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Abstract

In this thesis we survey GARCH modelling with special focus on the
fitting of GARCH models to financia return series. The robustness of
the estimation of the parameters in the model is examined with three
different distributional assumptions for the innovations, Gaussian
distribution, Student-t distribution and GED (Generalised Error
Distribution). Both the Student-t distribution and the GED have fat
tails. The maximum-likelihood approach is used for the parameter
estimation. Using backtesting, the related residuals under the three
different distributional assumptions are examined. Furthermore, some
fundamental concepts of financial time series analysis will be
explained and some “stylised facts’ of real returns will be examined.
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1 I ntroduction

The large increase in the number of traded |
assets has made the measurement of |l‘| n' i
market risk, i.e., the risk due to adverse ‘lr l‘u- nrM]

market movements, to a primary concern ... -

in the financial world. fgshj-;grcg;@ \M

Many  conventional  methods for =~ p‘

measuring risk, associated with assets, are w\“.uﬂ

done through studies of the variance y

(volatility) of the asset. This measure of o sk
the unconditional volatility does not take \A N 445D £
into account that there might be a i Wiyt f "\M
predictable pattern in the stock market e :
volatility

In the theory of financial returns, a basic idealisation is that returns follow a stationary
time series model with stochastic volatility structure. The presence of stochastic volatility
implies that returns are not necessarily independent over time.

In the year of 1982, Engle proposed a volatility process with time varying conditional
variance; the AutoRegressive Conditional Heteroskedasticity (ARCH) process. However,
empirical evidence shows that high ARCH order has to be selected in order to catch the
dynamic of the conditional variance. The high ARCH order implies that many parameters
have to be estimated and the cal cul ations get burdensome.

Four years after Engel’s introduction of the ARCH process, Bollerslev 1986, proposed
the Generalised ARCH (GARCH) model as a natural solution to the problem with the
high ARCH orders. This model is based on an infinite ARCH specification and it allows
to dramatically reducing the number of estimated parameters from an infinite number to
just afew.

In Bollerslev’'s GARCH model the conditional variance is a linear function of past
squared innovations and earlier calculated conditional variances.

With these models there are two types of return distribution to be considered; the
conditional return distribution (where the conditioning is the current volatility) and the
marginal or stationary distribution of the process.

Financial time series often exhibit some well-known characteristics. First, large changes
tend to be followed by large changes and small changes tend to be followed by small
changes. Secondly financia time series often exhibit leptokurtosis, which means that the
distribution of their returnsisfat-tailed (i.e. relative high probability for extreme values).
The GARCH model successfully captures the first property described above, but
sometimes fails to capture the fat-tail property of financial data. This has lead to the use
of non-normal distributions to better model the fat-tailed characteristic.

Ever since Bollerdev introduced the GARCH model, new GARCH models have been
proposed, eg. Exponentidl GARCH (EGARCH), with different characteristics,
advantages and drawbacks.



2 Financial Time Series

Financia time series analysis is directed to the understanding of the mechanism that
drives a given time series of data, or in other words: financial time series analysis focuses
on “the truth behind the data’ so that one can find physical models that explain the
empirically observed features of real life data. With such models one can make
distributional forecasts for future valuesin time series.

Today there exist many different types of financial data but if one focuses on share
prices, stock indices and foreign exchange rates (which we denote B, t=1,2,..., where t
can be minutes, hours, days, etc.), they behave very similar after the transformation:

&P 0
X, =loge——==logPR - logR ;.
t-1 9

The series {X,} isreferred to as the log return series. These series has the advantage that
they are free of unit, and can therefore be compared with each other.

One can get a more intuitive understanding of the log return transformation looking at the
relative return series.
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Thelog return seriesis by a Taylor series expansion argument close to the relative return
series and these describe the relative changes over time of the price process. (The relative
returns are very small and therefore very close to the log return values).
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Maybe the most important issue of this transformation is that we can assume that the time
series {Xt} can be modelled by a stationary stochastic process, i.e. a process whose
characteristics do not change with time (for a more formal definition, see appendix A).
Naturally this is not the case in general for untransformed time series (see the graphs
above for anillustrating example).



However, one should keep in mind that for large sample sizes (large log-return series) the
assumption of stationarity isinsecure.

When dealing with log return series one has to keep in mind that qualitative differences
can be expected in the time series depending on how small time units one uses. With
relative small time units (minutes, seconds, ...) P, will vary very little and one observes
that P, does not change over a relative long period. Comparing this property with the
behaviour of P when the time unit is hours, days or weeks, one realizes that different
models have to be applied depending on how long the time unit is. In what follows we
think of t in units of hours, days or weeks.

2.1 Empirical Properties
211 Kurtosis

The observations of the time series {X,} have a distribution, which often is assumed to
be normal (Gaussian). However, empirical studies of practically any financial time series
show that this is not quite correct. One way to quantify this property is to look at the
kurtosis of the distributions.

Kurtosis is a measure of the extent to which observed data fall near the centre of a
distribution or in thetails:

a platykurtic distribution has a i

kurtosis value less than that of a leptokurtic ||

standard, normal distribution. This ~a !

type of distribution has a fat [ '-1

midrange on either side of the mean fuu _

and alow peak. o Lo pake
: o A

a leptokurtic distribution has a iy Ny

kurtosis value greater than that of a o 'a\iﬁ

standard, normal distribution which i E}\‘l

gives the distribution a high peak, a .w,f(/ Xy

thin midrange, and fat (heavy) tails. T R

The latter characteristic is common in observed price, rate, and return time series data.
This implies that there in financial time series is a higher probability for extreme events
than in datathat is normally distributed.

When studying the kurtosis in time series, one usually talks about the Fisher kurtosis
which is defined as follows (for the time series {Xt}, t=1,..,n):

where
m=elx- m], m=gx],



is the central moment of degree k. This kurtosis measure exists only if the fourth moment
exists and is finite. Kurtosis is a normalized form of the fourth central moment of a
distribution. In the Fisher kurtosis the digit three is subtracted to give the normal
distribution the kurtosis zero (the distribution is mesokurtic). Supposing that
X, ~N(0,1) , the fourth and second central moments are given by:

— - mdl = 4:i¥4—t2/2:
m, = E[(X - m)*|=E[x*] 7 0=
m, = E[(X - m?| =var(x)=1

which shows that the Fisher kurtosis for normal distributions is zero.
The central moment of degree k is estimated with:

S|
Qo

m==a (x - x).

1
In the cases above we have the following definitions:

platykurtic distributions: g, <0
leptokurtic distributions: g, >0 (excess kurtosis)
mesokurtic distributions: g,=0

Further, in a Quantile-Quantile plot (QQ-plot) one can check whether or not atime series
comes from a certain distribution. This analysis is an important tool in time series
analysis. A QQ-plot isaplot of the empirical quantiles against the theoretical quantiles of
a given distribution. If the values come from this given distribution, the plot will be an
approximately straight line y(x) = x.
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This is avisua method of analysis where the analyser can get a better knowledge of the
empirical distribution and its deviations from a theoretical distribution.

2.1.2 Autocorrelation

One important tool for assessing the degree of dependence in observed datais the sample
autocorrelation function (sample ACF) of the data.

First some definitions:

Let x,..., X, be observations of atime series. The sample mean of X,..., X, is

I
1
Qo

X

S

—
11

1

The sample autocovariance function is:

n-hl

" 1% - -
g(h)° Ha (X = X)X - X), -n<h<n,
t=1
where
gy (h) =Cov(X,,. X,) .

The sample autocorrelation function is:

=90

>~~~ - n<h<n.
g(0)

A typical feature of financial time series is the structure of the autocorrelation function;
the sample autocorrelations are negligible at ailmost al lags, i.e., the assumption of {Xt}
being white noise feels quite natural, but the sample autocorrelations of the squares or
absolute values are different for a large number of lags and stay amost constant and
positive for large lags.

