BROWNIAN MOTION AND ITO CALCULUS

K. Ito’s stochastic calculus is a collection of tools which permit us to perform opera-
tions such as composition, integration and differentiation, on functions of Brownian paths
and more general random functions known as [to processes. As we shall see, Ito calcu-
lus and Ito processes are extremely useful in the formulation of financial risk-management
techniques. These notes are intended to introduce the reader to stochastic calculus in a
straightforward, intuitive way. For rigorous treatments of this rich subject the reader can
consult, for instance, Ikeda and Watanabe (North Holland-Kodansha, 1989), Varadhan
(1980) Karatzas and Shreve (Springer 1988).!

1. Brownian Motion

Intuitively, Brownian motion corresponds to the concept of a homogeneous, continuous-
time, continuous random walk. One way to visualize Brownian paths is to consider a simple
random walk on the real line, in which the walker starts at position Xg = 0 and moves
up or down by an amount V/d¢ after each time-interval of duration dt. If X, denotes the
position of the walker after the nth jump, we have

X, = Xpoy £ Vdt, n =1, 2, ... (1)

where the + and — signs occur with probability 1/2. This process is called a simple random
walk. Note that the magnitude of the jump and the lag between successive jumps are chosen
so that the variance of the displacement of the walker after time 7' ( where T is an integer
multiple of dt) is exactly T.

IN. Tkeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd Ed., North
Holland-Kodansha, Amsterdam and Tokyo, 1989; S.R.S. Varadhan Lectures on Browntan Motion and
Stochastic Differential Fquations, Tata Institute of Fundamental Research, Bombay; and I. Karatzas and
S. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988.



A continuous path can be built from the variables X,, by interpolating linearly between
the different points:

X(t) = Xp + (t —ndt) (Xpy1 — Xn ), for ndt <t < (n+1)dt. (2)

These paths have the following properties:

1. If t = ndt and a > 0, the increment X (t +a) — X(t) is independent of the “past”
{7(8) , s < t } :

2. E(X(t)) = 0 ;
X)) =t .

For small time-increments (dt < 1), these paths have nearly independent increments
(neglecting the small persistence effect due to the linear interpolation). Moreover, the mean

P~

3. E(

and variance of the walker’s displacement are independent of dt.

For dt < 1, each increment of X () is a sum of many independent binomial random
variables with mean zero and finite variance. Therefore, by the Central Limit Theorem,
the limiting probability distribution of the increments of X (¢) as dt — 0 is Gaussian (or
normal). More precisely, we have

Y

. — — 1 _ 2
dtlzleP{X(t—l—a) — X(t) :1;} = Norw /e « dy

for all . This property, together with the independence of the increments, characterizes
the statistics of the paths X (¢) in the limit.

This discussion motivates
Definition 1: Brownian Motion is a probability distribution on the set of real-valued
functions Z(t) ,0 < t < oo with the following properties
1. Z(0) = 0 with probability 1 ;

2. Forallt > 0 and a > 0, the increments Z(t +a) — Z(t) are Gaussian with mean
zero and variance a; and

3. Z(t+a) — Z(t) 1s independent of {Z(s) ,0 < s < t}.

Items 1 — 3 completely specify the probability distribution of any n-tuple

(Z(t1), Z(t2), Z(t3), ... Z(tn) )
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where t; < t3 < ... <t, are arbitrary times. It is easy to see that this distribution is a
multivariate Gaussian? with covariance

E{Z(t;)Z(t;)} = Min(t;, t; ).

2. Elementary properties of Brownian paths

The first important property is the continuity of Brownian paths, namely

P {Z(-) is a continuous function } = 1.

The proof of this fact is mathematically non-trivial (see Ikeda and Watanabe or Varadhan).

Brownian paths are continuous but also very irregular. Any student of random walks
(or, for the matter, of financial time series) has noticed that the sample paths of random
walks are non-smooth and appear to have an infinite slope ( making trends difficult to
predict.) One way to see that Brownian paths are not differentiable is to consider their
quadratic variation.

