
ITO PROCESSES� CONTINUOUS�TIME MARTINGALES AND

GIRSANOV�S THEOREM

�� Martingales and Doob�Meyer decomposition

We have seen in the previous chapter that an Ito process can be represented by the
stochastic di�erential

dX�t� � ��t� dZ�t� � ��t� dt � ���

where � and � are �non�anticipative� local parameters� Equivalently	 X�t� can be written
in integral form


X�t� � X��� �

tZ
�

��s� dZ�s� �

tZ
�

��s� ds

� X��� � M�t� � B�t� � ���

Let us analyze the processes M���	 and B��� in this decomposition� For each t	 M�t�
has mean zero since it is a stochastic integral� A more fundamental property of the process
M��� is that it is a martingale� This means that for all T � t	 we have

Et fM�T � g � M�t� � �
�

where Et represents the conditional expectation operator given the history up to
time t� A remark on this last point
 in the last chapter	 we assumed	 for simplicity	 that
the non�anticipative functions ��� �� were completely determined at time t by the path
Z�s� � s � t� The �history up to time t � thus meant the oberved values of the Brownian

�



path used to de�ne the stochastic integral� It is useful to generalize this framework by
assuming that the functions � and � may depend on other random processes in addition
to the Brownian path Z��� in ���� �For instance	 we expect the volatility of an asset to
be a�ected by changes in other economically correlated variables�� In these lectures	 the
expression �history up to time t � will be understood to mean the the observed values up

to time t of all processes which determine the local parameters�

The martingale property of M�t� follows from Proposition � in the previous chapter� In
fact	 note that

M�T � � M�t� �

TZ
t

��s� dZ�s� �

Since M�t� is non�anticipative	 we have

Et fM�t� g � M�t� �

Moreover	

Et f��s� dZ�s� g � Et fEs f��s� dZ�s� g g

� Et fEs f��s� g �Es f dZ�s� g g

� �

due to the independence of dZ�s� from the past up to time s�

The concept of martingale in Probability Theory formalizes the intuitive notion of fair
game� For example	 a �coin�tossing� game	 in which a gambler bets on the outcome of a
coin toss several times in a row	 has an accumulated wealth process which is a martingale�
In contrast	 the accumulated wealth for the game of roulette �betting	 say	 on the color red
each time� is not a martingale because the house wins each time zero �green� occurs��

Since the paths of M��� are indistinguishable from Brownian paths after a change of
time	 the quadratic variation of M��� is �nite with probability �� More precisely	 the limit
of the sums of squares of increments corresponding to a sequence of increasingly re�ned
partitions satis�es

�Theoretical results on gambling in games of chance have been sought since the days of Laplace and
surely earlier� See E� Thorp ������� Optimal gambling systems for favorable games� Rev� Intl� Statistical
Inst�� �	� p��� for interesting mathematical results on games of chance and speculative investing�






lim
�t � �

X
j

j�Mj j� �

tZ
�

���s� ds

in the mean�square sense��

In contrast	 B��� has bounded �rst variation �and thus vanishing quadratic variation�
since

lim
�t � �

X
j

j�Bj j �

tZ
�

j��s� j ds

whenever the integral on the right�hand side exists�

The stochastic process M�t� and B�t� are known respectively as the martingale com�
ponent and the bounded variation component of the Ito process X�t�� The last
equation in ��� is often referred to as the Doob�Meyer decomposition of X����

�� Exponential Martingales

Proposition �� Let ��t� and ��t� be bounded non�anticipative processes with respect to

some Brownian motion Z���� Then� the stochastic process S�t� satis�es the stochastic

di�erential equation

dS�t� � S�t� � ��t� dZ�t� � ��t� dt � ���

with

S��� � S�

if and only if

S�t� � S� e

tR
�

��s�dZ�s� � �

�

tR
�

���s�ds �
tR
�

��s�ds

� ���

�The di�erence between the successive sums and the integral have second moment tending to zero as
�t � 
�

�



Setting � � � in ���	 it follows from this Proposition that the solution of the stochastic
di�erential equation

dM�t� � M�t���t� dZ�t� ���

with S��� � �	 is given by

M�t� � e

tR
�

��s�dZ�s� � �

�

tR
�

���s�ds
� ���

The latter processes are called exponential martingales� Notice here again the di�erence
between standard Calculus and Ito calculus
 in the �smooth world�	 the solution of the
di�erential equation ��� is given by dropping the ds�integral from the exponent of �����

