ARBITRAGE PRICING THEORY :
THE ONE-PERIOD MODEL

This lecture describes the basic principles of derivative security valuation. The
ideas are presented here can be applied to most valuation problems — from the
simplest ones, involving straightforward compound interest-rate calculations, to the
most complicated, such as the valuation of exotic options. For simplicity, we shall
discuss a model for a securities market with finitely many final states and with
a single trading period. In this model, the main definitions and results can be
formulated in terms of elementary mathematics. The key idea behind asset valuation
in markets with uncertainty is the notion of absence of arbitrage opportunities.

Suppose that an investor takes a “position” in the marketplace, through buying
and selling securities, which has zero net cost and which guarantees i) no losses in
the future and ii) some chance of making a profit. In this hypothetical situation, the
investor has a positive probability of realizing a profit without taking a risk. This
situation is known as an arbitrage opportunity or simply an arbitrage. Although
arbitrage opportunities may arise sporadically in financial markets, they cannot
last long. In fact, an arbitrage can be viewed as a relative mispricing between
correlated assets. If this mispricing becomes known to sufficiently many investors,
the prices will be affected as they move to take advantage of such opportunity. As
a consequence, prices will change and the arbitrage will disappear. This principle
can be stated as follows: in an efficient market there are no (permanent) arbitrage
opportunities.

Example 1. Suppose that the current (spot) price of an ounce gold is $398 and that
the three-month forward price is $390. Furthermore, suppose that the annualized
three-month interest rate for borrowing gold (known as the “convenience yield”)
is 10% and that the interest rate on 3-month deposits is 4% (annualized). This
situation gives rise to an arbitrage opportunity. In fact, an arbitrageur can borrow
one ounce of gold, sell it at its current price of $398 (go short 1 ounce), lend this
money for three-months and enter into a three-month forward contract to buy one
ounce of gold at $390. Since the cost of borrowing the ounce of gold is $398 x
10%/4 = 398 x 2.5% = $9.95 and the interest on the 3-month deposit amounts
to $398 x (.01) = $3.98, the total financing cost for this operation is $5.97. He will
therefore have 398- 5.97 = 392.03 dollars in his bank account after three months.
By purchasing the ounce of gold in three months at the forward price of $390 and
returning it, he will make a profit of $2.03. (This argument neglects transaction
costs and assumes that interests are paid after the lending period.)
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1. The Arrow-Debreu Model

We shall consider the simplest possible model of a securities market with uncer-
tainty, the Arrow Debreu model. We assume that there are NV securities, s , s9 ..., SN,
that can be held long or short by any investor. Initially, an investor takes a posi-
tion in the “market” by acquiring a portfolio of securities. He holds this position
during a “trading period” (a specified period of time), which gives him the right to
claim/owe the dividends paid by the securities (capital gains/losses). He liquidates
the position after the trading period and incurs in a net profit/loss from the change
in the market value of his holdings (market gains/losses). The model is completely
specified in terms of the price vector for the N securities

P = (p1,p2...pN) (1)

and the cash-flows matriz
D=(Dy),1<i: < N,1<j <M (2)

where M is the number of all possible “states” of the market at the end of the trading
period. The jt* row of the matrix D represents the M possible cash-flows associated
with holding one unit of the j'* security, including dividend payments and market
profit/losses.! We shall assume that the matrix D is known to all investors but that
the final state of the market, represented by the M different columns, is not known
in advance.

A portfolio of securities is represented by a vector
0 = (61,65...07). (3)

Here, 6; represents the number of units of the i** security held in the portfolio.
If 6, is positive, the investor is long the security and hence has acquired the right
to receive the corresponding cash-flow 6; D;; at the end of the period. If 6; is
negative, the investor is short the security and thus will have a liability at the end of
the trading period. (Short positions are taken by borrowing securities and selling
them at the market price). It is assumed that all investors can take short and long
positions in arbitrary amounts of securities. Transaction costs, commissions and tax
implications associated with trading are neglected. For simplicity, we assume that
the amounts 6; held long or short are not necessarily integers, but instead arbitrary
real numbers.

