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1. Pricing by the no-arbitrage principle

2. Multi-period pricing

3. An overview of real securities

4. Continuum limit: The Black-Scholes equation

5. Random walks and stochastic calculus
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One-period model:

now t = 0 : certain, one state

t = T : uncertain: M possible states of world

t

M

3

2

1

o

t = Tt = 0

Ω = {1,2, . . . ,M}
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Examples:

• Coin flip: heads or tails

• Lottery ticket: few specified payoffs

• Earthquake: destroys house or not

• Weather: divide temperature into bands

• Stock: several future prices
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No opinion about probability

Only need list of possible events

(Or: only care about zero vs nonzero probability)

Random variable: function Ω → R

f(j) = value of variable f if state j happens(
f(1), . . . , f (M)

)T ≡ vector in RM .
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Econo-jargon:

• Endowment: How much I get from outside source

• Consumption: How much I actually have,

as modified by trading activity

Economics: measured in abstract units

For us: measured in dollars

Endowment and consumption are both random variables

We use trading securities to tailor consumption



Robert Almgren 1/99 Mathematics in Finance 7

Examples:

• Coin flip, lottery: My endowment is independent of result.

• Earthquake: house falls down is negative endowment

• Weather: energy companies have exposure

• Stock motion: endowment is independent of result
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Tailoring consumption by trading:

• Bet on coin, buy lottery ticket

• Purchase insurance contract

• Energy companies trade temperature derivatives

• Invest in stock
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Utility function U(c) Measures “value” to me

of different pattern of consumption outcomes

Concave: Second million less valuable than first million

U
(
αc1 + (1−α)c2

)
> αU

(
c1
) + (1−α)U(c2

)

⇒ Risk-aversion: prefer more uniform distribution

U


1

1


 > U


0

2




(Depending on weights: if U(0,2) = U(2,0), say)

All we care about in this course: U(x) increasing

More money is better than less money

We completely eliminate risk, don’t need to measure
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Security: A contract that pays different amounts in different

states of the world.

Random variable: d = (
d(1), . . . , d(M)

)T ∈ RM

Payoff in different states of the world

• Coin flip: d = (1,−1)

• Insurance contract: d = ( 0, 100,000 )

• Temperature (and other) derivatives: custom-specified

• Stock share: d = ( 90, 100, 110 ), say
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Investment θ: Your payoff is

θ d =
(
θd1, . . . , θdM

)

You choose θ at t = 0, then see what happens

θ can be any positive or negative number

θ > 0 : long θ < 0 : short

Someone else has to take −θ

• Bet on coin flip: heads or tails

• Purchase insurance contract or derivative (or sell to

neighbor)

• Buy some shares of stock

Short sale: borrow shares, sell, buy later to give back

Every security can be bought long or short (no margin).
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Market: List of N securities

Payout matrix (N ×M)

D =




d1(1) · · · d1(M)
...

...

dN(1) · · · dN(M)




θ =




θ1

...

θN




payout DTθ =




θ1d1(1)+ · · · + θNdN(1)
...

θ1d1(M)+ · · · + θNdN(M)




consumption c = e+DTθ
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Prices

p =




p1

...

pN




Portfolio cost pTθ (not random)

D̄ =
(
−p D

)
=




−p1 d1(1) · · · d1(M)
...

...
...

−pN dN(1) · · · dN(M)




Complete description of market

“Price” means you can buy or sell arbitrary amounts

Prices determined by mysterious and complicated mechanisms
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We want to relate prices to payouts

All of Financial Mathematics:

“No free lunch” =⇒

• Inequality constraints on pj

• When new security is added with specifed payouts

depending on existing securities, determine exactly what

new price must be (“derivative pricing”)
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A possible idea:

If you have probabilities, compute “fair value”

• Flip of fair coin: p = 0

• Insurance cost: depends on probability of earthquake

• Stock price: depends on your opinion about future values

All these formulations have risk

When we can eliminate risk (not always),

the risk-free price is always the correct one.

Probabilities do not matter
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Example: Two-asset market

Bond: A generic risk-free asset; payout always = 1

Stock: A generic risky asset




B1

...

BM



=




1
...

1







S1

...

SM




Interest rate r : discount factor B0 = e−rT
S0 arbitrary

D̄ =

−e

−rT 1 · · · 1

−S0 S1 · · · SM



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Arbitrage: θ ∈ RN so that

D̄Tθ ≥ 0 and D̄Tθ 6= 0

• pTθ ≤ 0: no initial cost

DTθ ≥ 0: never lose any money

DTθ 6= 0: possibility to win some money

or

• pTθ < 0: gain money when you implement

DTθ ≥ 0: never lose any money



Robert Almgren 1/99 Mathematics in Finance 18

If the market were such that arbitrage possibilities existed,

then everyone would rush to take the good deal.

