BINOMIAL MODELS FOR INTEREST-RATE DERIVATIVES

We shall discuss the construction of simple binomial models for pricing interest-rate
derivatives. The main feature of these models is that the “risk-free” interest rate can
vary stochastically from one period to the next. Stochastic rate models can be used to
price interest-rate options (caps and floors), options on bonds, callable bonds, etc. They
can also be incorporated, at the expense of more complexity, into a model that prices
derivatives contingent on one or more traded assets ( e.g. equity indices, currencies) in
an environment with changing interest rates. This point of view is important, for instance,
for pricing long-term options or other instruments in which changes in the costs of funding
may have significant impact on pricing.

1. Binomial Tree for interest rates: statement of

the problem

In the lecture “Refinements of the Binomial Model” we assumed that rates would change
according to the current yield curve, i.e. that the spot rate for a given period in the future
would be equal to the corresponding implied forward rate. This assumed that interest rates
had zero volatility. Here, we we will consider a binomial model with N periods to model
interest rate fluctuations. The duration of each period is a specified fraction of year dt.
(In practice, dt will correspond to 3 or 6 months intervals, i.e. dt=.25 or dt=.50). At the
beginning of each successive trading period, an interest rate for the period is revealed to
investors. A realization of the interest rate process consists therefore of a sequence of
rates

o, 7T, 72, .., TN-1"-. (1)



Interest rates are assumed to be annualized and continuously compounded. We assume
that rates follow recombining binomial process, as depicted below:

FIGURE 1. Binomial tree for interest rates corresponding to four lending periods.

To determine an arbitrage-free model for interest rates we must find risk-neutral prob-
abilities for the different realizations of sequences (1). These probabilities must be such
that the risk-neutral prices match the market prices of liquidly traded instruments such as
e Short-term and long-term bonds
o Interest rate futures
e Interest rate options.

The most important set of data used to calibrate interest rate models is the zero-coupon
yield curve or, equivalently, the curve of forward interest rates

fl ) f2 PR fN—l . (2)

The problem which we face is the construction of suitable “up-down” moves (or increments
of the short-term interest rate) and probabilities for different paths which will be consistent
with the data.



2. Binomial tree for discount factors

It is convenient to consider the discount factors

D, = e M DI — e Thdt , 0<j<n<N-1 (3)

as auxilliary variables to construct the tree. We postulate that the discount factors evolve
according to a binomial rule

1 gy
Dn—l—l - Dn Un
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In order to have a recombining tree, we must impose that, for all n, we have the relation

Un . Dn—l—l == Dn . Un—l—l ,
which is equivalent to

Un = constant independent of n = A . (5)

D,
Set

U, , with probability Py,

H, = (6)

D, , with probability Pp,

where Py, and Pp , are conditional probabilities which may depend the current interest
rate level and past information. (These will be determined later). Then, we have,

1
%lnﬂn = Tp+1 — Tn - (7)

To calculate U,, and D,,, recall that if interest rates had zero volatility, then the future
interest rates r, would be equal to today’s forward rates f, , n = 1,2... N — 1. Hence, it
is natural to postulate for the general case that

~

UTL — e_(fn-|—1 - fn)dt . UTL (Sa)



and

~

Dn — e_(fn-|—1 - fn)dt . Dn , (Sb)

where U, and D,, are, in a sense, the essential fluctuations due to interest rate volatility.!
Let us define a random variable associated with the interest rate fluctuations by

U, , with probability Py,
H, = (9)
D, , with probability Pp , .

From the above considerations, we conclude that

D] = e_f""‘ldt ﬁl . ﬁz' f{n
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The no-arbitrage condition for matching the prices of zero-coupon bonds results from the
equations

E{D} DDy ) = ¢ 7"

It follows that our model will be consistent with no-arbitrage if and only if

A

E{ﬁy—l-ﬁ;—?--ﬁn_l} — 1, Yn<N. (11)

To proceed further, we assume that the increments of the spot rate are independent from
one another and depend only on the period of interest.? Under this assumption, we find
that the variance of the increment

dri, = Tpny1 — Th

is given by

1On can also view these variables as the primitive variables in the case of a flat forward curve.

