REFINEMENTS OF THE BINOMIAL MODEL
AND APPLICATIONS

The binomial model discussed in Chapter 2 used two input parameters: the inter-
est rate and the volatility. Until now, we assumed implicitly that these parameters
were constant. In this lecture, we remove these assumptions, allowing for variations
of these parameters with time.

A term-structure of interest rates is introduced to model a (more realistic) econ-
omy in which deposit rates can vary with the duration of loans. We will also
study time-inhomogeneity of the volatility process by introducing a term-structure
of volatilities. Time-dependent volatilities are useful to incorporate into the pricing
model the market’s expectations about risk across time. Information about the tem-
poral behavior of volatility is contained in the prices of liquid option instruments
with different maturities written on a given underlying asset.

We will also discuss refinements of the binomial model that will permit us to
extend the theory to several derivative securities of practical interest. These include
derivatives contingent on underlying assets that pay dividends, options on futures
and “structured” derivative instruments providing a stream of uncertain cash-flows
across time.

1. Term-structure of interest rates

We incorporate into the model different interest lending rates for different trading
periods. Usually, interest rates are not constant in time. For example, the following
table gives market for interbank dollar deposits on August 23, 1995:!

maturity  bid offer

1 month 5.8700  6.0000
2 months  5.7800  5.9000
3 months  5.7800  5.9000
6 months  5.8100  5.9500
9 months  5.8100  5.9300
Implied forward interest rates can be obtained from such a “strip” of deposit

rates, or from the markets in Eurodollar futures or Treasury bill futures. For in-
stance, the December 1997 Eurodollar 90-day futures contract gives the expected

IUnless otherwise specified, interest rates are quoted in “bond-equivalent”, or continuously
compounded form.
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London Interbank Offered Rate (LIBOR) for the period of January 1998 through
March 1998, the March 1998 contract gives the expected 90-day LIBOR from April
1998 through June 1998, and so forth. These values can then be input in the model
at different time periods?.

Example 1. The table given above can be used to obtain a 1-month interest rate,
a 1-month forward interest rate for a loan starting in one month, a 1-month forward
interest rate for a loan starting in two months, a 3-month interest rate for a loan
starting in 3 months and a 3-month interest rate for a loan starting in 6 months.
For instance, to compute the three-month interest rate for lending 6 months from

now, rk .. we note that
’ 16,9

e borrowing $§ 1 for 9 months
¢ lending ¢76.99-25 dollars from month 6 to month 9

¢ lending 70,6059 ¢ 765025 {ollars from month 0 to month 6

results in a cash-flow of zero dollars 9 months from today. For borrowing for 9
months we take the 9 months offer rate, 5.93 and for lending for 6 months we take
the bid rate 5.81. Therefore, the effective rate for lending from 6 to 9 months satisfies

593 x 0.75 = 5.81 x0.50 + ry x 0.25

which gives an offer rate of 6.17 %. To calculate the effective rate for borrowing
over the same period, we observe that

e lending § 1 for 9 months

e borrowing e_rgﬁ 0-25 from month 6 to month 9

b b
e borrowing e~ 0.6 %9 ¢ 776,002

results in a cash-flow of zero dollars 9 months from today. Hence,

581 x 0.75 = 595 x 0.50 + rfy x 0.25,

which gives an effective bid rate of 5.53 %.

In the simple models considered hereafter, differences between bid and offer prices
will not be taken into account. Instead, we will consider the “riskless rate” to be
the average between bid and offer rates. If we follow this rule, the equation for the
effective 6-to-9 rate is

5.87 x 0.75 = 5.88 x 0.50 4+ rs9 x 0.25,

?Modeling the future interest rates as the forward rates implied by a strip of interest rate
futures or deposit rates 1s not entirely correct for pricing and hedging derivative securities. The
reason is that forward rates are just expecited future rates whereas the future short-term rates are
not predictable in advance. However, this “ forward rate approximation” is extremely useful to
obtain a first-order approximation to varying interest-rate environments.



which gives an effective bid rate of 5.85 %. This is just the average between the bid
and offer rates obtained above.

Suppose that we have, as in §I1.1, a binomial model with N trading periods. We
consider a sequence of interest rates for the N periods quoted on a continuously-
compounded (bond-equivalent) basis:

 , 5 T2 4 ... 'N—1 . (1)

(This sequence sequence could have been obtained from the procedure outlined
above or otherwise.) The interest rates R, , 0 < n < N — 1 for the different
periods are?

R, = e — 1 (2)

where At = T | N represents the duration of each period. We wish to incorpo-
rate the term-structure of interest rates (1) assuming, for simplicity, that the local
volatility — the standard deviation of the yield over a single period — remains constant
through time. This can be done by defining, for each n, the parameters

U, = ™ dt | U/
Dn — eT’n dt D/ (3)
An arbitrage-free measure on the space of price paths is defined by setting
Sn+1:Hn+1Sn 5 fOl"OSnSN—l,

where the random variables H, are independent and satisfy

PI‘Ob.{ Hn_|_1 == Un} == PU 5 PI‘Ob.{ Hn_|_1 == Dn} == PD

Here, Py and Pp are the probabilities

p _ L+t R —Dy 1-D
v~ U, - D, U —-D

and

U, — 1 — R, Uo— 1
Py, — — 4
p U, — D, U — D (4)

3We make the convention that r, is the interest rate that applies to the (n + 1)** period.



The reader will recognize here the usual arbitrage-free probabilities for the one-
period model. Note that Py and Pp are independent of n. In particular, the
single-period or local volatility is also independent of n and is given by

U/
01200 = ln<ﬁ> Py Pp
The annual volatility is therefore
1 v’
2 _
U—all’l(ﬁ)PUPD

The analysis of the model is very similar to the case treated in S II. In particular,
the probabilities Py and Pp are given by

Py =

and

Pp =

where p = 2\}% In (U'/D"). The parameters U’ and D’ are given by

o ep Vit
- Pp eVt 4 Py oerVit
and
D e~ pNdt

Pp e=pVit 4 Py oepVit

Thus Py, Pp, U’ and D' are independent of n.

Using equation (25) in §II we find that the mean of the (annualized) yield for the
(n 4 1)%* period is given by

P 1 —pVdt Vdt
n =7 + —- (Py — P — —1 P P + Py e’
ILL " \/% ( v D) dt . [ D€ ve ] (6)

The average yield over the entire time period of T' years, annualized, is therefore

1

1
w= 5 Zrn-l-%-(PU—PD)—aln[PDe_pm—l—PUepm].



Remark. Notice that the trajectories followed by the price of the underlying asset
form a recombining tree, in the sense that there are only n nodes at time n, just
like with the tree with constant U , D. Thus, a path that originates from a given
point and goes first “up” and then “down” arrives at the same location after two
time steps than a path that goes first “down” and then “up”. In fact, we have

UpDppy = e MU emn 4Dl = DL Upyy .

The only difference between the variable and the constant interest-rate models is
that in the former the slopes of the trajectories vary according to the time period.

From this remark, it follows that the value of the underlying asset at node (n , j)
is given by

n—1
. Z rr dt
N A—— 58 e k=0

A (U (D) (7)
The recursion relation for the price of any derivative security contingent on the
risky asset is

‘ 1 - ‘

= e [Py VI + Pp Vi ]

Since the risk-neutral probabilities Py , Pp are independent of the term-structure
of interest rates, the valuation of derivative products using this model is particularly
simple.

We observe from (7) that

N-—-1
. St dt
5}7V:5(?ek=o g Uy

= S0 (%2 n) T, Uy (DN (8)

We conclude that the model prices European-style options and derivative securi-
ties expiring after NV periods exactly like the binomial model of §IT with an effective,
constant interest rate given by



which represents the yield for riskless lending over the duration of the contract.

It is important to notice that the values of derivative assets and the corresponding
hedge-ratios predicted by the recursion for intermediate time periods, i.e. for n
between 1 and N, are different than the ones that would be obtained using a binomial
tree with constant rate 7. This is because the recursion relation takes into account
the fact that interest rates vary over the duration of the contract. Using the same
average rate 7 of (9) in the recursion relation instead of r,, will give incorrect prices
and hedge-ratios for 1 < n < N.

For dt < 1, we can use the lognormal approximation to the binomial model.
For this purpose, it is convenient to introduce a function r(t) to model variability
of interest rates. This function is connected to the discrete rates r,, through the
formula

rn, = r(ndt) .

