view, yield-curve completeness is tantamount to assuming that there exist enough
debt instruments so that investors can lend and borrow money for arbitrary maturities
T, t < T < Ty at interests rates which are known at the date the loan is made
(t). This assumption is well-suited for modeling mature debt markets, such as the Eu-
rodollar/LIBOR swaps market, the U.S. Government bond market, and the debt markets
of European Community member countries, all of which have liquid instuments with ma-
turities spanning from a few months to over 15 years ( interest-rate futures, bonds, bond
futures, swaps, FRAs, bank loans, etc ). The existence of such a large class of debt instru-
ments allows traders to know, at each point in time and with high precision, any term rate
on the yield curve. More precisely, although zero-coupon bonds may not actually be traded
for all maturities, it is possible to synthetize them using other debt instruments and thus
to price them by no-arbitrage considerations. In constrast, then concept of a continuous
yield curve does not apply to markets where there are only a few traded instruments, like
the debt markets in emerging economies. In the latter cases, forward prices may not be
readily derived from those of existing instruments. Therefore, yield-curve completeness
is not appropriate for modeling any debt market. Nevertheless, as we shall see, it is a
powerful modeling tool.

Our goal is to characterize the evolution of the discount factors PtT bt < T < Thas
in a no-arbitrage economy. For this purpose, let us assume that there are v risk-factors in
this economy, represented by uncorrelated Brownian motions W;(t), t > 0, =0, ...r, and
that PI satisfy

dpPT Y
(3) S = Yot T AWi(t) + mt Tt ¢ <T.
t i=1

Here u;(t; T) and o;(t; T') are, respectively, the instantaneous means and variances, la-
belled by the maturity date (7). We make no a priori assumptions regarding the depen-
dence of these parameters on the underlying risk factors, rates, etc. In other words, the
instantaneous mean and variance are allowed to depend on state-variables, interest rates,
forward rates, and so on. The only restriction imposed is that these functions be adapted
processes, i.e. that o;(¢; T') and p;(¢; T) are known given the information available at time
t. Essentially, we assume here the general setting of continuous-time finance, in which
prices are Ito processes. We do not discuss the case in which there are discountinuities
(jumps) in asset prices. Another restriction imposed on the dynamics of prices, implicit
in equation (3), is the fact that there are finitely many (v) risk factors. We postpone the
discussion of how to determine v and the specific forms of the parameters o;(t; T').



A simple observation, which leads to the characterization of the risk-neutral measure,
is the fact that discount factors are prices of zero-coupon bonds. From the assumption
of yield-curve completeness, zeros are traded securities (or, more precisely, synthetizable
using tradeable securities, which has the same consequences). Hence, we must have, under
a risk-neutral measure,

pit; T) = re

where r; is the short-term rate, i.e.,

= ) oi(t; T)dWi(t) + redt ¢ <T.

1=1

(4)

Here, we used the fact that zero-coupon bonds pay no dividends before maturity. Notice
that the short rate r; is itself determined by the discount curve, since

o 1 B log(Pl)
(5) Ty = ArltZ@OAt <Ptt+At 1) = [ ST o

To express the risk-neutral measure in more “transparent” form, we shall work with forward
rates instead of discount factors. In view of equation (3), we shall first derive an SDE for
log(PT) . Applying It6’s Formula to this variable, we have

174 1 174
dlog(PT) = ZUi(t; T)dW;(t) + redt — §Zgi(t; T)oi(t; T)dt , t <T.

Differentiating this equation with respect to T, and taking into equation account (2), we
obtain

(7) —dfit;T) = idi(t; T)dW;(t) — (z’j: oi(t; T) oi(t; T)) dt , t <T,

1=1 1=0

where &;(t; T') represents the derivative of o;(¢; T') with respect to T. Using the fact that
—W;(-) is also distributed like a Brownian motion, we obtain in this way a stochastic
differential equation that describes the evolution of the forward-rate curve under the risk-
neutral measure, namely,



174 174

() dfT) = St TV awi) + [ 3 il T)/di(t; sds| dt ¢ <T

1=1 1=0

This equation is generally known as the Heath-Jarrow-Morton equation who first
derived it in a series of celebrated papers (cf. HIM 1989, 1992).