Proposition 1. Let 0 =ty < t; < ... < t, = T represent a partition of the time
interval [0,T] and let dt = maz (t; — t;j—1). Set
J

AZ; = Z(t;) — Z(tj_1) .

With probability one, Brownian paths satisfy

(AZ;)?  =T.

1

N
lim
dt—0 —

J

(The right-hand side of this last equation is known as the quadratic variation of the path
Z(-) on the interval [0,T].) This result is is a direct consequence of the Law of Large
Numbers of probability theory. In fact, the random variables (A Z; )2 are independent and

?Notice that the statistical distribution of the paths for finite dt is more complicated, because increments
have multinomial distributions with different parameters, according to the number of elementary jumps
between the times ¢ and ¢ 4+ a. In this respect, Brownian motion is a simpler object than a random walk
with a finite jump size.



have means E{(A Z;)°} = t; — t;_; . Therefore, as dt — 0, the sum converges to its
expected value, E]‘ (t; — tj—1) =T.

This result implies that Brownian paths are not differentiable. To see this, we note that
if the function f(t) is differentiable, then we have necessarily?

N A
Jim SSTISRLE ~ [ 17 ds

J=1 0

But then, in view of the inequality

N
do(Aaf) <ma:1;|Af] Z|Af],

J=1

and the fact that
maz [Af;] = O(dt) .
J

we conclude that differentiable functions f satisfy

N T
Z (Af;)? ~ | constant - / If'(s)|ds |- dt < 1.
J=1 0

In other words, differentiability implies that the quadratic variation must vanish. The
finiteness of the quadratic variation of Brownian Motion implies therefore that its paths are
not differentiable.

Another remarkable property of Brownian motion is statistical self-similarity. For any

parameter A > 0, the transformation

Z(t) = A7 Z(\1)

maps Brownian paths into Brownian paths. This means that if one considers, for instance,
the ensemble of Brownian paths on the interval [0, 1] and “stretches” them according to the
above transformation with A = 1/2, the result is Brownian motion on the interval [0, 2].
This self-similarity is consistent with the fact that Brownian paths are “fractal” objects.

3Using the Intermediate Value Theorem.



3. Stochastic Integrals

Definition 2. A function f(t) us said to be non-anticipative with respect to the Brownian
motion Z(t) if, for allt > 0,

ft) = f({Z(s); s < t},t),

i.e. if the value of the function at time t 1s determined by the values taken by the history
of the path Z(-) up to time t.

We also include in this definition deterministic functions — these have a “trivial” depen-
dence on the random paths. The point of introducing the concept of a non-anticipative
function is to distinguish between general functions of Brownian paths and those which
are determined by the natural “flow of information” associated with the path Z(-) as time
progresses.

Examples. The function

0 if max Z(s) < b
0<s<t
filt) =
1 if max Z(s) > 5
0<s<t

is non-anticipative. (This function is equal to zero at time ¢ if the walk has not reached the
value 5 by time ¢t and is equal to 1 otherwise.) On the other hand,

0 if max Z(s) < b
0<s<1
fa(t) =
0 if max Z(s) > b
0<s<1

is not. The reason is that the value of the latter function at any time t < 1 is determined
by the realization of the path Z(-) over the entire interval [0, 1] — the information gained by
knowing Z(s) for s < t is insufficient to determine fo(¢).

Non-anticipative functions are the “natural” objects to perform integration with repect
Brownian increments.

Proposition 2. Let f(-) be a continuous, non-anticipative function such that

T
E IFB) dt y < oo .
/



Then, given any sequence of partitions of the interval [0, T] with mesh size At — 0, we
have

At - 0

lim Zf(tj—l) (Z(ty) — Z(tj—1) =

N

R 2 Ftj—1) - AZ(t)
]:

exists and 1s independent of the sequence used to take the limit. Thais limat 1s, by definition,

the Ito integral of f. It is denoted by

/ F(t)dZ(t) .