The effective average rate is then

al
Q
N~
—
<
&
N
V)

lim =7 — —0o
dt—>0M

Hence, under the risk-neutral probability, the price of the underlying asset satisfies

oVT Z + <%fr(s)ds— %0’2>T

ST = 506

Soea'\/TZ—l— (F—%O’Q)T

Y

where Z is Normal with mean 0 and variance 1. In particular, the Black-Scholes
formula for option pricing holds, with r replaced by 7.

2. Term-structure of volatility

First, we need to state precisely what we mean by a term-structure of volatili-
ties. In §II, we defined volatility as the standard deviation of the annual yield of



the underlying asset under the no-arbitrage pricing measure. Since we also assumed
that the statistics for price shocks were essentially the same at all nodes (up to a
multiplicative factor associated with changing interest rates), the volatility is com-
pletely determined from the variance of the price shock over a single period. The
latter quantity is what we call the local volatility. We can generalize the model by
assuming that the local volatility is time-dependent. A term-structure of volatilities
then consists in a specification of the local volatilities of the underlying asset over
the different trading periods.

To illustrate how term-structures of volatilities arise consider the following ex-
ample, drawn from the Dollar/Deutschemark options market on August 23, 1995.
On that date, option market-makers (usually banks dealing over-the-counter) were
trading options using the following volatility table:

maturity  bid offer

1 month 1390 1425

2 months  .1365 .1390

3 months  .1330 .1360

6 months  .1300 .1320

9 months  .1290 .1310
The meaning of this table is the following: the bid/offer prices for at-the-money
options on USD/DEM on that day were computed using the Black-Scholes formula
with the above volatilities. One way to derive a local volatility structure is to “strip”

this data (commonly referred as a “curve of implied volatilities” ), similarly to what
we did earlier for interest rates. The procedure will be explained in detail later.

A term-structure of volatilities can be specified as a sequence of parameters
gy, 01, 02, ...0N-1

corresponding to the annualized standard deviation of the yield for each period.

Thus,

2 i Sn—l—l
o, = o Var[ln( S )] (10)

for 0 < n <N -1

We want to construct a simple binomial model which is arbitrage-free and consis-
tent with given term-structure of volatilities and interest rates. It is also convenient
that the resulting trajectories for the price of the underlying asset form a “recombin-
ing” tree, so that derivative asset prices can be obtained by solving simple recursive

relations. The problem consists in specifying parameters U,, , D,, , P[(Jn) , Pl()n) ,n =
0,1, ,..N—1so that

1+ R, = P"U, + Py D, , (11)



with

(n) 1 + R, — D,
P =
v U, — Dy
(n) U, — 1 - R,
P = 12
D Un . Dn ’ ( )
and, in addition,
2 Uny12 . p) | po)
for all n. Finally, we need to impose the conditions
Un : Dn—l—l - Dn : Un—l—l (14)
so as to have a recombining tree.
The no-arbitrage condition (11) is immediately satisfied if we set
U — er’n dt U/ D — er’n dt D/
m _ 1= D, () U, — 1
Py oD and P D (15)
Furthermore, condition (14) is equivalent to to
U,

where A > 1 is a constant. Therefore, matching the term-structure of volatilities
requires finding A | P[(Jn) and Pl()n) such that

At O'i = (ln/\>2 . P[(Jn) . Pl()n) \ n=1,..,N. (17)

Observe that the right-hand side of (18) reaches a maximum when the probabilities
are equal. Thus, a necessary condition for the existence of solutions to the N
equations corresponding to (17) is

dt o* < l(hrl/\)2

7

e



for all n, or

ZMMaXUn < In M.

Thus, if we set

Omar = Max o, ,
an admissible A should therefore have the form

A = ¢ 20 Vit

with p > 0mes. Substituting into (16) and solving for the probabilities, we obtain

(n) 1 on
P“”:l[lzp 1—ﬁ] (18)
D 2 p2

The parameters U] and D!, can then be obtained from (14). They are given by

o ep\/ﬁ
" P =it g plV) it
and
e~ pNdt
D! = (19)

Pl()n) e—P Vit 4 P[(Jn) ep VT

Notice that the risk-neutral probabilities are now time-dependent. The prices of the
underlying asset at the different nodes in the tree are, according to the model,

4 T at p VAL NG (g=p VAL yn—j
Sil = 58 . e k=0 * . 1 (e ) ( € ) (20)
(P o 1 P v
k=0

Finally, the equation that gives the value of a European-style derivative security
with payoff F(S) maturing after N periods is

Vi = e [ PVIT 4+ PV ], n=0,.N-1
(21)
Vi = F(S).
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3. Deriving a volatility term-structure from

option market data

Volatility is the most important variable in option pricing. Many methods have
been porposed to “calibrate” the volatility variable in pricing models (this is an
indication that there is no “correct” way of doing this!). Historically, there are two
paradigms for volatility estimation : using historical volatility and using implied
volatility.