Proof of Proposition �� We show that if S�t� satis�es ��� then it must have the form
���� For this	 let us apply the Generalized Ito Lemma to the function lnS�t�� Accordingly	
we �nd that

d �lnS�t� � �
�

S�t�
dS�t� �

�

�

��
S�t��

�dS�t���

�
�

S�t�
dS�t� �

�

�

��
S�t��

���t�S�t�� dt

� ��t� dZ�t� � ��t� dt � �

�
���t� dt �

and thus

lnS�t� �

tZ
�

��s� dZ�s� � �

�

tZ
�

���s� ds �

tZ
�

��s� ds � const �

This shows that ��� implies ���� The converse statement also follows from an application
of the Generalized Ito Lemma� it is left to the reader as an exercise�

�Notice also that if � � 
� the di�erential equation ��� has the �classical� solution

S�t� � S� e

tR
�

��s� ds

�

�



Remarks�

�� If ��t� and ��t� are independent of the Brownian motion Z���	 the Proportion gives an
explicit solution of the stochastic di�erential equation �SDE� with linear coe�cients �����
This is one of a few cases in which a closed�form solution for an SDE exists� If	 on the other
hand	 ��t� of ��t� depends on S�t� �or Z�t�� then ��� should not be viewed as a �solution�
of the di�erential equation	 because the right�hand side of ��� may depend on S�s�� s � t

�through � and ��� Nevertheless	 this result will be very useful�

�� Stochastic di�erential equations such as ��� are often used to describe the accumulated
wealth of investment strategies or the evolution of security prices
 in fact	 if we write
equation ��� in the form

dS�t�

S�t�
� ��t� dZ�t� � ��t� dt �

the parameters �dt and �
p
dt can be interpreted as the in�nitesimal mean and the in�ni�

tesimal volatility of returns�


� Futures prices are often modeled as exponential martingales� The reason is that	 in an
ideal market	 the expected return on an open futures position held for one day should be
zero �after adjusting for the price of risk	 as we shall see in the following chapter�� We have
already encountered this result in the context of the binomial pricing model�

�� Girsanov�s Theorem

We present an important application of the concept of exponential martingale	 which is
related to the idea of change of probability in path�space	�

Proposition � �Girsanov�s Theorem	� Consider a probability measure P on the space

of paths Z�t�� t � T such that Z��� is a Brownian motion and assume that b��� is a

non�anticipative function� Set

M�t� � e

tR
�

b�s�dZ�s� � �

�

tR
�

�b�s��� ds

� t � T �

and de�ne a new measure Q on the set of trajectories fZ�t�� t � T g by

Q f S g � EP fSM�T �g � ���

�The Cameron�Martin theorem discussed in an earlier lecture can be viewed as a corollary of Girsanov�s
Theorem�

�



where S represents an arbitrary set of paths and EP is the expectation operator with respect

the probability P � Then� the random process

W �t� � Z�t� �
tZ

�

b�s� ds � t � T �

is a Brownian motion under the measure Q�

Proof� We shall verify that	 for all real numbers �	 we have

EQt

n
e� �W �T ��W �t� �

o
� e

�
�

�
�T � t� � ���

Taking expectation values of both sides of this equation	 we conclude that W �T � � W �t�
is Gaussian with mean zero and variance T � t�


Equation ��� also implies that two successive increments	 say	 W �t � a� � W �t� and
W �t� a� a�� � W �t� a� are statistically independent �if Z��� has probability distribution
Q�� In fact	 for any a� a� � � and all ��� ��	 we have

EQ
n
e�� �W �t�a��W �t� � � e�� �W �t�a�a���W �t�a� �

o

� EQ
n
EQt�a

n
e�� �W �t�a��W �t� � e�� �W �t�a�a���W �t�a� �

oo

� EQ
�
e
�
�

�

�
a EQt�a

n
e�� �W �t�a�a���W �t�a� �

o�

� e
�
�

�

�
a � e

�
�

�

�
a�

� EQ
n
e�� �W �t�a��W �t�a� �

o
� EQ

n
e�� �W �t�a�a���W �t�a� �

o
�

�Recall that the moment�generating function of a Gaussian random variable with mean zero and variance