Prices would respond (in mysterious way) to one-sided demand.

Arbitrage possibility would disappear.

=⇒ Arbitrage strategies cannot exist

Impossible to make profit greater than risk-free rate,

without taking on risk.

Gives constraints on prices in terms of payouts
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State-price vector: ψ > 0 so p = Dψ

ψ ∈ RM : Assigns a weight to each state.

Prices determined by payouts via ψ

Theorem:

Non-existence of arbitrage ⇐⇒ existence of ψ

Proof:

⇐= pTθ = ψTDTθ.

Any component of DTθ > 0 =⇒ pTθ > 0

(You can win but it will cost you.)
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=⇒
Sets in RM+1 (initial and final consumption)

Set of arbitrage payoffs: positive cone

K = {
x ∈ RM+1

∣∣ x ≥ 0 and x 6= 0
}

Set of attainable payoffs: linear space, dim= rank(D̄)

L = {
x ∈ RM+1

∣∣ x = D̄Tθ for some θ ∈ RN }.

No arbitrage =⇒ K ∩ L = ∅
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L

K

0

State 1

c
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Separating hyperplane theorem:

There exists a normal vector c so

cTx = 0 all x ∈ L
cTx > 0 all x ∈ K

Separate into now (x0 scalar), and future (x̃ ∈ RM )

cTx = ax0 + bTx̃
a > 0 and b > 0 since K includes positive coordinate axes

∀θ ∈ RN , −apTθ + bTDTθ = 0

(ap −Db)Tθ = 0

ψ = b/a is state-price vector

QED
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Theorem:

rank(D) ≥ M =⇒ rank(D̄) ≥ M =⇒ ψ is unique

Proof: dim(L) = rank(D̄)

rank(D) = M =⇒ market is complete

Can achieve any combination of payoffs

Requires N ≥ M . At least as many securities as states.

Arbitrage always gives inequality constraints

Prices are uniquely determined when add securities

to a market that is already complete

• Coin flip: |price of game| should be < max payoff

• Insurance: should cost something but less than house
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Suppose our market has a bond, discount factor B0 = e−rT

e−rT = B1ψ1 + · · · + BMψM = ψ1 + · · · + ψM
q = erTψ can be interpreted as “risk-neutral probabilities”

For random variable f , define “expectation”

EQ[f] = q1 f(1) + · · · + qM f(M)

Any security in market can be priced by the formula

p = e−rT EQ[d]

= “discounted expectation in risk-neutral measure”

If q is unique (ψ is unique), this is the only possible value.
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Two assets plus a derivative
Market has bond + stock

initial prices B0 = e−rT , S0

S0 is as quoted in the market right now

World has exactly two states: stock moves to S1 or S2 (S1 < S2)

We choose S1 and S2 however we like

D̄ =




−e−rT −S0

1 S1

1 S2




S1 6= S2 =⇒ market is complete =⇒ q is unique if it exists
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Set q2 = q, q1 = 1− q, solve

S0 = e−rT
(
qS2 + (1− q)S1

)

q = erTS0 − S1

S2 − S1
, 1− q = S2 − erTS0

S2 − S1
.

For 0 < q < 1, need

S1 < erTS0 < S2

S1 ≥ erTS0 =⇒ Borrow money to buy the stock

erTS0 ≥ S2 =⇒ Short the stock and invest the proceeds
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1 - q

q
S

t

exp(rT) S0

S1

S2

S0

t = Tt = 0
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Add a security to the market
General new security V =⇒ more states

(e.g. a different stock)

We add a derivative security

Value of V at time T determined by value of S at T
World still has the same two future states

Example: call option with strike K
Right to buy the stock for K at time T

V at time T =


S − K, if S ≥ K (buy for K, sell in market for S)

0, if S ≤ K (not worth using the option)

Vj = max{Sj −K,0} (k = 1,2)



Robert Almgren 1/99 Mathematics in Finance 29

Market is now

D̄ =




−e−rT −S0 −V0

1 S1 V1

1 S2 V2




Must have rank ≤ 2 =⇒ determines V0

Risk-neutral expectation formula:

V0 = e−rT
(
qV2 + (1− q)V1

)

= S0 − e−rT S1

S2 − S1
V2 + e−rT S2 − S0

S2 − S1
V1.

