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Chapter 1

Completeness and Arbitrage

Let’s begin with some of the main ideas and methods of mathematical fi-
nance. These may seem a little abstract at first, but the ideas of arbitrage
(more often, of its absence) and of a complete market underly everything
else. The existence of these simple models and solutions has a strong
influence on what kinds of models we are willing to make of the messy
real world, so I would rather get these ideas on the table first, before we
start talking about real stocks, bonds, and options.

1.1 One-period model

In the first model we shall consider, there are two times. There is now,
t = 0, at which we know everything about the world. There is a future
time t = T , at which we do not know exactly what will happen. We
make investment decisions now which will, in general, lead to uncertain
outcomes at time T .

1.1.1 Future states

The classic theory relies on the following formulation: We make a list of
the possible future states of the world. It is important for this theory
that this list is finite; if the number of possible future states is M , then
we can just label states by numbers 1 to M . Let us call the set of states
Ω = {1, . . . ,M}.

Here are some examples:

• A coin flip has two states: heads or tails. A lottery ticket either wins
one of a few specified payoffs or nothing.

5
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Figure 1.1: M states at future time t = T .

• Either the Republican or the Democratic candidate will win election
in my district.

• If I am buying earthquake insurance, then I distinguish two states:
either there is an earthquake (between now and time T , the expira-
tion date of my policy) that knocks my house down, or there is not.
Of course, the insurance company and I have to agree on what con-
stitutes an insurable event. Actually, the policy might also cover
partial damage, so the number of states may be greater than two,
but the two-state model might be a reasonable one to start with.

• Weather: I could measure the number of heating-degree days in a
specific month, and divide it into bins to make the state space finite.
Oil prices move up and down.

• Most relevantly for our purposes, we might construct a model for
the price of a specified stock, in which at a specified future time,
the price can take only one of a few finite values. Since stock prices
vary nearly continuously, this would clearly be an approximation,
but it will turn out to be a useful one. Here the “event” is simply
the motion of the price itself; we are not claiming that it depends
on any particular outside influence.

One thing we are explicitly not going to include in the theory at this point
is any opinion about the probability with which these different events will
occur. All we need is a finite list of possible events. (As Mr. Spock once
said, “This is not about probabilities, Lieutenant. We must be logical.”)
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It might be more accurate to say that we care only whether probabil-
ities are zero or nonzero, but we don’t care what their values are. We
implicitly assign zero probability to all events that are not in our list Ω
(the coin might land on its edge).

A random variable is a functionΩ → R (real numbers). In other words,
it is a vector (f (1), . . . , f (M)), where f(j) is the value this variable will
take if state j happens. A random variable can be represented as a (row)
vector in the Euclidean space RM .

1.1.2 Endowment and consumption

In economics jargon, we measure our wealth in terms of a rather abstract
quantity called a consumption good. In classical theory, consumption
is not the same as money; money is a social invention, which is useful
insofar as it can be exchanged for the consumption good.

For example, if I acquire a lot of money, I can buy a Porsche. My
consumption is not the car itself, but the experience of driving around
in it, cornering as if on rails and receiving the envy of my neighbors. It is
my decision whether the consumption I sacrificed to achieve this state,
for example, the time I spent working in the office, is worth the result.

For our purposes, we can equate consumption with money. That is,
we are considering only a restricted set of the possible measures of suc-
cess. For an individual, it might well be the case that applying these
theories is more trouble that it is worth, indicating that important con-
sumption quantities have been left out of the model. For large financial
institutions, the relative cost is much less.

The reason we are given anything to consume is that we are given an
endowment ; in our model, this is an amount of money we receive from
some outside source depending on time and on the state of the world.
Let us consider the endowmwent in the examples above:

• A coin flip does not in itself give me or cost me any money. (I
can enter into a contract with someone else, the value of which
depends on the result of the flip.) A lottery ticket is similar: I have
no exposure unless I choose to buy it.

• It is possible that I will have financial exposure to the outcome of
an election. Perhaps I expect that a Republican win will drive the
stock market upwards or downwards. Perhaps I expect a cushy job
in a Democratic administration.
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• I spend money to buy or build a house. If no earthquake happens
I keep the house so I have no new endowment. If an earthquake
knocks it down, then I have a huge negative endowment.

