CONTINUOUS-TIME FINANCE: AN INTRODUCTION

1. The basic model

We present a model for a securities market with intertemporal investment opportunities.?
We assume an idealized world in which the prices of securities (stocks or bonds) and the
dividends which they provide are functions of an M-dimensional random process

X(t) = (Xi(t), Xa(t), Xs(t), ., Xu(t)) . t > 0. (1)

The random variables X;(¢) are factors or state variables which describe the economy
at any given time. We do not assume necessarily that these variables represent security
prices: for instance X;(#) could represent the value of a consumer price index, the number
of laptop computers sold by IBM in 1995 or the inches of rainfall in Iowa in 1994. State
variables can represent, more abstractly, investors” beliefs about future states of the market.
Some state variables X;(-) may not be tradeable or even observable.

We assume that the state variables follow a system of stochastic differential equations

dX;(t) = i: ik (X(t), 1) dZp(t) + B; (X(t), t) dt (2)

for i« = 1...M . Here, Zy(-), k = 1...v are independent Brownian motions. Notice that
a;r and §; are functions of (X(t), t) at time t. Thus, in particular, the current state of
the system completely determines the local parameters (means and volatilities) and hence
the statistics of future moves. The latter property is called the Markov property.? The
Markovian assumption on the evolution of economic factors is not unreasonable, provided
that all relevant past information is reflected in the current state variables.

I'This lecture is based partly on Cox, Ingersoll and Ross, “An Intertemporal General Equilibrium Model
of Asset Prices”, Econometrica, 53 ;1985 and D. Duffie, Dynamical Asset Pricing Theory, Princeton Univ.
Press, 1992. See also Chapter 12 in J. Hull, Options, Futures and other Derivative Securities, 2nd ed.,
Prentice-Hall, 1993.

?Ito processes which have the Markov property are called diffusion processes.



Another consequence of (2) is the continuity of the paths X;(-) (recall that Ito processes
have continuous paths). This assumption may not apply, in practice, if we expect sudden
large-scale jumps in indices or prices ( e.g., sudden transition from centralized to free-
market economy, devaluation of a currency, sudden bankruptcy, etc.)

We assume that the dividends of traded securities and their market prices are functions
the current state variables. Specifically, every security is characterized by its dividend
process

D(t) = D (X1(t), Xo(t)... Xar(t), 1)

and by its market price,

P(t) = P (Xy(t), Xa(t) ... Xas(t), 1)

By definition, the dividend process represents the cashflow that an investor receives from
holding the security. For mathematical simplicity, we think of this cashflow as an annualized
yield. Thus, the holder of one unit of this security over a period dt will be able to purchase

1 + D(t)dt

units of the security after this period.?

We shall assume that there is short-term lending, i.e., that there exist short-term default-
free notes (e.g. Treasury bills) with maturity d¢ which pay the holder

1+ r(t)dt = 1 + R (X(t), ) dt

times face value at maturity. Here, r(¢) is the annualized short-term interest rate, or short
rate. “Rolling over” this short-term note and reinvesting the interest income produces a
cumulative wealth of

B(t) = exp. /r(s)ds (3)

3This concept applies in a straightforward way to investment in foreign currencies or in coupon-bearing
bonds. It can be generalized to stocks by using more complicated dividend functions.



times the original investment. (Thus, a money-market account can be viewed as a “secu-

rity” with P(¢t) = 1 and D(t) = r(t).)

A consequence of this model is that security prices are Ito processes. In fact, from the
generalized Ito’s Lemma, we have

v v

op op 1 o*p
>

dP(t) = -dX; — - dt+ = — (dX;dX;) . 4
=2 gg N Gt 5 Y gpge (4NN
Using Ito’s multiplication rule,
dt if k=1
dZy(t)dZ;(t) =
0 if k#£ 1,
and (2), we find that
dX;(t)dX;(t) = (Z ik Ok ) dt .
k=1
Therefore, the price P(t) satisfies the stochastic differential equation
dP = P-Up(t)de + P-/,Lpdt, (5)
with
v M ~ 72
1 oP
op = F Z [Z OéiJca—)Q 5 (6)
k=1 L:=1
and

