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Abstract 
 

In this thesis we survey GARCH modelling with special focus on the 
fitting of GARCH models to financial return series. The robustness of 
the estimation of the parameters in the model is examined with three 
different distributional assumptions for the innovations; Gaussian 
distribution, Student-t distribution and GED (Generalised Error 
Distribution). Both the Student-t distribution and the GED have fat 
tails. The maximum-likelihood approach is used for the parameter 
estimation. Using backtesting, the related residuals under the three 
different distributional assumptions are examined. Furthermore, some 
fundamental concepts of financial time series analysis will be 
explained and some “stylised facts” of real returns will be examined. 
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1 Introduction 
  
The large increase in the number of traded 
assets has made the measurement of 
market risk, i.e., the risk due to adverse 
market movements, to a primary concern 
in the financial world.   
Many conventional methods for 
measuring risk, associated with assets, are 
done through studies of the variance 
(volatility) of the asset. This measure of 
the unconditional volatility does not take 
into account that there might be a 
predictable pattern in the stock market 
volatility  
 
In the theory of financial returns, a basic idealisation is that returns follow a stationary 
time series model with stochastic volatility structure. The presence of stochastic volatility 
implies that returns are not necessarily independent over time. 
 
In the year of 1982, Engle proposed a volatility process with time varying conditional 
variance; the AutoRegressive Conditional Heteroskedasticity (ARCH) process. However, 
empirical evidence shows that high ARCH order has to be selected in order to catch the 
dynamic of the conditional variance. The high ARCH order implies that many parameters 
have to be estimated and the calculations get burdensome. 
Four years after Engel’s introduction of the ARCH process, Bollerslev 1986, proposed 
the Generalised ARCH (GARCH) model as a natural solution to the problem with the 
high ARCH orders. This model is based on an infinite ARCH specification and it allows 
to dramatically reducing the number of estimated parameters from an infinite number to 
just a few.  
In Bollerslev’s GARCH model the conditional variance is a linear function of past 
squared innovations and earlier calculated conditional variances. 
With these models there are two types of return distribution to be considered; the 
conditional return distribution (where the conditioning is the current volatility) and the 
marginal or stationary distribution of the process. 
 
Financial time series often exhibit some well-known characteristics. First, large changes 
tend to be followed by large changes and small changes tend to be followed by small 
changes. Secondly financial time series often exhibit leptokurtosis, which means that the 
distribution of their returns is fat-tailed (i.e. relative high probability for extreme values). 
The GARCH model successfully captures the first property described above, but 
sometimes fails to capture the fat-tail property of financial data. This has lead to the use 
of non-normal distributions to better model the fat-tailed characteristic.   
Ever since Bollerslev introduced the GARCH model, new GARCH models have been 
proposed, e.g. Exponential GARCH (EGARCH), with different characteristics, 
advantages and drawbacks. 
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2 Financial Time Series 
 
Financial time series analysis is directed to the understanding of the mechanism that 
drives a given time series of data, or in other words: financial time series analysis focuses 
on “the truth behind the data” so that one can find physical models that explain the 
empirically observed features of real life data. With such models one can make 
distributional forecasts for future values in time series. 
 
Today there exist many different types of financial data but if one focuses on share 
prices, stock indices and foreign exchange rates (which we denote tP , t=1,2,…, where t 
can be minutes, hours, days, etc.), they behave very similar after the transformation:  
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The series { }tX  is referred to as the log return series. These series has the advantage that 
they are free of unit, and can therefore be compared with each other. 
 
One can get a more intuitive understanding of the log return transformation looking at the 
relative return series: 
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The log return series is by a Taylor series expansion argument close to the relative return 
series and these describe the relative changes over time of the price process. (The relative 
returns are very small and therefore very close to the log return values). 
 

 
 
Maybe the most important issue of this transformation is that we can assume that the time 
series { }tX  can be modelled by a stationary stochastic process, i.e. a process whose 
characteristics do not change with time (for a more formal definition, see appendix A). 
Naturally this is not the case in general for untransformed time series (see the graphs 
above for an illustrating example).  
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However, one should keep in mind that for large sample sizes (large log-return series) the 
assumption of stationarity is insecure. 
 
When dealing with log return series one has to keep in mind that qualitative differences 
can be expected in the time series depending on how small time units one uses. With 
relative small time units (minutes, seconds, …) tP  will vary very little and one observes 
that tP  does not change over a relative long period. Comparing this property with the 
behaviour of tP  when the time unit is hours, days or weeks, one realizes that different 
models have to be applied depending on how long the time unit is. In what follows we 
think of t in units of hours, days or weeks. 
 
2.1 Empirical Properties 
 
2.1.1 Kurtosis 
 
The observations of the time series { }tX  have a distribution, which often is assumed to 
be normal (Gaussian). However, empirical studies of practically any financial time series 
show that this is not quite correct. One way to quantify this property is to look at the 
kurtosis of the distributions. 
Kurtosis is a measure of the extent to which observed data fall near the centre of a 
distribution or in the tails: 
 

• a platykurtic distribution has a 
kurtosis value less than that of a 
standard, normal distribution. This 
type of distribution has a fat 
midrange on either side of the mean 
and a low peak.  

• a leptokurtic distribution has a 
kurtosis value greater than that of a 
standard, normal distribution which 
gives the distribution a high peak, a 
thin midrange, and fat (heavy) tails.  