• Energy companies do have financial exposure to monthly average
temperature, since consumption and consequently price depend on
it. Airlines have huge exposure to oil prices, since they must buy
large quantites.

• The stock motion is like the coin flip: all kinds of stocks go up and
down all the time without concerning me. The only way I would
have exposure to the future stock motion is if at t = 0 I decide to
purchase some shares, but this is not considered an endowment in
the classical sense.

Our future endowment is a random variable, which is not under our
control. Our future consumption is also a random variable. Total endow-
ment can be represented as the (M + 1)-vector (e0, e), where the scalar
e0 is the endowment at the initial time, and e is the M-vector (random
variable) representing endowment at the final time. Similarly, total con-
sumption can be represented (c0, c).

The purpose of financial markets is to provide mechanisms for mak-
ing consumption different from endowment. For example,

• I can choose to bet on a coin flip, or to buy a lottery ticket. If I do,
my consumption becomes very non-uniform.

• If I buy an insurance contract, I make my net consumption much
less random (I pay a small amount whatever happens, but I am
guaranteed to still have a place to live).

• Energy companies buy and sell contracts whose value depends on
temperature, in order to eliminate the risk they are already exposed
to. Airlines buy futures and options on fuel, to reduce or eliminate
their risk.

• I may choose to buy a stock: in this case I generally am hoping that
the price will rise and my consumption will, on average, be higher
than if I had not bought.

Another favorite economics concept is the utility function, which mea-
sures the net value to me of a random consumption variable. This may
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be represented as a function U(x) from RM to R; that is, it depends on
the entire spectrum of possible outcomes.

For example, when I decide to purchase earthquake insurance, I am
judging that my utility function is controlled by the worst possible out-
come. Thus I am happy to protect myself against a downside risk, even if
statistically (assigning probabilities to the events) my average gain is neg-
ative. Fortunately, the insurance company has a different utility function
(and different endowment), so the trade is mutually beneficial.

Utility functions are generally increasing, meaning that more is always
better, and concave, modeling to aversion to risk. Thus, if I have made
a million dollars, I would still like to make more, but the second million
will change my life less than did the first.

For our purposes, all we need to assume is that everyone in the market
has an increasing utility function. The reason is that we will be consider-
ing the very special class of models and markets in which it is possible to
completely eliminate risk. This is the theory that underlies the pricing of
financial derivatives such as options, and is the part that gives the most
classical and cleanest mathematics. Needless to say, this is a very special
category, and very large and important areas of financial mathematics are
devoted to the modeling and management of risk.

1.1.3 Securities and markets

A security is a contract that pays different amounts in different states of
the world; that is, it is a random variable d = (d(1), . . . , d(M)) ∈ RM .

For example, a bet on a coin flip would be represented as (1,−1). An
earthquake insurance contract might be represented as (0, P); it pays a
large amount P in the event of an earthquake. A stock might be repre-
sented as, for example, (90,100,110), corresponding to the three possi-
ble future prices.

We shall assume that every security can be purchased either long,
meaning you hold a positive amount, or short, meaning that you hold a
negative amount. That is, you can buy any real number θ of “shares,”
and then your payout is the random variable (θd(1), . . . , θd(M)). You
control this outcome by selecting θ at t = 0.

Thus you can choose either heads or tails on a coin flip. You can
either buy an insurance contract, or write one to your neighbor. You can
buy a stock, or “short” it, meaning that you borrow shares, sell them, and
are obliged to purchase back the shares at a later date; you make money
if the price has dropped in the meantime. Clearly the assumption of free
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long or short investment is not sensible for every security, but for the
main ones traded in financial markets it is reasonably good.

A market is a list of securities d1, . . . , dN . The market may be repre-
sented by its N ×M payout matrix

D =



d1(1) · · · d1(M)

...
...

dN(1) · · · dN(M)




giving the amount that each security pays in each state of the world. The
number of securities N may be larger than, smaller than, or equal to the
number of possible states M .

A portfolio is a list of investments

θ =



θ1
...
θN




where θj is the amount of security j you purchase at t = 0. The net
payout yielded by portfolio theta is the matrix product DTθ, where T de-
notes transpose. The important point is that you must determine your
investment θ before the state is revealed. Thus the net payout is a ran-
dom variable. Choosing the portfolio is your means for controlling your
consumption in the presence of uncertain endowment.

The prices of the securities are given by the N-vector

p =



p1
...
pN




where pj is the money you have to invest to acquire one unit of security
j. Thus the total cost of portfolio θ is the scalar pTθ; this is not a random
variable since p is known at the initial time.

For a given portfolio θ, your total consumption, meaning the amount
of money you extract from the investment, is the (M+1)-vector (e0, e)+
D̄Tθ, where the N × (M + 1) augmented matrix

D̄ =
(
−p D

)
=



−p1 d1(1) · · · d1(M)

...
...

...
−pN dN(1) · · · dN(M)



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contains prices and payouts together. This matrix completely describes
the market. When these prices and payouts are posted, you are free to
buy or sell as much of each security as you would like, in order to tailor
your final consumption however you would like.

So far we have said nothing about how these prices are determined;
they are offered to us and to every other participant by some mysterious
marketplace “out there.” The entire point of this course is that the simple
principle of “no free lunch” (nonexistence of arbitrage, as defined below)
imposes certain constraints on the prices. In particular,

1. We can write inequality conditions that must be satisfied by the
current prices in terms of their final payouts (the lesser point).

2. Most importantly: If our market is “complete” (see below), then
when we add a new security into the market, we can determine ex-
actly what its price must be in terms of the prices and payouts of
existing securities. The classic example is option pricing: if some-
one proposes a new contract whose value depends on the value of
something that already exists in the market, then, using suitable
mathematical models, we can determine what the price of the op-
tion must be.

That’s really all that classical financial mathematics consists of. Once
you are clear on the basic idea, the things that make it interesting are,
first, the mathematical mechanisms for carrying out this computation in
various complicated situations, second, the kind of models about the real
world this simple theory forces us to believe, and, third, how the simple
theories are not adequate and what we can do about it.

In some cases you may already have opinions about what the price
should be in terms of the payout. For example, coin flips and lotteries
are canonical examples of problems to which probability theory can be
applied. You would have difficulty getting someone to pay you to bet on
a fair coin; the price of lottery tickets isset by the state and you may have
stron opinions about whether they are fair (but you may buy one anyway
from time to time). Remember that this theory does not care at all about
probabilities except as they are zero or nonzero; it is really only based
on the nonexistence of guaranteed profit.

Let us now consider two specific kinds of securities, which will be our
building blocks.

A bond is a riskless asset. We will define a unit amount of a bond
to pay a unit amount in all states of the world. Thus its payout at time
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T is the constant vector (B1, . . . , BM) = (1, . . . ,1). We can purchase this
bond now for a discounted price, where the discount factor depends on
(or determines) the interest rate. If we imagine that interest accumulates
continuously at rate r per unit time, then the discount factor is e−rT ,
though 1−rT or (1+rT)−1 are also reasonable models. Since the payout
is unity, this is also the price B0 = e−rT .

Positive investment in a bond (going long) means loaning money to
whoever “issued” the bond: you put out cash now, and you get back cash
later. Negative investment (going short) means borrowing money. Our
model says that you can do both of these at the same interest rate r .

A stock, in this model, just represents a generic risky asset. Let’s call
the current price S0; the price at time T hasM possible values (S1, . . . , SM).

Thus in this two-asset market, the total 2× (M + 1) payout matrix is

D̄ =
(
−e−rT 1 · · · 1
−S0 S1 · · · SM

)

1.1.4 Arbitrage and pricing measures

Now we define the notion of a riskless profit. An arbitrage strategy is a
portfolio θ ∈ RN so that D̄Tθ ≥ 0 and D̄Tθ 6= 0. (In this one-period model
that the words “portfolio” and “strategy” are interchangeable.)

(For vectors x and y , x ≥ y and x > y are interpreted component-
wise: xj ≥ yj or xj > yj respectively for every j; x 6= 0 means that some
component xj 6= 0.)

The vector D̄Tθ has M + 1 components, one for the initial time and
M for the final states. Depending on which component is positive, an
arbitrage strategy can be either one of the following two things:

1. A strategy that does not cost anything to initiate (pTθ ≤ 0), that
cannot lose anything (DTθ ≥ 0 in all states), and that generates
positive income in at least one possible state ((DTθ)j > 0 for some
j = 1, . . . ,M). Or

2. A strategy that generates positive money when it is initiated (pTθ <
0) and does not lose money no matter what happens (DTθ ≥ 0).

Now, if our market admitted an arbitrage strategy, then everyone in
the world would rush to invest in it (this is where we use the increasing
utility functions). No one would want the other side of those trades, since
the opposite side would lose money with certainty, and noone can have a
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risk exposure for which that is a good thing. There would thus be a huge
unbalanced demand from the market participants. Although we have not
said anything about how prices are adjusted, any reasonable mechanism
for making prices respond to demand would cause the prices to move so
that the arbitrage opportunity disappeared (in chemistry, this is called
Le Chatelier’s principle).

A market is in equilibrium when this unbalanced demand does not
exist, so the listed prices represent actual values at which other partici-
pants are willing to take the other sides of the trades. The fundamental
principle of our pricing methods is that

Arbitrage strategies cannot exist in equilibrium.

The principle of absence of arbitrage is closely related to the efficiency of
markets, and the ability to quickly pounce on any profit opportunities.1

Our next job is to see what this rather abstract statement implies for
the relationship between the prices and the payout functions. This is
provided by the

Theorem: For a given market consisting of a payout and price matrix
D̄, nonexistence of an arbitrage strategy is equivalent to the existence of
a state-price vector ψ > 0 so that p = Dψ.

Proof: First, suppose that such a ψ > 0 exists. Then for any strategy θ,
pTθ = ψTDTθ. If all components of DTθ are zero, then pTθ = 0 and θ
is not an arbitrage (it doesn’t cost anything but you don’t get anything).
On the other hand, if any component of DTθ is positive, then, since all
its components must be ≥ 0 and since ψ > 0, pTθ must be > 0, so this θ
is not an arbitrage (you can get something, but it costs you initially).

The converse is more subtle. In RM+1, consider the positive cone

K = {
x ∈ RM+1 ∣∣ x ≥ 0 and x 6= 0

}
.

1The efficient market hypothesis is closely associated with the University of Chicago
Department of Economics. It happened one day that a Chicago professor was walking
down the street with some of his students. One of them looked at the sidewalk and
exclaimed “Look, a $20 bill!” The professor sagely remarked, “Don’t bother with it: if
it were a real one, someone would already have picked it up.”

The point is not that an occasional bill on the sidewalk is impossible, but you should
not expect it to last for very long, especially if the sidewalk is crowded.
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Figure 1.2: The arbitrage pricing theorem for N = 1, M = 1.

This is the set of payoffs (including initial cost) that constitute an arbi-
trage. Also consider the linear subspace

L = {
x ∈ RM+1 ∣∣ x = D̄Tθ for some θ ∈ RN }.

This is the set of payoffs you can attain by some strategy; it has dimension
rank(D̄). An intersection of K and L would be an arbitrage; if there do
not exist arbitrage strategies, then K and L are disjoint.

Now, both K and L are convex sets, and L is closed and linear. Then
the separating hyperplane theorem says that there exists a linear function
F so that F(x) = 0 for all x ∈ L and F(y) > 0 for all y ∈ K.

By the Riesz representation theorem (trivial in finite dimensions), the
linear function can be represented as F(x) = cTx for some vector c ∈
RM+1; c is a normal vector to L. We can write cTx = ax0+bTx̃, where x =
(x0, x̃). Since K contains the positive coordinate axes, each component
a > 0, bj > 0. Returning to the definition of L, this means that for every
θ ∈ RN , −apTθ+bTDTθ = 0, or (ap−Db)Tθ = 0. Since ap−Db is just a
vector in RN , this can be true only if ap = Db, soψ = b/a is a state-price
vector.