The price of a portfolio € is

N
9'P=Z9ipi
1

IPrices and cashflows are expressed in the same unit of account. For simplicity, we take this
unit to be the dollar.



and the cash-flow for this portfolio in the j* “state” of the market will be is
6-D,; :ZeiDij- (4)
We can express mathematically the concept of arbitrage opportunity within this
simple model.
Definition. An arbitrage portfolio is a portfolio 8 such that either (i)
6-p=20,

6-D; >0 forall 1<j3< M,

and
6-D; >0 forsome 1 <3< M
or
f-p <0,
and

6-D; >0 forall 1< j7< M.

In plain words, an arbitrage portfolio is a position in the market that either (i) has
zero initial cost, has no “down side” regardless of the market outcome, and offers a
possibility of realizing a profit or (ii) realizes an immediate profit for the investor
and which has no down side. We remark here that the distinction between the two
cases is not really important: it is a consequence of the general form of the model,
in which the nature of the “securities” is not specified. If it is possible to lend money
(buy bonds), then the second case reduces to the first, because the investor can lend
out the initial profit and then realize a positive cash-flow at the end of the trading
period.

Theorem 1. If there exists a vector of positive numbers

T = (771 772...7TM)
such that
p=D-7, (5a)
e, if
M
pi =3y Dym; foralll <i<N (5b)
1

there exist no arbitrage portfolios. Conversely, if there are no arbitrage portfolios,
there exists a vector m with positive entries satisfying (5).



Proof? : The first statement is easy to verify. If (5) holds then, for any portfolio 6,

0-p = 9-<D-7T)
= (¢-D) - 7. (6)

Suppose that 6 is an arbitrage portfolio. Then, its initial value is non-positive and
its cash-flows are non-negative for all final states. Furthermore, either (i) at least
one cash flow is positive, or (ii) the initial cost is negative. Clearly, equation (6)
tells us that neither case can ocurr. In fact, since the 7;’s are all positive, the initial
cost will be positive if at least one of the cash-flows is positive and it will be zero if
all the cash-flows are zero.

We pass to the proof of the converse statement: no-arbitrage implies the existence
of a vector with positive entries satisfying (5). Let RMT1 denote the vector space
of M + 1-tuples x = (¢ ..., 37 ) and let 1:{_1]\_4"1'1 represent the convex cone

1:{_1]\_4"1'1 E{X:J}]‘ ZO,forallOﬁjﬁM}.
Let L be the linear subspace of RM*! defined by
L={(-6-p,0-D;....0 Dy).0ecR"}.

The non-existence of arbitrage portfolios implies that the subspace L and the cone
1:{_1]\_4"1'1 intersect only at the origin, (0, ...0). From Convex Analysis, (cf. Rockafellar,
Princeton University Press, 1990), it is known that there must exist a hyper-plane,
i.e. a linear subspace of R *1 of dimension M, which contains L and meets 1:{_1]\_4"1'1
only at the origin. The general equation for a hyper-plane in RM+1 is

M
H = {X : Z/\]‘x]‘ :0},
0

where A = (Mg ... \as ) is a vector in RM¥L. Tt is easy to verify that the condition
that such hyper-plane meets 1:{_1]\_4"1'1 only at the origin is equivalent to having A; > 0
for all j or A\; < 0 for all j. (Note that A represents the normal direction to H).
But, since L is contained in H, we conclude that for all § = (6 ...,0x )

M

~Xof-p 4+ N#-Dj=0.
1

This implies that
M

—Ao P ‘|‘Z/\]‘D.]‘ =0,
1

?from D. Duffie: Dynamical Asset Pricing Theory, Princeton University Press, 1992



or
M
Aj
—N"dp.
M
=) 7Dy,
1
with 7; = i—é This is precisely what we wanted to show.?