�� is E
�
e�X

�
� e

�
�
�
�

� �

�



These two properties � Gaussianity and independence of increments � characterize Brown�
ian motion� We will therefore establish ���� Consider �rst the case t � �� Then	 from ���	
we �nd that the moment�generating function of W ��� under Q is

EQ
n
e�W �T �

o
� EP

n
e�W �T � M�T �

o

� EP

��
� e

�

�
Z�T ��

TR
�

b�s�ds

�
�

TR
�

b�s�dZ�S� � �

�

TR
�

�b�s��� ds

��
�

� EP

��
� exp�

	



TZ
�

�� � b�s� � dZ�S� �
TZ
�

� b�s� ds � �

�

TZ
�

�b�s��� ds

�
�
��
�

� EP

��
� exp�

	



TZ
�

�� � b�s� � dZ�S� � �

�

TZ
�

�� � b�s��� ds �
�

�
�� T

�
�
��
�

� EP

��
� exp�

	



TZ
�

�� � b�s� � dZ�S� � �

�

TZ
�

�� � b�s��� ds

�
�
��
� � e �

�
�� T

� e
�

�
�� T � ����

Notice that in this calculation we used the fact that

exp�

	



tZ
�

�� � b�s� � dZ�S� � �

�

tZ
�

�� � b�s��� ds

�
�

is a martingale so	 in particular	 it has mean one� We have established equation ��� in the
case t � �� The calculation of the conditional moment�generating function of the increments
W �t�a��W �t� is is analogous to ����� The key fact that needs to be used is a �conditional�
version of ��� 
 the conditional probability Qt is given explicitly by

	



Qt fS g � EPt

�
S
M�T �

M�t�

�
�

� EPt

��
�S � e

TR
t

b�s�ds � �

�

TR
t

�b�s��� ds

��
� �

����

where S is represents a set of paths� �Equation ���� is a consequence of ��� and the fact
that M�t� is a martingale� This point will be explained further in the Appendix�� Using
����	 the moment�generating function ���� can be computed as in �����

Girsanov�s Theorem shows that the probability distributions of standard Brownian mo�
tion and of Brownian motion with �drift� �b�s� are related in a simple way
 namely	 the
following equation holds

Q � M�T � � P �

In simple words	 one probability can be deduced from the other by multiplication by the

exponential factor M�T �� Therefore	 the paths corresponding to Brownian motion with
drift over a �nite time�interval can be viewed as standard Brownian Paths after a change
of measure� This theorem has an interesting consequence
 events with probability zero
for standard Brownian motion have probability zero for Brownian motion with drift and
vice�versa� The two probability measure are said to bemutually absolutely continuous
or equivalent��

	This is true only true for events that depend on values taken by paths up to a �nite time�horizon
T � �� For instance� Brownian motion with postive drift converges with probability � to �� as
t � �� and standard Brownian motion does not�

�



Appendix
 Proof of equation ���	

We shall use the elementary properties of conditional expectation operators with respect
to a given sub���algebra of events�� The conditional expectation operator with respect to
the history of paths up to time t	 Et f �g	 is characterized by the following property
 let X
be an arbitrary random variable� Then	 Et fX g is the unique random variable which is
measurable with respect to the past up time t and satis�es

E fX Y g � E fEt fXg Y g � �A���

for all random variables Y which are measurable with respect to the past up to time t�

Let us use this characterization to compute EQt fXg	 where Q is de�ned in ���� From
the de�nition of Q	 we have

EQ fX Y g � EP fX Y M�T �g

� EP
�
X �



M�T �

M�t�

�
� M�t� � Y

�

� EP
�
EPt

�
X



M�T �

M�t�

��
M�t�Y

�

� EQ
�
EPt

�
X



M�T �

M�t�

��
Y

�
� �A���

Here	 we applied equation �A��� withX replaced byX
�
M�T �
M�t�

�
and Y replaced byM�t�Y

�notice that the latter variable is determined by the past up to time t��

From the characterization of the conditional probability operator	 we conclude that

EQt fX g � EPt

�
X



M�T �

M�t�

��
�

This is precisely what we wanted to show�


The reader unfamiliar with these notions should consult� for instance� L� Breiman� Probability� or the
�rst chapter of Bickel� Introduction to Mathematical Statistics�

�


