THE BINOMIAL OPTION PRICING MODEL

The simplest model for pricing derivative securities is the binomial model. It generalizes
the one period “up-down” model of Chapter 1 to a multi-period setting, assuming that the
price of the underlying asset follows a random walk.

In the binomial model, there are N trading periods and N 41 trading dates, tg , t1, ... tnx
when it is possible to invest in a risky security with price S, , n = 0, 1, ... N, and a
riskless bond with one-period yield R. The price varies according to the rule

Sn+1:San+1 ,OSTLSN—l, (1)

where H,, 11 i1s a random variable such that

U  with probability p
Hyr = (2)
D with probability ¢

with p + ¢ = 1.

The situation can be visualized in terms of a binomual tree, shown in Figure 1. Each
node of the tree is labeled by a pair of integers (n,j),n = 0, ... Nyandj = 0, ... n.
We use the convention that node (n,j) leads to nodes (n 4+ 1,7) and (n + 1,75 4 1) at the
next trading date with the “up” move corresponding to (n+ 1,7+ 1) and the “down” move
to (n 4+ 1,7). The price of the underlying asset at the node (n,j) is therefore

S,

= SqUI D" .
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FiGURE 1

Assume first that the risky asset is a stock which pays no dividends for 0 < n < N.
Let us determine a probability measure on the set of paths ( So , S1, ..., S, Sy ) which
makes the model arbitrage-free.! Since the asset price divided by the returns on riskless
investment must be a a martingale under the pricing measure, we should have

1
B S|S0 )
or,
1
= —— (Py U Pp D 3
ryg (PvU+ D), (3)

where Pp and Py represent risk-neutral onditional probabilities for up or down moves
given the spot price S,. Using equation (3) and the constraint Py + Pp = 1, we can
determine the probabilities Py and Pp in terms of the parameters of the model. They are
given by

1+4R — D U - (1+R)

p, — 2+ =Y 5 4
v v _-—p P U - D (4)

I'The terminologies probability measure, probability distribution, probability assignment, etc. are equiv-
alent for us.



In particular, Py and Pp are independent of the spot price. Thus, we have

Proposition 1. Given the parameters U, D and R, there is a unique probability measure
which makes the binomial model arbitrage-free. This probability is the one for which the

successive price shocks H, , n = 1, ... N are independent and identically distributed
with
1+4R — D
Prob.{ H, = U} = —/———
rob. { } T D
and
U - (1+R)
Prob.{ H, = D} = :
rob. { } D

1. Recursion relation for pricing contingent claims

We give a general method for calculating the value of a “European-style contingent-
claim”, 1.e. a derivative security which gives the holder the right to a payoff contingent on
the value of the stock at some fixed date in the future. This date is taken to be t, =ty
and the payoff is represented by a known function of the stock price F(S%).2 We denote
the value of the contingent claim at the trading date n conditional on S, = S — i.e. its
value at the node (n,j)— by

Since this derivative security has no intermediate cash-flows or coupons, its value must
satisfy
1

Vi = 1+R E{ Voy1(Snt1) | Sn = 5} }

or

Vi =gm [P0 Vi + Po Vi, ]

(5)
Vi = F(SY)

This recursion relation determines the arbitrage-free value of the contingent claim induc-
tively, from its values at maturity. From the values at maturity, one can derive the values
at the date tny_; and proceed backwards in time until the present date. This procedure
is sometimes called “rolling back the tree”. Despite its apparent simplicity, relation (5) is
very important. It will “resurface” under different forms in the course of these lectures.

?We will use the expression “date n” instead of “date ¢,” sometimes.



The value of the derivative security can be obtained in closed form. For this, we think
of the arbitrage-free price as the discounted expected cash-flows of the security, so that

4 1 4
1 N 4
= AT R > Prob{ Sy = Sk |85, = S, }- F(SK). (6)
k=0

Let us calculate the conditional probabilities appearing in the latter equation. For this, we
must “count” the number of paths going from S, to S¥. Notice that if a path starts at S7
at time n it can end up at most at position S{V—'_N_n. This will happen only if H;, = U
fori = n+1.. N — 1. Similarly, the lowest possible value is S{V, which corresponds to
H; = D for all i. For any k such that j < k& < N —n+ j, the path will end up at S%,
if and only if H; = U for k — j periods out of N —n+ 7 and H; = D for the rest of the
periods. It is important to notice that only the number of “up-shocks” matters and not the
order in which they ocurr. Therefore, since the random variables H; are independent, we
have

Prob{ Sx = SN |8, = S} = (25" pk=i pN-n=k+ti (7)

where

(N—p) _ (N —n)!
k=j (k=) (N—=—n—Fk+7)!

is the number of combinations of k& — 7 elements in a set of N — n elements. Thus, in the
binomial model, the Arrow-Debreu conditional probability distribution for Sy given S, is
the multinomual distribution, well-known from elementary Probability Theory.