This theorem says prices and cash-flows must satisfy certain restrictions in a
no-arbitrage market. The positive coefficients 7; 1 < j < M are usually called
state-prices. To give a financial interpretation to this theorem, we define the risk-
neutral probabilities or risk-adjusted probabilities (the terminology will become clear
later)

;o= 1< < M.

M
(2 )
1
These coefficients are all positive and have sum 1 so, mathematically, they can be
viewed as probabilities. Also, set

M

L+R=1/() =)

1

Now, suppose that there exists an investment opportunity which guarantees a risk-
less payoff of $1 at the end of the period — a bond or money-market deposit. In
terms of the model, the bond payoff can be represented as the vector (1, 1,..., 1) in
RM. According to (5), the value of such bond must be

M
Pbond = Zﬂ—] = 1/(]—‘|‘R>7
1

so we have

R = bond yield.

We can rewrite relation (5a) as

1 M
p; = —1—|—R El Di]‘ﬂ']‘ (7)
or,
- L g,
Pe=971pR ’

3 A more intuitive geometric interpretation of this theorem is given in paragraph §2 below.



where E is the expectation-value operator associated with the probabilities 77;, 1 <
7 < M. We have established the following corollary of Theorem 1:

Theorem 2. Assume that the market admits no arbitrage portfolios and that there
exists riskless lending/borrowing at rate R %. Then, there exists a probability mea-
sure defined on the set of possible market outcomes, {1,2,...,M}, such that the value
of any security is equal to the expected value of its future cash flows discounted at
the riskless lending rate.

This is an important general principle satisfied by markets in equilibrium. It has
several remarkable features. First of all, notice that in our original model, we did
not make any assumptions about the frequency at which each of the M “states”
occurred. These frequencies could, in principle, be determined statistically, by
observing the market over many time periods. One could then write

Prob.{ state j ocurrs } = f;

for 1 < 5 < M. This raises the following question: what is the relation between
the risk-neutral probabilities 7; of the no-arbitrage theorem and the “statistical”
probabilities which arise by observing the frequency of the different states? Inter-
estingly enough, the two probabilities can be different. The market value of a given
security will not be equal, in general, to its discounted expected cash-flows under
the statistical probabilities. This has to do with investors’ perception of the risk of
holding different securities given the present information. Thus, the market may
attach economic values to future states which are not proportional to their observed
frequency in the past. If we have

1 M
;= —— g D;; fi,
p 1+ R 1 i fi (8)

we say that the market is risk-neutral: the importance attached by the investors to
the cash flows in the different future states is proportional to their frequency. If (8)
holds, the different states are equally “important” after adjusting for frequency. On
the other hand, writing the pricing equation (7) in the form

~

1 M A
L .. J .
PP=17R Zl D”<f‘>f"’

J

we see that the prices of securities are weighted statistical averages of future cash-
flows discounted at the riskless rate. The “weights” 7;—J reflect investor’s preferences

J
towards the different states; they are usually called state-price deflators.

To make this interpretation of state-prices more specific, suppose that an ad-
ditional set of M state-contingent “elementary securities” sy41,SN42,... SN4M 1S
introduced in the market. For each j, the security s; has cash-flow $1 in state j
and $0 otherwise. Notice that a portfolio containing D;; units of sy41, D;o units
of sny2, ete. has cash-flows (D;1, Dj2, ... Dy ) according to the M possible final
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states. Thus, it provides the same return as the ' “standard” security s;. If there
are no arbitrage opportunities, then the value of such portfolio should be equal to
the value of the security. This is readily seen as follows: if the price of the portfolio
is less than p;, then an investor can short the portfolio and purchase the security,
making an immediate profit. After the trading period, the cash-flows from the secu-
rity exactly compensate the short position in the portfolio, and hence the investor
will be able to make a profit without taking risk. A similar arbitrage can be con-
structed if the portfolio is traded at a lower price than the security. Therefore, if
we set
7; = market value of sy

for each j, we must have
M
pi = Z D 7
1

for all 7, which is precisely equation (5b). We conclude that state-prices can be
interpreted as market prices for “state-contingent claims” which pay $1 in state
j and zero otherwise, for 1 < 5 < M, supporting the notion that state-prices
correspond to the prices of wealth in the different states. Notice then that the risk-
neutral probabilities are those that “make the investor risk-neutral”, given the prices
of wealth of the different states.