M 5 M v 5
1 oP 1 9*P
e p ;5 oX, T 3P 2. 2 k%ik gy @)

i=1j=1 k=1

where Zp is a Brownian motion defined by the stochastic differential equation
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Equations (6) and (7) show that the local parameters driving the price equation (5),
(op, pp), can be complicated functions of the state-variables. A major challenge in imple-
menting this basic model is to decide which variables determine security prices. Another
problem, of econometric nature, is the estimation of the local parameters a; r and 3; ap-
pearing in the dynamical equations (2). Even if it were possible to solve these problems (a
big if'), one must still find the prices of securities (the functions ]3) from their cash-flows D.
The latter problem has been studied considerably in Mathematical Economics literature.
Economists have found that price functions P can be derived under the assumption that

investors behave rationally and maximize some aggregate utility function.?

In this lectures, we shall take the point of view that prices and financial indices follow
Ito processes, making different assumptions about the local parameters ¢ and p according
to the problem of interest.

2. Trading Strategies

To fix ideas, we shall assume that there are N traded securities, with prices
Pi(t), Ps(t), ... Pn(t). A trading strategy consists of an N-tuple of non-anticipative
processes (with respect to the economic factors X;, the Brownian motions Z; which drive
the prices, etc.)

O(t) = (8i(t), b2(t). ... ON(1)) . (8)

The entry 6;(t) represents the number of units of the i** security held in an investment
portfolio at time t. The value of this portfolio at time ¢ is

V(t) = > 6i(t) Pilt) . (9)

J=1
We will assume that investors can purchase and short-sell arbitrary numbers of securi-

ties.® We also neglect transaction costs and bid-offer spreads in this first analysis.

4See Cox, Ingersoll and Ross and/or D. Duffie.
In particular, the variables #; can take arbitrary real values.



For simplicity, it is convenient to restrict our attention to trading strategies which are
self-financed. These are strategies in which the investor reallocates his wealth among
different investments without adding or withdrawing capital. After a small period of time
dt, the value of the portfolio (8) would be

N N

V(t+dt) ~ V(t) + Y 8:(#)dPi(t) + > 6:i(t) Pi(t) Di(t) dt

J=1 J=1

where P;(t) D;(t) dt represents the dividend flow from the the " security. If the strategy
O(-) is self-financed, then the value of the portfolio at time ¢ 4 dt after trading should also
satisfy

N
V(t+dt) = Y Pilt+dt)6i(t +dt) .
7=1

Thus, a self-financed trading strategy in a non-anticipative process that satisfies the sto-

v (3]

i i 0; P; D; dt . (10)

chastic differential equation

Often, it is convenient to analyze the profits/losses of trading strategies in constant dollars,
i.e. discounting with respect to the short-term interest rate. The value of a portfolio worth
V(t) at time ¢ in dollars-at-time-0 is

R Vit —ftr(s)ds
V(t)E%:e 0 Vit

Using this equation and (10), we find that the self-financing equation in constant dollars is

> D;(t)dt (11)



or, with P, = P;/B,
N N
dV = Z 0,dP, + Z 0, P; D, dt . (12)
p =1

This equation is analogous to (10); it just expresses the self-financing relation in a different
unit of account.

3. Arbitrage Pricing Theory.

Definition. A self-financed trading strategy {©O(t) ,0 < t < T} is said to be an arbitrage
strategy if the profit/loss that it generates,

V(T) — V(0) = Z/Gi(t)dﬁi(t) + .

N
=17y =

/ 6,(t) Pi(t) Di(t) dt

1o

is (i) non-negative with probability 1, and (ii) positive with positive probability.

In previous lectures, we discussed arbitrage strategies from both the theoretical and
practical points of view. The most common “arbitrages” are cash-and-carry trades, which
try to exploit discrepancies between spot and forward prices. Other types of arbitrage
opportunities may arise if, say, options can be replicated with market instruments (statically
or dynamically) at a profit. Arbitrage opportunities may arise sporadically but they cannot
subsist for long in efficient markets due to the forces of supply and demand.

The following result shows that the securities market model must satisfy certain con-
straints if there are no arbitrage opportunities. Roughly speaking, the constraints can be
viewed as a relation between the volatility and the returns of traded securities.