 
The latter characteristic is common in observed price, rate, and return time series data. 
This implies that there in financial time series is a higher probability for extreme events 
than in data that is normally distributed. 
  
When studying the kurtosis in time series, one usually talks about the Fisher kurtosis 
which is defined as follows (for the time series { }tX , t = 1,…,n): 

 

33 4
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is the central moment of degree k. This kurtosis measure exists only if the fourth moment 
exists and is finite. Kurtosis is a normalized form of the fourth central moment of a 
distribution. In the Fisher kurtosis the digit three is subtracted to give the normal 
distribution the kurtosis zero (the distribution is mesokurtic). Supposing that 

)1,0(~ NX t , the fourth and second central moments are given by: 
 

[ ] [ ] 3e
2
1

)( 2t-444
4

2

===−= ∫
∞

∞−

dttXEXE
π

µµ  

[ ] 1)()( 2
2 ==−= XVarXE µµ  

 
which shows that the Fisher kurtosis for normal distributions is zero.  
The central moment of degree k is estimated with: 

 

( )∑
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k
ik xx
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In the cases above we have the following definitions: 
 

• platykurtic distributions: 02 <γ  
• leptokurtic distributions: 02 >γ  (excess kurtosis) 
• mesokurtic distributions: 02 =γ  

 
Further, in a Quantile-Quantile plot (QQ-plot) one can check whether or not a time series 
comes from a certain distribution. This analysis is an important tool in time series 
analysis. A QQ-plot is a plot of the empirical quantiles against the theoretical quantiles of 
a given distribution. If the values come from this given distribution, the plot will be an 
approximately straight line xxy =)( . 
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This is a visual method of analysis where the analyser can get a better knowledge of the 
empirical distribution and its deviations from a theoretical distribution.  
 
2.1.2 Autocorrelation 
 
One important tool for assessing the degree of dependence in observed data is the sample 
autocorrelation function (sample ACF) of the data.  
 
First some definitions: 
 

• Let nxx ,...,1  be observations of a time series. The sample mean of nxx ,...,1  is  
 

∑
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• The sample autocovariance function is: 
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• The sample autocorrelation function is: 

 

nhn
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A typical feature of financial time series is the structure of the autocorrelation function; 
the sample autocorrelations are negligible at almost all lags, i.e., the assumption of { }tX  
being white noise feels quite natural, but the sample autocorrelations of the squares or 
absolute values are different for a large number of lags and stay almost constant and 
positive for large lags. 
There are different opinions of how this property is to be interpreted and the most 
common idea is to interpret the slow decaying lags as a long-term memory or long-range 
dependence (LRD). Although some opponents claim that this might not be right due to 
non-existence of fourth moments, which implies that the ACF does not produce anything 
meaningful, and secondly due to non-stationary effects. 
 
Definition: Long-Range Dependence 
  { }tX  is said to exhibit long-range dependence if 
 

    ∞=∑
∞
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X hρ . 
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fat-tailed distribution 

normal distribution 

Why bother looking at the absolute and squared log-returns? One reason is that empirical 
evidence shows that the sequence of the signs of a log-return series has similar statistical 
properties as a sequence of i.i.d. (independent, identically distributed) symmetric 
Bernoulli random variables. Therefore numerous models are of the form 

)(|| ttt XsignXX = , where the sequence { })( tXsign  consists of i.i.d. symmetric Bernoulli 
random variables, and so one is left to model absolute returns. Various popular models, 
for example GARCH models, are of the form ttt ZX σ=   (see chapter 3), where { }tZ  is 
an i.i.d. symmetric sequence, the volatility process { }tσ  is stationary and non-negative, 
and tZ  and tσ  are independent for every fixed t. Thus, the sequence 
{ } { })()( tt ZsignXsign =  is i.i.d. Bernoulli, as desired. What one is interested in is the 
volatility of the log-return, but by its construction, it cannot be observed. Therefore the 
observable quantities | tX | and 2

tX  often are considered as surrogate values or 
“estimators” of tσ  and 2

tσ  respectively and that is why they sometimes are in focus. 
 
2.1.3 Power Law Tails 
 
Log-return data of financial time series often exhibits 
heavy-tailed distributions. Conveniently, these tails can 
be modelled with distributions with power law tails, i.e., 
for large x and some positive number α  (the tail index), 

 
α−

∞→
=

>
>

x
uXP
xuXP

u )(
)(

lim . 

 
Examples of distributions satisfying this tail condition are for example the Pareto 
distribution (with an exact power law) and the Student-t distribution with α  degrees of 
freedom. In this thesis the Student-t distribution is considered. 
 
