ANALYSIS OF THE BLACK-SCHOLES FORMULA

The appeal of the Black-Scholes formula lies in the simple relation expressed between
the price of the underlying asset and of options written on it. Another important feature is
that it gives a dynamical relation between the underlying instrument, the option value and
the hedge-ratio in the cash market(A) that can be used to offset the risk of the option. The

formula is the basis for designing dynamical hedging strategies for a variety of financial

derivatives.!

Recall that the Black-Scholes formulas for pricing calls and puts are that

C(S,K;T) = SN(dy) — Ke " N(dy) (1)

and

P(S,K;T) = Ke "' N(—=dy) — SN(—dy). (2)

Here S is spot price, K is the strike price, T is the time-to-maturity, r is the interest rate
and o 1s the volatility. The “percentiles” d; are given by

dl = U\l/Tln <S;7:T> + %U\/T
(3)

dy = le/Tln <%> - %a\/T.

More generally, the no-arbitrage value of a European-style derivative security maturing
at in T years with stock-contingent value F(S7) at expiration is

+oo
1 2 22
V(S,T) = e — / F<Sezaﬁ+(r_a/2)T > e~ 2 dz
27

— 0

= ¢ TEV{F(S)) (4)

where E( is the expectation value operator for the lognormal distribution with variance
o? T and drift (r — %02) T. The latter formula can be used to price option portfolios or

other European-style contingent claims.

It is remarkable that equity options have existed for one hundred years but the Black-Scholes formula
was discovered only in 1973. This is recognized as a major breakthrough in Modern Finance.
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Figure 1

Figure 1 shows the Black-Scholes value of call option for different maturities (1, 3 and
9 months, with 15% volatility and 6% interest rate. Notice that the value of the call
approaches zero for S <« I (the call is deep out-of-the-money) and is asymptotic to
S — Ke ™ — the value of a forward contract at price K — for § > K (the call is
deep in-the-money). Thus, a deep-in-the money call is essentially equivalent to a forward
contract, whereas a deep out-of-the-money call is equivalent to a leveraged bet on the rise
of the stock price.

The premium C(S,I;T) is often “decomposed” into three parts:
e the “intrinsic value” Max (S — K,0)
e the “interest rate premium”, K (1 — e_rT> ifS > Ke T

e the “risk premium” C(S,K;T) — Maz (S — Ke™"",0) .

Clearly, the risk premium is sensitive to the value of the volatility used to price the call.

1. Delta

From the analysis of the binomial model, we know that the Delta of the equivalent
portfolio (or, more simply, the Delta of the derivative security) satisfies

J+1 J
A] Vn—l—l - Vn—l—l

n T gt J
Sn—l—l - Sn—l—l

) (5)
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which may be viewed as a “discrete derivative” of the value function V,? with respect to
the spot price. Hence, we expect the Delta of a derivative security to be equal to dV/0S
in the lognormal approximation. In fact, we have

Proposition 1. Consider a European-style derivative security with payoff F(St). Then,
under the assumptions of the binomial model and its lognormal approrimation, we have

: ov(S,T)
[ — R Set s
dizmo Ay = A(S,T) 95 (6)

where V(S,T) is the value of the derivative security given in (4).

Proof. Assume, for simplicity, that F is a smooth function and let E® denote the expec-
tation operator with respect to the binomzal risk-neutral probability measure. Then, from
(5), if dt < 1, we have

—rT —rT
AO = eiEb F — _ eiEb F — SD
R (F(SwaT)[Se= 8] — — B {(F(SxD)|S =S}
~ S(U-D) rormame S (U ~-D) e
B (F(Sx)Shr/S) 4 ] der t (1)
= S(U—D) N—1)9N-1 ower-order terms .

To obtain the last equality, we applied the Intermediate Value Theorem to the function F.
Passing to the limit as dt — 0, we obtain

A(S,T) = e "'EY{F'(S7)S1/S}

= ¢ TR {%F(ST)}

0
33 E'{F(S7)}

e—rT

0
= S V(S.T).



(Here, we used the fact that Sp = Seo ZVT + (r=1/20")T 5nd thus 0Sr/0S = Sr/S.)
Q.E.D.

This is an important result. For a given interest rate and volatility, the discounted
expectation with respect to the risk-neutral lognormal measure gives the theoretical value
of the derivative security. The sensitivity of this theoretical value with respect to the spot
price, i.e, AV/0S, gives hedge-ratio, or number of units of the underlying security which,
combined with a short position in the derivative, will offset immediate market risk. Thus,

Long A units of the underlying asset short 1 derivative <= market-neutral .  (8)

Similarly,

Short A units of the underlying security, long 1 derivative <= market-neutral (9)

These rules follow from Proposition 2 of the previous chapter, where we showed that that
the above portfolios were equivalent, at any given date, to rolling over a position in riskless
bonds for one period.