There are different opinions of how this property is to be interpreted and the most
common ideais to interpret the slow decaying lags as a long-term memory or long-range
dependence (LRD). Although some opponents claim that this might not be right due to
non-existence of fourth moments, which implies that the ACF does not produce anything
meaningful, and secondly due to non-stationary effects.

Definition:  Long-Range Dependence
{X,} is said to exhibit long-range dependence if

[T x () [=¥.

o

=
1

0
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Why bother looking at the absolute and squared log-returns? One reason is that empirical
evidence shows that the sequence of the signs of a log-return series has similar statistical
properties as a sequence of i.i.d. (independent, identically distributed) symmetric
Bernoulli random variables. Therefore numerous models are of the form
X, =| X, |sign(X,) , where the sequence {sign(Xt)} consists of i.i.d. symmetric Bernoulli
random variables, and so one is left to model absolute returns. Various popular models,
for example GARCH models, are of the form X, =s,Z, (see chapter 3), where {Z,} is
an i.i.d. symmetric sequence, the volatility process {s } is stationary and non-negative,
and Z, and s, are independent for every fixed t. Thus, the seguence
{sign(X,)} ={sign(z,)} is i.i.d. Bernoulli, as desired. What one is interested in is the
volatility of the log-return, but by its construction, it cannot be observed. Therefore the
observable quantities |X,| and X? often are considered as surrogate values or
“estimators’ of s, and s respectively and that is why they sometimes are in focus.

2.1.3 Power Law Tails

Log-return data of financial time series often exhibits

heavy-tailed distributions. Conveniently, these tails can normal distribution
be modelled with distributions with power law tails, i.e., l
for large x and some positive number a (thetail index), y

. P(X>xu) _ .,
[im————==x
w¥ P(X >u)

fat-tailed distribution

Examples of distributions satisfying this tail condition are for example the Pareto
distribution (with an exact power law) and the Student-t distribution with a degrees of
freedom. In this thesis the Student-t distribution is considered.

2.1.4 Skewness

Observations of the empirical distribution of {X,} often show that the distribution is
leptokurtic. Another property that deviates from the so often assumed Gaussian
distribution is that the empirical distribution is not symmetric. Skewness defines the
degree of asymmetry of a distribution and several types of skewness are defined. The
Fisher skewness (the most common type of skewness, usually referred to ssmply as
skewness) is defined by:

m _m

3!

m? s

g,°

where m, isthe third central moment, and mi/? is the standard deviation.

A negative skewness value indicates that the data has a distribution skewed to the left.
This means that the l€eft tail is heavier than the right tail in the distribution. Respectively,
a positive skewness value indicates a right skewed distribution with a right tail heavier
than its left tail.

In this thesis the skewness of the time seriesis neglected.

12



2.15 Holiday Effect

During weekends and holidays information accumulates. This could be reflected in prices
when the markets reopen. If the information stream assumes to be constant, the variance
of the returns over the period from Friday close to the Monday close should be three
times the variance from the Monday close to the Tuesday close. However, the assumption
of constant information stream is not in accordance to the rea life experience. The
information rate during weekends and holidays is lower than during working days, which
reduces the holiday effect.

This property is also neglected in this thesis.

13



3 “Stylised Facts’ About Financial Data

The log-returns (X, =logP, - logP,_;) of share prices, stock indices and foreign
exchangerates P, t =1.2,..., often show the following features:

The frequency of large and small _
changes, relative to the range of I
data, is rather high which leads us ™y

to believe that the data do not come ¥ ‘1{
from a normal, but from a heavy- [ %
talled (leptokurtic) distribution ﬁ |
(relative high probability for i i)
extreme values). it !
Large and small values in a log- 45
return sample tend to occur in Vi \
clusters. This indicates that there is 2 o
dependence in the tails. Mandel brot ___H,, e
guoted (1963): “... large changes tend to be followed by large changes -of either
sign- and small chang% by small changes ...”. This characteristic is aso called
volatility clustering.

Changes in stock prices tend to be negatively correlated with changes in
volatility, i.e., volatility is higher after negative chocks than after positive chocks
of same magnitude. This property is called the leverage effect.

Long-range dependence in the data. Sample autocorrelations of the data are small
whereas the sample autocorrelations of the absolute and squared values are
significantly different from zero even for large lags. This behaviour suggests that
there is some kind of long-range dependence in the data.

Aggregational Gaussianity, i.e., the distribution of log-returns over larger
periods of time (such as a month, half a year, a year) is closer to the normal
distribution than for hourly or daily log-returns.

Various models have been proposed in order to describe these features and one very
common model is of the type:

X, =m+s,Z, tl Z.

Here {Z,} is asequence of i.i.d. symmetric random variables, and {s ,} is a non-negative

stochastic process such that Z, and s, are independent for fixed t. The process {s ,} is
called the volatility process (standard deviation process).

It is often assumed that the {Z}'s are standard normally distributed, that is,

{z.} ~ii.dN(©2) (E[Z ] 0 and Var( .)=1). In what follows, we will always assume

that Z, issymmetric and has unit variance.

The volatlllty process {s ,} and the time series {X,} are assumed to be strictly stationary.

Moreover, we suppose that m can be estimated from the data and therefore it will be

convenient to assume m = 0.

14



There are various reasons for this particular choice of model:

the direction of the price changes is modelled only by the sign of Z,,
independently of the order of magnitude of this change, which is directed by the
volatility s,. This is in agreement with the empirical observation that it is
difficult, or even impossible, to predict the sign of price changes.

since s, and Z, are independent, and Z, is assumed to have mean zero and
variance 1, s / isthen the conditional variance of X, givens, .

Var(Xt|st): E[Xt2|st]' (E[Xt|st])2 = E[S t22t2|st]- (E[stZt|st])2 =
= E[s t2|st]E[Zt2|st]- (E[st|st]E[Zt|st])2 = E[st2|st]:sf.

15



4  Stochastic Volatility Models

As shown in the previous chapter, most models for financial returns are of the form:

X, =s.Z, tl z,

where {Z,} is a sequence of i.i.d. symmetric random variables, and {s,} is a non-
negative stochastic process such that Z, and s, are independent for fixed t. There is
strong empirical support for stochastic volatility in financial time series and the presence
of stochastic volatility implies that returns are not necessarily independent over time. The
standard assumption for the noise Z, isthat {Z,} ~i.i.d.N(0) with {Z,} independent of
the standard deviation process {s ,}.

Volatility is a central part of most asset pricing models. In these models, one often
assumes that the volatility is constant over time. However, it iswell known that financial
time series exhibit time-varying volatility. In the year of 1982, Engle [6] proposed a
model for {s ,}:

d

2 _ 2

St _a0+aaixt-i-
i=1

This model is called the AutoRegressive Conditional Heteroskedasticity (ARCH process)
where the “autoregressive” property in principle means that old events leave waves
behind a certain time after the actual time of the action. The process depends on its past.
The terms “conditional heteroskedasticity” means that the variance (conditional on the
available information) varies and depends on old values of the process. One can resemble
this with the process having a short-term memory and that the behaviour of the processis
influenced by this memory.

However, since it can expected that s 2 is a time-changing weighted average of past
squared observations, it is quite natural to define s 2, not only as a weighted average of
past X?'s, but also of past s . Empirical evidence shows that high ARCH order has to
be selected in order to catch the dynamic of the conditional variance. This leads to the
Generalised ARCH model (GARCH) introduced 1986 by Bollerslev [1].