2.1.4 Skewness  
 
Observations of the empirical distribution of { }tX  often show that the distribution is 
leptokurtic. Another property that deviates from the so often assumed Gaussian 
distribution is that the empirical distribution is not symmetric. Skewness defines the 
degree of asymmetry of a distribution and several types of skewness are defined. The 
Fisher skewness (the most common type of skewness, usually referred to simply as 
skewness) is defined by:  

3
3

23
2

3
1 σ

µ
µ
µ

γ =≡ , 

 
where 3µ  is the third central moment, and 2/1

2µ  is the standard deviation. 
A negative skewness value indicates that the data has a distribution skewed to the left. 
This means that the left tail is heavier than the right tail in the distribution. Respectively, 
a positive skewness value indicates a right skewed distribution with a right tail heavier 
than its left tail. 
In this thesis the skewness of the time series is neglected.  
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2.1.5 Holiday Effect 
 
During weekends and holidays information accumulates. This could be reflected in prices 
when the markets reopen. If the information stream assumes to be constant, the variance 
of the returns over the period from Friday close to the Monday close should be three 
times the variance from the Monday close to the Tuesday close. However, the assumption 
of constant information stream is not in accordance to the real life experience. The 
information rate during weekends and holidays is lower than during working days, which 
reduces the holiday effect. 
This property is also neglected in this thesis. 
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3 “Stylised Facts” About Financial Data 
 
The log-returns ( 1loglog −−= ttt PPX ) of share prices, stock indices and foreign 
exchange rates tP , ,...2,1=t , often show the following features: 
 

• The frequency of large and small 
changes, relative to the range of 
data, is rather high which leads us 
to believe that the data do not come 
from a normal, but from a heavy-
tailed (leptokurtic) distribution 
(relative high probability for 
extreme values). 

• Large and small values in a log-
return sample tend to occur in 
clusters. This indicates that there is 
dependence in the tails. Mandelbrot 
quoted (1963): “… large changes tend to be followed by large changes -of either 
sign- and small changes by small changes …”. This characteristic is also called 
volatility clustering. 

• Changes in stock prices tend to be negatively correlated with changes in 
volatility, i.e., volatility is higher after negative chocks than after positive chocks 
of same magnitude. This property is called the leverage effect. 

• Long-range dependence in the data. Sample autocorrelations of the data are small 
whereas the sample autocorrelations of the absolute and squared values are 
significantly different from zero even for large lags. This behaviour suggests that 
there is some kind of long-range dependence in the data. 

•  Aggregational Gaussianity, i.e., the distribution of log-returns over larger 
periods of time (such as a month, half a year, a year) is closer to the normal 
distribution than for hourly or daily log-returns. 

 
Various models have been proposed in order to describe these features and one very 
common model is of the type: 
 

Ζ∈+= tZX ttt ,σµ . 
 
Here { }tZ  is a sequence of i.i.d. symmetric random variables, and { }tσ  is a non-negative 
stochastic process such that tZ  and tσ  are independent for fixed t. The process { }tσ  is 
called the volatility process (standard deviation process).  
It is often assumed that the { }tZ ’s are standard normally distributed, that is, 
{ }~tZ i.i.d.N(0,1) ( [ ] 0=tZE  and ( ) 1=tZVar ). In what follows, we will always assume 
that tZ  is symmetric and has unit variance.  
The volatility process { }tσ  and the time series { }tX  are assumed to be strictly stationary. 
Moreover, we suppose that µ  can be estimated from the data and therefore it will be 
convenient to assume 0=µ .  
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There are various reasons for this particular choice of model: 
 

• the direction of the price changes is modelled only by the sign of tZ , 
independently of the order of magnitude of this change, which is directed by the 
volatility tσ . This is in agreement with the empirical observation that it is 
difficult, or even impossible, to predict the sign of price changes. 

• since tσ  and tZ  are independent, and tZ  is assumed to have mean zero and 
variance 1, 2

tσ  is then the conditional variance of tX  given tσ . 
 

( ) [ ] [ ]( ) [ ] [ ]( ) =−=−= 22222
tttttttttttt ZEZEXEXEXVar σσσσσσσ  

               [ ] [ ] [ ] [ ]( ) [ ] 22222
ttttttttttt EZEEZEE σσσσσσσσσ ==−= . 
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4 Stochastic Volatility Models 
 
As shown in the previous chapter, most models for financial returns are of the form: 

 
Ζ∈= tZX ttt ,σ , 

 
where { }tZ  is a sequence of i.i.d. symmetric random variables, and { }tσ  is a non-
negative stochastic process such that tZ  and tσ  are independent for fixed t. There is 
strong empirical support for stochastic volatility in financial time series and the presence 
of stochastic volatility implies that returns are not necessarily independent over time. The 
standard assumption for the noise tZ  is that { }~tZ i.i.d. )1,0(N  with { }tZ  independent of 
the standard deviation process { }tσ . 
 
Volatility is a central part of most asset pricing models. In these models, one often 
assumes that the volatility is constant over time.  However, it is well known that financial 
time series exhibit time-varying volatility. In the year of 1982, Engle [6] proposed a 
model for { }tσ : 

2

1
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2
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i
it X −

=
∑+= αασ . 

 
This model is called the AutoRegressive Conditional Heteroskedasticity (ARCH process) 
where the “autoregressive” property in principle means that old events leave waves 
behind a certain time after the actual time of the action. The process depends on its past. 
The terms “conditional heteroskedasticity” means that the variance (conditional on the 
available information) varies and depends on old values of the process. One can resemble 
this with the process having a short-term memory and that the behaviour of the process is 
influenced by this memory.  
However, since it can expected that 2

tσ  is a time-changing weighted average of past 
squared observations, it is quite natural to define 2

tσ , not only as a weighted average of 
past 2

tX ’s, but also of past 2
tσ . Empirical evidence shows that high ARCH order has to 

be selected in order to catch the dynamic of the conditional variance. This leads to the 
Generalised ARCH model (GARCH) introduced 1986 by Bollerslev [1].  
 