The coefficient ;(t; T') represents the instantaneous standard deviation of the forward
rate f(t; T) contributed by the i*" factor. More precisely. these coefficients determine the
instantaneous covariance of forward rates, since equation () implies that

v

(9) Cov (df(t; Tv), df(t; Ta)) = > 6i(t; Ty) 6(t; To) dt

1=1

The HJM equation provides an exact relation that must hold between the instantaneous
standard deviations and drifts of forward rates in the absence of arbitrage, assuming yield-
curve completeness. It can be viewed as the analogue, in the context of fixed-income, of
the characterization of the risk-neutral measure for stocks and commodities (drift= riskless
rate minus dividend rate) derived by Black & Scholes [] and Merton []. We shall also refer
to this charaterization as the Heath-Jarrow-Morton theorem.

Using the HIM equation, we can derive a differential equation that describes the evo-
lution of the short rate r; under the risk-neutral measure. For this purpose, let us write
the HJIM equation in integral form, viz.,

(10)

ft;T) = f(0; ) + / Z 7i(s; T)/ o(s;u)du | ds + / oi(s; T) dW;(s) .

=1 =1

N

Recalling that 7, = f(¢; t), we have

174 ¢ 174

(11) ry = f(0;¢) + /t Zdi(s; t)/d(s; w)du | ds + /t di(s; t) dWi(s) .

=1 s =1

This equation shows that r; is an Ito6 process under the risk-neutral measure, satisfying
the stochastic differential equation



(12) dry = oy (t) dZ(t) + p.(t)dt,

with mean

(13)

we(t) = F(0; t) + Z / ds | (65(s; 1)) + o} (s t) / di(s;u)du | ds+ Z o; (s; t) dW;(s)
i=1 7 , i=1

(here (o) = g;,;) and with standard deviation

v

onlt) = |3 (6ilts 1))

1=1

These equations show, in particular, that the drift of the short rate is a function of the
past history of forward rate volatility and thus possibly of the forward rates themselves,
according to the specification of the volatility used. The latter observation leads to the
interesting questions regarding the practical implementation of such models that will be
discussed later.

The HJM theorem is interesting for the following reasons:

- it focusses on the forward rate curve and on the instantaneous covariance of forward
rates, as opposed to more abstract state variables;

- It shows that the “risk premia”, or “market prices of risk” (Ay(¢),...A,(¢)) introduced
in the APT framework, are completely determined by the initial curve f(0; T') and the
instantaneous covariance matrix Cov{df (t; T) df (t; T') }.

The HJM theorem shows that it is possible to model directly the evolution of the (ob-
servable) forward rates, as opposed to modeling the evolution of (often unobservable)
“fundamental” state variables (Xi(t), ..., Xn(t)) from which the curve is derived. This
represents a significant advantage. Moverover, from a computational point of view, the
reader should recall that in a “state-variables” model, asset prices discount factors are func-
tions of the state variables, obtained by solving Fokker-Plank partial differential equations.
Since the cashflows of fixed-income securities are themselves functions of the zero-coupon
bond prices, pricing derivative securities in the “state-variable” framework typically re-
quires first solving auxilliary PDEs to determine the values of the payoffs, followed by
another PDE for computing the present value of the payoffs. On the other hand, in the
HJM framework, there is no need to perform auxiliary calculations (for pricing European
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style derivatives): the state-variables are the forward rates. This make the HIM paradigm
very useful.

Summarizing, the “HJM approach” to term-structure modeling consists in specifying
a structure for the instantaneous covariance of forward rates,( d;(¢; T), i = 1,2, ..v).
Under the assumption of yield-curve completeness, this gives rise to a stochastic differential
equation for the forward rate curve in a risk-neutral world. This equation can be used to
calculate the present value of any cashflow that can be expressed as a function of the
forward rate curve at any time in the future. Let us mention, however, that there are
very few “HJM models” (i.e. models for the instantaneous covariance of forward rates)
that give rise to analytic solutions for the HJM equations. In practice, the computation of
expected cashflows is usually done by Monte Carlo simulation.



2. The Ho-Lee model

The simplest illustration of the HJM theorem arises in the case of a single risk-factor
(v =1) and a constant variance of forward rates, i.e.

o(t; T) = o = constant.
In this case, the HIM equation becomes

T
df(t; T) = odW(t) + O'/O'ds dt = odW(t) + o (T —t) dt
t

This equation admits an explicit solution, obtained by integrating with respect to ¢, namely

(14) f&T) = £(0;T) + oW (t) + o? <Tt — %R)

This model is known as the Ho-Lee model [|.