Definition 1. Historical volatility 1s defined as an estimate of the variance of the
logarithm of the price of the underlying asset, obtained from past data.

Definition 2. Implied volatility 1s the numerical value of the volatility parameter
that makes the market price of an option equal to the Black-Scholes value.

The use of historical volatility estimates requires the construction of appropriate
statistical estimators. Omne of the main problems in this regard is to select the
sample size, or window of observations, which will be used to estimate o ( 6 months
of previous data, 3 months, 1 month, etc.). Different time-windows tend to give
different volatility values.

The problem with using historical volatility is that it assumes that future market
preformance will be reflected in future option prices. Although this may be partially
correct, such method will not survive a large “spike” in volatility such as the one
which ocurred in October 1987, for example. Another argument against historical
voaltility is that it does not incorporate arrivals of new information such as corporate
mergers, sudden changes in exchange-rate policy (see Mexico circa December 1994),
etc.

Implied volatility, on the other hand, is not a predictor of option prices. It
is simply a way of quoting option prices in terms of a risk parameter. However,
it 1s important to notice that implied volatility is a “forward looking” parameter.
Therefore, one can say that it incorporates the market’s expectations about prices
of derivative prices or, more concisely, about risk. Measuring risk through the
construction of appropriate ddiscounting probability measures is the name of the
game in Financial Mathematics.

Example 2. Consider the following situation: Stock XYZ, is trading at § 100.00.
A 183-day call option with strike price trades at § 9.32 (per share). The interest rate
is estimated at 7% annually. The value of ¢ which makes $ 9.32 the Black-Scholes
price is oimpiiea = 0.16 or 16% annual volatility. (Check with your Black-Scholes
calculator).

It important to realize that the implied volatilities of options on the same under-
lying asset is not constant across strikes and maturities. At first, this seems like
a serious “blow” to the theory, but what really happens is that the market assigns
different risk-premia to different strikes and maturities. This does not mean neces-
sarily that there exist arbitrages in the market, but instead that the way in which
the market prices risk at different price levels and future dates is different.
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One of the simplest ways that this information can be incorporated into a pricing
model is through local volatility and a term-structure.

What is the relation between implied volatilities and the term structure? The
answer is that, since shock prices are independent in the no-arbitrage world, the
variance of the logarithm of the price after N periods is

N
o?T = Zaidt.
n=1

This equation allows us to use market data to calculate local volatilities that can be
used in the pricing model. We outline the procedure using the data given on p.7.
As a first step, we take the average between bid and offer implied volatilities. The
result is

maturity  volatility

1 month 1407
2 months  .1382
3 months  .1345
6 months  .1310
9 months  .1300

Notice is that the data is not given over time intervals of the same duration. To
calculate the “forward- forward” volatility from month 1 to month 2, we can use
the above equation. Hence

2/12 x (.1382)* = 1/12 x (.1407)* + 1/12 x (012)

Straightforward arithmetic gives o 5 = .1357. The nest step is to compute the
2-to-3 months forward volatility. The corresponding equation is then

3/12 x (.1345)* = 2/12 x (.1382)% + 1/12 x (093)

This gives 02 3 = 0.1268. The 3-to-6 month volatility is found by solving

6/12 x (.1310)* = 3/12 x (.1345)* + 3/12 x (036)*

The result is 03 6 = 0.1274. Finally, the equation for the 6-to-9 month volatility is

9/12 x (.1300)% = 6/12 x (.1310)2 + 3/12 x (06s)? |
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which gives 069 = 0.1279.

This calculation gives an approximate estimate of the annualized “forward-forward”
volatilities. We can then set o, in the model equal to the appropriate value corre-
sponding to the period under consideration.

4. Underlying assets that pay dividends

We consider the valuation of European-style derivative securities that depend on
a dividend-paying asset, such as the stock of a company. The binomial model must
be slightly modified to account for this feature.