The volatility process is: 
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22
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where the iα ’s and the jβ ’s are non-negative parameters. This model reduces the 
number of estimated parameters from infinitely many to only just a few. (One can easily 
see that the GARCH model is based on an infinite ARCH specification. See derivation in 
chapter 5.1.1) 
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GARCH has gained fast acceptance and popularity in the financial world. This can be 
explained by various arguments: 
 

• the GARCH process has a close relation to ARMA processes. This suggests that 
the theory behind the GARCH process might be closely related to the theory of 
ARMA processes, which is well studied and widely known. 

• one can get a reasonable good fit to real life financial data even with a 
GARCH(1,1) model with only three parameters, provided that the sample is not 
too long so that the stationary assumption is unreliable. 

 
In the following chapter a survey of some different GARCH models is done. 
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5 The GARCH Family 
 
Ever since Bollerslev introduced the GARCH(p,q)-model, new models with different 
characteristics have been invented. The existing models can be divided into two main 
categories: symmetric and asymmetric models. In the symmetric models, the conditional 
variance only depends on the magnitude, and not the sign, of the underlying asset tX . 
This property is seldom in accordance with empirical results where a leverage effect 
often is present, i.e., volatility increases more after negative return shocks than after 
positive return shocks of the same magnitude (“bad news” generates higher volatility 
more than “good news” lowers the volatility). However, in the asymmetric models these 
characteristics are more or less captured. 
 
All the following models build on the multiplicative form ttt ZX σ= , Ζ∈t  for the 
financial log-returns (as shown earlier). The standard assumption for the noise is that 
{ }tZ  is i.i.d. symmetric random variables with zero mean and unit variance. The volatility 
process { }tσ  is a non-negative stochastic process such that tZ  and tσ  are independent 
for fixed t.   
  
5.1 Symmetric GARCH Models 
 
5.1.1 GARCH 
 
Let tX  denote a real-valued discrete-time stochastic process. The GARCH(p,q) process 
proposed by Bollerslev is then given by: 
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or, using the lag or backshift operator B defined as B tX = 1−tX , the GARCH(p,q) model 
is: 

22
0

2 )()( ttt BXB σβαασ ++= , 
 
with p

p zzzz αααα +++= ...)( 2
21  and q

q zzzz ββββ +++= ...)( 2
21 . For q=0 the 

process reduces to the ARCH(p) process, and for p=q=0 tX  is simply white noise. 
 
The GARCH(p,q) process with an i.i.d. noise sequence { }tZ  such that [ ] 12 =tZE  and 

[ ] 0=tZE , is strictly stationary with finite variance if (see chapter 6.1.1): 
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The GARCH process has a close relation to ARMA processes. By rearranging the 
GARCH(p,q) model defining 22

ttt X συ −≡ , it follows that: 
 

( ) tttt BXBBX υυββαα +−++= −− 1
2

10
2 )()()( , 

 
which defines an ARMA(max(p,q),p) model for 2

tX . This relation to ARMA processes 
suggests that the theory behind the GARCH processes might be closely related to ARMA 
process theory, which is quite easy and widely known. Although, one has to be careful 
because the noise sequence { }tσ  depends on the tX ’s themselves, so that a complicated 
non-linear relationship of the tX ’s is built up. 
 
Furthermore, it is easy to see that the GARCH model is based on an infinite ARCH 
specification. If all the roots of the polynomial 0)(1 =− Bβ  lie outside the unit circle, we 
get: ( ) 2

0
2 )()(1 tt XBB αασβ +=− , or equivalently: 
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where the ?i’s are suitable constants which together with ),0(~| 2

ttt NX σσ  may be seen 
as an ARCH( ∞ ) process. 
 
5.1.2 IGARCH 
 
When estimating the parameters in the GARCH model one often observes that the sum of 
the parameters is close to one. For the parameter setting: 
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Engle and Bollerslev coined the name Integrated GARCH (IGARCH). Here, the 
“integrated” refers to the fact that there might be a unit root problem which could lead to 
the non-existence of a stationary version of { }tX  (it has infinite variance). However, this 
is not the case for the IGARCH under the conditions of Theorem in chapter 6.1.1 plus 
some mild additional assumptions (see [10] for further information). Thus, the IGARCH 
has a strictly stationary solution, but with infinite variance. To see this we take the 
expectations of the conditional variance and observe that E[ 2

tX ] = E[ 2
tσ ] which gives: 
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As can be seen this is true only if the expectation is infinity ( 00 >α  is necessary for 
stationarity), thus, the IGARCH process has infinite variance. This property is not 
exhibited in real-life log-returns.  
 
It is found that the sum of the estimated parameters in the GARCH model typically 
increases towards one with increasing sample size. This supports the hypothesis that the 
IGARCH effect is due to bad fit of the GARCH model, and that the bad fit of the model 
may be due to non-stationary, which is more likely for a larger sample size. 
 

 
In this plot, we see that the parameters sum up to values close to one for large sample 
sizes. 
 