Example 2. Imagine a hypothetical inflationary economy, with a monetary unit
which we call the “eagle”. At some future date, the central bank is expected to
devalue the eagle (with respect to gold) by printing more currency. For each j, let
state j correspond to a devaluation of d;% of the eagle. The market does not know
beforehand which level of devaluation will be chosen by the central bank, and all
states are equally likely (thus f; = 1/M). Assume that, for each j, there exists a
security (s;) which pays 1 eagle if state j occurs and nothing otherwise. Assume
also that there is a bond with yield R %. In terms of “real” wealth (measured in
terms of gold, say) the present value of s; is proportional to 1/(1 4 d;) for each j.
Also, the present value of s; is 7; /(1 + R), according to our theory. It is therefore
reasonable to assume, under these circumstances, the risk-neutral probabilities are
given by
ﬁj:M forl < 53 < M.

22 /(1 +di)

k

In general, the f;’s are probabilities in a statistical sense, whereas the risk-neutral
probabilities 7;’s are “mathematical probabilities” used to calculate the market val-
ues of all securities, including “state-contingent” claims (i.e. derivatives), from their
cash-flows. These two notions of probability should not be confused. The correct
market values of securities are determined from the risk-neutral probabilities.



2. Security-space diagram: a geometric interpretation of Theorem 1

The Arrow-Debreu model with N traded securities and M final states can be
visualized geometrically. This interpretation is slightly different that the one pre-
sented in the proof of Theorem 1: let R represent N-dimensional Euclidean space.
Since there are M final states, we can represent the final outcomes as M vectors

D.,,... D. s, where the entries of each vector represent the final cash-flows of each
traded security. (See Figure la).

2 /‘(Du, Ds»)
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\
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Figure la

In addition, we can draw the price vector p as an element of this space. The absence

of arbitrage corresponds to the price vector p lying in the interior of the convex cone
K generated by the M cash-flow vectors, as shown in Figure 1b.
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In fact, if p would lie in the exterior or on the boundary of K, the separating hyper-
plane theorem ensures that there exists linear subg‘}}g&g 8e]sbribed by the equation

8 cRY : 6.-n=0,

where n is an N-vector, which separates p from the interior of the convex cone
generated by the D.; s. The separation property would imply (possibly after a
change of the sign of n) the inequalities

p-n<0, D;n>0

with at least one inner product positive for some j — i.e. an arbitrage.

As in the discussion preceding Theorem 2, the existence of a bond or money-
market deposit can be used to pass from a convex cone to a bounded convex set
in dimension N — 1. In fact, assume without loss of generality that the bond cor-
responds to the security with ¢+ = 1, so that all the D-vectors have the first entry
equal to one (D;; = 1). Denoting a generic vector in RY by

~

6 = (9179) , é = (92,...9]\7),
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we can consider the intersection of the convex cone K with the hyper-plane in RY
of vectors with first coordinate equal to py, the price of the bond. This intersection
is the convex set K generated by the vectors

~

p1D.a, p1Doay wp1 Doy, .

The no-arbitrage condition is then equivalent to stating that p lies in the interior of
the convex set generated by these vectors, i.e.

where the weights 7; are positive and sum to 1. (In the special case of Figure 1b

the

the convex set K is a line segment.) Since, by definition, we have p; = ﬁ,
last formula is equivalent to equation (7).

3. Replication

The interpretation of state-prices as the values of elementary state-contingent
claims is the basis for the valuation of derivative securities in a no-arbitrage market.