We assume that there are N trading periods and that dividend payments are made
always at the end of a trading period. The values of the stock before dividends are
paid are denoted by S, or SY;ZL, for n =0,..., N. This is the ez-dividend value. We
denote the value of the stock at the end of the n'® period after a dividend payment
— the post-dividend value — by S, or SJ.

A natural assumption regarding dividend payments is that is that the payment
after the n'* period is a fraction the ex-dividend value, say

~

where 0 < a, < lforall0 < n <N — 1. The fractions «,, are assumed to be
known in advance and are also allowed to depend on time (to model, for instance,
periods without dividend payments)*. Equation (22) gives a simple relation between
the ex- and post-dividend values: since

we have

o 1 ~
Sp = — S or Sp=(1 — an_1)Sn. (23)

1 — Qn—1

We shall take as the basic variable in the model the post-dividend price of the
stock, assuming that, given the price history until the en of period n, we have one
of two possibilities for the price shock over the next period, namely

Sn_|_1 = Sn Un or Sn Dn .

4Similarly to the notations for interest rates and volatilities, we make the convention that o,
represents the fraction of the ex-dividend value paid after the (n + 1)%¢ period.
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We will also impose the condition U, Dy,41 = D, Upy1 n =0, ..., N —1,
so as to have a recombining tree. We must determine a probability on the set of
paths that makes the model arbitrage free. We know that such probability be such
that the present value of the stock is equal to its discounted future value, including
dividends. In particular, from (23), we must have

1
Sp = m E {Sn+1 + Dut1 |Sn}
= L E{ S IS4
— 1_|_ Rn n+1 n
1 1

= TR T BlSe S (24)

Thus, the the post-dividend value is obtained by discounting the expectation of its
future (post-dividend) values at a rate that depends on the riskless interest rate

and the fraction of dividends paid. The conditional probabilities P[(Jn) and Pl()n)
corresponding to the expectation in (24) should therefore satisfy

P + P =1
(25)
U, P + D, P2V = (1 + R,) (1 — an) .

To make a parallel with the no-dividend case, we introduce the term-structure of
interest rates as in (1) and set

1 — a, = et (26)

The constants ¢, represent the annualized rate at which dividends accrue corre-
sponding to the (n + 1) period. We can then rewrite the second equation in (25)
as

U, PY" + D, P = elrn —an)dt, (27)

The calculation of the parameters U, , D, ,P[(Jn) and Pl()n) follows a route similar
to the one of the two previous sections. We omit unnecessary details and state only
the simplest result, corresponding to the case of constant local volatilities. Solving
(25) and adjusting for volatility, we find that the post-dividend values of the stock
at the different nodes are

:2_:1 (re — qr) dt (ep Vit )] ( e P Vit )n—]
ek=0 )

Si = 57-
n 0 (PDe_P\/E—kPUeP\/E)n’

(28a)
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where p > o is a parameter and where

[1+4/1 - =], Pp=1-PFPy. (28D)

The value of a European-style derivative security with payoft F'(S) maturing after
N periods is then given by the familiar recursive relation

Vi=em [Py VI + Po VY]

(29)
Vi = F(S4)

To get a better feeling for how dividends affect the pricing model, we observe
that the expected (post-dividend) value of the stock under the no-arbitrage measure
after the N periods is, from (28),

N-—-1
0 > (re — qr) At
k=0

E{Sy|So = S0} = S%¢

Thus, the underlying variable (S5,,) of the derivative security grows at a rate which
is different from the one used to discount the value V,, in (29).

Dividend payments for the underlying asset can be therefore easily incorporated
into the binomial pricing model. The pricing equations for European-style derivative
securities are very similar to the case without dividend payments. However, if the
derivative security can be exercised before its maturity date (as is the case for
American-style options) the impact of dividend payments on the pricing equations
is more substantial.

As lognormal approzimation of the binomial model for dividend-paying under-
lying assets can be derived from the above considerations.® As with the case of
interest rates, it is convenient to consider a dividend function ¢(t) which interpo-
lates between the discrete values, viz.,

gn = q(ndt) , n=0.,N—-1.