Thevolatility processis:

2 _ J 2 J 2
St _ao+aaixt-i +a bjst-j '
i=1 j=1

where the a;’s and the b,’s are non-negative parameters. This model reduces the
number of estimated parameters from infinitely many to only just a few. (One can easily
see that the GARCH model is based on an infinite ARCH specification. See derivation in
chapter 5.1.1)

16



GARCH has gained fast acceptance and popularity in the financial world. This can be
explained by various arguments:

the GARCH process has a close relation to ARMA processes. This suggests that
the theory behind the GARCH process might be closely related to the theory of
ARMA processes, which iswell studied and widely known.

one can get a reasonable good fit to rea life financial data even with a
GARCH(1,1) model with only three parameters, provided that the sample is not
too long so that the stationary assumption is unreliable.

In the following chapter a survey of some different GARCH modelsis done.

17



5 TheGARCH Family

Ever since Bollerdev introduced the GARCH(p,g)-model, new models with different
characteristics have been invented. The existing models can be divided into two main
categories. symmetric and asymmetric models. In the symmetric models, the conditional
variance only depends on the magnitude, and not the sign, of the underlying asset X, .
This property is seldom in accordance with empirical results where a leverage effect
often is present, i.e., volatility increases more after negative return shocks than after
positive return shocks of the same magnitude (“bad news’ generates higher volatility
more than “good news’ lowers the volatility). However, in the asymmetric models these
characteristics are more or less captured.

All the following models build on the multiplicative form X, =s,Z,, tI Z for the
financia log-returns (as shown earlier). The standard assumption for the noise is that
{z.} isi.i.d. symmetric random variables with zero mean and unit variance. The volatility
process {s t} IS a non-negative stochastic process such that Z, and s, are independent
for fixed t.

51 Symmetric GARCH Models
511 GARCH

Let X, denote a real-valued discrete-time stochastic process. The GARCH(p,q) process
proposed by Bollerslev is then given by:

X, s, ~N(,s /)

d J

2 _ 2 2

St _ao+aaixt-i +a bjst-j
i=1 j=1

p>0, g*0
a,>0, a;20 ,i=1..p
b,*0, j=1..q

or, using the lag or backshift operator B defined as B X, = X,_;, the GARCH(p,q) model
is:

s =a,+a(B)X?+b(B)s?,

with a(z):alz+a222+...+apzp and b(z)=b,z+b, 2" +..+ b,z*. For g=0 the
process reduces to the ARCH(p) process, and for p=g=0 X, issimply white noise.

The GARCH(p,q) process with an i.i.d. noise sequence {Z,} such that E[Zf] =1 and
E[Zt] =0, isdtrictly stationary with finite variance if (see chapter 6.1.1):

18



g J
a,>0and ga;+a b, <1.

i=1 j=1

The GARCH process has a close relation to ARMA processes. By rearranging the
GARCH(p,q) model defining u, © X/ - s ?Z, it follows that:

X¢=a,+(@(B)+b(B)XZ - b(Bu, +u,,

which defines an ARMA (max(p,q),p) model for X7. This relation to ARMA processes
suggests that the theory behind the GARCH processes might be closely related to ARMA
process theory, which is quite easy and widely known. Although, one has to be careful
because the noise sequence {s ,} dependsonthe X,’sthemselves, so that a complicated
non-linear relationship of the X, ’sisbuilt up.

Furthermore, it is easy to see that the GARCH model is based on an infinite ARCH
specification. If al the roots of the polynomial 1- b (B) =0 lie outside the unit circle, we
get: (1- b(B)s 2 =a, +a(B)X2, or equivalently:

¥
st2: ao + a(B) Xt2: aO +é|ixtz-i1
1- b@) 1- b(B) 1-b,- .- b, S

q

where the ?’s are suitable constants which together with X, |s, ~ N(0,s ?) may be seen
asan ARCH(¥ ) process.

512 IGARCH

When estimating the parameters in the GARCH model one often observes that the sum of
the parametersis close to one. For the parameter setting:

q
gai +a b, =1.

i=1 i=1

Engle and Bollerslev coined the name Integrated GARCH (IGARCH). Here, the
“integrated” refers to the fact that there might be a unit root problem which could lead to
the non-existence of a stationary version of {X,} (it hasinfinite variance). However, this
is not the case for the IGARCH under the conditions of Theorem in chapter 6.1.1 plus
some mild additional assumptions (see [10] for further information). Thus, the IGARCH
has a strictly stationary solution, but with infinite variance. To see this we take the
expectations of the conditional variance and observe that E[ X?] = E[s 2] which gives:

Els 2] =a,+a(B)E[X|+b(B)El 2]=a, + (@@ +b@)E]s 2.

19



As can be seen this is true only if the expectation is infinity (a, >0 is necessary for
stationarity), thus, the IGARCH process has infinite variance. This property is not
exhibited in real-life log-returns.

It is found that the sum of the estimated parameters in the GARCH model typically
increases towards one with increasing sample size. This supports the hypothesis that the
IGARCH effect is due to bad fit of the GARCH model, and that the bad fit of the model
may be due to non-stationary, which is more likely for alarger sample size.

The estimated values alfa, +beta, (GARCH(1,1)) for an increasing sample of 320 500
1 T T

0.995

099 —
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Sarmple size

In this plot, we see that the parameters sum up to values close to one for large sample
Sizes.

52 Asymmetric GARCH Models

To accommodate for the asymmetry that exists in many financia time series, numerous
asymmetric GARCH models have been derived. Many of these models have large
similarities with each other. Examples of some asymmetric models are:

EGARCH (Exponential GARCH)
GJR-GARCH (Glosten, Jagannathan and Runkle GARCH)
APARCH (Asymmetric Power ARCH)

The EGARCH model will be further examined in the next chapter and the other
asymmetric models will be defined briefly.

521 EGARCH
Even if the GARCH models successfully capture the thick tail returns, and the volatility

clustering, they are poor models if one wishes to capture the leverage effect (described in
chapter 3) since the conditional variance is a function only of the magnitudes of the past
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values and not their sign. The conditional variance s/ of X, given information at timet,
obviously must be non-negative with probability one. In GARCH models this property is
assured by making s/ alinear combination (with positive weights) of positive random
variables (as in the GARCH(p,q) case). Another way of making s ? non-negative is by
making In(s Z) linear in some function of time and lagged Z,’s. This formulation leads to
the asymmetric GARCH model, Exponential GARCH, of Nelson (1991) [7]:

In(s ?) =a, +§ aig(zt—i)+éq b, In(s tZ-J')'

i=1 j=1

The value of g(Z,) depends on several elements. Nelson notes, “to accommodate the
asymmetric relation between stock returns and volatility changes, the value of g(Z,)
must be a function of both the magnitude and the sign of Z,.” This leads to following
representation:

9(z) = az, +q.lZ|-Elz.

sign effect magnitude effect

With this construction, {Q(Zt)}t;” IS a zero-mean, i.i.d. random sequence. (Each
component has mean zero.) Over the range 0< Z <¥,9(Z) islinearin Z, with slope
g, +q,, and over therange - ¥ <Z, £0, g(Z,) islinear with slope q, - q,. Thus g(Z,)
alows the conditional variance s ? to respond asymmetrically to rises and falls in stock
price.

To see that the term q2[| Z |- E[| Z, |]] represents the magnitude effect one first assumes
that g, =0 and g, >0. This makes the innovation in In(s 2,) positive (negative) when
the magnitude of Z, islarger (smaller) than its expected value. Assuming that g, <0 and
g, =0. The innovation in conditional variance is now positive (negative) when returns
innovations are negative (positive).

In contrast to the GARCH models, the EGARCH models do not have any restrictions on
the parameters in the model. The EGARCH model always produces a positive
conditional variance independently of the signs of the estimated parameters in the model
and no restrictions are needed. This is preferable when the restrictions in the GARCH
model sometimes create problems when estimated parameters violate the inequality
constraints.