5.2 Asymmetric GARCH Models 
 
To accommodate for the asymmetry that exists in many financial time series, numerous 
asymmetric GARCH models have been derived. Many of these models have large 
similarities with each other. Examples of some asymmetric models are:  
 

• EGARCH (Exponential GARCH) 
• GJR-GARCH (Glosten, Jagannathan and Runkle GARCH) 
• APARCH (Asymmetric Power ARCH) 

 
The EGARCH model will be further examined in the next chapter and the other 
asymmetric models will be defined briefly. 
 
5.2.1 EGARCH 
 
Even if the GARCH models successfully capture the thick tail returns, and the volatility 
clustering, they are poor models if one wishes to capture the leverage effect (described in 
chapter 3) since the conditional variance is a function only of the magnitudes of the past 
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values and not their sign. The conditional variance 2
tσ  of tX  given information at time t, 

obviously must be non-negative with probability one. In GARCH models this property is 
assured by making 2

tσ  a linear combination (with positive weights) of positive random 
variables (as in the GARCH(p,q) case). Another way of making 2

tσ  non-negative is by 
making ( )2ln tσ  linear in some function of time and lagged tZ ’s. This formulation leads to 
the asymmetric GARCH model, Exponential GARCH, of Nelson (1991) [7]: 
 

( ) ( )2

11
-it0

2 lnZ)ln( jt
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==
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The value of )( tZg  depends on several elements. Nelson notes, “to accommodate the 
asymmetric relation between stock returns and volatility changes, the value of )( tZg  
must be a function of both the magnitude and the sign of tZ .” This leads to following 
representation: 

 

{ [ ][ ]44 344 21
effect magnitude

2

effectsign 

1 ||||)( tttt ZEZZZg −+= θθ . 

 
With this construction, { } ∞−∞= ,)( ttZg  is a zero-mean, i.i.d. random sequence. (Each 
component has mean zero.) Over the range ∞<< tZ0 , )( tZg  is linear in tZ  with slope 

21 θθ + , and over the range 0≤<∞− tZ , )( tZg  is linear with slope 21 θθ − . Thus )( tZg  
allows the conditional variance 2

tσ  to respond asymmetrically to rises and falls in stock 
price. 
To see that the term [ ][ ]||||2 tt ZEZ −θ  represents the magnitude effect one first assumes 
that 01 =θ  and 02 >θ . This makes the innovation in )ln( 2

1+tσ  positive (negative) when 
the magnitude of tZ  is larger (smaller) than its expected value. Assuming that 01 <θ  and 

02 =θ . The innovation in conditional variance is now positive (negative) when returns 
innovations are negative (positive). 
 
In contrast to the GARCH models, the EGARCH models do not have any restrictions on 
the parameters in the model. The EGARCH model always produces a positive 
conditional variance independently of the signs of the estimated parameters in the model 
and no restrictions are needed. This is preferable when the restrictions in the GARCH 
model sometimes create problems when estimated parameters violate the inequality 
constraints.  
 
5.2.2 GJR-GARCH 
 
GJR-GARCH (Glosten, Jagannathan and Runkle GARCH): 
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In this model it is supposed that the effect of the 2
tX  on the conditional variance 2

tσ  is 
different accordingly to the sign of tX  and this is why the variable −

tS  is introduced. 
This implies that the model accommodates the leverage effect. 
 
5.2.5 APARCH  
 
APARCH (Asymmetric Power ARCH): 
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Most of the GARCH models are non-nested (they can not be written as a restricted 
version of a more general process), but the APARCH model includes seven other ARCH 
specifications as special cases: 
 

• ARCH when 2=δ  , p), . . 1,.  (i 0  i ==γ  and q), . . 1,.  (j 0  j ==β  
• GARCH when 2=δ  and p), . . 1,.  (i 0  i ==γ  
• Taylor (1986) / Schwert (1990)’s GARCH when 1 =δ , and p), . . 1,.  (i 0  i ==γ  
• GJR-GARCH when 2=δ  
• TARCH when 1 =δ  
• NARCH when p), . . 1,.  (i 0  i ==γ  and q), . . 1,.  (j 0  j ==β  
• Log-ARCH by Geweke (1986) and Pentula (1986), when 0 →δ  
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6 Parameter Estimation in the GARCH Model 
 
To be able to predict the volatility for a time series, one first has to fit the GARCH-model 
to the time series in question. This is done via estimation of the parameters in the model. 
The most common method of this estimation is the maximum-likelihood estimation 
(MLE). 
 
6.1 Maximum-Likelihood Estimation (MLE) 
 
The maximum-likelihood estimation works as follows: 
The data 1x ,…, nx  assumes to be random observations from a distribution );( θxFX  that 
depends on the unknown parameters θ  (where [ ]qp ββαααθ ,...,,,...,, 110=  in the 
GARCH(p,q) case) with the parameter space Θ . X has the probability distribution 

);( θXpX  where );( θXpX  denotes the probability that xX = , thus )( xXP = . 
Supposing that the probability function is known (except from the unknown parameters) 
it is possible to estimate the unknown θ ’s by putting up the likelihood function (the L 
function): 
 

);(...);();()( 21 θθθθ nXXX xpxpxpL ⋅⋅⋅= . 
 
Obviously, L(θ ) defines the probability that exactly the values 1x ,…, nx  is observed as 
realisations from the distribution. 
Now to the sophisticated idea behind the MLE; by letting the unknown θ  assume all the 
values in the parameter space Θ , one can see for what values of θ  the L(θ ) has it 
maximum value. These values are denoted θ *. Hence, the estimation of θ * is chosen so 
that the L(θ *)-function is maximised (for observed 1x ,…, nx ).   
 