2This is a simplifying assumption which may not be appropriate for pricing derivative securities when
interest rates are extremely high or extremely low. The reason is that that in these cases, the volatility
may correlate strongly with the interest rate.
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Now set A = 2p(dt)*/? (notice that the power 3/2 is the correct one, given the above rela-
tions). This leads to the relation between the volatility at each node and the corresponding
probabilities:

or = 4p° Py, Pp,y . (13)
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In particular, the stability condition
p = max oy (14)
n

must hold.

From equations (12) and (13) we obtain the formulas

o

PU,n = = 1 £ — p_2 (15&)
1 o2

Pp., = - |1 AT 15b

which determine the probabilities. We must now determine the parameters U,, and D,,. In
order to do this, we observe that that equation (11) reduces to the system of equations

E {ﬁy—l }E {ﬁg* } E {ﬁn_l } =1 (16)

or



This system of equations can be solved recursively to find U,,, D,. For instance, for
n = 1 we have

1 = ﬁl'PU,l + Dl'PD,l-

From equation (17) with n = 1 we obtain the formulas

3/2
. ep (di)

U PG E Py et

e_p (dt)3/2

Py er (0% 4 Py y = (4%

~

D, =

Plugging in these values into the equation for n = 2 we find Uy and D; and so forth.
The general form of the solution takes the form

~ ep(dt)3/2
tn = Ppy, eP (@02 1 Ppy emp(d0)312 O (18a)

_ 3/2
e—r(dt)

D= PUmep(dt)B/2 + PDme—p(dt)B/2 O (18Db)

where C,, = E {ﬁn}

To find numerical values for the parameters, we can choose p = max o,, consistently
n

with the stability condition (13). Notice that the largest volatility corresponds then to
equiprobable jumps (Py, = Pp, = 0.5) whereas small volatility corresponds to most
of the weight carried by a single branch.



3. Arbitrage-free dynamics for interest rates:
the limit dt <1

From equation (7), and taking logarithms in (18a), (18b), we conclude that the interest
rate increments satisfy

1

dry = dfu F pVit + —

3/2 3/2 ]_
In | Py, et 4 ppeme@®* ] _ —InC, (19)

where the - ocurrs with probability P, and the + with probability Pp ,. It is easy to
verify directly from this formula that the variance of the interest rate increment is indeed
given by o2 dt.

We shall focus on the problem of calculating the drift of the interest rate process in
closed form in the limit d¢t < 1. Notice that the mean of the interest rate increment is df,,
— the increment in forward rate — plus an additional increment which vanishes when the
interest rate volatility is zero and is independent of the forward rates. The latter term is
necessary to maintain the no-arbitrage requirement with respect to the yield curve.

Let us expand formula (19) with respect to the small parameter v/dt. The result, is after
some calculation,

drn, = Fp\Vdt + (Pun — Ppn) pVdt + df, + R, dt + terms or order (dt)*/? . (20)

Here, R, represents the excess drift due to the no-arbitrage condition. This drift can be
computed directly from the formulas of the previous section® or can be obtained directly
as follows: from the Central Limit Theorem, the continuous version of the interest rate
process must be, according to (20),

t

re = N@) + f(t) + /R(s)ds, (21)

0

Here, f(t) an R(t) are continuous functions describing the term-structure of forward
rates f, and the drift correction R,,, respectively. The function N(¢) is a random process
with independent, normally distributed increments. The mean of the increments is zero
and the variance is

3This is a slightly tedious calculation because of the the recursive way in which the constants C, are
derived from equation (17). It is left as an exercise for the interested reader.



E {(N(t) ~ N(s))? } - /: o du . (22)

where o is the term-structure of volatilities.

To characterize R(t), it suffices to observe that the pricing formula for zero-coupon bonds

t —ftrsds
e~ JoI)ds — g ) ¢ o

must hold. This implies, from (21), that

t
—fNSds
0

ftds r R(u)du
E< e = eoO

[}

We conclude, from the explicit form of the moment-generating function of the Gaussian
distribution?, that

/ds/R(u)du _ %E{ [/Ot N(s)dsr}

_ /Ot /0 E { N(s) N(u) } duds

Differentiating both sides of the last equation with respect to ¢, we obtain

t t

/R(s)ds - /E{N(t)N(s) } ds

0 0

= /tE{N(s)Z }ds,

4 . . . . . 2 09X 1 92 0-2
Namely, if X is a Gaussian with mean zero and variance o-, then E {e } = e2
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where we used the independence on the increments of N(t¢). Therefore, using (22) and
differentiating again with respect to ¢ we obtain finally