The value (6) can be rewritten using equation (7) as

N—n+jy
- 1 N—n k—j pN—n—k+j k
Vi T kg (:5") - P57 Pp CF(SY) -
In particular, if n = 57 = 0, we obtain the calue in explicit form:
1 N
VY = ————— My . pEPYR RSk ). 8b



2. Delta-hedging and the replicating portfolio

The pricing formula can be derived in a different way, using replicating portfolios.

Suppose that at the n'* trading date, the stock price is S? and that an agent holds (long
or short) a portfolio of A? shares and B/ dollars in an interest-bearing account, with total
value

Vi = A SI 1+ Bl

7

The value of the agent’s holdings after the next trading period would be

A Sjj_ll + B (1+ R) V,:Zill in the “up” state

7

A{L S£+1 + B% (1+R) = V1:Z+1 in the “down” state

A relation between (A{l B%) and the subsequent portfolio values is obtained by solving this
system of equations. The result is:

J+1 J
Vn—l—l - Vn—l—l

Al = : 4 shares (9a)
n SJ-H S
n+1 n+1
and o
B - _ 1 Siz—l—l Vr}]—i-l - Siz—l—l Vr}]—i-l (9D)
)= o 4
1+ R 57‘1—1—1—-1 - Siz—l—l

Straightforward algebra shows that

Vi = 1 SI(1+R) — 57‘2_1_1 it 5;2-1_1—_11 — Si(1+R) 1
. = s - n41 - y n+1
S R S - s
1 [ j+1 j

where Py and Pp are given in (4). Notice the similarity between this last equation and the
recursion relation of the previous section.

Assume now that V/ is a function defined on the nodes of the binomial tree which
satisfies the recursion relation (5) with final condition Vi, = F(SY). Consider the following
trading strategy:



(i) at time n take the position (A BY).

(i) at subsequent times, maintain a number of shares in the portfolio equal to

‘ Vj-i'l _ VJ
Al = FH ML o <k <N. (11)
k SJ-H SJ
k+1 — ME4+1

Equation (10) shows that the value of the agent’s portfolio (stocks plus money-market
account) will be equal to V7, regardless of price movements, and that the share adjustments
are such that the money-market account will be equal to Bi = V,g — A‘,i S ,‘i forall B > n.
The situation is described by the following diagram:

(A5,B3)

(A5,B3)

(A3,B3)

(A5,B3)

FIGURE 2. The replicating strategy is such that B% = Vﬁ7 - A‘Zl S;ZL at each node of
the tree. The final portfolio value is F(S‘}V) (Here N = 3).

We conclude that

Proposition 2. Assume that {Vk] n <k < N,kEk< 53 <n } satisfies the recur-
ston relation (5). Then, an agent who takes an initial position in shares and bonds given
by (9a) and (9b) and subsequently maintains Aj, shares in his portfolio at time ty if the spot
price is S}, financing this position with a money-market account, will have a a portfolio at
time tn worth F(Sn). Thus, in the absence of arbitrage opportunities, if the spot price at
time t, is Si, the fair value of a contingent claim with payoff F(Sn) is ezactly Vi



3. Example: Pricing European puts and calls

Let us calculate the fair price a European-style call option maturing after N periods
using the binomial model. We shall use the payoff function

F(SN) = MaX(SN — I&’,O),

where I is the strike price. According to (8), the arbitrage-free value of the call is (with
Sy = S)

N
1
C(S.KE;N)=——0— > () PEPy™" - Max(S — K,0)
L+ RN o
1 N
= (I + R)N Z <kN> PII}PLJ)V_IC <S]127_I{>
SJ]”{,>A

where

Qu TRl @p TP

and where kg is the smallest integer which is greater or equal to

(o) /n(5) (13)

The numerical evaluation of the call price can be made using tabular values for the
multinomial distribution (notice that Qu + @p = 1 from (3)), but, in practice, solving
the recursion (5) numerically is recommended.