Remark. The actual number of cash instruments needed to hedge the market exposure
depends on the notional amount specified in the contract. For instance, stock option
contracts traded on CBOT and AMEX are written for a notional amount of 100 shares.
Prices are quoted on a per-share basis. Therefore, the number of shares required to achieve
a “market-neutral” position is +A x 100.

Another example worth considering is the case of exchange-rate options. Exchange-rate
options for dollars against Yen or Deutschemark (DEM) are generally quoted in percentage
of dollar notional. On the other hand, exchange rates and option strikes are commonly
quoted using the value of a dollar in local currency: e.g. 1 dollar = 1.4134 DEM, dollar
put with strike 1.40 DEM, etc. In the valuation of option premia and Deltas, there is a
choice of which currency should be used as the “local” currency and which currency is
the “underlying asset”. For instance, if the foreign currency (say DEM) is chosen as the
underlying asset (this is natural for a US-based investor) then the Delta represents the
amount of DEM spot which must be carried in the hedge per DEM notional. The amount
of DEM per dollar notional is obtained by multiplying by (marks/dollar), e.g, by 1.4134.
Currency options will be considered in more detail in other lectures. (See Figlewski, Silber
and Subhramanyam: Financial Options.)

Option Deltas. To derive an expression for the Delta of a call, we differentiate (1) with
respect to S. The result is



0

Acu(S, K;T) = 39 C(S,K;T)
8d1 _ adZ
_ ! Dt S e rI' art et
= N(dy) . (10)

The last equality is obtained after some algebra?, using the formulas

N’(d) = e~ T
and

ad; 1
a5 Sa\/T'

Another (more complicated but also interesting) way to derive the expression for A is to
pass to the limit in the formula for the Delta for the binomial option pricing.

The Delta for a put is obtained immediately from put-call parity. In fact, since
P(S,K;T) = C(S,K;T) — S + Ke™ ',
we have
Aput =Acaun — 1 Apue( S, K;T)
= N(dy) — 1

= N(—dy) (11)

In Figure 2 we present the graph of A (S, K;T) for the same parameter values as in
Figure 1 ( (—) = 6 months, (*)= 3 months, (- - )= 1 month). Notice that A is an increasing
function of S (for both puts and calls).

2This calculation is suggested to those readers which are not familiar with the Black-Scholes formula.
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Example. 1.Calculate the Delta of a 6-month call option on an asset that pays no
dividends, assuming a volatility of 16%, an interest rate of 6% and a strike price equal to

90% of spot.

Solution: Using the formula for dy given in (3), we find that dy = 1.1348. Hence
A = N(1.1348) ~ 0.8719

2. Practical Delta Hedging

The holder of a portfolio of options with different maturities and strikes can dynamically
hedge his exposure to price movements using A. To fix ideas, suppose that the portfolio
consists of M different types of options (put/call, strike, maturity) with n; options of
type j, 1 < j < M. At some initial time (f = 0), we denote the M maturities by
Ty, Ty, ... Ty, and the strikes by Ky, K5, ...IK3;y. The number of options of each type is
denoted by nj, y = 1...M.

According to equation (9), the holder of this portfolio can hedge dynamically the risk
due to price changes by holding

M
At = — Z Uz A(St,f&’j,Tj —t),

j=1,tT;

units of the underlying asset for timest = ¢, = ndt,..n =0, 1, 2, ..max{T};}/dt. (Here,
dt represents a small interval of time which, in practice, must be determined by the hedger.)
Assuming that the model assumptions were correct and, in particular, that volatility was



correctly estimated, the above strategy would have approximately riskless returns over
time.

Example 2. Assume that S = 1000 = 0.16 , r = 0.07. Calculate the portfolio Delta

for

+5 100 Calls expiring in 60 days
-3 90 Puts expiring in 90 days
-4 85 Puts expiring in 120 days

Solution: Individual calculation of the Deltas for each option gives:

60 day call with strike 100 Delta = 0.5826
90 day put with strike 90 Delta = -0.0571
120 day put with strike 85 Delta = -0.0194

Combined Delta : A = 5x 0.5826 4+ 3x 0.0571 + 4x 0.0194 = 3.1619

Example 3. Calculate the Delta of the above portfolio if ¢ = 30%

Solution:

60 day call with strike 100 Delta = 0.5617
90 day put with strike 90 Delta = -0.1857
120 day put with strike 85 Delta = -0.1228

Combined Delta : A = 5x 0.5617 + 3x 0.1857 + 4x 0.1228 = 3.8568

Several factors may contribute to making A-hedging risky in practice. Namely,
e The lognormal assumption may not be valid (model risk)

e The hedge may not be done frequently enough to prevent losses due to price movements

(hedge-slippage risk)

The first type of risk is complex to control — its discussion is outside the scope of
the basic Black-Scholes model. Model risk is the most fundamental risk in option risk-
management and will be studied in more detail later, as we relax some of the assumptions of
the Black-Scholes model.®> One important dimension of model risk is the mis-specification
of the volatility parameter o.