6.1.1 Stationarity 
 
When dealing with GARCH models the assumption of stationarity of the time series 
{ }tX  is basic for the statistical analysis of the data. This implies constraints on the 
estimated parameters in the maximum likelihood-estimation. 
Here follows two theorems that state restrictions on the estimated parameters in the 
GARCH(p,q) model for stationarity in the GARCH(p,q) process. 
 
Theorem: The GARCH(p,q) process ttt ZX σ= , Ζ∈t , with the specification of the 

conditional variance specified earlier and an i.i.d. noise sequence { }tZ  
with mean zero and unit variance, has a non-vanishing strictly stationary 
causal version if and only if 00 >α  and 0<γ . Here, γ  is the Lyapnov 
exponent. (For further information of the exponent, see [10]). A sufficient 
condition for 0<γ  is given by: 
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 provided that [ ] 12 =tZE  and [ ] 0=tZE . 
  

In other words, the GARCH(p,q) process with an i.i.d. noise sequence 
{ }tZ  such that [ ] 12 =tZE  and [ ] 0=tZE , { }tX  is strictly stationary with 
finite variance if:  

00 >α  and 1
11

<+ ∑∑
==

q

j
j

p

i
i βα . 

 
Proof: See [10] for information.               ¦  
 
Corollary: The GARCH(p,q) process  
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is weakly stationary with: 
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Proof:  See appendix A.                 ¦  
 
 
For different GARCH models there are different restrictions on the estimated parameters. 
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6.1.2 Gaussian Quasi Maximum-Likelihood Estimation 
 
Now, suppose that the noise { }tZ  in the GARCH(p,q) model of a given order is i.i.d. 
standard normal. Then tX  is Gaussian N(0, σt

2) given the whole past 1−tX , 2−tX ,…, and a 
conditioning argument yields the density function 

np XXp ,...,  of pX ,…, nX  through the 
conditional Gaussian densities of the tX ’s given 11 xX = ,…, nn xX = : 
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where s t is a function of a0, a1,…, ap, ß1,…, ßq. Conditioning on pp xX =  and replacing 

1+= pt  with 1=t , the Gaussian log-likelihood of 1X ,…, nX  is given by: 
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For a general GARCH(p,q) process the likelihood function is maximised as a function of 
the iα ’s and jβ ’s involved. The resulting value in the parameter space is the Gaussian 
quasi maximum-likelihood estimator of the parameters of a GARCH(p,q) process. 
 
There are problems associated with this estimation procedure. 
 
The assumption of Gaussian noise: 
It is assumed that the noise { }tZ  is Gaussian. Although this is not the most realistic 
assumption; empirical tests indicate that the tZ ’s are much better modelled by a Student-t 
distribution or a GED. Theoretical work ([7] and Heyde (1997) Quasi-Likelihood and its 
Application: A General Approach to Optimal Parameter Estimation) shows that 
asymptotic properties such as n -consistency and asymptotic normality with n -rate of 
the Gaussian quasi MLE remain valid for large classes of noise distributions. 
 
Calculation of unobservable values: 
The formula of the likelihood-function requires calculating the unobservable values tσ , 

1=t ,…,n, from the observed sample 1X ,…, nX . This is obviously not possible in the 
general GARCH(p,q) case. One iteration of the volatility process 2

tσ  yields that one has 
to know all values 1−nX ,…, 0X , 1−X ,… for the calculation of 1σ ,…, nσ . Alternatively, 
one needs to know finitely many values of the unobservable values 0X , 1−X ,… and 

0σ , 1−σ ,… . A common technique for solving this problem is to choose initial values as 
the equilibrium values, i.e., for a GARCH(1,1) model )(2

0 XVar=σ  and )(0 XVarX = . 
The choice of the initial values implies that the calculated 1σ ,…, nσ  cannot be 
considered as a realisation of a stationary sequence. Now, one hope that the dependence 
of the initial values disappear for large values of n in a similar way to a Markov chain 
with arbitrary initial value whose distribution becomes closer to the stationary 
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distribution. However, the Gaussian quasi ML-function is a complicated function built up 
on the X’s and the σ ’s. Therefore are the theoretical properties of the Gaussian quasi 
MLE not easy to derive. In this thesis, in MLE, it is assumed that the dependence of the 
initial values disappears with reasonably large values of n. However, one should bear in 
mind that this is a difficult problem. 
 
6.1.3 Fat-Tailed Maximum-Likelihood Estimation 
 
An alternative way of dealing with non-Gaussian errors (the first problem described in 
the chapter above) is to assume a distribution that reflects the features of the data better 
than the normal distribution, and estimate the parameters using this distribution in the 
likelihood function instead of the Gaussian. Thus, the problem with the calculation of 
unobservable values (described in previous chapter) is yet present in this model. When 
choosing a distribution for the innovations, QQ-plots can be very helpful. In this thesis 
two distributions, apart from the Gaussian, are considered; the Student-t Distribution (t 
Distribution) and the Generalised Error Distribution (GED).  
 