R(t) = /Ot o2ds . (23)

The continuous-time approximation for the the interest rate process is therefore

re = N(t) + F(t) + /t/os o2 duds . (24)

This Gaussian model which is consistent with the structure or interest rates is known in the
Mathematcal Finance literature as the Ho-Lee model. One interesting consequence of the
closed-from solution is that the binomial tree can be considerlaby simplified if dt is small.
Taking a hint from equation (24), we may chose to implement the following discretization

of Ho-Lee:

dry = +o,Vdt + dfn + <Zj:1"a§dt> dt (25)

where the + and - shocks ocurr with probability 0.5.

4. A multiplicative random walk model

The previous model led to an interest rate process satisfying a simple random walk with
a drift associated to the curve of forward rates and the term-structure of volatilities. An
alternative model consits of assuming that the interest rates, and not the discount factors,
are modified multiplicatively at each node of the tree.

Consider for instance a binomial tree such that

r;{:i__ll = r;i U, with prob. Py, (26a)

and ‘
riy = 1) Dy, with prob. Py, . (26b)



Notice that this model is structurally similar to the models used to price stock options.
The difference with the latter lies in how the no-arbitrage condition enters. How should we
choose the parameters to make the model arbitrage-free with repect to the term-structure
of interest rates?

In this section, we shall see that the answer is particularly simple if we adjust the model
to the term-structure of interest-rate futures rather than to the zero-coupon rates. By a
term structure of interest rate futures, we mean that there are N — 1 futures contracts on
the interest rates r, for each period period in the future. As shown in a previous lecture,
let R, represent the interest rate implied by the price of the futures contract.” We will
neglect issues about the difference between simple and compounded rates: although the
ED futures are for simply compounded rates, it is easy to convert the implied rate into a
continuously compounded rate over the period of interest.

As shown in previous lectures, the futures-implied rate and the spot rate satisfy the
following relation:

R, = E{r,} . (27)

This puts certain constraints on the aritrage-free measure which we now discuss. We will
assume, for simplicity, that the shocks are independent. The volatility of the increments of
the log of the interest rate are then given by

1 Un \°
2 _ "
O = o <ln( D, )) Py, Ppy -

_ 62/) Vdt

Introducing a parameter p such that U,/D, = , we consider the probabilities in

(15a) and (15b) and set

ep (A2 o
Un = Py er@Y2 4 Pp o e=p(d)/? = (28a)
and
—p(dt)1/2
.Dn — € . ep,n dt (28b)

Py er (07 4 Py e=p (00772

Here, the sequence of parameters p, will serve to calibrate the model according to the

structure of interest rates R,,. By analogy with the equity model, we can easily conclude
that

5Recall, for instance, that the Eurodollar futures contract of CME is quoted as 100 — R,,. The implied
interest rate is therefore 100 minus the futures price (see J. Hull.
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n—1
- 203 pjdt

ro = e -E{r,}
n—1
— > pjdt
= e 0 s
so we obtain the relation

R bS)

— p,‘dt
St - T, n=1,2,.N—-1.

2
o

Inverting this relation, we find rather easily that

_ il R"
oo = %" \R,_, )~

Alternatively, we can rewrite the parameters of the model in the form

R, ep (A2
Un = Ro_1 Py e @2 4 Py emp(dt)/?
and
RTL e_p(dt)1/2
D, =

Ry Py er@'? 4 Pp,e-r(n'7?

The interest rate increments for this model satisfy

1

dlnr, = dlnR, + pVdt — =

which, to leading order in dt gives

1
dlnr, ~ dInR, — 50,3 dt + rhoVdt — (Py, — Pp.,) pVdt

with 4+ occurring with probability Py, and - with probability Pp ,,.

In PUnep(dt)1/2 + PDne—P(dt)1/2

(29)

(30a)

(30D)

The model presented in this section gives rise to lognormal interest rates, rather than

normal. The continuous time version is
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t
Inry, = N(t) + InR; — / olds .
0

Despite the clear theoretical simplicity of the lognormal model, the simple Ho-Lee model
is often used because option prices can be computed in closed form using the bivariate
normal distribution. On the other hand, the model presented here, which is sometimes
referred to as the Black-Karasinski model does not have simple closed-form solutions fro
the prices of options.
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