Let us examine the corresponding dynamics of the foward rate curve implied by equation
( 14). Clearly, the deformations of the curve associated with the Ho-Lee model correspond
to a “shift” of the initial forward rates by the linear shock

L(T)= oW(t) + o> (Tt — %t2>

(15) = oW(t) + a2§ + o?t(T — t) .

The slope of the perturbation is, from (), equal to o2 ¢. In particular, the shock amplitude
increases with maturity. The value of the line at the shortest maturity 7" = ¢ represents
the shock to the short rate, which is given by

2t2

2

o

re = f(0;t) + oW (t) +

Another way to express the structure of the forward rate curve under the Ho-Lee model
is through the equation



f&ET) = re + o2t (T — t) +f(0;T) — f(0:t) .

In particular, forward rates are perfectly correlated with the short term rate (and thus
with each other). This is a common feature of all one-factor models (v = 1) since only
one source of randomness drives all rates.

Perfect, correlation is a limitation of one-factor models which makes them of little use
for pricing complex derivatives such as options on the slope of the forward rate curve. In
the extreme case of the Ho-Lee model, the difference between two forward rates observed
at time t is, in fact,

[T — f(5T) = f(0;Ty) — f(0;Te) + ot (T — To),

a deterministic function. Market participants generally believe that forward rates are not
perfectly correlated: an option on the difference between two forward rates (or two bond
yields) should have a positive premium. Econometric analysis also points to an imperfect
correlation between forward and spot rates (see Scott []). For instance, the correlation
between spot 6-months LIBOR and 20-years forward 6-month LIBOR is believed to be
approximately 40%. (This statement is about the “real world” probability, as opposed to
the risk-neutral measure, but the price evidence usually supports imperfect correlation as
well.) Another limitation of Ho-Lee, which we shall address in the next section, is the fact
that shocks to the forward curve increase with maturity.

The Ho-Lee model is analytically tractable; this is its main theoretical interest. Recalling
(eg. (4), (8)), the relation between zero-coupon bond volatility and forward rate volatilities,
we find that the volatility of a zero coupon bond with maturity 7T is given by

o(t; T) = /ads = (T-t)o.

Since the risk-neutral drift of a zero coupon bond is the short-term rate, we obtain the
stochastic differential equation

= (T —t)o dW(t) + <f(0; )+ oW(t) + ”?2) dt .

In the Ho-Lee model, the prices of zero-coupon bonds follow a lognormal diffusion with a
volatility proportional to the to the time-to-maturity. An explicit expression for the price
of a zero coupon bond maturing at date T" given the forward rate furve at date 0 is

T J f(t;s)
t;s)ds
Ft = et



[ (108 + o W) + 0% (1 = %) ) ds
= e

T
— [ oW(s)ds o2 Ti(T—¢)
t 2

_ pT
= Fy -e e

This formula can be used, in turn, to compute the dynamics of swap rates and zero-coupon
bonds, which can then be used to price interest rate derivatives according to this model.
Details of option pricing calculations using the Ho-Lee model will be studied in a separate
lecture.

3. Mean reversion: the modified Vasicek model

Another example of HJM dynamics that deserves attention is the case when v =1 and
forward rates are Gaussian with

ot; T) = ce "=

where k is a positive constant The idea behind this is that the volatility of forward rates
is allowed to decrease with maturity. Let us investigate the consequences of this volatility
assumption. The HJM evolution of forward rates is

T
df(t; T) = oe TN aw(t) + [oe®TH / oce " ds | dt

t

2
— o TD qw(r) + o (e—n(T—t) _ e—2n(T—t)> di .

K

Integrating with respect to t, we obtain

t
FT) = J01) b0 [T aw) - T (1 e )’
0



Introducing the notation

X(t) = / e (=5 g7 (s) |

and using the fact that

t
/ e~ (T=5) G (s) = e="T=0 X (¢)
0

we obtain the following formulas for f(¢; T') and ry:

FET) = f0;T) +e T X(1) — —— (1 — eI )2 + 2 (1 — et
and
re = f0;8) + 0 X(t) + —— (1 — e"")* .

2 K2

This is known as the modified Vasicek model (Vasicek (1977), Hull and White (1989),
Heath-Jarrow-Morton (1992)). The formulas show that the forward rates and the instan-
taneous short rate are linear functions of the same Gaussian process X (¢): once again we
observe perfect correlation of forward rates.