The asymptotic value of the mean annual yield is obtained from equation (28a).
The key observation is that r;y — g appears as the “effective” interest rate in the
post-dividend price (compare with equation (7). Therefore, in the lognormal ap-
proximation, the price of the underlying asset satisfies

5 This approximation assumes however that dividends are pid out continuously. The continuous
dividend approximation is used in the case of options on indices such as the S&P 500 and options
on foreign currencies. In the latter case, the dividend rate is simply the foreign exchange rate.
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oT Z + <%f(r(s)—q(s) ds— %0’2> T
ST = 506 0

where

7
q = T/Q(S)ds-
0

In particular, the Black-Scholes formula can be extended to dividend-paying assets.
The general valuation formula for European-style derivative securities is

V(S,T) = e TE{ F(senVT7+ it TH 1

where Z is a standardized normal. Notice that the difference with the previous re-
sults comes at the level of the risk-neutral average yield. The Black-Scholes formula
for the value of a European call option on an asset with continuous dividend yield

q 1s
C(S,K;T) = Se ™ N(dy) — Ke "' N(dy)

where

1 (r—¢)T
d, (Se

1
T\ TR >+2Uf’ 2 = - oVT

The Delta of the option is now

A(S,T) = e "' N(dy).

Notice that the amount of shares of the underlying security is multiplied by the
factor e~7. This is similar to what happens when hedging forward contracts with
continuous dividend reinvestment.
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5. Futures contracts as the underlying security

Many exchange-traded and OTC derivative securities are based on futures con-
tracts. Examples include options on Eurodollar futures and on Treasury bond fu-
tures contracts. In this section, we will consider the problem of pricing a European-
style derivative security, assuming that the underlying asset is an “ideal” futures
contract.® In constructing no-arbitrage models for derivatives based on futures con-
tracts, the cash-flow structure of the futures contract must be taken into account.
As we shall see, the situation bears a strong similarity with the case of assets with
continuous dividend payments.

Let F,, , n=0,1,..., N, represent the sequence of (random) futures prices after
the different trading periods. We shall assume that the contract is marked-to-market
after each trading period, so that an investor with a long (resp. short) position in
one contract at after the n'® period will be credited (resp. debited) the amount
F,11 — F, after the next period. We assume, as usual, that at each step the price
follows a binary model with

Fn_|_1 = F, U, or F, Dy,

Y

where U,, and D,, are parameters such that the trajectories will form a recombining
binomial tree.

Opening and closing positions can be done at zero cost (according to our defini-
tion of “ideal” contract). Hence, the futures contract can be viewed as a security
that has zero market value and obliges its holder to receive or pay the cash-flows
F,y1 — F, ,i.e. to mark-to-market. To determine a possible arbitrage-free proba-
bility measure for the random variables F},, consider an investor which opens a long
position in the futures contract after the n'* period. Since the position can be closed
at any time, we can concentrate on the cash-flows associated with a single trading
period. The no-arbitrage probability measure on the set of paths (F,)_, should
be such that the value of the futures contract (zero) is the discounted expectation
of its cash-flows. Therefore,

0=e™UE{F,. — F,|F,}

or simply

F, = E{Fu: | F,}. (30)

This last equation states that (F,)Y_, must be a martingale under the no-

arbitrage pricing measure, i.e. that any arbitrage free measure would make today’s

5By this we mean a contract which can be opened either going long of short at zero cost
and which i1s marked to market daily. We do not take into account any cashflows resluting from
maintenance or posting margins.
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futures prices a “fair” bet on later futures prices”. As before, the conditional prob-
abilities for the two states (up or down) that can occur in the binomial model can
be completely determined from equation (30) and the parameters U, and D,. In
fact, we have

P+ P =1

U, P + D, Py =1

SO

(n) 1 — Dn (n)
PU = m and PD =

U, — 1
U, — D,

Since, these probabilities are independent of Fj,, we conclude that any arbitrage-
free probability measure is such that (F,))_, is a multiplicative random walk, i.e.
that In F), follows a a standard random walk with independent increments. The
model can accommodate if necessary given term-structures of interest rates and/or
volatilities using the methods shown above. In the simplest case of constant local
volatilities, the (constant) probabilities are given by (28b) and the futures prices at

the different nodes of the tree are

(er VI )T (emr Vi)
(Pp e=eVdl 4 Py epVii)"

FJ = FY . (31)

The pricing equation for a European-style contingent claim with value G(Fy) at
expiration is given by

Vi = e [Py VIE + PpVL ]
(32)

Vi = G(F})