The state-price vector assigns a positive weight ψj to each state j. The
theorem says that if there is no arbitrage, then each initial price pi can
be computed by “collapsing” the payout vector (d(1), . . . , d(M)) against
ψ, and we can use the same ψ for each security in our market. Note that
if rank(D̄) < M , then the state-price vector is not necessarily unique.
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Theorem: A sufficient condition for the state-price vector to be unique
is that rank(D̄) = M .

Proof: As noted, rank(D̄) is the dimension of the subspace L. If this
dimension is M , one less than the dimension of the space, then L has a
unique normal vector c, the only candidate for the state-price vector.

Since D̄ is an augmentation of D, rank(D̄) ≥ rank(D) and we have the

Corollary: A sufficient condition for the state-price vector to be unique
is that rank(D) = M .

Since D is N ×M , its rank is at most the smaller of M and N . To have
rank(D) = M , there must be at least N ≥ M securities in the market, and
their payoffs must be independent vectors. A market with rank(D) = M
is called complete; in a complete market you can achieve any desired
combination of payoffs in the different states, by suitable choice of in-
vestment at the initial time.

Note that if there are more securities than states, so N > M , then it
would be possible for rank(D̄) to be ≥ M + 1. In this case, the subspace
L fills all of RM+1 and arbitrage is certainly possible.

If the number of possible future states is larger than the number of
independent securities (in this one-period model) it is impossible for the
market to be complete. So the restriction to finitely many possible future
states is essential in this model. In order to let the price take arbitrarily
many values, we shall also need to take many small time periods; it the
relationship between the two continuum limits will set important restric-
tions on the nature of our model.

1.1.5 Risk-neutral pricing

In order to interpret the significance of the components of ψ, let us sup-
pose that one element in our market is a bond B with discount factor
B0 = e−rT . The above representation says that B0 = B1ψ1 + · · ·BMψM =
ψ1 + · · · +ψM . Thus if we define

q = erT ψ,

then each qj > 0 and their sum is one. We may thus interpret each qj as
a “probability” that our model leads us to assign to state j; then absence
of arbitrage means that we can compute the price of any security in the
market by the formula

p = e−rT EQ
[
d] ≡ e−rT

(
q1d(1)+ · · · + qMd(M)

)
.
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Here the notation EQ means “expected value using the numbers q as
probabilities.” We are using the language of probability theory, but let
us emphasize that the qj do not represent any sort of estimate of the
probability of anything happening in the real world. They are purely
mathematical constructions; their values are forced on us by the rela-
tionships between the prices and the payouts of the securities in the
market, and the assumption of nonexistence of arbitrage.

This result is so important and so fundamental that we will state it
again in words:

If the market does not admit arbitrage, then a purely artificial
probability measure can be constructed so that the price of any
security traded in the market is equal to the expectation of its
future value in that measure, discounted at the same rate as
a risk-free bond. If the market is complete, this measure is
unique.

This probability measure is often called the “risk-free measure.”

1.1.6 Valuing a single derivative

Let us now return to the simple model we have discussed above, in which
the market consists of two assets. The first is a bond, with present value
B0 = e−rT and sure payoff 1 in every state. The second asset is a “stock”
(it does not really matter what it is) with present value S0 and uncertain
future value.

We shall suppose that only two future states are possible: the stock
price moves to value S1 or to value S2, with S1 < S2. We repeat that these
two states are not consequences of any external event in the world; they
simply represent our uncertainty about the future motion of the stock
price.

Now the augmented price matrix is

D̄ =


−e−rT −S0

1 S1

1 S2




in which the first column is the bond and the second column is the stock.
The first row represents the initial time; the second and third rows are
the two possible future states.
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Figure 1.3: The 2-state stock motion model.

Since S1 6= S2, D̄ has rank 2. Thus the linear set L in the arbitrage
theorem is a plane. It has a unique normal vector (a, b1, b2), and so the
risk-neutral measure is unique if it exists.