Stochastic integration is a natural operation associated with Brownian paths: a path is
“sliced” into consecutive Gaussian increments, each increment is multiplied by a random
variable and these numbers are then added together again to reconstruct the stochastic
integral. Thus, the stochastic integral can be viewed as a random walk with increments
which have different amplitudes, or conditional variances — a sort of “inhomogeneous ran-
dom walk”. In this respect, it is important to emphasize the role of the non-anticipative
assumption. Consider the j'" increment after multiplication by the random variable f(,_):

Ftj1)dZ; = f(tj—a) - (Z(t) — Z(tj—1)) . (3)

Once the history of the path up to time ¢;_; is revealed, the value of f(t;_1) is also known.
Therefore, the increment of the stochastic integral over the next period conditional on the
past up to time t is Gaussian with mean zero and variance f(t;_1)* - (t; — tj_1) . If the
function f(t) was anticipative (for lack of a better word), the two factors in (3) need not be
conditionally independent. In the latter case, the mean of the increment may not be zero
necessarily and the variance cannot be calculated in explicit form. Thus, non-anticipative
functions are the correct functions to define a continuous, inhomogeneous random walk
through the stochastic integral.

Some basic properties of the stochastic integral are given in

Proposition 3: Under the above assumptions, we have

E / fydze V=0, (4)



T 2

E /f(t)dZ(t) — E / O de S (5)

0

Moreover, t +— fot f(s)dZ(s) 1is a non-naticipative process which is continuous with
probability 1.

Proofs of Propositions 2 and 3 are sketched in the Appendix. The main idea behind the
definition of the stochastic integral is the fact that Brownian motion increments dZ point
“to the future” of f at each discretization time.

Example 1. Consider a function f(¢) = o(¢) which is deterministic (i.e. independent of
the Brownian motion).* In this case, the stochastic integral

t

X(t) = /U(S)dZ(s) , t >0, (6)

0

is a Gaussian random process, in the sense that (X (¢1), X (¢2), ... X(¢n) ) is a multivariate
normal vector for any set of times ¢y < t; < ... < ty. The reason is that the stochastic
integral is a limit (in the sense of the mean-square norm) of sums of independent Gaussian
random variables. Thus, if the integrand o(t) is deterministic, the stochastic integral is a
Gaussian random walk with time-dependent local variance. The variance of any increment
is given by the formula

t+a

B{(X(t+a) - X))} = / o2(s)ds .

t

In Options Theory, stochastic processes of type (6) are often used to model the term
structure of volatility.

Mathematicians have a different way of thinking about X (¢): in fact, suppose that we
define a new time scale 6(t) by the equation

The reader may think of 6 as the time that a special clock would give you whenever the
“real’ time was t. Defining a new process X(6) = X(¢) (the displacement with repect to
the “rubber clock”) we have,

*We use the notation o(t) to suggest the notion of a “local variance”.



Thus the process induced by the stochastic integral can be regarded as a Brownian motion
with respect to the new clock. This is a nice result, because it characterizes the probability
distribution of Ito integrals in the case of deterministic integrands.’

Example 2. Suppose that f(t) = f(Z(¢)), i.e. that f depends on the current value of
the Brownian path. This is, of course, a non-anticipative function so the Ito integral can
be defined. Intuitively, the stochastic integral corresponds to a walk in which the local
variance of increments is a function of the auxiliary Brownian path. The stochastic integral

/ F(2(s)) dZ(s)

will be non-Gaussian in general. We should make at this point an important remark, which
is related to the results of the previous section and to what lies ahead. If Brownian paths
were smooth, or rather, if one ignored the fact that they are non-smooth, then one might
be tempted to consider the anti-derivative (primitive) of f and to write

dF(Z()) = f(Z(1)) - dZ(1)

whereby

/0 f(Z(s))dZ(s) = F(Z(t)) — F(0). (7)

>This trick of changing time has also made its way into financial modeling. Some exchanges close while
others remain open and interest accrual on deposits may take into account time at which thereis no trading.
Because of this, the local volatility of certain assets over holidays and quiet periods can be lowered to reflect
the lack of strong trading activity. Similarly, the short-term volatility parameter might be increased on the
date of an important economic or political announcement which will have a large impact on prices or rates.
To take into account these effects in valuation models it is useful to introduce the notion of “nonlinear”
time.



