AMERICAN-STYLE OPTIONS, EARLY EXERCISE
AND TIME-OPTIONALITY'

We have discussed so far derivative securities that can be exercised only at specific dates.
In this lecture, we discuss the issue of time-optionality, i.e. the valuation of derivative
securities that give the holder or the issuer the right to exercise some option at an unknown
date in the future.

The simplest derivatives with time-optionality are American-style options. Exchange-
traded equity options on the CBOT and AMEX are American-style. Other examples of
securities with time-optionality are encountered in debt markets. U.S. Treasury bonds
issued before the 1980’s were callable: the government had the right to repay the face-
value of the bond after a certain date thereby stopping coupon payments. (Callable bonds
have not been issued in recent years; see F. Fabozzi: Bond market strategies). Corporate
debentures usually contain some kind of time-optionality provision. For instance, com-
panies issue bonds that are callable after a certain number of years. Convertible bonds,
usually issued by corporations, are debt securities which can be converted into compa-
ny stock after a certain time. Callable and convertible bonds are said to have embedded
options. Mortgages constitute another class of securities with time-optionality. The mort-
gage issuer ( homeowner) has the right to increase monthly payments to reduce interest
payments or to pay the mortgage in full by refinancing the loan at a lower interest rate.
Similarly, commercial loans (credit cards, lines of credit) have time-optionality since they
can be paid off faster or refinanced.

1. American-Style options

The holder of an American style option maturing at time 7' has the right to exercise
the option at any time before the expiration date. Suppose that such option is written on
a stock or on an index which pays continuous dividends (stock index of currencies being
the two major examples).

The rationale for the early exercise of American options is simple: by exercising, the
holder can claim the dividends provided by holding the underlying security (in the case
of a call), or the interest income that derives from investing the proceeds from selling the
underlying security (puts).

To fix ideas, assume that the option is a call. If the option is exercised at time 7
(1 < T), the payoff is

max (S, — K, 0) (1)

I Preliminary version. A more complete version will be available later in the week.



where S is the value of the index and K is the strike price. According to arbitrage pricing
theory, the fair value (present value) of this payoff today is

E{e_rTMa:L'(ST—K, O)} , (2)

where E represents the expectation operator with respect to an arbitrage-free probability
defined on the set of forward paths {S; ,0 < ¢ < T }. Since the holder has the right to
exercise at any time, then the fair value of this option is given by

Vow = sup B {77 Mar(S. ~ K. 0)} . g
0<r<T

where the supremum is taken over the class of all possible ezercise times.? An exercise
time is a particular case of a stopping time, or decision rule contingent on information up
to time 7. Mathematically, we have

Definition 1: A stopping time 7 is a function taking values on [0,T] such that the
event { T = t}, i.e. the decision to “stop at time t”, is determined by the path
{Su,0 < u <t}

The main problems of interest are the evaluation of the supremum in (3) and the optimal
exercise time which realizes the supremum. This stopping time is also called the rational
exercise time because it maximizes the present value of the cash-flows received by the
holder. By knowing the optimal exercise time (as a function of the time to expiration and
observed market prices) the holder knows whether the option has a premium above the
intrinsic value, maxz [S — K, 0], and hence whether it should be exercised or not.

2. The early-exercise premium

What is the additional value (early-exercise premium) of an American option compared
to a European option with the same intrinsic payoff 7 The first observation to make is that
if the fair value V(S,T) of the European-style option, F(S) ,* satisfies

V(S,T) > F(S) = intrinsic value (4)

for all S, then the American option has no early-exercise premium. In fact, the value of

the American option, V,,(S,T), satisties (cf. (3))

Vam (S, T) > V(S,T) . (5)

2QOver-the-counter American-style derivatives may be exercisable on a smaller set of dates, say, only
after 1 year. In this case the supremum in (3) should be replaced by 7 € ©, where © represents the subset
of possible exercise dates.

3F(S) = maz[S— K , 0] (calls) or F(S) = maz[K — S, 0] (puts).



We conclude from the latter inequality and (4) that the holder of the American option
will achieve a higher return by selling the option at the fair value than by exercising it. In

particular, this implies that 7 = T" and hence that V,,,,(S,T) = V(S,T).

Conversely, if an American option has no early-exercise premium, then 7 = T and
Vam = V. But then, since

Vam (S, T) > F(5),

we conclude that the value of the European-style option must be greater than the option’s
intrinsic value for all S. From these considerations, we deduce

Proposition 1. The following statements are equivalent:
(i) Vam(S,T) > V(S,T)
(ii) F(S) > e T F(er=9T8) for some S .

Proof: Suppose that the option is a call. Recall (say, from the Black & Scholes formula
or from general principles) that the fair value of a European call option satisfies

C(S,K;T) o« Sem ™ — Ke™T' « e_rTF(e(r_q)TS , S > K.