We note here that the present scheme is formally equivalent to the one for pricing
of a derivative security contingent on the price of a stock with dividend payment
rate g, = 1, (compare with equations (28a) and (30)). This equivalence can
be seen more clearly by assuming that the futures contract is based on a traded
underlying security with value S,, and that the futures price converges to the price
of the underlier at the end of the N period, i.e. that Fy = Sy . (For simplicity,
we assume that the traded security pays no dividends.) Since the cash-flow of the
futures position after the N** period coincides with that of a forward contract, the
cost-of-carry formula implies that

7 As mentioned earlier, this is not a statement about the statistics of future prices. The no-
arbitrage probability measure is just a device for consistently pricing derivatives contingent on
Fy.
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N—-1
S o At
Fy = Sy ex=n . (33)

Hence, the futures price is equal to the value of a certain number of shares of the
traded security, this number changing with time. Now, the value of this “equivalent
portfolio” after the next trading period is

N-—-1
~ Z rr At
Fop1 = Spyqq1 ex=r = Fhqyqe™

At

This shows that the equivalent portfolio appreciates in value to more than F, 1.
The excess can be regarded as a dividend that is paid out after each period. The
last equation can be viewed as giving the relation between the corresponding ex-
and post-dividend values of the equivalent portfolio, as in equation (23) with

1 — « _ e—T’n At
n — .

Another point that deserves attention is the construction of equivalent portfolios
that replicate derivative securities contingent on a futures contract. Unlike the case
of derivatives based on traded assets, in the present situation the hedging strategy
consists of a money market account combined with an open position in futures. As
in the case of equity, the number of open contracts at any given time depends on
the sensitivity of the calculated value of the derivative security on the futures price.
More precisely, suppose that the values VJ at all the nodes of the tree have been
calculated. The replicating strategy corresponding to the node (n , j) will consist
in investing V/ in a money-market account and to open A’ contracts. To find the
“ hedge-ratio 7 AJ, we must match the two possible cash-flows to the calculated

7
values of the derivative security at the following nodes. Accordingly,

MFT = Fl) + (L+ Ra) Vi = VI

n n n+1

A (Fly, —Fl)+ (1 + RV = Vi, .

n n
It is immediate from these two equations that

J+1 J
A] Vn—l—l - Vn—l—l

n T gt J
Fn—l—l - Fn—l—l

) (34)

as expected.



19
6. Valuation of a stream of uncertain cash-flows

We conclude this chapter by writing down a general valuation equation that
prices derivative securities with a given maturity that offer intermediate cash-flows,
depending on the value of the underlying asset up to maturity. A simple example
of such a security would be a commodity- or equity-linked debt instruments. These
securities, normally issued by companies, are such that their coupon payments are
linked to the value of an index such as the price of copper or oil or the S&P 500
index. This type of security can be often be decomposed or “stripped” into a
series of European-style derivatives with different maturities, in the same way that
a coupon-paying bond can be viewed as a series of pure discount bonds. Moreover,
the payoff for each maturity can be simple enough so that it can be regarded as a
collection of simple options each of which could be valued separately. This point of
view, which could be called “reverse-engineering”, is extremely useful in practice
and will be discussed in detail in future chapters. Here we will show in the “ binomial
world” with one risky asset, all cash flows can be incorporated into a single equation
that can be solved recursively to price any stream of uncertain cash-flows.

Consider therefore a derivative security maturing after N trading periods and
paying a stream of cash-flows after each period. These cash-flows can be specified
by means of N functions of S, namely

fi(S), fo(S), .. L IN(S). (35)

The value of the cash-flow at each node (n , j) in the tree is defined to be equal
to

fi= fa(Sh).

Suppose that a no-arbitrage pricing model based on a recombining binomial tree
has been determined, consistently with a term-structure of interest rates, a term-
structure of volatilities and the dividend payments of the underlying asset. We have
seen that such a model can be constructed in terms of a collection of probabilities
P[(Jn) , Pl()n) and “up-down” parameters U,, and D, forn = 0,..., N — 1. the general
recursion relation that we seek follows from the following observation: at any given
time, the value of the derivative security is equal to the current “coupon” value plus
the discounted expectation of future cash-flows. Therefore we have

Vi = fi + e AL [P[(Jn) V%Zj-—ll + Pl()n) V13+1]

(36)