This is wrong !! (Unless, f is constant.) For instance, if the primitive F(Z) is positive
and vanishes at Z = 0 we would conclude from (7) that the stochastic integral is positive.
This cannot be, since we know from Proposition 3 that stochastic integrals have mean zero.

Consider, for instance, the elementary case f(Z) = Z (and hence F(Z) = Z?%/2). Using
the definition the stochastic integral and standard notation, we have

%

/T Z(s)dZ(s) ~ Y Zj_1dZ,

=Y Zj1 (Zj — Zj)
j

%

~T + Z*(T) — /Z(s)dZ(s) : (8)

0

where we used the result on the quadratic variation of Brownian motion (Proposition 1).
Thus, we conclude that

2(T? T
3 (9)

The right-hand side now has expectation zero (at it should). The additional term %, which
is missing in the “naive” formula (7) comes from the quadratic variation > (dZ;)?.

Example 3. Suppose that one wants to implement the idea of a random walk with condi-
tionally Gaussian increments (i.e. a stochastic integral) in which the local variance depends
on the position of the walk. This means that the “elementary increment” of the stochastic
integral should have the form



AX(t) = o(X(t))-AZ(1) .

More formally, we would like to define a process that satisfies

X(t) = /U(X(s)) dZ(s) . (10)

As opposed to Example 3, the stochastic integral on the right-hand side depends on the
left-hand side of the equation. This is therefore an integral equation for X (¢), which is
often written in differential form

dX(t) = o(X(t)) dZ(t) (11)

in which case it is termed a stochastic differential equation. If Z(#) were smooth, then
(11) has a clear meaning and can be solved by standard methods of Ordinary Differential
Equations. In the case of Brownian differentials, (11) should be interpreted as the integral
equation (10). The existence and uniqueness of solutions of stochastic differential or integral
equations such as (11) and (10) is treated in most books on stochastic calculus (Ikeda and
Watanabe, Varadhan and Karatzas and Shreve, among many others.)

The Ito integral, or stochastic integral, is a powerful analytic tool for constructing sto-
chastic processes which are similar to Brownian motion but have local characteristics which
depend on time, the value of the process itself or more general non-anticipative factors. The
implications for financial modeling are very interesting: stochastic integrals and stochastic
differential equations can be used to model heterogeneity of the local price volatility, a key
theme in lectures to follow.
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4. Ito’s Lemma

We now discuss a systematic approach for evaluating Ito integrals and functions of
Brownian motion. This result can be viewed as the analogue of of the Fundamental Theorem
of Calculus for functions of Brownian motion.

Proposition 4. Let F(Z,t) be a smooth function of two real variables Z and t with
bounded derivatives of all orders. Then

F(Z(T),T) = F(0,0) + Z—Z(Z(S), s)dZ(s) +
/ { aa—]:(Z(s), s) + %%(Z(S), 3)} ds . (12)

This proposition is known as Ito’s Lemma. It provides the correction to formula (7) that
would result from a naive application of standard Calculus. The additional term term is

19*°F
/ §W(Z(S)7 s)ds . (13)

0

(Compare with (9).) The Fundamental Theorem of Calculus (cf. (7)) does not involve
second derivatives, the reason for this being that the contribution to the integral due to
quadratic and higher-order terms is negligible. (The quadratic variation of a smooth func-
tion is zero). In contrast, the (dZ)*-terms contribute to the differential in the case of
Brownian motion because the quadratic variation of the paths is non-trivial. The beauty
of Ito’s Lemma is that it provides a “closed-form” expression for (F(Z(t), t) for any rea-
sonable smooth function F', elucidating the effect of the quadratic variation. This avoids
having to go through manipulations of sums like the ones done in the Example 2 of the
previous section.