(The value of a deep-in-the-money call is asymptotic to the value of a forward.) Therefore,
if (ii) holds, we will have C(S, K;T) < F(S) for some level of spot and hence the American
option will have an early-exercise premium. Conversely, assume that C(S, K;T) < F(S)
for some level of spot. Then, since we have C(S,K;T) > e "7 F(el"=9TS) | then (ii)
holds. Puts can be analyzed similarly (this is left as an exercise).

This Proposition has the following useful

Corollary: Assuming a riskless rate r and a continuous dividend rate q,
(i) Calls have early exercise premium if and only of ¢ > 0

(i) Puts have early exzercise premium if and only if r > 0.

In particular, American-style call options on stocks that pay no dividends have no early-
exercise premium. This is by far the most important example, because it applies to listed
stock options (assuming no dividends). Puts on stocks have early-exercise premium since
interest rates are generally non-zero. Options on futures always have an early exercise
premium (exercise). The Corollary can be illustrated using payoff diagrams, as shown in
Figures 1 and 2 below.



3. Pricing American Options using the binomial model:

the dynamic programming equation

In the simplest formulation, the no-arbitrage probability can be taken to be either the
binomial random walk (binomial tree) or its lognormal approximation. Even with such
simple models, and assuming a constant volatility, and constant interest and dividend rates,
the premium of an American option cannot be expressed in closed-form. The premium
and optimal exercise time must be evaluated numerically.

Assume that the volatility, dividend rate and interest rate are given, and consider a
binomial tree with parameters

ea'\/dt + rdt — gdt

U = ,
cosh(o \/cﬁ)
e—a’\/ﬁ + rdt — gdt
D _

cosh(o \/c%)

and

where dt represents the duration between hedge adjustments. Recall that the value of the
underlying index at the node (n,j) is given by

Si = Syuip"i 0 <j <n < N

Using this model, we shall calculate the value of an American option recursively. Let %]
represent the value of the option at the node (n,j), and assume that V,:Zill and V], the
values at the two “offspring” of node (n,j), have been determined. From the analysis of
the binomial model, we know that, at time n, there exists a portfolio of stocks and bonds

7 Vjill and Vr‘f_i_l at time n 4+ 1. The value of this

that will replicate the two “cash-flows” V

replicating portfolio is

Tt {PU Vith 4 PV, } . (6)

Hence, the fair value of the option, conditionally on that it not be exercised is (6). However,
the holder of the option can exercise at time n it and earn the intrinsic value F(S}).
Clearly, the decision to exercise should be made according to whether the value of holding
the option until the next period, given by (6), exceeds or not the intrinsic value F(S7).
Because of this, the value of the option at time n if S,, = SJ is



Vi = Maz { F(s}), " [PuViE + PoVi |} (7)

This equation is known as a dynamic programming equation.? Once the values of the
option at the expiration date T' are specified, viz.,

Vi = F(S%). (8)

equation (7) can be solved recursively, as with the case of the linear relation used for
pricing of European options.

The dynamical programming (DP) equation can be used to determine if the option
should be exercised, given the spot price and the time to expiration. More precisely, the
nodes of the tree can be divided into two classes, according to whether

V;Z > F(S,‘i)v le.

Max {F(S,‘i), e—rdt PUV,gi_ll + PDV,{+1} } - e—rdt {PUVéi—ll + PDV13+1 ’
(9a)

or

Vi = F(57), ie.

Maz {F(S]), <" | PoVIEL + PoViy |} = FUs)). (9b)

Nodes satisfying (9a) correspond to spot levels S7 where the option should not be exercised.
On the other hand, if (9b) is satisfied at a node, the option should be exercised at time
t, = ndt In particular, the optimal stopping time is given by

™ = Min {ndt : V] = F(S})} . (10)
In Figures 3 and 4 below we illustrate the solution of the dynamical programming

equation for puts and calls using a tree with 10 periods.

Insert figures

4Because the optimal exercise decision is determined dynamically.



The exercise region, i.e. the set of pairs (S} ,n dt) such that V/ = F(S7), has a simple
geometry, as indicated in the above figures. For call options, we have

Vi =F(S)) = V, =FS) Vk>j,

whereas for puts, we have

Vi = F(S)) = VF = F(sH VE <

These monotonicity properties follow from the convexity of the option premium with re-
spect to the variable 5.

4. Hedging

The Delta of an American option is given by the difference-quotient

- ‘

i Vﬁ7+1 - V7%7+1

Aj = LT (11)
Sn' = San

where V/ is the solution of (7)-(8). Suppose that a trader writes (sells) an American option
and decides to hedge his exposure using a self-financing portfolio of stocks and bonds with
Delta given by (11). More precisely, assume that

e at time t = 0 an individual sells an American-style option,

o he implements thereafter a dynamic hedge which consists in holding A? shares and
B: = V?® — A®*. S* in bonds at time ¢, = ndt, n > 0.°

e the buyer exercises the option at some time 7 < T.