The likelihood functions for two distributional assumptions are: 
 

• the log-likelihood function for the Student-t distribution: 
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• the log-likelihood-function for the GED: 
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where ( )⋅Γ  is the gamma function, and 
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These log-likelihood functions are maximised with respect to the unknown parameters 
(the same procedure as in the Gaussian quasi MLE case). 
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6.2 Distributions 
 
As discussed earlier, observations of the financial time series { }tX  have a distribution 
that one often assumes to be normal (Gaussian) but, as shown in chapter 2.1, they often 
tend to be leptokurtic (fat tailed). QQ-plots have been shown to be good tools when 
deciding what distribution to use. In this thesis the fat tailed Student-t distribution and the 
GED are considered. The GED can be both leptokurtic and platykurtic depending on the 
chosen degree of freedom. 
Here follows some further information about these distributions. 
 
6.2.1 Normal Distribution 
 
The normal (or Gaussian) distribution is a symmetric distribution with density function: 

 
22 2/)(

22

1
)( σµ

σπ
−−= x

X exf  

 
where µ  is the expectation value and 2σ  is the variance of the stochastic variable X, thus 
X~N( µ , 2σ ). The so-called standard normal distribution is given by taking 0=µ  and 

12 =σ . The Fisher kurtosis is for the normal distribution per definition zero (see chapter 
2.1.1). 
In the EGARCH model, when tX  is assumed to be normally distributed, the expectation 
in the )( tZg  function is given by:  
 

[ ] π2|| =tZE . 
 
6.2.2 Student-t Distribution 
 
The Student-t distribution, or t distribution, has following density function: 
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where ν  is the degree of freedom (ν >2). Like the normal distribution, the t distribution 
is symmetric. The mean, variance and kurtosis of the distribution are: 

 
• 0=µ  for ν ≥ 2 

• 
2
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γ  for ν ≥ 5 
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The Student-t distribution with unit variance has the following density function: 
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In the EGARCH model, when tX  is assumed to be Student-t(ν ) distributed, the 
expectation in the )( tZg  function is given by: 
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6.2.3 Generalised Error Distribution (GED) 
 
The GED is a symmetric distribution that can be both leptokurtic and platykurtic 
depending on the degree of freedom ν  (ν >1). The GED has the following density 
function:  
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The GED with unit variance has the following density function: 

 

[ ] ( )2/12
);(

/)1(

2
1

−Γ
=

+

−

νννλ

ν
ν

νν

λ

νx

X
e

xf . 

 
For ν =2, the GED is a standard normal distribution whereas the tails are thicker than in 
the normal case when 2<ν , and thinner when 2>ν . The GED becomes a uniform 
distribution on the interval [ 3,3− ] when ∞→ν . 
 
In the EGARCH model, when tX  is assumed to be GED(ν ) distributed, the expectation 
in the )( tZg  function is given by: 
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7 Robustness of Estimation 
 
As described in previous chapter, GARCH(p,q) models are fitted to the return series 
using maximum-likelihood estimation. In the Gaussian quasi MLE method, this 
estimation is done under the assumption that the innovations { }tZ  have a Gaussian 
distribution. In the fat-tailed MLE, the innovations are assumed to be leptokurtic. Now, 
one wants to know if the estimations are robust, i.e.: 
 

• do the estimations of the parameters 0σ , 1σ , …, pσ , 1β , …, qβ  depend on the 
distributional assumption of the innovations { }tZ . 

• do the residuals of the estimated process have the same distribution as the 
assumed distribution of the innovations. 

 
7.1 Residuals 
 
When the estimation of the unknown parameters θ  is done, estimates of the standard 
deviation series { }nσσ ˆ,...,ˆ1  can be calculated recursively via the definition of the 
conditional variance for the GARCH(p,q) process; 2

0
2 )()( ttt BXB σβαασ ++= . 
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In the two graphs above, the log-return process and the estimated conditional standard 
deviation process for a 500-day excerpt from the S&P 500-index, are plotted. The 
estimated conditional standard deviation process is derived from a GARCH(1,1) fit. 
Clearly, the estimated conditional standard deviation process reflects the behavioure of 
the log-return process.  
 
By calculating residuals one can examine the adequacy of the GARCH modelling. The 
residuals are calculated as (remember that the log-returns are modelled by ttt ZX σ= ): 
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The residuals should be i.i.d. if the fitted model is tenable. (The innovations { }~tZ i.i.d. 
implies that the residuals also should be i.i.d.). 
 

 

 
 
The autocorrelations for the observations, the squared observations, the residuals and the 
squared residuals for a 500-day excerpt from the S&P 500-index are here plotted 
(GARCH(1,1) model fitted with Gaussian quasi MLE). Based on the plots above, the 
GARCH model seems to be reasonable. 
  



31
 
 

Further, with a QQ-plot, one can examine the distribution of the residuals. This is a sort 
of verifying the robustness in the estimation.  
 
 To the right, the residuals of tX  for a 500-
day excerpt from the S&P 500-index are 
plotted. Here the MLE is done under the 
distributional assumption of Gaussian 
innovations. We can see that the residuals 
under this distributional assumption get a 
heavy left tail.  
 
If the QQ-plot shows that the residuals are 
better represented by another distribution, 
e.g. a fat-tailed distribution, one should 
consider to do the MLE under the assumption 
of this new distribution where the 
innovations hopefully have a more 
appropriate distribution. 
 