Sketch of the proof of Ito’s Lemma.®

We consider the Taylor expansion of of F' about some point (Z,t). Formally, we have

1 1
AF = FzAZ + F At + S Fzz (AZ) + Fz  AZAt + 5 Fu (A1) + ... (14)

5Later on, in the study of hedging in imperfect markets with transaction costs, we will need to revisit
the mathematical derivation of Ito’s Lemma.

11



Now, assume that we have a partition of the interval [0, T, {t; }, and that

Z =Z(tj1), t = tj_1,

At = t; — tjy,

and

AZ; = Zi,

J

— Zi

Considering the Taylor expansion (14) and adding up the successive increments, we find
that the first term in the right-hand side of (14) gives the contribution [ Fz(Z(s), s)ds to
(12). Similarly, the second term in the Taylor expansion (14) contributes to the integral
[ Fydtin (12). These are the two terms that we expect from standard differential Calculus.

Let us turn to the higher-order terms in the Taylor expansion. Since we have

E {|AZ]" (At)"} o (AH)PEFE

the contribution to ) dF; which arises from adding the (N = T'/At) terms proportional

to (AZ;)? (At)? has order (At )p/2+q_1. The conclusion is that the only terms with
p + ¢ > 2 which contribute are those with p = 2 and ¢ = 0, i.e.the (AZ)? terms. All
other terms vanish asymptotically as At — 0.

This means that we should study the asymptotic behavior of the sums

%Z Fuz(Z(tj-1, tj—1) (AZ;)" (15)

recalling that each increment DZ; points to the future of ¢;_;. This sum is equal to the
Riemann sum

N | —

N
Y Frz(Z(tja, tjo1) At
=1

approximating the integral in (13). To establish Ito’s Lemma, it suffices to prove that the
sums

N | —

Y Fuz(Z(tia,tia) [AZ;)? — At] (16)
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converge to zero as At — 0 in a suitable sense. To see this, we analyze the mean and the
variance of the sum. This analysis is similar to the one of the proof of Propositions 2 and
3 given in the Appendix. The crucial point is that the increments in (16) have mean zero
and point towards the future. Because of the latter property, we have

E{ Fzz(Z(tj—1, tj—1) [AZ;)? — At]} = 0.
The expected value of the sums (16) is therefore zero. Consider now the variance of (16),

2

N
1
JE ; Frz (Z(tj—1, tj1) [ AZ;)" — At ]

We observe two things: first, the variables Fyz (Z(tj—1, t;—1) [AZj )2 — At] and
Fryz (Z(tk-1, tk—1) [AZk )2 — At] are uncorrelated for j # k. The reason is that
if, say, t; < ti,

Fuz (Z(tj—1,tj—1) [AZ;)? — At]-Frz (Z(tke, tei)
and

(AZp)? — At

are independent conditionally on the past until time ;. Second, the latter random vari-
able has expectation zero. This guarantees that the expectation of their product is zero.
Consequently, the variance is given, to leading order, by

E { (FZZ(Z(tj_l,tj_l))z} E{((AZj)Z — At) } ~

1

1 N
4 =

J

5o | [B{ ez iz} |

0

a negligible quantity as At — 0. Here, we used the fact that

E{(AZ° - A1)} = (MPE{(V - 1)} = 2(A17
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where N is a standard normal.” We have thus shown that the sums in (15) converge to the
integral (13) (the “Ito correction term”) in the sense that the difference has mean zero and
variance converging to zero as At — 0.