Given a security s, and a set of securities s1 , 59, ..., Si, we say that the portfolio
(61,05 ,...,05), (representing holdings in each of the K securities) replicates s if the
security and the portfolio have identical cash-flows. Under no-arbitrage conditions,
the value of the security and of the replicating portfolio must be the same. Otherwise,
an arbitrage could be realized either by shorting the portfolio and buying the security
or, alternatively, by shorting the security and buying the portfolio. If the value of
the portfolio is less than the value of the security, the first strategy is an arbitrage.
If the portfolio is worth more than the security, the second strategy is an arbitrage.
This argument gives rise to a simple but important valuation principle.

Proposition. In a no-arbitrage market, if a security admits a replicating portfolio
of traded securities, its value 1s equal to the value of the replicating portfolio.

Here are some elementary applications of this principle.

Example 3: Forward prices. Suppose that a security has (spot) price P and

that the yield for riskless lending over the trading period is R. Consider a forward
contract, which consists of an agreement to purchase the security at the end of the
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trading period at price K. Assume that the security pays no dividends over the
trading period. The no-arbitrage price of the forward contract is

Q=P-K/(1+R).

To see this, consider a portfolio consisting of being long one unit of the security
and short K/(1 + R) worth of riskless bonds. After the trading period, the holder
of this portfolio will own the security and will owe $K. Therefore, if he receives I
at the end of the final period he will be able to meet his cash obligation and delivers
the security, he will have no profit /loss. The portfolio is equivalent to having long
position in the forward contract. In practice, forward contracts are designed so that
they have zero initial cost () = 0). The forward price, which is price for delivery
of the security after the trading period, is

F=(1+R)P,
because K = F makes the initial cost zero.

Example 4. Put-Call Parity. This important example of replication involves
options. Suppose that a security with price S is traded as well as a call option and a
put option with exercise price (strike price) K. Recall, from I.1, that a call option is
a contract which gives the holder the right, but not the obligation, to purchase (one
unit of) the security at price I, at a stipulated date (expiration date). A put option
gives the holder the right to sell the underlying security at price K at the maturity
date. In this example, we assume that the call and the put have same strike prices
and expiration dates. Denote the market prices of the call and the put by C and
P, respectively. Let R be the interest paid for riskless lending over the duration
of the option (compounded simply). Suppose that an investor has the following
position: long one call, short one unit of the underlying security and long K/(1+ R)
worth of riskless bonds. Let us examine the cash-flows arising from this position at
the maturity date of the call. If, on the one hand, the price of the security at the
expiration date, ST, is greater than /', the investor can exercise the call, purchasing
the security at the strike price K and then return the security held short. This
leaves him with zero profit/loss. On the other hand, if the price of the underlying
security is less than K, he will not exercise the call. At the option’s expiration date
his new position is short one unit of underlying security and he has K in cash, for a
total value of K — Sp. If, instead, the investor would have held a put struck at K
initially, his position after the trading period would have been neutral if ST > K
(the put goes unexercised) and worth ' — Sp if S7 < K, since he can exercise
the put. Therefore, the portfolio “long call, short underlying asset, long K /(1 + R)
in bonds 7 replicates the put. We conclude that

P=C-S+K/(1+R).
This is the put-call parity relation. It shows how to construct a “synthetic put ”

via a portfolio. Since there are four variables in this equation, we can produce
similar portfolios to replicate other assets as well. Accordingly, the position “ long
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underlying security, long put, short K/(1 + R) in bonds ” replicates a call. The
position “long one call, short one put, long K'/(1+4 R) in bonds "replicates the cash-
flows of the underlying security. Finally, the position “ long one unit of security,
short one call, long one put ” replicates a riskless bond paying $ K at the expiration
date of the option.

4. The binomial model

We present the simplest case of the Arrow-Debreu model. Consider an ideal
situation in which there are only two states (M = 2) and two securities: a bond
with yield R % and a security (s) with price P. We assume that the cash-flows of
this security in states 1 and 2 are P U and and P D, respectively, where U and D
are given numbers and D < U. If there are no arbitrage opportunities, we must
have

1
P=—(mPU+7PD
11 R (77 1 + 72 )
where 7 and 79 are positive and 71 + 72 = 1. Thus, the risk-neutral probabilities
satisfy
T+ =1

mU+mD =1+R.