Portfolio Delta. The composition of the equivalent portfolio (A, B) for the call option
can be derived in closed form. One way to do this is to observe, using (11), that the equity
component of the portfolio, E! = A‘,i S,‘i, is a eterministic linear function of V,; , ; and hence
satisfies a recursion relation of type (5). Namely, we have
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E) = e | PE\ + PpEl,

T+R
(14)
El, = S§ ifSy >K and 0ifS{ < K.
Therefore, we have
1 N
0 0 N k k N—k
A:AOZEO/S: S(l—I—R)N Z(k)'SNPUPD
k > ko
N

= > (Dever™. (15)

k > ko

Money-market account. Similarly, the cash component of the equivalent portfolio satis-
fies the recursion relation (5) with final values B]N = — K 1if S}V > K and B]N = 01if
Sy < K. We conclude that

N
_ 0__L. N\  pk pN—k
B_BO - (1_|_R)N {k;c()(k) PUPD } (16)

It should be clear form these calculations that

e the equivalent portfolio for a call consists of a long equity position and a short cash
position

e the roles of stock and cash are symmetric: a call on the stock is equivalent to a “put on
cash” ( exchange stock for cash when the latter is undervalued with respect to the stock).?

e A approaches unity for S > K (ko = 0)
e A approaches zero for S < K (ko ~ N)

Puts The value for a European put option predicted by the model is
P(S,K;N) =

Tl DI 2 SR D S IR S

k< ko k< ko

3This remark is important, for instance, in the case of currency options.



This formula follows from direct calculation or from put-call parity. Notice also that (17)

can be obtained from (12) by exchanging S by K/(1 + R)" and the probabilities Py and
Q.. consistently with the remark made above. (Thus, we have yet another way of deriving
the value of a put from that of a call).

The equivalent portfolio of a put is

K a N k pN—k
B:m‘{ZW‘PUPD }

k< ko

It is important to notice that (independently of the model used)
A(put) — Afcall) = 1.

To proceed futher with the analysis, we need to study how the parameters of the model
are adjusted.

3. Adjusting the parameters of the tree : Volatility

The parameters N and R depend on the time-interval between successive portfolio ad-
justments and the interest rate for short-term deposits over the contract’s lifetime. Let T
represent the duration of the contract in years and let r denote the annualized interest rate.

For simplicity, we assume equal periods between adjustments. The duration of each period
is then

T
dt = —
N

and the interest-rate for one period is therefore

R = ¢ % _ 1 ~ rdt.

The parameters U and D model the “ variability” of the price of the underlying asset.
For instance, if the asset were riskless we would have, trivially,

U=D=1+R=¢".



In order to reflect in the model the market’s expectations for the asset’s variability,
we will consider the mean and the variance of the asset’s returns under the arbitrage-free
probability measure. The annual yield (compound return) of a risky security over T years

is, by definition,
1 SN
Y = =1 — ) 1
T (50 ) (18)

(Thus Y = r for a riskless bond). From Proposition 1, we know that Y is a sum of inde-
pendent and identically distributed random variables under the arbitrage-free probability
measure. In fact, we have

SN

() = Y ()

The mean and variance of the T-year yield are, respectively,

1
po=EBE{Y} = = NE{ln H }
= % [ (InU) Py + (InD) Pp ] (19)
and
1
Var Y = T2 N Var In(H,)
= ﬁ {[(nU)* Py + (InD)* Pp | — [(InU) Py + (InD) Pp * }
= () P P o0

In particular, the variance of the one-year yield, obtained by setting 7' = 1 in the last
equation, is
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o’ = i[lm(

- )]? Py Pp . (21)

ol

Definition. The standard deviation of the 1-year yield under the risk-neutral measure 1s
known as the volatility (of the underlying asset).

The average yield and the volatility can be thought of as input parameters for the model
which reflect the value that the market assigns to future price oscillations. Note however
that the no-arbitrage assumption implies that

E{S,} = Spe""¥ |1

IN
3

IN
=

Y

In particular, by Jensen’s inequality?, we must have

I
2~
5
N
=
—N—
e
——
N

Hence, the no-arbitrage condition imposes a constraint on the value of 1. We shall return
to this point shortly.