31t is important for us to recognize, even at this early stage, the non-parametric nature of financial
markets. The random-walk model is consistent with the no-arbitrage hypothesis but, markets being
fundamentally incomplete, it is not sufficient to encompass changes in volatility expectations due to the
arrival of new information.



Hedge-slippage risk, on the other hand, stems from the fact that if the portfolio is not
rebalanced frequently enough, the strategy is no longer riskless. Changes in the value of
the hedge portfolio are then governed by higher-order derivatives of the value function
with respect to the spot price. This question is of crucial importance in applications. In
fact, even if we believe that the underlying price follows approximately a binomial process
under the risk-neutral probability, rehedging at every time-step is virtually impossible.
Hence, the agent is obliged to rebalance the portfolio after “macroscopic”, rather than
“microscopic” time-intervals.

3. Gamma: the convexity factor

Definition. Let V(S,T) represent the value of a derivative security in the lognormal
approzimation. The Gamma (T') of the derwative security is the sensitivity of A with
respect to S t.e.,

(S, T) = % . (12)

The concept of Gamma is important when the position cannot be adjusted ezactly after
each “microscopic” time period dt. One way of analyzing the problem is to assume that
rehedging is not done at the smallest micro-shocks, but instead at some intermediate time-
scale 6t, such that dt < 6t < T. The accuracy of the hedge then depends on the rate
of change of A as S changes, which is precisely Gamma.

To better understand the influence of convexity in hedging, it is useful to visualize the
profit /loss from which arises from hedging in terms of the graph of V/(S,T). Given that the
spot price is S, an agent that is short the derivative security and that takes a position in
the equivalent portfolio will have a profit/loss in the cash market that varies on a straight
line tangent to the graph of the value function. On the other hand, the value of the
derivative security will vary along the graph of V. The effect of risk-neutral valuation is
to achieve a position in the cash market after time 6t which on average equal to the value
of the derivative at that new time/ price level. However, unless the curvature of V/(5,T)
is identically zero (in which case the contingent claim is equivalent to a static portfolio of
cash instruments), there are instances in which

V(St+5t, T — (t + (St)) > St—l—ét At + Bt erét (13&)

and other instances in which

V(Sit50,T —(t4+68t) < Sipst A + Bye™® (13b)



according to the magnitude of the price change of the period ¢t. It is graphically clear
that inequality (13a) will hold for large price movements and inequality (13b) will hold for
small price movements when V is convex (and thus I' > 0).

Option Gamma The primary example of a positive-Gamma position is a long option
position. In fact, according to the Black-Scholes formula, we have

1 a2
Ceatt(S,K;T) = Ty (S, K;T) = ———e 2, 14
ul ) putl ) SVo2ro?1 (14)

a formula which follows immediately by differentiating A(S, K,T) = N(d;) with respect
to S. The graph of Gamma as a function of the spot price is given in Figure 3. The
parameter values are as in Figures 1 and 2.
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Figure 3
We conclude that

Proposition 2.(:) The holder of an option who is short A units of the underlying asset
will achieve a positive cash-flow if subsequently the price movement 1s sufficiently large and
a negative cash-flow if the price movement 1s sufficiently small.

(it) The writer of an option who is long A units of the underlying security will achieve
a positive cash-flow if subsequently the price movement s sufficiently small and negative
cash-flow if the price movement s sufficiently large.

The use of Gamma becomes particularly relevant when managing option portfolios.
Agents can, for instance, “buy” or “sell” Gamma in order to achieve a position which



4

is consistent with their views for the near-future.®* Buying or selling Gamma should be

understood, of course, as buying or selling options.

Example 4. Calculate the Gamma of the portfolio of Examples 2 and 3.

Solution: Using formula (14), we find that if 0=0.16,

60 day call with strike 100 Gammars 0.05
90 day put with strike 90 Gammars 0.02
120 day put with strike 85 Gammars negligible

Combined Gamma of the portfolio : I' = 5x 0.05 - 3x 0.02 = 0.19

If 0 = 0.30, then

60 day call with strike 100 Gammars 0.04
90 day put with strike 90 Gammars negligible
120 day put with strike 85 Gammars 0.01

Combined Gamma of the portfolio : I' = 5x 0.04 - 4x 0.01 = 0.16

4. Theta: the time-decay factor

The expression “an option is a wasting asset” is part of the options trading lore and is
commonly used in option trading manuals. Consider, for instance, the case of call options.
Since the interest-rate premium and the risk-premium are non-negative, the option is worth
more than its intrinsic value at any time before expiration®.