It is easy to see that this system will have positive solutions if and only if
D<1+R<U. (9)

This intuitively clear: if 1 + R > U, the return on riskless lending is greater than
of equal to the return for investing in the risky security, regardless of the final
state. An arbitrage could then be achieved by shorting the security and lending
out the proceeds at the riskless rate. Similarly, if 1 + R < D, the investor can
make a riskless profit by borrowing at the riskless rate and purchasing the security.
Suppose that (9) holds. The solution of the linear system is

~

=

_1+R-D 7 ﬁ_zZU—l—R‘ (10)
U—-D U—-D

Thus, the risk-neutral probabilities are entirely determined from the parameters
of the binomial model. The actual probabilities of occurrence of each state are
irrelevant in the pricing process (as long as neither one is zero — we must assume
that both states can occur).

This has interesting consequences. Suppose now that we augment the number
of traded securities (the number of final states is still M = 2.) Then, the price of
any security is completely determined by future cash-flows because the risk-neutral
probabilities are still given by (10). A “state-contingent” security which has cash-
flows Dy in state 1 and D, in state 2 must have value V, where

1 . .
V:H—R<771D1 —|—772D2> (11)
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This idea can be applied to price any security contingent on the value of s. For
instance, a “call option” on s with exercise price K (with PD < K < PU) has
cash-flows

Dy, =PU-K , Dy=0

since the holder will gain the difference between the market value and the exercise
price if this difference is positive. We conclude that the arbitrage-free value of this
call option on s is

1 1+R—-D

Vca == .
“"TI1YR  U-D

. (PU - K).

We can also illustrate the idea of replicating portfolios in the binomial model.
Consider a portfolio (6; ,63) representing an investor’s holdings in the security s
(with price P) and the $1 discount bond (with price 1/R), respectively. This portfo-
lio yields exactly the same returns as a security with cash-flows Dy and D, provided

that
6,PU + 6, = D,

6LPD + 6, = D,.
Solving for ¢; and 65, we find that

Dy — D D
= 7}3(} — PZD and 6, = (Dy —Dy). (12)

9 -
! U—-D

Since holding the portfolio (61 ,63) gives the investor the same returns as holding
the security with cash-flows Dy and D5, the two positions should have equal value.
We conclude that V' = 6; P + 65/(1 + R). Substituting the values of the s from
(12), we recover the price (11). Notice that this calculation, based on replicating the
payoff of the contingent claim, did not require knowing the risk-neutral probabilities.
This is because the binomial model admits a unique set of state-prices/ risk-neutral
probabilities.

5. Complete and Incomplete Markets

In the binomial model, any vector of future cash flows (D; , D5 ) (the index labels
the final state) can be replicated in terms of a portfolio of the basic security and a
riskless bond. This property can be generalized to the setting of the N-securities/M-
states model.

Definition: A securities market with M states is said to be complete if, for any
cash-flow wvector (Dy,Dq,..., Dy), there exists a portfolio of traded securities
(61,0, ..., 0N ) which has cash-flow D;j in state j, for all1 < j < M.

Market completeness is therefore equivalent to having a cash-flows matrix D=
(D;;) with the property that the system of linear equations

9-D =D,
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or

N
6Dy =D;, 1<j<M,
1

has a solution # € RY for any D € RY. From Linear Algebra, we know that this
property is satisfied if and only if

rank D = M,

which is equivalent to saying that the column vectors of the matrix D span the entire
space RM . Market completeness is a very strong assumption, which greatly simpli-
fies the valuation of derivative securities. Derivative securities can be represented
by general cash-flow vectors ( Dy, Dy, ..., Dyr), as opposed to the N “standard se-
curities” which have cash-flow vectors ( D;1, Dia ..., Dipr), for 1 < ¢« < N. Since
any derivative security is equivalent to a portfolio of standard traded assets, its
price is fully determined from D in the absence of arbitrage. More formally, we
have

Proposition. Suppose that the market is complete and that there are no arbitrage
opportunities. Then there is a unique set of state-prices (my , 72 ..., 7Tar) satisfying
(5) and hence a unique set of risk-neutral probabilities (71 , Ty, ..., Tar). Conversely,
if there 1s a unique set of state-prices, then the market 1s complete.