5.22 GJR-GARCH

GJR-GARCH (Glosten, Jagannathan and Runkle GARCH):

q
s2za,+8 B,X2 +wS X% )+A bs?,

i=1 =1
~ 10 when X, <0
Tl when X,30
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In this model it is supposed that the effect of the X? on the conditional variance s/ is
different accordingly to the sign of X, and this is why the variable § is introduced.
Thisimplies that the model accommodates the leverage effect.

5.25 APARCH

APARCH (Asymmetric Power ARCH):

d g
Std :a0+aai(lxt—i |'gixt-i)d ta bs

St
i=1 j=1

a,>0,d30
a0 i=1..,p
bj3 0 j=1...9

-1<g, <1 i=1.,p

Most of the GARCH models are non-nested (they can not be written as a restricted
version of a more general process), but the APARCH model includes seven other ARCH
specifications as special cases:

ARCHwhend =2, g, =0 (i=1,...,p) and b; =0 (j=1,...,0)
GARCHwhend =2 and g, =0 (i=1,...,p)

Taylor (1986) / Schwert (1990)'s GARCH when d =1,and g, =0 (i =1,...,p)
GJR-GARCH whend =2

TARCH when d =1

NARCH when g; =0 (i=1,...,p) and b; =0 (j=1,...,0)

Log-ARCH by Geweke (1986) and Pentula (1986), when d ® 0
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6 Parameter Estimation in the GARCH M oddl

To be ableto predict the volatility for atime series, one first has to fit the GARCH-model
to the time series in question. This is done via estimation of the parameters in the model.
The most common method of this estimation is the maximum-likelihood estimation
(MLE).

6.1 Maximum-Likeihood Estimation (MLE)

The maximum-likelihood estimation works as follows:

The data x,..., X, assumes to be random observations from a distribution F, (x;q) that
depends on the unknown parameters q (where g =ja,,a,,...,a ,,b;,..,b,] in the
GARCH(p,q) case) with the parameter space Q. X has the probability distribution
Py (X;q) where p, (X;q) denotes the probability that X = x, thus P(X =X).
Supposing that the probability function is known (except from the unknown parameters)
it is possible to estimate the unknown q’s by putting up the likelihood function (the L
function):

L@) = px (%:0) Xpy (X;0) %.. Xpy (X,30) -

Obvioudly, L(q) defines the probability that exactly the values x,..., X, is observed as
realisations from the distribution.

Now to the sophisticated idea behind the MLE; by letting the unknown q assume all the
values in the parameter space Q, one can see for what values of q the L(q) has it
maximum value. These values are denoted q . Hence, the estimation of q ~ is chosen so
that the L(q *)-function is maximised (for observed X ooy X))

6.1.1 Stationarity

When dealing with GARCH models the assumption of stationarity of the time series
{X,} is basic for the statistical analysis of the data. This implies constraints on the
estimated parameters in the maximum likelihood-estimation.

Here follows two theorems that state restrictions on the estimated parameters in the
GARCH(p,q) model for stationarity in the GARCH(p,q) process.

Theorem: The GARCH(p,q) process X, =s,Z,, t1 Z, with the specification of the
conditional variance specified earlier and an i.i.d. noise sequence {Z,}
with mean zero and unit variance, has a non-vanishing strictly stationary
causal version if and only if a, >0 and g <0. Here, g is the Lyapnov
exponent. (For further information of the exponent, see [10]). A sufficient
condition for g <0 isgiven by:

g
Sa +8 b, <1

i=1 j=1
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provided that E[z?| =1 and E[z,]=0.

In other words, the GARCH(p,q) process with an i.i.d. noise sequence
{z.} suchthat E|[z2| =1 and E[z,]=0, {X} is strictly stationary with
finite variance if:

g 3
a,>0andga; +q b, <1

i=1 j=1
Proof: See [10] for information. |
Corallary: The GARCH(p,q) process

X, |s, ~N(@,s /)

2 _ S 2 8
7St _ao+aaixt-i ta b‘st-j

N
!

I 2
| i

)

i=1 j=1
is weakly stationary with:
E[X,]=0
é R
Var(Xt):aoejL- aa +tab;m
e i=1 j=1 [%9]

g
if and only if éai +a b, <1,(a, >0).
i=1 =1

Proof: See appendix A. |

For different GARCH models there are different restrictions on the estimated parameters.
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6.1.2 Gaussian Quas Maximum-Likelihood Estimation

Now, suppose that the noise {Zt} in the GARCH(p,q) model of a given order is i.i.d.
standard normal. Then X, is Gaussian N(0, s¢) given thewhole past X, X, ,,...and a
conditioning argument yields the density function Px,..x of X,,..., X, through the

------

conditional Gaussian densities of the X, 'sgiven X, =x,,..., X, = X,

x, (Xpreens X0) = Py (X0 [ X g = X g0 X = X) Py (Koq [ X o = X g0 X = X)X

x"xpxp,,1 (Xp+1 | Xp = Xp) po (Xp) =

2

X

s ¢

1 4 e?
n- (p+1) O

) R

Py (%,)

where s is a function of ao, ai,..., ap, f3,..., . Conditioning on X =X, and replacing
t = p+1 with t =1, the Gaussian log-likelihood of X,,..., X, isgiven by:

14 € X2 u
l,@¢.81.m8 by, b)) =- =@ dog(s ) +—5 +10g(2p) .
256 S ]

For a genera GARCH(p,q) process the likelihood function is maximised as a function of
the a;’sand b;’s involved. The resulting value in the parameter space is the Gaussian
guasi maximumtlikelihood estimator of the parameters of a GARCH(p,q) process.

There are problems associated with this estimation procedure.

The assumption of Gaussian noise:

It is assumed that the noise {Z,} is Gaussian. Although this is not the most realistic
assumption; empirical tests indicate that the Z,’s are much better modelled by a Student-t
distribution or a GED. Theoretical work ([7] and Heyde (1997) Quasi-Likelihood and its
Application: A General Approach to Optimal Parameter Estimation) shows that
asymptotic properties such as J/n -consi stency and asymptotic normality with Jn -rate of
the Gaussian quasi MLE remain valid for large classes of noise distributions.

Calculation of unobservable values:

The formula of the likelihood-function requires calculating the unobservable values s .,
t=1,...,n, from the observed sample X,,..., X, . This is obviously not possible in the
general GARCH(p,q) case. One iteration of the volatility process s ? yields that one has
to know all values X, ,,..., X,, X_,,... for the calculation of s,,...,s . Alternatively,
one needs to know finitely many values of the unobservable values X,, X ,,... and
S:S _1,.-. . A common technique for solving this problem is to choose initial values as
the equilibrium values, i.e., for aGARCH(1,1) model s 2 =Var(X) and X, =+/Var(X).
The choice of the initial values implies that the calculated s,,...,s, cannot be
considered as a redlisation of a stationary sequence. Now, one hope that the dependence
of the initial values disappear for large values of n in a similar way to a Markov chain
with arbitrary initial value whose distribution becomes closer to the stationary
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distribution. However, the Gaussian quasi ML-function is a complicated function built up
on the X's and the s 's. Therefore are the theoretical properties of the Gaussian quas
MLE not easy to derive. In this thesis, in MLE, it is assumed that the dependence of the
initial values disappears with reasonably large values of n. However, one should bear in
mind that thisis a difficult problem.