Nevertheless, there is an important difference with respect to the Ho-Lee model (k = 0).
In the latter case, the short rate tends to infinity as t — oo, whereas the short rate remains
finite when & is positive. More precisely, the short rate process behaves asymptotically for
t > 1 like

Ty R f(O;t) +O'X(t) + 2—’€2;

which is a Gaussian random variable with mean
foo(t) = f(058) + 5

and variance
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t
02 = 0’ E /e_'“(t_s) dW (s)
0

t
— 0_2 /6—2K,(t—s)d8
0

(t>1).

2
|

In the modified Vasicek model, short-rate fluctuations have a non-trivial asymptotic prob-
ability distribution. This fact is known as mean-reversion of the spot rate and & is called
the rate of mean reversion. At the level of forward-rates, notice that, for large T', we
have

FET) =~ fO;T) + T X)), T > 1,

The effect of having an exponentially decayng volatility of forward rates is to generate
yield curve shocks that have exponentially decreasing amplitudes as the maturity dates
increases: the “front end” more volatile than the “back end”. The short-term rate is
asymptotically in long-term equilibrium about the mean p.,. Notice that the variance of
the asymptotic distribution is inversely proportional to the rate of mean reversion. Thus,
for large x , the equilibrium distribution of the short rate is sharply concentrated about
the forward rate curve, with a small upward bias. For small rates of mean reversion, the
short rate has wide fluctuations about the forward curve and a large positive bias.

As in the Ho-Lee model, zero-coupon bond prices are lognormal and can be computed
explicitly. Thus, the model is quite tractable for computing option prices, as we shall see
later on.

4. Multi-factor models: specifying the

correlations of forward rates

In this section we discuss the specification of the correlation of forward rates. This
question, including the determination of the number of factors (v) , has been a central
issue in “pure” interest-rate modeling. It has consequences in terms of pricing derivative
securities that depend on the slope of the forward curve, such as swaptions and bond
options.
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Let us begin with a brief digression, considering a debt market with only a few traded
instruments (e.g. three instruments: a short-term discount bond, 5- and and 30-year
bonds). Here, we do not assume yield-curve completeness. In this case, the appropriate
model has three factors and it is natural to use as state-variables the three bond prices,
B1, Bs, Bs. For instance, we can write

(16) dBi(t) = Bi(t)[oi(t)dZ; + pidt] ,i=1,2,..3,

where B;(t) represents the price of the i*" bond and Z; are (possibly correlated) Brownian
motions. To specify the “structure of the fluctuations ”, we need to model the volatilities
of the bonds and their correlations. Notice that the above equations can be rewritten in
the form

3
dB;(t) = Bi(t) | os(t) Y By(t)dW; + pidt | ,i=1,2,..3,
j=1

where W; are independent Brownian motions, and 3;; are coefficients such that

3

E 2
,L'j—l.

j=1

In other words, we represent the “correlated” Brownian motions Z; as linear combinations
of independent ones (W)):

3
dZ; = Y By dW; .
j=1

In this formulation, the instantaneous correlation of the returns of bonds ¢ and k is given
by

dB; dBy,

Corrt{ 5. B
i Dk

3
} = E{dZ;dZ} = | ) BijBe | dt.
7=1

Specifying the correlation structure implies specifying the matrix ;; (which may be time-
dependent and may depend also on prices, for example) and the three volatilities. Notice,
however, that the correlation structure may be such that the model has lower dimensional-
ity: for instance, a correlation of 100% between the prices of bonds 1 and 2 can be modeled
by choosing (31 ; and [32; so that

12



3
Zﬂ1jﬁ2j =1
=1

There are basically two paradigms for determining volatility /correlation parameters:
historical data and data implied from current market prices. Let us describe the “histor-
ical” approach for estimating correlations. (Estimating “implied correlations” — a much
difficult question — is beyond the scope of this lecture.)

Suppose that we generate from the 3 time-series of bond prices, an estimator for the
instantaneous covariance matrix of returns, Corr{ % } . Let @j represent this es-

timator, in annualized terms (so we can omit dt from the calculations to follow). The
specifics of how this matrix is constructed from data is an econometric problem that will
not concern us here. ( Let us mention, for the sake of definiteness, the simplest possible
estimator — the Pearson sample correlation — which can be written as

J

AB;X AB; AB? AB 2
G DRC

S () (- F)
~ 1 =1 B? Bi B BJ‘

where N represents the sample size, At is the time increment over which returns are

computed, Ofx a =1, 2...N is the sequence of returns corresponding to bond ¢ and ABBi
represents the corresponding sample mean.)
Since é’ij is a symmetric non-negative matrix, it can be written in the form
3
Z (k) (k)
)
where A2, k = 1,2,3 are the eigenvalues and vk = (vlf), vg), v?) k= 1,2,3 are

orthonormal eigenvectors. In this case, a reasonable estimator for 3;; is given by