Example. Consider the following function of Brownian motion:

S(t) = Spe?ZW+nt 4 >0,
where o and p are constants. This random process is sometimes called geometric Brown-
ian motion. Let us apply Ito’s Lemma to S(¢), with the object of finding the inte-

gral equation satisfied by it. Accordingly, applying (12) to the function F(Z,t) =
Soexp {cZ + pt}, we find that

S(t) — S(0) = /S(T)adZ(T) + /S(T) (M + %) dr (18)

If we use differential notation, we obtain

dS(t) = S(t)odZ(t) + S(t) (M + %) dt . (19)

This stochastic differential equation states that geometric Brownian motion has the property
that the infinitesimal relative increments

as(t) _ odZ(t) + <u+ %2> dt

are normal with mean p + %2 and variance o2. This is the Black & Scholes “world” for

option pricing theory, which we will discuss shortly using stochastic calculus ideas.

"From the explicit form of the moment-generating function for the standard normal distribution,

2
E {2V} = s , it follows that E { N2k } = (2k)!/ 2*k! for all integers k > 0.
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4. Ito Processes and Ito Calculus

What is the most general class of random processes that can be described in terms
of sums of stochastic integrals and standard integrals? The answer is the class of Ito
processes.

Definition: We say that a random process X (t) , t > 0 is an Ito Process if there exists
a Brownian motion measure and two non-anticipative functions o(t) and b(t) , t > 0
such that

X(t) = X(0) + /U(S)dZ(s) + /b(s)ds, t >0, (20)
or, in terms of differentials,
dX(t) = o(t)dZ(t) + b(t)dt . (21)

Intuitively speaking, Ito processes are continuous random functions with infinitesimal
increments which, conditionally on the past until time ¢, are Gaussian with mean b(¢) and
variance o?(t).%

An important class of Ito processes which we already encountered in the lecture are
functions of Brownian motion, i.e.

X(t) = F(Z(t),1) . (22)

o(t) = aF(g(Zt)vt)
and
bt) = % N %%

The next result is very important for applications. It states that any smooth function of
an Ito process is also an Ito process and gives a formula for the local parameters.

8is important to observe that, in general, the increments will not be Gaussian over a finite time interval.
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Proposition 5 (Generalized Ito Lemma) Suppose that X (t) is an Ito process with local
parameters o(t) and b(t), i.e that (21) or (22) hold. Let F(X, t) be smooth function of
(X,t) with bounded derivatives of all orders. Then

L(t) = —="=-0o(t) (23)
and

OF(X (1), t) 1 O?*F(X (1), t)

Bty = =l 4 St OFX(), 1)

b1

(24)

In other terms, the Generalized Ito Lemma states that, for all ¢ > 0, the integral
equation

holds for all sufficiently smooth functions F(X,t). It is convenient to express equation (25)
in differential form, like we did in for the case of Brownian motion. Accordingly,

OF(X(t), 1)

dF(X(t),t) = ———"—o(t)dZ(t) + X

b(t)dt +

OF(X (1), t) 1 O?F(X(t),t)

dt + = o*(t) e

dt
ot 2

16



= ——"—= (o(t)dZ(t) + b(t)dt) +

0X
OO gy S0 | L R0,
_ OF (g()(;)’ D axe) + —aF()gf)’ Var + %—aZF g((j)’ D ax))? .
(26)
where we used equation (21) and the formal relation
(dX (1)) = o*(t)dt . (27)

The latter equation is a convention: it expresses in synthetic form the contributions from
quadratic terms ( (dX(¢))* or (dZ(t))*-terms). Thus, the Generalized Ito Lemma can be
written concisely in the form

dF(X(t),t) == %- dX(t) +

OF(X(t), t) 1 *F(X (1), t)
o T an

(dX(1))" .
The result is simple to remember: the infinitesimal increment of a smooth function of an
Ito process 1s obtained by making a Taylor expansion of order 1 wn dt, of order 2 in dX and
using the convention (27 ). This convention often referred to as the Ito multiplication
rule. Note that if o(¢t) = 1 and b(t) =0, we recover the “little” Ito Lemma (Proposition
4) of the previous section.