6.1.3 Fat-Tailed Maximum-Likelihood Estimation

An alternative way of dealing with non-Gaussian errors (the first problem described in
the chapter above) is to assume a distribution that reflects the features of the data better
than the normal distribution, and estimate the parameters using this distribution in the
likelihood function instead of the Gaussian. Thus, the problem with the calculation of
unobservable values (described in previous chapter) is yet present in this model. When
choosing a distribution for the innovations, QQ-plots can be very helpful. In this thesis
two distributions, apart from the Gaussian, are considered; the Student-t Distribution (t
Distribution) and the Generalised Error Distribution (GED).

The likelihood functions for two distributional assumptions are:

the log-likelihood function for the Student-t distribution:

n

| =a ilogc-ga%lé- Iogcé%g- %Iog(p(n - 2))- %Iogs 2,
i

t=1

Fridanay

the log-likelihood-function for the GED:

1+n""Jlog(2) - log Ou-—log P
) T ){)

=4l
tle

an
logc—+- =
gg| g 2|s

where Gy is the gamma function, and

1
| €2 Gn)w

& G3h) o

These log-likelihood functions are maximised with respect to the unknown parameters
(the same procedure as in the Gaussian quasi MLE case).
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6.2 Distributions

As discussed earlier, observations of the financial time series {X,} have a distribution
that one often assumes to be normal (Gaussian) but, as shown in chapter 2.1, they often
tend to be leptokurtic (fat tailed). QQ-plots have been shown to be good tools when
deciding what distribution to use. In this thesis the fat tailed Student-t distribution and the
GED are considered. The GED can be both leptokurtic and platykurtic depending on the
chosen degree of freedom.

Here follows some further information about these distributions.

6.2.1 Normal Distribution

The normal (or Gaussian) distribution is a symmetric distribution with density function:

l “(x-m)?2 2
fr(x) = =g />
2ps

where It isthe expectation value and s ? is the variance of the stochastic variable X, thus
X~N(rr,s ?). The so-caled standard normal distribution is given by taking m =0 and
s ? =1. The Fisher kurtosis is for the normal distribution per definition zero (see chapter
2.1.1).

In the EGARCH model, when X, is assumed to be normally distributed, the expectation
inthe g(Z,) functionis given by:

Elz |=v2p .
6.2.2 Student-t Distribution

The Student-t distribution, or t distribution, has following density function:

dn +1)/2]

np Gn/2|\1+x“/n
np & /2fa )"

where n is the degree of freedom (n >2). Like the normal distribution, the t distribution
is symmetric. The mean, variance and kurtosis of the distribution are:

fy(xn) =

m=0 forn32

n
s?= forn33

forn35

n-2
g,=—0_
> n-4
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The Student-t distribution with unit variance has the following density function:
dn +1)/2]

ﬂG[n /2](1+X2 It - 2))(n+l)/2 .

In the EGARCH model, when X, is assumed to be Student-t(n) distributed, the
expectation in the g(Z,) functionisgiven by:

_dn+1/2)2+h- 2
Elz = Jp-2Gn/2

6.2.3 Generalised Error Distribution (GED)

fo(xn)=

The GED is a symmetric distribution that can be both leptokurtic and platykurtic
depending on the degree of freedom n (n>1). The GED has the following density
function:

n

A
ne?
| 209" d1/n]

X
|

fyx (xn) =

where
1
& dn]r
§d3m] o

The GED with unit variance has the following density function:

n

1
ne?

| 209" Jinlh/h-2)

For n =2, the GED is a standard normal distribution whereas the tails are thicker than in
the norma case when n <2, and thinner when n >2. The GED becomes a uniform
distribution on theinterval [ - \/5\/5] whenn ® ¥ .

X
|

fy(xn) =

In the EGARCH model, when X, is assumed to be GED(n ) distributed, the expectation
inthe g(Z,) functionisgiven by:

| 2""d2/n]

EHX“J]:'__fﬂIﬂ?T__'
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7 Robustness of Estimation

As described in previous chapter, GARCH(p,q) models are fitted to the return series
using maximum-likelihood estimation. In the Gaussan quas MLE method, this
estimation is done under the assumption that the innovations {Z,} have a Gaussian
distribution. In the fat-tailed MLE, the innovations are assumed to be leptokurtic. Now,
one wants to know if the estimations are robust, i.e.:

do the estimations of the parameterss,, s, ..., S
distributional assumption of the innovations {Z,} .
do the residuals of the estimated process have the same distribution as the
assumed distribution of the innovations.

b,, ..., b, depend on the

p?

7.1 Resduals

When the estimation of the unknown parameters q is done, estimates of the standard
deviation series {s,,...S,} can be calculated recursively via the definition of the
conditional variance for the GARCH(p,q) process; s/ =a, +a(B)X, + b(B)s .

log-returns of S&P S00-index (from 16 April 1297 to 17 March 19959)
DDE T T T T T T

0.04 - —

002rF —

[
T
1

002 - s

log-return value

004k .

006 - 5

_DDB | | 1 1 | | | | | 1 1
i a0 100 150 200 280 300 350 400 450 500

Mumber of days after 16 April 1997
Estimate of the conditional standard deviation derived from Gaussian quasi ML fitting of GARCH{1 1) model

T T T T T T T T T T T
DBE3r _
OBE3F —
04 E3F -
02E3F MMNM o
n| 1 | 1 1 1 1 | 1 | | |
] a0 100 1480 200 2490 300 330 400 450 500

MNumber of days after 16 April 1937
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In the two graphs above, the log-return process and the estimated conditional standard
deviation process for a 500-day excerpt from the S&P 500-index, are plotted. The
estimated conditional standard deviation process is derived from a GARCH(1,1) fit.
Clearly, the estimated conditional standard deviation process reflects the behavioure of
the log-return process.

By calculating residuals one can examine the adequacy of the GARCH modelling. The
residuals are calculated as (remember that the log-returns are modelled by X, =s,Z,):

_bx ox U
2 Z = e
O e

The residuals should be i.i.d. if the fitted model is tenable. (The innovations {Z,} ~i.i.d.
implies that the residuals also should bei.i.d.).
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The autocorrelations for the observations, the squared observations, the residuals and the
squared residuals for a 500-day excerpt from the S&P 500-index are here plotted
(GARCH(1,1) model fitted with Gaussian quass MLE). Based on the plots above, the
GARCH model seems to be reasonable.
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Further, with a QQ-plot, one can examine the distribution of the residuals. This is a sort

of verifying the robustness in the estimation.

Fesiduals of % for the SE8 G00-indes

To the right, the residuals of X, for a 500- -

day excerpt from the S&P 500-index are
plotted. Here the MLE is done under the
distributional  assumption of Gaussian
innovations. We can see that the residuas
under this distributional assumption get a -

heavy left tail.
AF
If the QQ-plot shows that the residuals are | g #
better represented by another distribution, Fal
eg. a fat-talled distribution, one should o //
consider to do the MLE under the assumption * ’ ¥
of this new distribution where the -7} - o % i : ;
innovations  hopefully have a more Q0plot of residusle againet the nurmal distibution

appropriate distribution.

1.2

Robustness of MLE on Simulated Data

To examine the robustness of maximum-likelihood estimation models in a controlled
manner, one can do the GARCH fit with MLE on simulated processes with known
distributions on the innovations.

The simulation and robustness inspection of a process are done in the following manner:

1.

Assume good parameter values for a GARCH(p,q) model. If thisis difficult, one
can use estimated parameter-values from a maximum-likelihood estimation on
real-life returns.

Use the parameters to ssimulate a GARCH process under a specific distributional
assumption of the innovations. In this thesis the Gaussian distribution, the
Student-t distribution and the GED are used.

For the simulated process, fit a GARCH(p,q) model to the data with maximum-
likelihood estimations under the three different distributional assumptions of the
innovations.

Compare the parameter values in the three cases.

Calculate the residuals of the three estimated standard derivation time series.
Examine the distributions of the three residual time series in quantile-quantile
plots.