Calibration of volatility. Let us determine parameters U and D which are consistent
with a given volatility o. For this, it is convenient to define new parameters

U = U’ erdt
(22)
D = D' erdt
The no-arbitrage condition (3) then becomes
U’ Py + D’ Pp = 1. (23)

We set

4Jensen’s inequality states that, for any convex function f, and any random variable X, we have

F(EX) < E (f(X)).
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U 2pva
D’ :

v
D
where p > 0. Using (23) and the fact that Py and Pp are probabilities, we obtain

Py + Pp =1

2

Py Pp = Z

4 p2 -

This system of equations has positive solutions if and only if p > o. They are given by

1 o?
PU:§[1i 1—p—2] (24a)
and
1 a?
Pp = - |1 1 — — . 24b
D 2 [ + ,02 ] ( )
To find the corresponding values of U’ and D’ we use the formulas
1 — D v -1
e N
which follow from (22) and (4). Accordingly, we have
. ep\/ﬁ
U’ = 25
Pp e—pm + Py ep\/ﬁ ( a)
and
’ € p Vil
D" = : 25b
Pp e=pVdt 4 P ep Vit (25b)
Thus, the parameters U and D are given by
ep\/ﬁ—l—r(ﬁ
U = (26a)

Pp e—pm + Py ep\/ﬁ

and

12



e~ pVdt+ rdt

D = . 26b
Ppe_pm—l—PUepm ( )

We conclude that

Proposition 3. Given dt, there exists a one-parameter family of arbitrage-free binomaial
trees which 1s consistent with a given volatility value o.

Average yield. So far, we have not incorporated the average yield p into the model.
From equations (24), (26a) and (26b) we obtain

1 — dt dt
— e+ L (P~ Py — = n [Py eV L p PV 2
H r \/— Tt ( U D) It Il[ D € U € ] (7)

Expanding the logarithm in powers of v/d¢ in this last equation and using the fact that

2
Py — Pp = +4/1 -2,
P
we obtain .
p=rog o> + O ((Py — Pp)p’ (dt)1/2)> : (28)
Thus, in the limit dt < T, we have
e (29)
N — —o0°.
a 2

In this (important) limit, the average yield of the underlying asset is essentially determined
by the interest rate and the volatility.

The most common common choices for U and D for implementating of the binomial
model are the following:

1: Symmetric probabilities. Take p = o. Then

1
PU = PD = 5 (30&)
and
oo eam+rdt N eam_i_(r_%az)dt

cosh (o \/%)
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—U\/E—I—rdt 1
D = 6— ~ 6—0'\/%-1-(7’—50' )dt (30b)

cosh (o \/%)

It will be shown below that the approximation of cosh(o \/%) made in these two formulas
has a negligible effect on the value of derivative securities if dt < T.

2. Specifying a subjective mean yeld. We set

U = ea\/ﬁ—l—udt

(31a)
D = e- a\/ﬁ—l—udt

and

g

(1_—“”‘502m>

1 — v — 10°
o= (i T a ) (31h)
g

The probabilities in (31b) were obtained by expanding formula (4) in powers of dt and
keeping terms up to order v/dt.

The parameter v can be interpreted as the “subjective” annual mean yield under the
“subjective” probabilities py = pp = 1/2. Observe that the expectation of S; under the
risk-neutral probabilities is is

E(S1) = So(l + rdt) + lower order terms ,
consistently with the arbitrage-free condition to this order of approximation.

Example 1: Suppose volatility is 15%, interest rate is 6% and you wish to construct a
binomial tree with 10 periods to value a 6-month instrument. Then

dt = 0.5/10 = 0.05

Using the method of 1, we have
U — eoVdi+rdt _ 0.15x10.05+0.06x0.05 _ 1 ()379

D = 6—0.15><\/0.05—|—0.06><0.05 = 0.9700

14



In this case the risk-neutral probabilities are Py = Pp = 0.5.

4. The limit for d¢t — 0: Lognormal approximation

The limiting behavior of the model as dt — 0 is of particular interest.