Proposition 1. Under the assumptions of the basic model, assume that security prices
satisfy

dPZ(t) = Pl(t) { : ak7i(t)de(t) + /,Li(t)dt} , 1=1,..N, (13)
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where Zi(-) are independent Brownian motions. Let D;(t) denote the corresponding divi-
dend processes and let r(t) be the short-term interest rate. Then, if there are no arbitrage
opportunities, there exist non-anticipative processes A\i(t), Aa(t), ... A\, (t) such that

v

pit) + Di(t) — r(t) = Y oxilt) Milt) . (14)

k=1

This proposition, which we will prove shortly, has an important corollary (sometimes
referred to as the Fundamental Theorem of Arbitrage Pricing Theory):

Proposition 2. Under the assumptions of the basic model, let P represent the probability
measure on path-space associated with the security prices (13). A necessary and sufficient
condition for the existence of no arbitrage opportunities over the time-interval (0,T) is
that there exists an equivalent probability measure Q such that all security prices satisfy

T
- tf(f’(S) —Di(s))ds

Pi(t) = EY {e Pi(T) , i=1,2 ..N. (15)

Proof of Proposition 1: First, we will show that if there are no arbitrage opportunities
equation (14) holds. For this, we consider the possibility of a specific “single-period”
arbitrage at some point in time ¢. More precisely, assume that there exist quantities 6;(¢)
(¢ = 1, ... N) such that the profit/loss over a small time-interval dt,

dV(t) = d(i Gi(t)dPi(t)> ,

has zero wvariance, given the past up to time t. Consider a strategy that corresponds to
holding the portfolio O(t) = (6;(t) )f\;l , over the period (¢, ¢+ dt) and subsequently closing
the position after dividends are paid out. The return on this investment should equal the
return of a riskless money-market account over the same period. Indeed, the existence of
two different riskless rates of return in the market would give rise to an obvious arbitrage

opportunity.’ Therefore, if dV(¢) has variance zero we must have

dV(t) = r(t)V(t)dt . (16)

STf the return is higher than r(¢), borrow money and purchase the portfolio. If the return is lower,
short-sell the portfolio and invest the proceeds in short-term funds.



Now, using equation (13), we find that

v N

= ( 6i(t) Pi(t) Ulm‘(ﬂ) dZi(t) + Y 6i(t) Pi(t) (palt) + D)) dt  (17)

It follows that dV () has zero variance if and only if

Y i) Pilt)oki(t) =0, k=1, ..v, (18)

and, moreover, that in the latter case equation (16) can be written as

N N

Y 6i(t) Pi(t) (pilt) + Di(t)) di = > 6:(t) Pi(t)r(t) dt

or

> Oilt) Pilt) (pit) + Di(t) — r(t)) = 0. (19)

=1

The conclusion is that if there are no arbitrage opportunities then whenever the v equations

in (18) hold, equation (19) must hold as well.

It is useful to re-interpret this in “geometric” terms. Define v + 1 vectors in N-
dimensional Euclidean space by

S = (Ul,ka ---O'N,k) ,kZl, LU

and

m = (ju(t) + Di(t) — r(t), oo, uv(t) + Dnlt) — (1)) .

The statement “(18) implies (19)” is equivalent to saying that “whenever a vector is or-
thogonal to s, , & = 1, ... v, then it is also orthogonal to m”. It follows from linear algebra
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that this condition holds if and only if m is contained in the linear subspace generated by
the vectors s .” We conclude that there must exist functions A\x(t) , k = 1,.., v, such that

= Z /\k(t) Sk,
k=1

or, for all ¢,

pit) + Dit) — r(t) = > Melt)oig - (20)

We have thus shown that (20) must hold in the absence of arbitrage. (Note that the scalars
A are generally functions of ¢, because the argument leading to (20) is “local in time”.)

Conversely, let us establish that (20) is a sufficient condition for the absence of arbi-
trage.In fact, substituting the values for p; derived from this condition into the equation
for security prices (13), we have

dPZ(t) = {i:o-hk de ) + /\k(t)dt) + (T(t) — Dl(t)) dt}

A

- {Zw dWi(t) + (r(t) — Di(t)) dt} : (21)

b
—_

where we set

t

Zi(t) + / Ai(s) ds . (22)

0

Wi(?)