Now follows three examples where GARCH(1,1) processes are simulated under three
different distributional assumptions of the innovations. Maximum-likelihood estimations
under different distributional assumptions of the innovations are done and the parameter
values are displayed and the residuals are plotted in QQ-plots.
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7.21 ExamplesWith Simulated Data

Examplel: A GARCH(1,1) processis here smulated with Gaussian innovations (400
data). Maximum-likelihood estimation (under the assumptions of
Gaussian, Student-t and GED innovations) yields the parameters of the
simulated process. The residuals of the process are calculated and plotted
in a QQ-plot against the Gaussian distribution, the Student-t distribution

and GED respectively.

Residuals for simulated GARCH(1 1) process with Gaussian innovations
4 T T T T T T r

_4 1 1 1 1 1 1 1

-4 3 -2 -1 1] 1 2 3
QA0Q-plat of residuals against the normal distribution

Residuals for simulated GARCH(1 1) process with Gaussian innovations
4 T T T T T T r

_4 1 1 1 1 1 1 1

-4 3 -2 -1 1] 1 2 3
Q0Q-plot of residuals against the Student-t distribution, =35
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A GARCH(1,1) fit is done for the
simulated process using MLE under
the assumption of Gaussian
innovations. The residuals from the
fit on the simulated data are
computed and plotted in a QQ-plot
against the normal distribution.

As we can see, it looks like the
residuals have a  Gaussian
distribution.

a, =0.0001
a, =0.0770
b, =0.5540

Now, the GARCH(1,1) fit on the
simulated process is done with MLE
under the assumption of Student-t
distributed innovations.

The residuas from the fit are
computed and plotted in a QQ-plot
against the Student-t distribution with
an estimated degree of freedom.

The fit is good, but the degree of
freedom was estimated to be 35,
which indicates that the process
exhibits Gaussian innovations (the
Student-t(35) distribution is close to
the normal distribution).

a, =0.0001
a, =0.0813
b, =05411



Residuals for simulated GARCH(1 1) process with Gaussian innovations

i i i ) ' ' ! i In this last plot, the GARCH(L,1) fit
on the simulated process (with
ar 7 Gaussian innovations) is done with
MLE under the assumption of GED
2F - innovations.
The residuas from the fit are
1k 1 computed and plotted in a QQ-plot
against the GED with an estimated
ol | degree of freedom.
The fit is good, but the degree of
freedom was estimated to be 1.85,
Ar 1 which indicates that the process
exhibits ~ Gaussian  innovations.
2r 1 (Gaussiandistributionif N = 2).
a, =0.0001
i 1 a,=00781
b, =0.5561
B 3 2 | 0 1 2 3 4
Q0Q-plat of residuals against the GED, v=1.85
Estimated parameter values:
Distributional assumption a, a, b,
Gaussian innovations 0.0001 0.0770 0.5540
Student-t innovations 0.0001 0.0813 0.5411
GED innovations 0.0001 0.0781 0.5561
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Example 2:

Now, a GARCH(1,1) process is simulated with GED(1.3) innovations
(400 data). Maximum-likelihood estimation (under the assumptions of
Gaussian, Student-t and GED innovations) yields the parameters of the
simulated process. The residuals of the process are calculated and plotted
in a QQ-plot against the Gaussian distribution, the Student-t distribution
and GED respectively.

Regiduals for simulated GARCH(1,1) process with GED(1.3) innovations

A GARCH(1,1) fit is done for the
simulated process (with GED(1.3)
innovations) using MLE under the
assumption of Gaussian innovations.
The residuals from the fit on the
simulated data are computed and
-4 plotted in a QQ-plot against the
normal distribution. The fit is poor in
1 the tals and the plot shows that the
residuals are leptokurtic. A more
heavy-tailed distribution for the
innovations is probably a better

assumption.
= 1 a, =0.00004
a, =0.0629
A 1 b, =0830
P L T R A T
-4 -3 -2 -1 0 1 2 3 4

QA0Q-plat of residuals against the normal distribution

Residuals for simulated GARCH{1,1) process with GED(1.3) innovations

Now, the GARCH(1,1) fit on the
simulated data (with GED(1.3)
7 innovations) is done with MLE under
the assumption of  Student-t
4 distributed innovations.

The residuas from the fit are
computed and plotted in a QQ-plot
against the Student-t distribution with
an estimated degree of freedom.
Thefit is poor. Here, the robustness
of the maximum-likelihood
estimation under the assumption of
Student-t distributed innovationsis

4 questioned.

a, =0.00002

41 a, =0.0795

b, =0.8715

+
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Regiduals for simulated GARCH(1,1) process with GED(1.3) innovations
4 T T T T T T T

In this last plot, the GARCH(1,1) fit
on the simulated process (with GED
ar 7 innovations) is done with MLE under
the assumption of GED innovations.
2F - The residuas from the fit are
computed and plotted in a QQ-plot
1k 1 aganst the GED with an estimated
degree of freedom.

ol | The fit is good and the estimated
degree of freedom is close to the
degree of freedom in the simulated

=p 7  GARCH(1,1) process with GED(1.3)
innovations.

2r 1 a, =0.00003
a, =0.0667

a3r 1 b, =08589

_4 i— 1 1 1 1 1 1 1

-4 -3 -2 -1 0 1 2 3 4

QA0Q-plat of residuals against the GED, v=1.14

Estimated parameter values:

Distributional assumption a, a, b,

Gaussian innovations 0.00004 0.0629 0.8340

Student-t innovations 0.00002 0.0795 0.8715

GED innovations 0.00003 0.0667 0.8589
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Example 3:

Finally a GARCH(1,1) process is simulated with Student-t(4) distributed
innovations (400 data). Maximum-likelihood estimation (under the
assumptions of Gaussian, Student-t and GED innovations) yields the
parameters of the ssimulated process. The residuals of the process are
calculated and plotted in a QQ-plot against the Gaussian distribution, the
Student-t distribution and GED respectively.

Residuals for simulated garch(l,1) process with Student-t{4) innovations

4 T T

-1 1] 1 2 3
QA0Q-plat of residuals against the normal distribution

Residuals for simulated GARCH{1 1) process with Sudent-t(4) innovations

4 T T

5 ] ]

+

ﬁ,_pr

+

A -4 -3
QQ-plot of
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-2 -1 1] 1 2 3
residuals against the Student-t distribution, w8

4

A GARCH(1,1) fit is done for the
simulated process (with Student-t
innovations) using MLE under the
assumption of Gaussian innovations.
The residuals from the fit on the
simulated data are computed and
plotted in a QQ-plot against the
normal distribution.

The fit good, but the tails indicate
that the residuals are leptokurtic. A
more heavy-tailed distribution for the
innovations is probably a better
assumption.

a, =0.00002
a, =0.1415
b, =0.7670

Now, the GARCH(1,1) fit on the
simulated process (with Student-t
innovations) is done with MLE under
the  assumption of  Student-t
distributed innovations.

The residuas from the fit are
computed and plotted in a QQ-plot
against the Student-t distribution with
an estimated degree of freedom.