ﬁ” — (J )

Indeed, the prescription
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with independent W; leads to

3
E{dZdZ; } = E{ Y A v aw; ST v aw;
: pt

J=1

=3 NP dt = Ciydt,
k=1

which is consistent with the estimated correlation. The eigenvectors v(¥) represent the
principal directions of change for the vector returns; they are called the principal com-
ponents of the correlation matrix.

Several remarks are in order. First, notice that that the principal component analysis
can lead in some cases to eivenvalues A2 which have very small magnitude, so that they
may be considered insignificant from a statistical point of view. If this is the case, it makes
sense to work with a lower-dimensional model based on one or two Brownian motions W.
The effective dimension of the model, i.e. the number of principal components that
reproduce the correlation matrix with good accuracy, is determined by the rank of the
estimator of the correlation matrix.

The second remark concerns the distinction between covariance and correlation of re-
turns. In the approach described here, we chose to model the correlation matrix. Of course,
we could have chosen to estimate the covariance matrix using historical data instead. Es-
timating the covariance matrix and the corresponding eigenvalues and eigenvectors would
lead to the same effective dimension. However, working with the covariance matrix is
consistent with specifying the volatilities as well as the correlations. On the other hand,
working with the correlation matrix gives us the freedom to specify the volatilities in a
different way, e.g. using the implied volatilities of options. As we mentioned earlier, it is
generally more difficult to “imply” correlations from market prices.

We now turn to the HIM model. We shall apply a similar principal component analysis
(PCA) to estimate the effective dimension v of and the correlation of forward rates.

Notice that the HIM model assumes a continuum of forward rates. This is not a serious
modeling problem because the actual number of forward rates is actually finite, albeit
large. This means that we have to “discretize” the HJM equations before making the
PCA. Accordingly, let f(¢; T;), ¢ = 1,2..M be a discrete set of forward rates that is
representative of the forward-rate curve as a whole. The Heath-Jarrow-Morton equations
for these rates are
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where v is the (unknown) effective dimension and p; is the risk-neutral drift. In practice,
and according to the market studied, this discretization may involve a between M =10
and M =120 dates T}, the latter corresponding to 3-month forward rates from today to 30
years from today. We can rewrite the last equation in the form

v
(17) df(t; T;) = op(t; Ti) Y Belts T) AWy + pi(t;T)dt
k=1
where of(t; T;) = > 62(t;T;) represents the standard deviation of the i*" forward
k;:
rate. The quantities [ (t; T;) determine the correlation structure. Specifically, we have

Corry {df (t; T,) df (T: Tj) } = Y Bults Ty) Bi(t; Ty) dt = Cijdt .
k=1

We consider, as before, a statistical estimator of the annualized correlation matrix, which
we denote by C; ;. Diagonalization of this matrix leads to

M
= 3 a2

k=1

for some sequence of eigenvalues A%, A2, ... A2, and orthonormal eigenvectors v(¥). This
suggests taking

Bk(t; Ti) = )\k U(k) y 1= 1, 2, M

(3

as estimators for O (¢; T;) and the model for the correlation of the M rates follows.

An analysis of the importance of the eigenvalues Ag, or more precisely, of the relative
importance of these factors, by means of the quotients

)\2
> A
J

k=12, ..

k>l\7

can be used to determine the effective dimension of the model. In a pioneering paper,
Litterman and Scheinkman (1980) were the first to conduct such study using U.S. Treasury
bond data. Their work, as well as other that followed, show that a dimension of v = 3 is
sufficient to explain the correlation structure to more than 99%. Specifically, Litterman
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and Sheinkman demonstrated, for the data considered, that if the eigenvalues are arranged
in decreasing order, i.e., Ay > Ao > ..., then

Ak
> AR
k

< 0.01 for k > 4.

We note,however, that the effective dimension varies considerably with the market under
consideration. For instance, European central banks have actively managed short-term
interest rates in recent years in view of the impending European Monetary Union. This
has resulted in forward curves that are very different from the U.S. Treasury and U.S.
LIBOR curves. We are not aware of statistical studies regarding the stationarity of the
correlation of forward rates, i.e. that the correlation factors are functions of the time to
maturity 71; — ¢.