By Girsanov’s Theorem, the processes Wy (-) are distributed like independent Brownian
motions under the modified probability

v

T T
Q{S} = E< §; exp. —Z/x\k(s)de(s) — %/
o k

k=1 7}

i/TAi(s)ds . (239)

7 A proof of this result is included as an Appendix.
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As shown in the previous lecture, equation (21) implies that P;(-) satisfies the equation

T (r(s) = Di(s)) ds
Pi(t) = Pi(0)- Mi(t) - 0 (24)

where

v

T
1
M;(t) = exp. /ZU”“ )dWi(s) — 5/2 oi k(s (25)
k=1

k=1

is an exponential martingale under Q. Hence, the process

[ (r(s) = Di(s)) ds [ Di(syds .
e C[ Pi(t) = eg - Pi(t)

is also a martingale under Q.

From the self-financing equation (12), we conclude that the discounted value of any
self-financed trading strategy satisfies

avy =3 6() {dﬁi(t) + Di(t) Pi(t) dt

=1

N _ [ Dis)ds [ (r(s) = Di(s)) ds
=) bit)e ! il Pi(t)
=1
N - ft Di(s)ds
=) bi(t)e © Pi(0) dM;(t) .
=1

In particular, V(t) is a martingale under Q and

EC {V(t) — V(0) } = 0. (26)

The fact that self-financed strategies are martingales under Q implies that arbitrage strate-
gies cannot exits. In fact, since P and Q are equivalent, if the profit/loss generated by a

strategy, V(T) — V(O), is non-negative with P-probability 1, then it must be non-negative
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with Q-probability 1. But then, by (26), it must vanish with Q-probability 1. Using again
the equivalence of the two measures, we conclude that V(T) — V(O) must vanish with
P-probability 1.

The proof of Proposition 1 is complete.

Proof of Proposition 2. In the proof of Proposition 1, we established that a necessary
condition for the absence of arbitrage is that

~ [ (r(s) — Di(s)) ds
A P(t) ,0<t<T, (27)

is a martingale under the measure Q defined in (23). Therefore,

T t
— [ (r(s) = Di(s) ) ds — [ (r(s) = Di(s)) ds
E? { e ! P(T) } = e ! Pi(t)

[ (r(s) = Di(s)) ds
Multiplying both sides of this equation by eC[ (which is measurable with

respect to the past up to time t), we find that

T
— [(r(s)—D;(s))ds
E? { e ! P(T) } = Pi(t) , t<T. (28)

This establishes (28) as a necessary condition for no-arbitrage.

Conversely, if equation (28) holds for some probability Q which is equivalent to P, then
the process (27) is a martingale under Q. But then, we can follow verbatim the argument
presented in the proof of Proposition 1® to conclude that there are no arbitrage strategies.

Q.E.D.

8See p. 10 after eq. (25).
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Another useful result which we have established along the way is

Proposition 3. Under the assumptions of the basic model, a necessary and sufficient
condition for the absence of arbitrage over the time interval [0, T'] 1s that there exists an
equivalent probability Q such that the value of any self-financed trading strategy in constant
dollars V(t) 18 @ martingale under Q. In particular,

T
— [ r(s)ds
V(t) = EZ { e {

In most applications of Arbitrage Pricing Theory to pricing derivative securities, we shall
focus our attention primarily on the measure Q. The reason for this is that Proposition 2
relates the values of traded securities with their expected future cash-flows under Q. Since
derivatives are securities with cash-flows which depend on the values of other securities,
equation (15) provides a framework for pricing them in terms of their “payoffs” at a future
date. In a similar vein, the knowledgeable reader will interpret (29) as a pricing formula
for contingent claims based upon the notion of replicating portfolio: if a derivative security
delivers a (single) payoff of V(T') dollars at a date T, and if V(T) is also the value at time
T of a self-financed strategy O(s),t < s < T, then the value of the derivative security at
time ¢ rpresents the cost of entering into this dynamic strategy at time ¢, i.e. V(¢).

Some “concrete” applications of this theory are presented in the following lecture.
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