Proof: Market completeness implies that the price of a state-contingent claim which
pays $1 in state 5 and 0 otherwise is determined for all j. Therefore, there can be
at most one set of state-prices. If they exist, state-prices are unique.

To prove the converse statement, suppose that there exists a unique vector of state
prices ® = (my , 72, ..., 7pr ) (with strictly positive entries) such that (5) is satisfied.
We will argue that the market complete by contradiction. In fact, if the market is
not complete, then rank D < M. From Linear Algebra, we know that the matrix
D must have a non-empty right-nullspace, i.e., there exists A = (A1, A2, ..., Ay )
such that

D-)\A =0, (13)

or, equivalently,

M
Y Dij)\; =0, foralll <i< N,
1

Using the no-arbitrage relation (5a) and (13), we conclude that
D-(m+p)\) =p,

for all real numbers p. Since the entries of 7 are strictly positive, we can choose p
sufficiently small so that 7; +p A; is positive for all j. Therefore, we have constructed
a new state-price vector, contradicting our hypothesis. We conclude that, in a no-
arbitrage market, uniqueness of state-prices implies that the market is complete.

The above argument can also be used to characterize the set of state-price vectors
corresponding to an incomplete market with given price vector p and cash-flow
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matrix D. Let & = rank D. In an incomplete market, we have M — k > 0.
Notice that k is the dimension of the right-nullspace of D. Given two state-price
vectors 71 and 7(?) and p such that 0 < p < 1, the the convex combination
prh) 4 (1—1p) 7(2) is also a state-price vector. Hence, the set of all state-price
vectors is convex. Moreover, in the proof of the Proposition, we showed that each
state-price vector is contained in a (A — k)-dimensional neighborhood inside this
cone. Consequently, the set of admissible state-price vectors is an open cone in an

(M — k)-dimensional affine subspace of RM.

What is the financial meaning of a complete/incomplete market? In a complete
market there is a unique set of state-prices. However, in real markets it is usually
impossible to completely identify the set of final states or quantify the investors’
preferences towards different states. Market completeness is a convenient ideal-
ization of the behavior of securities markets. Incomplete markets — with many
possible price structures satisfying the no-arbitrage condition — are the rule rather
than the exception.

6. The trinomial model

We describe a simple example of an incomplete market. Assume that there are
two securities — a riskless bond with with yield R paying $1 at the end of the trading
period and a security s. There are three states, which correspond to different cash-
flows for s. We assume that the price of s is P and that the cash-flows of s are PU
in state 1, P M in state 2 and P D in state 3, with

D < M<U.

Clearly, this market is incomplete, because the dimension of the cash-flows matrix
is 3 x 2 and there are three states. (If there are more states than traded securities,
the market is always incomplete). We can investigate the conditions for the existence
of state-prices. Since we have assumed that there is riskless lending, we have

H_—R:ﬂ'l + w2 + 73, (14)

for any admissible set of state-prices. Since there is no arbitrage, we must have
P = PU7T1 —|—PM772 —|—Pl)71'37

or

1:U771+M772—|—D7T3. (15)

Admissible state-price vectors m must satisfy equations (14) and (15) and have
positive entries. These equations show that there is no arbitrage if and only if

D<14+R<U, (16)

the interpretation of which was given in the discussion of the binomial model. As-
suming that condition (16) holds, the set of state-prices can be visualized as a line
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segment corresponding to the intersection of the planes described by (14) and (15)
and the positive quadrant in R3. The two extreme points of this segment are

_ (1+R)-D B _ U-(1+R)
= Ormo-p) 2% ™T 0yR@-D) (17)
and
B _ M—(1+R) _ (1+R-D
“_0’7”_Q+RWW—m’ BT+ R(OI-D) (182)
it M > (14 R), or
o (I+r)-M _ U-(1+R) B
MEOrRU o 2T axmo—a =Y (18b)
if M < (1+R).