Denoting q1 = 1− q, q2 = q (Figure 1.3), we need only solve

S0 = e−rT
(
qS2 + (1− q)S1

)
which gives

q = erTS0 − S1

S2 − S1
, 1− q = S2 − erTS0

S2 − S1
. (1.1)

These are the normalized state-price vector, as long as 0 < q < 1. By
inspection, this will be the case if

S1 < erTS0 < S2 (1.2)

This constraint is easily understood in direct financial terms.
The theorem says that if (q,1−q) do not constitute a legitimate pric-

ing measure, then there exists an arbitrage portfolio. Suppose, for exam-
ple, that erTS0 ≤ S1. Then do the following investment: At t = 0, borrow
S0 cash, and use that money to purchase one share of stock, so you don’t
invest any of your own money. At t = T , you have to repay S0erT . Get
that money by selling the stock, which yields either S1 or S2. In the first
case you definitely don’t lose, and in the second case you definitely make
something since S2 > S1.
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Conversely, if S1 < S2 ≤ erTS0 then interest rates are so high that
you should short the stock and loan out the money. The only way that
neither of these strategies will not work is if the future stock value can
be either more or less than the amount earned by investing its current
value at the risk-free interest rate.

Now let’s make it interesting. Suppose our market contains a stock S
and a bond B, all of whose initial prices and possible payouts are specified
so that there are no arbitrage possibilities. Now let’s add an additional
security V into the market.

In general, if we add something else, we increase the number of states.
For example, if we considered a second stock, then that stock could in
general move up or down independently of the first one, so we would
have at least four possible states in the extended model.

We will suppose that the new security is a derivative, meaning that
its value at the future time depends on the value of the underlying asset,
in this case our original stock. There is an explicit function Λ(S), the
payout function, which gives the value of V in terms of the value of S at
time T . Thus V1 = Λ(S1) and V2 = Λ(S2). The derivative security does
not change its value independently of the underlying value (its value may
depend on other parameters such as the interest rate).

An example (we will discuss this more thoroughly in the next section)
would be a call option with expiration date T . A call option gives you the
right, but not the obligation, to purchase the asset at the specified date
for a prearranged value K, the strike price. If the asset is at that time
trading in the market for a price greater than K, you make a net profit
S−K; if it is trading for a price less than K the option is worthless. Thus
Λ(S) = max{S −K,0}. (We are considering European options, which can
be exercised only on a single future date.)

We now have N = 3 securities but still M = 2 future states. The 3× 3
augmented payout matrix is

D̄ =


−e−rT −S0 −V0

1 S1 V1

1 S2 V2




in which the only unknown quantity is V0.
But we can immediately determine what V0 must be in terms of the

other prices in the problem. Recall that for nonexistence of arbitrage
opportunities, we need rank(D̄) ≤ M . With M = 2, N = 3, D̄ must be
degenerate.
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The risk-neutral pricing formula gives us a simple way to express the
algebra. Every security in the market must have a current price equal to
the discounted risk-neutral expection of its future value, so in particular,

V0 = e−rT
(
qV2 + (1− q)V1

)

= S0 − e−rT S1

S2 − S1
V2 + e−rT S2 − S0

S2 − S1
V1. (1.3)

A different way to express this result also gives insight. Suppose
we form a portfolio Π consisting of b units of the bond and ∆ units
of the stock (use of the Greek Delta is confusing but overwhelmingly
customary). The present value of this portfolio is

Π0 = b e−rT + ∆S0.

The future value of this portfolio takes two different values depending
on which way the stock price moves:

Π1 = b + ∆S1

Π2 = b + ∆S2.

Now we choose b and ∆ so that the payoff of portfolio P is exactly the
same as the payoff of the option: Π1 = V1 and Π2 = V2. In the jargon, we
construct a portfolio that replicates the option. Since there are two states
and two free parameters, we can do this uniquely (as long as S1 6= S2), to
obtain

∆ = V2 − V1

S2 − S1
, b = S2V1 − S1V2

S2 − S1
. (1.4)

It is easy to verify that then the present value of the portfolio Π0 = V0 as
given in (1.3). Note that you have to solve the entire tree to find ∆ at the
starting time.

Suppose the option were being bought in the market for a price V ′0
greater than this V0. Then you could sell the option to someone, collect-
ing cash V ′0. By selling the option, you incur risk; for example, if you sell
a call option and the stock price has risen dramatically by time t = T ,
you will be obligated to deliver an expensive asset for a low price.