We claim that this strategy is riskless for the seller of the option, regardless of when the
option is exercised. To see this, notice that the dynamical programming equation ensures
that the value of the replicating portfolio at time ¢, before the holder exercises, is equal
to V7. Since the solution of the dynamical programming equation satisfies

V. > F(Si) , Vi, ¥n,

the value of the replicating portfolio will always be at least equal to the intrinsic value
of the option (the liability faced by the seller of the option). Therefore, the strategy is
effectively riskless.

®The superscript ® represents an arbitrary level 0 < j < n.



5. Characterization of the solution for dt <« 1:

free-boundary problem for the Black-Scholes equation

In the limit dt < 1, the solution of the recursion relation (7)-(8) can be expressed as a
partial differential equation with a free boundary condition. This free boundary represents
the geometric boundary of the set where the value of the option is equal to the intrinsic
value (exercise region). This section provides a discussion of the limit dt < 1 of the
binomial pricing of American options. This characterization in terms of partial differential
equations is useful to construct more advanced numerical schemes for pricing and hedging
American options as well as to understand the Gamma-risk at the exercise boundary.®

From the previous analysis, we know that there is an exercise region, where V) = F(S7)
and its complement in the (9, ¢)-plane, where the dynamic programming equation reduces
to the linear relation

Vi = e PpVI + PpVI | (12)

This relation is identical to the one satisfied by European-style derivative securities. It is
therefore not surprising that the value of the American option should satisfy the Black-
Scholes differential equation in the complement of the exercise region for dt < 1. More
precisely, V(S,t) represent the limiting value of the American option outside the exercise
region, i.e.,

V(St) = lim Vi
Sh=5 , (N—n)dt=t , dt—0

Here, t represents the time-to-expiration of the option. Then, according to the analysis of
European contingent claims, we know that V(S,) satisfies the equation

av(svt) — l0'2 52 azv(svt)

ot 2 052

oV (S, 1)

+ (r—q)S 53

— rV(S,t) (13)

for (S,t) in the complement of the exercise region. (A rigorous proof of this result will
be given later.) However, the precise location of the boundary of the exercise region is
unknown. The following proposition characterizes the behavior of V(5,t) along the exercise
region.

Proposition 2. Let B represent the boundary of the exercise region, i.e. the region where

V(S,t)= F(S). Then

SPDE solvers, usually based on finite-difference schemes can be used to obtain a more accurate charac-
terization of the exercise boundary (see Wilmott, Dewynne, Howison: Option Pricing). We shall discuss
the PDE approach later in the course.



V(S,t) = F(S) for S € B (14)

t
% — FU(S) for S €B (15)
Also,
oV (St
O(S,t) = —% =0 for S €B. (16)
Remark: For call options, (15) reads % = +1 . For puts, the boundary condition

s % = —1. In words, the graph of the function V(S5,t) is tangent to graph of the

intrinsic value along the exercise boundary.

Proof of Proposition 2: Let For each ¢, let S(t) represent the point at which

V(5(t).t) = F(5(1)) . (17)

(Hence, (S(t),t) € B.) Since the value of the option cannot be less than the intrinsic
value we have, along B,

vV

> — 1 for puts

|s=s(1) (18)
+ 1 for calls .

oV (S,t)
aS

A

These inequalities show that the option premium should be locally conver along B. How-
ever, considering the valuation problem for the view of the hedger of the option, we see
that the option premium cannot have a jump in the first derivative, unless this jump is
such that the premium is locally concave. The reason for this is that delta hedging across
such a point (which would correspond to having infinite Gamma) would produce a loss
to the short position if Gamma were infinitely negative. We conclude from this that the
option premium must be locally convex and locally concave. The only possiblity is that it
is locally “flat”, i.e. that the derivative with repect to S is continuous across B. The fact
that the option has no time-decay across the free-boundary can be deduced immediately
from this property and eq. (17). In fact, differentiating (17) with respect to t, we find that

S(t) + % = —S(t),

where S(t) represents the derivative of S(t) with respect to t. Therefore,

8



IV (S(t),1)

o =0.

The vanishing of © along the free boundary means that the agent who sells the American
option and hedges using Delta will be Gamma-neutral along the free-surface. In fact, the
I’ of the option satisfies, from the Black-Scholes equation,

vV (S(t),t)
ot

= %UZ S T(S(t),t) + (r—q)SE)A(S(t),t) — rV(S(t),t).

Therefore, if the dynamic hedge is such that the portfolio Delta is zero and the total value
of the portfolio is zero, then I' = 0 along the exercise boundary.