Recall that, under the no-arbitrage probability, the logarithm of the price of the under-
lying asset is a sum of independent and identically distributed random variables:

1 N
Y = > InH
j=1
Since the parameters of the model have been adjusted so that, to leading order for dt < T,

E{Y} = L, 4 Vary =
=r 5 an arl” = —

we conclude from the Central Limit Theorem that the asymptotic probability distribution

of the random variable Y as dt — 0 is a Gaussian with mean r — o0?/2 and variance
0% /T. Hence
SN
In(—=) =TY
2 ()
«—— N[(r —0*/2)T,*T] At <1, (32)

where N(a,b) is the normal distribution with mean ¢ and variance b. In particular, the
price of the underlying asset at time ¢ is lognormally distributed i.e.

St — SO ea'\/ZZ + (r—1/20%)t 7 (33)

where Z is N(0,1).

Consider now a European-style derivative security with a payoff function F(S) maturing
in T years. Its value under the arbitrage-free probability measure is given by

V = ¢ TE{F(Sy)}

Therefore, by the Central Limit Theorem, under mild regularity assumptions on the func-
tion F (linear growth of F(9) is sufficient) we have

15



4+ oo
1

. — —rT 2o NT (r—o2/2) T —é
dthTO V e —\/ﬂ / F <Se > e dz (34)

— 0

where S is the spot price and we used the explicit form of the normal probability distribu-
tion. The differences in the fair prices which result from the normal approximation for the
binomial model can be estimated numerically. They are generally small, of order ov/dt for

dt < T7?
5. The Black-Scholes Formula

We apply the latter result to option pricing. Assuming a volatility o and an interest rate
r, the lognormal approximation to the binomial pricing model gives

4+ oo
]_ 2 22
C(S,K;T) = i — Max(e” Tzt r—o /)T K,O) e 2 dz
Vor
+oo too

]_ 2 22 ]_ 22
_ —r7T o VT (r —o%/2) T _— % g 1T / - =
= e Se e” 2dz —Ke e” 2 dz, (35

\V2r / \V2r (35)

d2 d2

where the lower limit of integration is do = ﬁ In <S§;T> — %0‘ VT . After making

a change of variables in the first integral in (35), we obtain the celebrated Black-Scholes
formula:

C(S,K;T) = SN(di) — Ke "T N(dy), (36)

where

N(Z) = \/% / e % dz (37a)

5This error estimate will be made precise later.
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is the cumulative normal distribution or error function,’

—

b=~ (2 4 Loup (37h)
1—0_\/TI1 I g .

and

1 SerT 1
dy = 1 - = T.
9 T n ( i > o T (37¢)

Puts can be valued in the same way. Using put-call parity and the relation

N(-Z) = 1 — N(Z) ,

we find that

P(S,K,T) = Ke "' N(=dy) — SN(=dy).

The reader should note the strong parallel between the Black-Scholes formula and the
binomial option pricing formula in (12). In fact, the Black-Scholes formula could have
been derived by passing to the limit in (12) using the so-called de Moivre-Laplace theorem
(Central Limit Theorem for standard random walk) to estimate the sums by integrals.

Example 2: A volatility of 15% corresponds to a daily standard deviation of o441y =
0.15/4/365 = 0.008 = 0.8%. Sometimes people take a 250-day year (removing weekends).
The estimate for the daily standard deviation is then o441y = 0.15/\/5 ~ 1%. It is
useful to memorize this particular volatility value to get a “feeling” for the relation between
daily movements and annualized volatility.

Example 3: Suppose that the interest rate is 6% and assume a volatility of 15%. The

value of a 3-month European call option on an stock that pays no dividends, with strike at
90% of the share price, is calculated as follows:

di = ginoess I (97°7000/0.9) 4 0.5 % 0.15x v0.25 = 1.6415

dy = gisnoess (9% 000/0.9) — 0.5 % 0.15x v0.25 = 1.5673

N(1.6415) = 0.9497 , N(L.5673) = 0.9414 , ¢ 925%006 — 9g5]

5Values of the error function are available in standard scientific calculators and software packages such
as MATLAB.
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Call value = 0.9497 — 0.9 x 0.9851 x 0.9414 = 0.1150 = 11.5% of the share value.

The key variable which enters the Black-Scholes formula is the volatility parameter.
Needless to say, the value of an option can vary significantly according to the volatility.
Figure 2 shows the Black-Scholes value of a call as a function of the spot price using different
volatilites. The next lecture analyzes in greater detail the Black-Scholes formula and its
implications. In particular, we will focus on the effect of volatility on the value of an option
on the composition of the equivalent portfolio.
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