Because the prices of traded assets are linear functions of the state-prices, ac-
cording to eq. (5b), this calculation can be used to derive bounds on the values
of contingent claims based on the available information. In fact, we know that a
linear function defined on a closed convex set attains its maximum and minimum
values at the extreme points of this set. (Actually, since the set of state-prices is an
open convex set, the maxima and minima are attained at “ degenerate ” state-price
vectors which have entries equal to zero and hence are not, strictly speaking, state
prices.) To illustrate this, consider the case of a call option on the basic security s
with strike price I{. To fix ideas, assume that PM < K < PU. Then, the cash-
flows for this option are P U — K in state 1 and 0 in states 2 and 3. Its no-arbitrage
value is C' = m (PU — K). Therefore, using (17) and (18), we find that

(1+R)—D

C+:(HJMU—D)

(PU - K)

is an upper bound for the price of the option. If M > (1 + R) the lower bound on
the price is C~ = 0, and if M < (1 + R), the lower bound is

__ (14+R)-M -
C _(HJMU_MﬂPU—Ay

(Of course, the upper and the lower bounds coincide when M = D, and we recover
the result of the binomial model.)

This example shows an important application of state-prices as a tool for con-
tingent claim valuation in incomplete markets. State-prices are not unique but can
nevertheless be used to obtain partial information about fair prices. This result can
be interpreted financially in terms of risk-aversion of different agents. A market
participant that does not want to incur in any risk will bid (be willing to buy) the
security at the price corresponding to the lower bound C'~ and will offer (be willing
to sell) the security at the price corresponding to the upper bound C*. Since there
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is incomplete information about Arrow-Debreu prices, transactions made between
the bounds imply a risk for the buyer as well as for the seller.

7. Exercises

1. Consider a hypothetical country where the government has declared a “currency
band” policy, in which the exchange rate between the domestic currency, denoted
by XYZ, and the U.S. dollar is guaranteed to fluctuate in a prescribed band, namely

USD 0.95 < XYZ < USD 1.05,

for at least one year. Suppose also that the government has issued 1-year notes
denominated in the domestic currency which pay a simply compounded annualized
rate of 30 %. Assuming that the corresponding interest rate for U.S. deposits is
6%, show that this market is not arbitrage-free in the “pure” sense. Describe the
situation in terms of the Arrow-Debreu model. Propose some realistic scenarios that
could make this pure arbitrage disappear in practice.

2. (i) Show that the set of all probability measures on a finite state-space of M
clements can be represented as a convex subset P of the Euclidean space RM.
Given a security s defined by its price and its cash-flows, verify that the set of
measures which are risk-neutral for this security corresponds to the intersection of
the set P with a hyper-plane in R . Similarly, show that the set of admissible
risk-neutral measures for a securities market with N securities corresponds to the
intersection of P with N hyper-planes.

(ii) Apply this analysis to the trinomial model of §6 — assuming that S = $100, U =
1.10, M = 1.00, D = .80, R = .05 and that a call option with strike $105 is trading
at a premium of C' = $3.80. Show that if, instead, C' = $1.00, there is an arbitrage
opportunity.

3. On the week of Sept. 7, 1996, Ladbroke, a London betmaker, gave the following
odds regarding the upcoming U.S. presidential election: Clinton 1-6, Dole 7-2, Perot
1-50. [For instance, Ladbroke pays one pound for every 6 pounds bet on Clinton if
he wins.]. Calculate the corresponding risk-neutral probabilities for the victory of
each candidate assuming that one of them will necessarily win.