From a modeling standpoint, the next step is to “interpolate” this result to the con-
tinuum of maturities t < T < Tyaz. Implicit in this assumption, is the fact that the
forward rate curve is “smooth” in 7. This is a belief held by most market practitioners
(again, only in “mature” markets).

One way to justify the smoothness of the forward-rate curve is as follows. Suppose
that the forward rate curve has a jump discontinuity at a given maturity Ty, at which, for
instance, f(t;To —€) > f(¢;Tp). In this case, investors can simultaneously lend forward
for a short period AT at time Ty — ¢ and borrow forward at date T for delivery at date
To + AT — € at a cheaper rate. The two loans offset each other perfectly and the investor
can realize a profit after unwinding the trade. Notice that this argument assumes that an
instantaneous forward rate corresponds to an actual rate for a (finite) period AT < 1.
This is therefore not a rigorous arbitrage argument, but it gives a strong indication as to
why such jumps cannot exist in practice. Notice also that supply/demand for such loans
would have the effect of lowering the higher forward rate and raising the lower one until
the discontinuity dissapears. In the same vein, we note that sharp “kinks” in the curve
would be conductive to arbitrage opportunities of a similar kind. In fact, if the differences
between two succesive forwards

f&;T) — f(t; T+e€), € small

exhibit a sharp discontinuity across some date T, investors can construct forward positions
immediately before and after this date that would generate a riskless profit.

A possible approach to generating a “continuous time” correlation structure based upon
the principal component analysis and the paradigm of of smoothness of the forward rate
curve is to think of a particular eigenvector

vk = (ng), ’uék), ...v%?)
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as representing a discrete sampling at points x; = T; — ¢ of a smooth function defined on
the positive real line, i.e.,

Mo = (T — 1), k=1,2.v , i=12 .M.

Smooth functions ¢ can then be generated by a standard interpolation procedure, such
as polynomial interpolation, spline functions, etc., under the normalization constraint

v

Y (@)’ = L.

k=1

The resulting HJM equation for the evolution of the curve has the form

df(t; T) = of(tT) quk — t)dWy + p(t; T)dt

where p(t; T') is the HIM drift that makes the probability risk-neutral. The functions ¢ ()
are called the correlation factors of the model. The correlations between instantaneous
forward rates obtained in this way are

Corry { df(t; T)df (t; T") Z¢k — 1) (T — 1), T, T > t.

The reader should note that the correlation function generated in this way is time-homogeneous,Jj
in the sense that it depends on the differences T — ¢ and T’ — ¢. This is a consequence of

the simple statistical method used to estimate the correlation. Given the relative paucity

of correlation data (compared with, volatility data, that is embedded in option prices),

and the instability of correlation data due to different market conditions, the assumption

of a time-homogeneous correlation is perhaps not sufficient to capture some market effects.
Nevertheless, the procedure outlined here is based on market data and also constitutes a
starting point for building more sophisticated models.

What can be said about the shapes of the correlation factors generated in this way? An
important observation can be made in the case when all forward rates are positively cor-
related. This is generally true in the US dollar market. Under this additional assumption,
we can use the fact that @j which is a positive operator, i.e. an operator that (via matrix
multiplication) sends vectors with non-negative coefficients into vectors with non-negative
coefficients. It follows from a well-know theorem in matrix theory (Krein’s Theorem), that
the vector with largest eigenvalue is unique and has positive entries. Hence, if forward rates
are positively correlated, the factor with largest eigenvalue corresponds to a shock to the
curve curve such that all forward rates change in the same direction. By the same token,
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since the remaining eigenvectors are orthogonal to the latter, they must contain positive as
well as negative entries. therefore the remaining correlation factors correspond to shocks
such that some sectors of the curve vary in opposite directions. This qualitative behavior
of the correlation factors is consistent with the Litterman-Scheinkman econometric results
for the U.S. Dollar markets and with traders beliefs. Indeed, it is a widely held fact that
the principal component, corresponding to this “parallel” shift in forward rates, explains
at least 80% of the U.S. yield curve movement. The remaining correlation components are
associated with secondary motions of the curve, such as “tilting” and “bending”, the latter
having the least importance in terms of the size of its eigenvalue. The interplay between
different correlation components is analyzed in a simple example in the next section.