But in this model, you can perfectly hedge your risk. You buy∆ shares
of the underlying, and invest whatever cash is left over at the going in-
terest rate. If V increases with S (as for a call option, say), then you
purchase a positive amount of stock, and the rise in value of the stock is
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exactly enough to cover your increased liability. You incur no risk, and
walk away with a net profit. Because a lot of people will be trying to do
this if V ′0 > V0, the market price will be quickly driven down to V0. The
quantity ∆ is called the hedge ratio: the amount of stock you must hold
per option you have sold to be risk-free.

This all sounds very clean and neat. But let’s review some of the
assumptions that went into the model, and were essential for the results:

• You can buy or sell every asset in the market for the same price. In
reality, there are always transaction costs: brokerage fees, bid/ask
spreads, etc.

• You can buy arbitrary positive or negative amounts of every asset.
In reality, short stock selling does not work exactly the same as
long purchasing: for example, there may be margin requirements
on a short sale. Also, large transactions in the stock in order to
cover options may move the stock price; we have assumed the stock
moves completely independently. There are other strange effects:
for example, the Chicago options exchange closes 15 minutes after
the New York exchanges on which the underlying stocks are traded,
and this theory says nothing about the price an option should have
when the stock is not freely tradeable.

• Most importantly, in a discrete-time model, you must specify the
possible values to which the price can move in the next time period.
In the continuous-time limit, this corresponding to making a choice
for the volatility. But volatility does not have an unambiguous value,
and different people have different opinions. In practice, choosing
an option price is equivalent to choosing a value for the volatility.

1.2 Binomial trees

The above model can be extended to multiple periods. For simplicity, we
shall consider the model of the last section, containing only a bond, a
stock, and eventually a derivative asset depending on the stock.

Let us suppose that time T is still the final horizon of our model, but
let us now divide that time into N sub-times t0, t1, . . . , tN , with t0 = 0
(now) and tN = T . (Note: from now on, we shall no longer use N to
denote the number of assets.)
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Figure 1.4: A non-recombining tree with N = 4 time levels.

Let us suppose that the interest rate is constant. If the bond has a
final price BN = 1 at t = T , then at t = tj it will have price Bj = e−r(T−tj),
independently of what the stock does.

1.2.1 Stock price model

At t = t0 (now), the stock price has a single known value S0 = S00, that
we obtain by calling our broker. Let us suppose that in the first time
interval, between t = t0 and t = t1, the stock may move to either of two
possible values, S11 or S12. Here, the first subscript denotes time levels,
the second one denotes possible price values.

We further suppose that starting from the value at t1, there are exactly
two new possible prices for each of the two price motions taken in the
first period. There are thus four possible values the price can take at time
t2, and each one corresponds to a sequence of two successive motions.
Thus after two periods have elapsed, one of four possible things will have
happened; one of the following four trajectories will have occured:

S0 → S12 → S24

S0 → S12 → S23

S0 → S11 → S22

S0 → S11 → S21

As time increases, each state splits into two states. At the end of N
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periods, there are therefore 2N possible states of the world. Each of
these contains not only by a price SN,j , for j = 1, . . . ,2N , but also by the
entire history that led to that price. Such a model, with two branches at
each node, is called a binomial tree (Figure 1.4).

For absence of arbitrage in this model, we need the prices on each
“leaf” of the tree to satisfy the inequality constraint (1.2). Since the “chil-
dren” of node (i, j) are (i + 1,2j − 1) and (i + 1,2j), we must apply it
with the substitutions

S0 , Si,j, S1 , Si+1,2j−1, S2 , Si+1,2j, T , ti+1 − ti

If this constraint were not satisfied at node (i, j), then we could con-
struct an arbitrage strategy as follows: Do nothing until time ti. If the
stock price has moved to Si,j , then carry out the arbitrage strategy at that
time. That strategy generates a guaranteed profit by time ti+1. It is not
guaranteed that the price will reach Si,j , but that event is possible, and
hence this is an arbitrage strategy at the initial time.

1.2.2 Pricing a derivative

Here again, it gets interesting when we add an additional security. Sup-
pose we add an option V . Suppose that the value of V is explicitly known
at time tN in terms of the price of S at that time. For example, V is a
call option for which tN is exactly the “exercise date,” the time at which
it can be exercised. Thus we know the values VN,j for each j.