To evaluate the time-decay of the option, we can differentiate the option price with

respect to T.

Definition. The Theta (©) of a European-style contingent claim with value function
V(S,T) is defined as

av (5 T)
05, T) = ——————. 15
(5.7) - (15)
4Needless to say, the value of Gamma depends crucially on the volatility parameter — more on this

later.
>We are assuming here that the underlying asset pays no dividends. Otherwise, this statement is not
generally true.
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The negative sign in this definition is due to the fact that T  represents the time-to-maturity.
Thus, O represents the variation in the fair value of a contingent claim for a small increment
of time (decrease in time-to-expiration).

Proposition 3. For any European-style contingent claim, we have
1
0(5.T) = — 502 S?T(S,T) — rSA(S,T) + rV(S,T) (16)

Proof: Consider the basic formula

4+ oo
2

1 2 z
V(S,T)ZG_TT— F<Sezaﬁ+(r_a/2)T> e” 7 dz .
V27 /

— 0

Differentiating with respect to T', we obtain

ov(sT)
oT N
4+ oo
—rV(S,T) 4+ "1 iF<Seza\/T+(’”_”2/2)T> e_é dz :
E van)

We can calculate the T-derivative of the function inside the integral sign. The result is

F/ <Sezaﬁ+(r—a2/2)T > ‘Sezcr\/T—l—(r—cﬂ/Z)T (22\/0T + 7“—02/2)

= TSEF <Sezaﬁ+(r_”2/2)T >

a5
0 za'\/T+(r—a'2/2)T 24 2
—I—S%F<Se ) o 2) (18)

Let us substitute this expression into (17). This gives
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oV (S T)

T = —rV(S,T) + rSA(S,T) +

4+ oo

0 2 zo 2 dz
—rT zo VT + (r—0°/2) T . _ 42 - 3
e / S—aSF <Se > ( o /2) e o (19)

— 0

The desired result is now obtained by integration by parts, using the fact that

d 22 22

dz

To wit, we can rewrite the last integral in (19) as

4+ oo

6 6 2 (o) 22 az
—rT F zo VT + (r —o7/2) 1 L T T
e / S—Z 33 <S e > 2\/T e o

— 0

+oo
_e—TT/SiF(SGZU\/T+(T—U2/2)T>‘U_e—é dz

aS

— 0

4+ oo
0 0 2 o 2 dz
_ =T v v 2o VT + (r —o02/2) T - =
= S F (S . P
c / 0S5 0z < ¢ > 2T ‘ V27
+oo

0 2 ol 22 dz
_ T v coNT+ (r—0o%/2)T Y. %9 -2
¢ /565F<se ) e

— 0

+oo
2 2
:e—rT/sisﬂp<sezaﬁ+<r—a2/2w).U_e—% dz

as oS

— 0

+oo
2 2
_e_rT/SiF<SeZU\/T+(T_U2/2)T>.U_e_ZT dz

aS

— 0
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4+ oo

82 / 2 0'2 22 dZ
rT 2 zZ o T + r — 0 2) T 5

— 0

2

:E%WP@Jy (20)
Combining (20) with (19), we conclude that equation (16) holds. Q.E.D.

As an application, consider the case of an agent hedging a position in a derivative
security. We can assume, without loss of generality that, initially, both A(S,T) and
V(S,T) are zero, since this can be achieved by assuming a position in shares and riskless
bonds. In this case, equation (16) reduces to

O(S,T) = — %a2 S?T(S,T) (21)

In other words, if a portfolio of derivative securities and cash instruments has zero initial

cost and s Delta-neutral, the time-decay factor © and the convexity factor I' multiplied by
2

5 S? are exactly opposite to each other.

This is just a reformulation of Proposition 2: the owner of Gamma (who is net long
options) is subject to time-decay value if the spot does not move but benefits from price
movements. Conversely, the seller of Gamma (who is net short options) is subject to
hedge-slippage risk if the spot price moves but gains if spot does not move.

5. The Black-Scholes partial differential equation

Proposition 3 can be formulated as a dynamical evolution equation for the value of a
derivative security in the lognormal approximation. In fact, from (16), we have

Proposition 4.Consider a European derivative security, contingent on the value of a
security that pays no dividends, with final value F(St), where T s the time-to-maturity.
In the lognormal approzimation, its value V(S,T) satisfies the Black-Scholes partial
differential equation

V(S.T) o, V(S.T) oV (S, T)

with
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V(S,0) = F(S).

This equation will be studied in the context of Continuous-time Finance. We will also
provide a direct derivation of the Black-Scholes equation from the recursion relation for
contingent-claim pricing on the binomial lattice,

‘ 1 - ‘
Vi = IR PoViiy + PoVigy |

which is the “discrete analogue” of (22).
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