The fit is fairly good, but the
estimated degree of freedom deviates
from the simulated.

a, =0.00002
a, =0.0786
b, =0.8294



Residuals for simulated garch(l,1) process with Student-t{4) innovations

i j ! j j : : ' ' In this last plot, the GARCH(L,1) fit
3 + on the simulated process (with
i T Student-t innovations) is done with

sl | MLE under the assumption of GED
innovations.

il | The residuas from the fit are
computed and plotted in a QQ-plot

il | against the GED with an estimated
degree of freedom.

il | The fit is good, and the estimated
degree of freedom indicates that the

! | innovations come from a heavy-
tailed distribution.

al |/ a, =0.0002
a, =0.1074

4t 1 b, =08014

_5 1 1 1 1 1 1 1 1

-5 -4 -3 -2 -1 0 1 2 3 4

Q0Q-plot of residuals against the GED, w15

Estimated parameter values:

Distributional assumption a, a, b,

Gaussian innovations 0.00002 0.1415 0.7670

Student-t innovations 0.00002 0.0786 0.8294

GED innovations 0.00002 0.1074 0.8014
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7.2.2 Conclusion of Examples

First, by looking at the estimated parameters for the different distributional assumptions,
one can conclude that the models seem to be robust. The values of the estimated
parameters do not differ from each other much under the different distributional
assumptions.

The plots in the examples indicate that the MLE is robust under the assumptions of
Gaussian and GED distributed innovations. The overall performance for the MLE under
the assumption of Student-t distributed innovationsis yet not convincing.

The examples support the usefulness of QQ-plots as tools for examining the residuals.
With the aid of the QQ-plots, an appropriate model can be chosen.

If the innovations come from a Gaussian distribution, the maximum-likelihood
estimations are good independent of the assumed distributions. The two MLE models that
assume fat-tailed distributions for the innovations assign the degree of freedom so that
the fat-tailed distribution is close to the Gaussian.

On the other hand, if the innovations come from a fat-tailed distribution, the best fit is
achieved with an MLE that assumes GED innovations.

The maximum-likelihood estimation under the distributional assumption of Student-t
distributed innovations is questioned. The overall performance for the estimation under
the assumption of Student-t distributed innovationsis not convincing.

This robustness examination can be used to choose the right estimation model for given
data.

1. Estimate the parameters under the assumption of Gaussian innovations.

2. Plot theresiduasin a QQ-plot against the normal distribution. If the residuals are
leptokurtic probably a better distributional assumption is a fat-tailed distribution,
e.g. GED innovations.

3. Now, estimate the parameters under the assumption of leptokurtic innovations,
e.g. GED.

4. Plot theresiduasin a QQ-plot against the chosen leptokurtic distribution. If the fit
isgood, the distributional assumption most probably is correct.

The simulations in this example consist of only 400 simulated data. Larger simulated

sample sizes should give us more information, but large samples imply problems with the
stationary assumption of {X,}.
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7.3 Robustness of MLE on Empirical Data

In following example, the robustness of MLE on empirical datais examined.

7.3.1 ExampleWith Empirical Data

Empirical example:  For the Volvo B log returns, the parameters in the GARCH(1,1)
model are estimated with MLE under the assumption that the
innovations are Gaussian distributed, Student-t distributed and
GED respectively. The residuals are calculated and plotted in QQ-

plots.

First, the maximum-likelihood estimation is done under the assumption of Gaussian

innovations: a , =0.0001, a, =0.0762 and b, =0.7622.

Residuals for Yolva B log-retums. Calculated with Gaussian innovations

-2 -1 0 1 2
G3-plot of residuals against the normal distribution

3

In this first plot, the GARCH(1,1) fit
to the Volvo return series is done
with MLE under the assumption that
the innovations comes from a
Gaussian distribution. The residuals
are calculated and plotted against the
normal distribution.

Thefit isfairly good, but the fit in the
tails fall. The residuals are
leptokurtic. A more heavy-tailed
distribution on the innovations in the
MLE would probably be more

appropriate.
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Residuals for Volvo B log-returns. Calculated with Gaussian innovations

+ +++

-3

Q0-plot of residuals against the Student-t distribution, =15

Residuals for Volvo B log-returns. Calculated with Gaussian innovations

2 -1 1l 1 2

3
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2 -1 1] 1 2
Q0-plot of residuals against the GED, vw=1.3

Here, the residuals calculated above
are plotted against the Student-t
distribution with the chosen degree of
freedomn =15.

The chosen degree of freedom shows
that the residuals have a distribution
close to the Gaussian, except from
that they have heavier tails.

Finaly, the residuals are plotted
against the GED with chosen degree
of freedomn =1.3.

In this case, the fit is good, which
indicates that the residuals have a
heavy-tailed distribution.



Now, the same MLE procedure is done, but this time under the assumption that the
innovations are Sudent-t distributed. a , =0.0001, a, =0.1114 and b, =0.7228

Residuals for Volvo B log-retums. Calculated with Student-t innovations

4 T T T T T T T

1
-4 -3 -2 -1 1] 1 2 3
QA0Q-plat of residuals against the normal distribution

Residuals for Yolvo B log-retums. Calculated with Student-t innovations

4 T T T T T

++

-4 1 L 1 I 1

B -4 -2 1 2 4
GQ-plot of residuals against the Student-t distribution, v=6

In this first plot, the GARCH(1,1) fit
to the Volvo return series is done
with MLE under the assumption that
the innovations comes from a
Student-t distribution. The residuals
are calculated and plotted against the
normal distribution.

The fit is fairly good, but the fit in
the tails fail. The residuds are
leptokurtic. A more heavy-tailed
distribution on the innovations in the
MLE would probably be more

appropriate.

Here, the residuals are plotted against
the Student-t distribution with the
estimated degree of freedom N =6.

The fit is poor and the robustness of
the MLE under the assumption of
Student-t distributed innovations is

questioned.
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Residuals for Yolvo B log-retums. Calculated with Student-t innovations

3 ' : ' ; ' : ' Finally, the residuals are plotted
against the GED with chosen degree

ar of freedomn =1.3.
In this case, the fit is good, which

2t indicates that the residuals have a
heavy-tailed distribution.
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Q0Q-plot of residuals against the GED, w13

Finally, the same MLE procedure is done, but this time under the assumption that the
innovations are GED. a , =0.0001, a, =0.0966 and b, =0.7235

Residuals for Volvo B log-returns. Calculated with GED innovations

4 ' ' ' ' ' ' ! Now, the GARCH(L,1) fit is done
under the assumption that the

il 7 innovations come from a GED. The
residuals are calculated and plotted

2r 7 against the normal distribution in this
QQ-plot.

1k 4 The fit is poor in the tails. The
residuals are leptokurtic and a more

ol | heavy-tailed  distribution  would
probably be more appropriate.

Ak il

gl & ; o

#
3k i 4
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-4 3 2 -1 0 1 2 3 4

Q0-plot of residuals against the normal distribution

42



Residuals for Yolvo B log-returns. Calculated with GED innovations

4 T T T T T T T

_4 1 Il 1 1 1 1 1

-4 3 2 -1 1 1 2 3
CI0-plot of residuals against the Student-t distribution, v=20

Residuals for Volvo B log-returns. Calculated with GED innovations

4 T T T T T T T

_4 1 1 1 1 1 1 1
- - 2 -1 0 1 2 3

Q0-plot of residuals against the GED, v=1.34

Estimated parameter values:

Secondly, the residuals are plotted
against the Student-t distribution with
chosen degree of freedom N = 20.
The chosen degree of freedom shows
that the residuals have a distribution
close to the Gaussian, except from the
heavier tails.

Finally, the residuals are plotted
against the GED with the estimated
degree of freedomn =1.34.
Thefit is good.

Distributional assumption a, a, b,

Gaussian innovations 0.0001 0.0762 0.7622
Student-t innovations 0.0001 0.1114 0.7228
GED innovations 0.0001 0.0966 0.7235




7.3.2 Conclusion of Empirical Example

By looking at the estimated parameters for the different distributional assumptions, one
sees that the estimated parameter values not differ much from each other. This indicates
that the models are robust.

The plots in the example indicate that the MLE is robust under the assumptions of
Gaussian and GED distributed innovations. The overall performance for the MLE under
the assumption of Student-t distributed innovationsis yet not convincing.