5. Example: a three-factor correlation structure

We present an example of a term-structure model which has three modes of fluctuation
for the term-structure of interest rates and satisfies some of the stylized facts about the
term structure mentioned above. This kind of model, in which the correlation factors
are built from elementary functions (exponentials), is sometimes used by practitioners, by
fitting the model to a set of correlations. Consider, for instance, the correlation factors

1= 0.8

pa(z) = 0.5 — e~ 0Dz

d3(2) = V 1—(01(z))2 — (¢2(2))2 = V 0.11 4 e~(ODo — ~(02)a

The first correlation factor coresponds to a “parallel shift”. It contributes 64% of the
variance of the curve (uniformly across maturities). The second correlation factor vanishes
for

zo = 10log2 ~ 3.01 (yrs.)

and varies from ¢1(0) = 0.5 to ¢(c0) = —.05. A “shock” to the curve along this factor
will contribute to a “tilt” in the curve, since forward rates with maturities lying before and
after zo move in opposite directions; its contribution to the variance of the forward rates
is at most 25%. Finally, the third component satisifes ¢3(0) = ¢3(c0) = .11 = 0.332
and has a global maximum at zy with ¢3(xp) = 0.6. It corresponds to a “bending mode”
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since it will move up the center of the curve keeping the ends fixed. It contributes between
11% and 25% of the variance of the rates, according to which maturity we consider.

This model is consistent with the following (hypothetical) table of correlations between
forward rates:

T=0
T=1
T=3
T=10
T=15

Notice that the correlation between the spot rates and the forward rate 15 years hence
is .43 (check this again). This number is approximately consistent with data on U.S. rates.

6. Conclusion: which volatility model to pick?

The simplicity of the HJM approach lies in the fact that the evolution of the curve
in the risk-netural world can be described in terms of a stochastic differential equation.
However, a closer inspection of the material of this chapter shows that there exist infinitely
many models which are consistent with the HJM equations. There is no such thing as a
“Heath-Jarrow-Morton model”. HJM is a paradigm for thinking about the evolution of
the collection of interest rates for different maturities in terms of a continuous curve of
instantaneous forward rates. This approach centers the modeling effort in the selection of
appropriate functions &;(tT), i = 1,2, ...v to describe the fluctuations of the curve. As we
have shown, the specification of these parameters implies “taking a view” of the nature of
the correlation of forward rates of different maturities and on the number and shapes of
the correlation factors.

Sicne we have already discussed the specification of correlations, let us turn to the issue
of specification of the volatility o¢(¢; T') in equation (17 ). Here, several choices present
themselves, all of which lead to arbitrage-free dynamics. For instance, we can choose
of(t; T') of the form

of(t; T) = a(t, T, f(t; T)) ,
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where (-, -, -) is a deterministic function. “Natural” choices for this function are

(18) of(t; T) =oo(t; T) (f(t; T))”

where og(t; T) is a deterministic function of calendar time and the time-to-maturity and
« is a positive exponent. The value @« = 0 corresponds to a Gaussian model and o« = 1
to a “lognormal” specification of volatility. Notice however that & = 1 does not give rise
to a lognormal rate under the risk-neutral measure because the corresponding HJM drift,
which is (recall (8))

T
Z o(t; T) (T —t/ftsaots)qbk(s—t)d
k=1 t

depends on the forward rate curve. Functional forms of the type (18 ) are proposed and
studied in Heath-Jarrow-Morton (1992) and in Morton (1988). It is fair to say, at this point,
that the only class of models of the type ( 18) for which the HIM stochastic differential
equation can be solved in closed form are the Gaussian models. There are however some
drawbacks with Gaussian models, the most obvious one being that the model allows for
interest rates to be negative with positive probability.

The functional form (18) with a = 1 presents some interesting advantages for calibrating
the model to (Black ’76) implied volatility data for interest interest rate caps; this point
will be discussed in further chapters. On the other hand it presents a serious pathology:
forward rates can become infinite (“blow up”) in finite time!