Formula for V0 in terms of values at later times.
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Hedging
You are the bank. You wrote option to a customer.

You have risk since you have to pay V1 or V2.

You hedge your risk by investing in stock and bond.

Choose investments to replicate option payoff.

Heding portfolio Π has b units of bond bond, ∆ shares of stock

Initial value: Π0 = b e−rT + ∆S0

Final value:



Π1 = b + ∆S1, if stock moves to S1

Π2 = b + ∆S2, if stock moves to S2
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Choose b, ∆ so

Π1 = V1 Π2 = V2

No matter what happens, you have exactly enough money

to cover your obligation.

Then it must be that

V0 = Π0

Solution (two linear equations in two variables):

∆ = V2 − V1

S2 − S1
, b = S2V1 − S1V2

S2 − S1
.

∆ = hedge ratio: shares of stock held per option sold

Hold this amount stock, loan/borrow cash difference
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Review of why this has to be the price:

• Suppose option were being bought in the market for V ′0 > V0

(V0 determined by no-arbitrage). You sell the option and buy

the hedging portfolio =⇒ guaranteed profit V ′0 − V0.

• If the option were being sold for a price less than V0 you do

the reverse. (Remember there is only one price for any

security, including the option.)

In either case, a lot of people would quickly notice opportunity;

price would respond and move back to the “correct” level.

(Le Chatelier’s principle)
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Assumptions:

• Buy/sell at same price

No transaction costs, bid/ask spread, margin requirements

• Arbitrary positive/negative amounts

No impact on market, underlying stock can always be traded

(The price is determined only if you can trade stock.)

• Stock can move to only two specific values

In continuous limit, you must guess amplitude

(not direction!) of future price changes. (“volatility”)

In practice this is not unambiguously determined.
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Multiple periods
Divide time T into N subintervals

t0 = 0, t1, t2, · · · , tN−1, tN = T

Bond price known at each time (constant interest rate r )

B(tj) = e−r(T−tj)

Stock price can move to two different values at tj+1 from its

value at tj .
N levels =⇒ 2N possible final states

Make a list of all possible prices at all nodes:

S0,1, S1,1, S1,2, S2,1, S2,2, S2,3, S2,4, · · · SN,1, . . . , SN,2N

A binomial tree model (nonrecombining)
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S

t

S4,1

S4,2

S4,3

S4,12
S4,15

S4,16

S21

S22

S23

S24

S11

S12

t3t2t1

S0

t 0 t4
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Add an option V to the market.

We want to determine V0,1 = option value right now

(We are about to buy it, or quote its price to a customer.)

Suppose value of V is known in terms of S at time T .

(example: call option has V = max{S −K,0}).

Option pricing procedure:

1. Determine prices VN,1, . . . , VN,2N using known formula.

2. Work back up the tree applying our formula

V0 = e−rT
(
qV2 + (1− q)V1

)

(and the formula for q in terms of the S) at each node

V0 is any node, V1 and V2 are its children.
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Why is this true?

If the formula were violated at even one node (i∗, j∗),
there would be an arbitrage:

Wait until time i.
It may be that the stock price happens to be equal to Si∗,j∗ , that

is, it happened to take all the right jumps at all times up to i.
If this node doesn’t satisfy the pricing relation, then the option

price V at that time will not equal its no-arbitrage price.

If the stock price is Si∗,j∗ , then buy or sell the option and the

opposite hedging portfolio at that time. If the stock price

happens to be something else, then do nothing.

With this strategy, you have a positive probability of getting

something for nothing.



Robert Almgren 1/99 Mathematics in Finance 38

Recombining trees: O(N2) elements

much more practical.

Price moves up and down on a mesh.

S

t

S0

S41

S 42

S43

S44

S45

S31

S32

S33

S 34

S21

S22

S23

S11

S12

t4t 0 t1 t2 t3
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Dynamic Hedging:

If you sell the option at t = 0 for price V0:

Purchase ∆0 shares of stock at same time

Borrow/lend difference to risk-free account

As time evolves, price moves up and down on tree.

Continually adjust stock holdings to maintain ∆i,j
(Completely deterministic in terms of observed motions)

Cash difference goes in/out of risk-free account.

At t = T you are guaranteed to have exactly

right amount of stock and cash to cover option.

(For profit, charge a little more than V0 at beginning)
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One more assumption:

• You can rebalance portfolio as often as prices move.

Continuous-time limit =⇒ continuous trading.