Again, we can see the usefulness of the QQ-plots as tools for choosing the right
distributional assumption for the innovations.

Under the assumption of Gaussian innovations in the MLE, the QQ-plot of the residuals
plotted against the normal distribution display excess kurtosis. The GED(1.3) fits the
residuals much better, which indicates that the residuals are leptokurtic.

Secondly, under the assumption of Student-t innovations in the MLE, the QQ-plot of the
residuals plotted against the Student-t distribution display a platykurtic distribution. The
performance of the Student-t modelling is not convincing. Again, the GED(1.3) seems to
fit the residuals much better.

Finally, under the assumption of GED innovations in the MLE, the QQ-plot of the
residuals plotted against the GED shows that the model under GED assumption is robust.



74 Maximum-Likelihood Value Comparison

Another way of finding the most appropriate model is to look at the negative log-
likelihood value at the maximum point for the different models. A significant larger
likelihood value for a specific distributional assumption in the MLE indicates that this
assumption most likely is the best model (better than the other models).

First, we look at simulated data. Different distributional assumptions are used in the
estimations and the innovations are assumed to have specific distributions.

Negativel(q ") for simulated returns with known distribution of the innovations:

Simulated with: Normal MLE Student-t (n) MLE  GED (n) MLE
normal innovations 1028.6 1028.8 (35) 1028.8 (1.85)
t(4) innovations 1057.6 1079.9 (3.6) 1081.1 (1.1)
t(8) innovations 1104.5 1108.0 (9.4) 1107.6 (1.57)
GED(1.3) innovations 1034.3 1051.8 (10) 1052.9 (1.14)

Now, we look at empirical data. Here follows a table of maximum negative log-
likelihood-values for different types of financia data estimated with different
distributional assumptions for the innovations.

Negative I(q ) (maximum-likelihood valuesI(q )):

Normal MLE Student-t (n) MLE  GED (n) MLE

Ericsson B 820,7 826,2 (11,3) 822,8 (1,7)
Volvo B 1199,0 1209,0 (6) 1209,4 (1,3)
OMX-index 1191,1 1193,2 (18) 1191,4 (1,9)
S& P 500-index 2952,3 2970,5 (7,1) 2972,0 (1,3)
EUR exchange rate 1789,2 1803,0 (7,5) 1799,6 (1,4)
GBP exchangerate 1892,8 1901,5 (7) 1905,0 (1,4)

74.1 Concluson Maximum-Likelihood Value Comparison

Generally, it is difficult to draw conclusions by looking at the maximum log-likelihood
values. The log-likelihood values do not differ much, which is an implication of that the
log-likelihood surface isflat.

Larger sample sizes could give us more information, but large samples imply problems
with the stationarity assumption.
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8  Variance Forecasting

The GARCH-model considered in this thesis assumes that s, is a function of the past,
i.e, X X5, ...ands, ;,S,,, ..., and thereforeit isin principle known at time t. For
this reason, s, in connection with the distribution of Z, can be used to give a
distributional forecast of X,. Assume for example that Z, is i.i.d. N(0,1). Then
condltlonally on the past vaJues X 1 X 0y Sty - today s return X, has an
N(O,s 2) distribution. (E[X ] E[s Z] E[s ]E[Z] 0). ThIS alows one to give a
dlstrlbutlonal forecast of the values X,. For example, there is a 95% chance that X,
assumes values in [-1.96s ,, 1.965t]. Hence it is an easy matter to determine the
conditional VaR (Value at Risk) of the sequence {Xt}

81 GARCH(1,1)

Once the parameters of the GARCH-models have been estimated one is interested in the
variance forecast for the underlying asset.

For the GARCH(1,1) model (given that a, + b, <1), the expected value of the one-
period variance s ? at timet is:

1- (al + bl)k_l

+(@,+b)<%s? k32
1_ (al+bl) ( 1 1) t+1

2 —
Et[st+k|st]_a0
where
s2, =a,+a,X2+bs’

Derivation of this formula:

Si,=a,+a, X2 +bs?,

E[sms ] =a,+a E[Xt+1 ]+b E[sf+1 ]—
_iX,=s,Z b E[X?]=Els 22?|={independent} =fi _
}:E[s ]E[Zz] {z, ~iidN©OD} = Els ]
=a,+(@,+b, E[st+1|s ] =a,+(@,+b, s 2

E[sf+3st] :ao+a1E[Xt+zs ]+b E[st+2|s ] a,+(@,+b)s?,=
1- (a
:a0+(a1+b1)ao (a +b )St+1 ﬁ-k(al*-bl)zstzﬂ
1 1

etc.

With increasing value of k the variance forecast will converge to the unconditional
variancewiththerate a, + b, :
—_ a’O

1- (al + bl) .
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One can easily derive this expresson by following arguments for the genera
GARCH(p,q) case:

ivar(x,) = E[x| = Els Z|E[z?] = Els 2], t=s

Cov(X,, X,)=
OV( t S) ’:\E[ths]:E[StZtSSZS]:E[StZtSS]E[ZS]:O’ t<s

thus, E[x2|=Els 2] and stationarity gives

Els 2]=Efa, +a(B)X? +b(B)s ?|=a, +a B)E[X?|+ b(B)Ef ]
b Es =2
1-a)- bQ)
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In the graph above, a volatility forecast is done for the OMX-index. As we can see, the
volatility forecast converges to the unconditional variance.
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82 |IGARCH

For the IGARCH(p,q) models (a (1) + b (1) =1), the conditional expectation of the one
period variance s ? attimeTis:

2 —c 2
ET[ST+k] =s; tka,.

Proof: E[s tiz]:a0 +a1E[Xt2+1 + blE[s fﬂ] =
_iX,=s,z P E[x2,]=E[s 22?] = {independent} =fi _
1=l 2JEfz?] ={z, ~iiaN(©OD)} = Els 7] -
:aO +(al + bl)E[S t2+1] :aO +S t2+1
Els 2.]=a,+a,E[x2,]+b,E 2] =a,+f@,+b)s 2, =
=a, +(a1 + bl)aO + (al + bl)s t2+l =2a,+s t2+l
etc. |

9 Multivariate GARCH Models

Recall chapter 3 where different “stylised facts” about financial data were considered. In
addition to these, it is worth mention another “stylised” fact. In financial data the
volatilities of different securities very often move together, indicating that there are
linkages between markets and that some common factors may explain the temporal
variation in conditional second markets.

The analysis of many issues in asset pricing and portfolio allocation requires a
multivariate framework.

48



10 Appendix A
10.1 Stationarity

Definition: {Xt} is (weakly) stationary if
() m, (t) = E[Xt] isindependent of t
and
(i) gy (t+ht) =Cov(X,,,, X,) isindependent of tforeachh

Definition:  {X,} isastrictly stationary time series if
. d .
(X X ) =(Xpapseees X o)

d
for al integers h and n 8 1. (Here = is used to indicate that the two
random vectors have the same joint distribution function.)

10.2 Proof of Corollary:
Strict stationarity implies weak stationarity. (See Theoremin chapter 6.1.1).

E[Xt] = E[s tZt] ={s, and Z, areindependent for every t} = E[s t]E[Zt] =0
ivar(X,) = E[x2]= Els 2Jg[z2]=E[s 2] whent=s

Cov(X,,X,)=
ov(X.. %) LE[x, X ]=E[s,zs .z]=E[s Zs JE[z.]=0 whent<s
thus, E[Xf]: E[s f] plus stationarity yields:

Els ?|=Ela, +a(B)XZ +b(B)s ?|=a, +a (B)E[X?]+ b (B)E[s 7]
A ..\'1
ao :aoé-%ai +éq' b]%j

pVar(Xt)=E[St]:m 8 &= a4
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