This pathology can be demonstrated by the following calculation, for the case v =1, a =
1 with oo(¢; T) = 09 = constant. The solution of the corresponding HJM equation

df(t§ T) 2 /
satisfies, formally,
2(t) — B 4+ o2 [ds [ fsiu)d
FGT) = F(0; T)e R T

¢ T
ds o2 [ f(s;u)du
(R RO AR
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Assume, for simplicity, that f(0; T) = fo = constant. Differentiating both sides of the
last equation with respect to 7', we obtain

(19) 94Ty = f5T) o2 / F(s; T) ds

Hence, integration with respect to ¢, yields the differential equation

2
o

t t
a 2
8—T/f(s; T)ds = 70 /f(s; T)ds
0 0
Setting
t
X1) = [ fs1)ds,
0

we conclude from equation ( 19) that

2 X (t)
2 — XX (T — 1)

X(T) =

Notice that X (T') is a monotone function of T and that it blows up as T increases (along
every Brownian path Z). More formally, suppose that that there exists some date to > 0
such that the HJM equation admits a finite solution for all s < ¢¢ and all forward dates T
such that s < T < oo. We shall see that this leads to a contradiction. In fact this would
imply that X (tp) < -+oo with probability 1. Suppose, then, that we select a constant k
such that that the inequality X (¢9) > k& holds with nonzero probability p(k). But then,
by the above equation, we conclude that

2k

XT) > 5= = i)

with probability at least p(k). Therefore, if we choose
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2
Ty = —— t
0 O'gk + 0>

we conclude that for all T > Ty, we have X(T') = + oo. This implies that some rate on
the curve {f(to; T), T > t} must be infinite — this is a contradiction. Hence, the solution
of the above model blows up instantaneously: for every t > 0 the probability that the
forward rates blow up s finite.

Further computations along these lines, which we omit for the sake of brevity, show that
the solutions of the HIM equation with the simple volatility model ( ) blow up in finite
time if @« > 1 and reach zero in finite time if « < 1. This example shows that care
must be taken when modeling the volatility process to avoid undesirable properties for the
risk-neutral measure.

Specifications of the volatility of forward rates of the form (18) have other drawbacks:
why should the volatility of f(¢;T) be a function of the single rate f(t;T) insead of a
dependency on the entire curve f(t;0) , 0 € [t, Tjnaz)? The answer to this question
is simplicity fo the corresponding SDE. In practice, the choice of a volatility/ correlation
structure is dictated by two main considerations:

e the model should satisfy “stylized” facts about the term structure, such as having enough
degrees of freedom to model a rich enough set of forward curve scenarios;

e it should be computationally tractable;

e it should be relatively easy to calibrate to option prices.

These requirements are difficult to reconcile in practice. To gain a perspective on com-
putational tractability of models of this type, notice that, in practice, f(¢; @) is a high-
dimensional vector (which can have dimension as large as 120 if we consider a 30-year
forward rate curve with “instantaneous” forward rates replaced by 3-month forward rates).
Thus, the state-space on which the curve lies is of very high dimension. This precludes,
in most cases, the use of PDE/lattice models, given that current computers can handle 3
spatial dimensions at most, leaving Monte Carlo simulation as the only viable alternative
for computing theoretical prices. However, lattice models are a necessity if we have to
compute the values of interest-rate derivatives that have time-optionality, such as callable
bonds, American-style bond options or American swaptions.

The issue of calibration is intimately related to computational tractability. For applica-
tions to the U.S./LIBOR market, it is desirable to have a model that prices a sufficiently
rich class of caps and swaptions consistently with the market. This requirement often
involves an interative search in “parameter space” (think of the calculation of implied
volatility for BS) where computational efficiency is a necessity.

These considerations lead us to search for reduced representations of the forward-rate
curve which correspond to an evolution in a low-dimensional space. This problem can be
phrased as follows: assume that the number of factors is small (e.g. ¥ = 2 or 3. Since
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the “dimension of the noise” is small, we would like to describe the forward rate curve as
a function of a small number of parameters X (t) = (X1(t), Xa2(t), ... X (t)), i.e.,

f; T) = F(X(#), ¢, T) ,

where F'(-, -, -) is a deterministic function, M is a number equal to or comparable to v
and X(¢) is a diffusion process (a Markovian It6 process). In this case, the vector X acts
as a “coordinate system” which allows to represent the curve in terms of a low dimensional
object. Since an RM-valued diffusion process can be represented numerically in terms of
a lattice model, volatility formulations that lead to a reduced representation are ideal in
terms of computational tractability.

The Ho-Lee model and the Modified Vasicek models are examples of term-structure
models that admit reduced representations (with M=1). In the Ho-Lee case, the underlying
state variable can be taken to be X (t) = W (t) and in the Modified Vasicek model we can
take

X(t) = / e P9 g (s)

which is a diffusion process, since it satisfies the stochastic differential equation

dX = —xXdt + dW .

The study of term-structure models which admit a reduced representation, also known
as Markov term-structure models will be carried out in the next chapter.
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