Now we claim that we can use the pricing formula (1.3) to work back-
wards on the tree, all the way back to the current time t0 and current
stock price S0. We first use the formula to determine the values VN−1,∗
at the next-to-last level in terms of the final values VN,∗. Then we deter-
mine the values VN−2,∗ in terms of the VN−1,∗. We repeat until we are left
with the single number V0, which is the price the option “ought” to be
trading at in the market right now. By introducing multiple intermediate
times at which trading is possible, we have been able to let the stock price
take more than two values at the final time.

The reason this should be satisfied is as described above. If at any
node on the tree this algebraic relation were not satisfied, then by waiting
to see if the stock price actually moved to that node, we would have a
finite chance of making a profit, with no chance of loss. And, provided
V is fully known at t = T , the algebraic relations are enough to fix V0.
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1.2.3 Dynamic hedging

Along with the derivative value V , this algebra also gives us various aux-
iliary quantities at each node. Of these, the risk-neutral weight q has no
direct meaning; we emphasize that it is not the probability of anything
really happening in the world.

But the hedge ratios∆i,j are the key to the whole pricing strategy. The
reason that the price of the option is uniquely defined at t = 0 is that
there exists a dynamic hedging strategy that replicates its value at the
final time. Thus the value of the option must be exactly equal to the cost
of implementing the hedging strategy, or else there would be arbitrage
opportunities.

In words, the strategy is the following. Suppose you sell an option to
someone at time t = 0 for price V0. At the same time, you go out and
purchase∆0 shares of the stock; you deposit or borrow any left-over cash
into or from an interest-bearing account.

At time t1, the stock price will have moved either to S1,1 or to S1,2.
Depending on which it has done, you adjust your stock position to ∆1,1
or to ∆1,2. This may yield some cash (if the new ∆ is smaller than the
old one) or require an input of cash. In either case you give or take to
the interest-bearing account. In no case do you ever bring in cash from
outside.

As time evolves and the stock price moves up and down, you continue
this juggling act, continually rebalancing your position. At the final time,
you will have exactly the right amount of stock and cash to cover your
obligation to the person who bought the option, and you will be back to
zero. (In practice, you add a markup to the initial option price to make
yourself a sure profit.)

This strategy was invented in 1973 by Black, Scholes, and Merton; it
is what they got the Nobel prize for (in the continuous-time limit).

Note that you have to continually adjust your stock holdings as the
stock price changes. We can therefore add another to our list of key
assumptions that go into the Black-Scholes pricing theory:

• You can rebalance your portfolio as frequently as prices move. Since
prices generally move extremely rapidly, it is impractical to carry
out this strategy exactly as described. Imperfect hedging leads to
nonvanishing risk associated with writing an option.

Despite the immense simplifications that go into it, the Black-Scholes
strategy has a tremendous importance. It brings the problem of deter-
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Figure 1.5: A recombining tree with N = 4 time levels.

mining an option price down from the realm of speculation, into the
framework of something you can study rationally if imperfectly.

1.2.4 Recombining trees

One final wrinkle needs to be added. As you may already have observed
and been wondering about, a tree as described above and as pictured in
Figure 1.4 is extremely impractical. With N time levels, it has 2N nodes
at the final time. If N is large enough to achieve a reasonable degree
of time resolution, this is an astronomical number. Furthermore, these
values overlap in a horrendous way.

For practical purposes (both numerical and analytical computation)
it is more reasonable to require the tree to be recombining as shown in
Figure 1.5. In such a tree, we require an up motion followed by a down
motion to give the same price as a down motion followed by an up motion.

A recombining tree has onlyO(N2) elements forN time levels, so it is
possible to achieve reasonable refinement in both time and stock price.
By constructing this tree, we are assuming that the stock price will jump
up and down on a grid whose structure we know in advance.

Of course, it remains to be seen what any of this really means. We can
assume whatever we like about the future motion of a financial asset, but
the world and the marketplace are under no obligation to conform to our
model. We need a reasonable characterization of exactly what features
of the tree determine the final price that we compute (Chapter 3).