In summary, stochastic differential calculus 1s an extension of standard calculus in which
we use the Ito multiplication rule (27) to account for the effect of non-trivial quadratic
variations.

The proof of the Generalized Ito Lemma is very similar to the proof of Proposition 4. We
omit it. The interested reader should consult for instance Ikeda and Watanabe, Varadhan,
or Karatzas and Shreve.
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APPENDIX: PROPERTIES OF THE ITO INTEGRAL

The aim of this Appendix is to provide additional technical elements to understand the
basic properties of the stochastic integral stated in Propositions 1 and 2.°

Let us consider Proposition 2. Notice that any “approximating sum”

so= Y fltio1) (2(t) — Z(tj—1)) = Z fi—1dZ; (28)

J=1

has mean zero and uniformly bounded variance. In fact, since f(¢) is non-anticipative, we
have

E{fj-1dZj} = E{E {f;-1dZ;|Z(s), s < tj—1} }
= E{fj-1E{dZ;|Z(s), s < tj-1}}
-0,

where E {e]Z(s), s < t;_1} represents the conditional expectation operator given the
history of the path up to time ¢;_;. The conditional expectation of dZ; vanishes because
the increments of Z(t) are independent of their past. We conclude that the sum in (28) has
mean zero. To compute its variance, we must evaluate the sum of terms of the form

E{fj-1dZ; - fr1dZy} |

where 1 < 35,k < N. The key observation is that this expectation vanishes if j # k. In
fact, if 7 < k, we have

E{fj1dZ; - fre1dZy}y = E{EA{f;1dZ; - fro1dZp|Z(s), s < tpo1} }
= E{fj-1dZ; frea E{dZy|Z(s), s < tgp—1} }

=0

9These are in lieu of formal proofs, which would take us too far from the subject of these lectures
into Measure Theory. I encourage the interested reader to consult the aforementioned references to obtain
mathematically precise hypotheses on f(¢), on the types of convergence of random variables used in the
proofs, etc. So much to say, so little time...

18



The variance on (28) is therefore equal to the sum of the “diagonal” terms

E{(f(t-1)) | (4 = tim1)

N
= 1

E {(fj—l z;)* } = f

1 J

~ /OTE{(f(t))Z}dt.

(This assumes implicitly that the sum can be approximated by the integral, i.e. that
E { (f(t) )2 } is continuous.)

We have established that the random variables sy have bounded mean and variance. Next,
we show that the sums converge to a limit as the partitions become finer and finer.

J

Ny
Consider a sequence of partitions {t;") } , where
j=1

ma <t(<y) —t(<'/_)1> — 0 as v — o0,
1<j<N, \J J

and the the corresponding sequence of sums sy,. We claim that

lim E{(sND —SND,>2} = 0.

v, v — o0

Consider two such sums, sy, and sy ,, corresponding to different partitions. The idea is to
“merge” the two partitions to form a finer one which combines the nodes of each of them.
A moment of reflection shows that, with respect this refined partition (which we call {¢; }
to fix ideas) both sums can be written in the form

N

Y Fft50) (Z() = Z(tj-)

and

FEZ) (2(t) = Z(tj-1))

N
=1

J

where the 7 s and the ¢I* are times (of the original partitions) such that
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<ty £ <ty (29)

*
J ’ J

and the difference t7* — #7 converges to zero as v — oo. The difference of the two sums
can therefore be expressed in the form

(F(t50) = f(E520)) - (Z(t) — Z(tj-1))

1

N

~

Taking into account (29), it is easy to show that this sum has mean zero and variance

E{(fti) — FEm0) b (4 = tia) (30)

1

J

If f(t) satisfies suitable boundedness and continuity assumptions, e.g, if f(¢) is bounded
and

lim B{(fE+h) — f#)7 ) =0,

h — 0

the sum in (30) tends to zero with the mesh size.

This argument shows the existence of the Ito stochastic integral. The properties stated
in Proposition 3 also follow from these calculations.
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