7.2 Robustness of MLE on Simulated Data 
 
To examine the robustness of maximum-likelihood estimation models in a controlled 
manner, one can do the GARCH fit with MLE on simulated processes with known 
distributions on the innovations. 
 
The simulation and robustness inspection of a process are done in the following manner: 
 

1. Assume good parameter values for a GARCH(p,q) model. If this is difficult, one 
can use estimated parameter-values from a maximum-likelihood estimation on 
real-life returns. 

2. Use the parameters to simulate a GARCH process under a specific distributional 
assumption of the innovations. In this thesis the Gaussian distribution, the 
Student-t distribution and the GED are used.  

3. For the simulated process, fit a GARCH(p,q) model to the data with maximum-
likelihood estimations under the three different distributional assumptions of the 
innovations. 

4. Compare the parameter values in the three cases. 
5. Calculate the residuals of the three estimated standard derivation time series. 
6. Examine the distributions of the three residual time series in quantile-quantile 

plots. 
 
Now follows three examples where GARCH(1,1) processes are simulated under three 
different distributional assumptions of the innovations. Maximum-likelihood estimations 
under different distributional assumptions of the innovations are done and the parameter 
values are displayed and the residuals are plotted in QQ-plots. 
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7.2.1 Examples With Simulated Data 
 
Example 1: A GARCH(1,1) process is here simulated with Gaussian innovations  (400 

data). Maximum-likelihood estimation (under the assumptions of 
Gaussian, Student-t and GED innovations) yields the parameters of the 
simulated process. The residuals of the process are calculated and plotted 
in a QQ-plot against the Gaussian distribution, the Student-t distribution 
and GED respectively. 

  
 
A GARCH(1,1) fit is done for the 
simulated process using MLE under 
the assumption of Gaussian 
innovations. The residuals from the 
fit on the simulated data are 
computed and plotted in a QQ-plot 
against the normal distribution. 
As we can see, it looks like the 
residuals have a Gaussian 
distribution. 

=oα 0.0001 
=1α 0.0770 
=1β 0.5540 

 
 
 
 
 
 
 
 
Now, the GARCH(1,1) fit on the 
simulated process  is done with MLE 
under the assumption of Student-t 
distributed innovations.  
The residuals from the fit are 
computed and plotted in a QQ-plot 
against the Student-t distribution with 
an estimated degree of freedom. 
The fit is good, but the degree of 
freedom was estimated to be 35, 
which indicates that the process 
exhibits Gaussian innovations (the 
Student-t(35) distribution is close to 
the normal distribution). 

=oα 0.0001 
=1α 0.0813 
=1β 0.5411 
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In this last plot, the GARCH(1,1) fit 
on the simulated process (with 
Gaussian innovations) is done with 
MLE under the assumption of GED 
innovations. 
The residuals from the fit are 
computed and plotted in a QQ-plot 
against the GED with an estimated 
degree of freedom. 
The fit is good, but the degree of 
freedom was estimated to be 1.85, 
which indicates that the process 
exhibits Gaussian innovations. 
(Gaussian distribution if 2=ν ). 

=oα 0.0001 
=1α 0.0781 
=1β 0.5561 

 
 
 
 

Estimated parameter values: 
Distributional assumption 0α  1α  1β  
Gaussian innovations 0.0001 0.0770 0.5540 
Student-t innovations 0.0001 0.0813 0.5411 
GED innovations 0.0001 0.0781 0.5561 
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Example 2: Now, a GARCH(1,1) process is simulated with GED(1.3) innovations 
(400 data). Maximum-likelihood estimation (under the assumptions of 
Gaussian, Student-t and GED innovations) yields the parameters of the 
simulated process. The residuals of the process are calculated and plotted 
in a QQ-plot against the Gaussian distribution, the Student-t distribution 
and GED respectively. 

 
 

 
A GARCH(1,1) fit is done for the 
simulated process (with GED(1.3) 
innovations) using MLE under the 
assumption of Gaussian innovations. 
The residuals from the fit on the 
simulated data are computed and 
plotted in a QQ-plot against the 
normal distribution. The fit is poor in 
the tails and the plot shows that the 
residuals are leptokurtic. A more 
heavy-tailed distribution for the 
innovations is probably a better 
assumption.  

=oα 0.00004 
=1α 0.0629 
=1β 0.8340 

 
 
 
 
 
 Now, the GARCH(1,1) fit on the 
simulated data (with GED(1.3) 
innovations) is done with MLE under 
the assumption of Student-t 
distributed innovations. 
The residuals from the fit are 
computed and plotted in a QQ-plot 
against the Student-t distribution with 
an estimated degree of freedom. 
The fit is poor. Here, the robustness 
of the maximum-likelihood 
estimation under the assumption of 
Student-t distributed innovations is 
questioned.  

=oα 0.00002 
=1α 0.0795 
=1β 0.8715 
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In this last plot, the GARCH(1,1) fit 
on the simulated process (with GED 
innovations) is done with MLE under 
the assumption of GED innovations. 
The residuals from the fit are 
computed and plotted in a QQ-plot 
against the GED with an estimated 
degree of freedom. 
The fit is good and the estimated 
degree of freedom is close to the 
degree of freedom in the simulated 
GARCH(1,1) process with GED(1.3) 
innovations.  

=oα 0.00003 
=1α 0.0667 
=1β 0.8589 

 
 
 
 

 
Estimated parameter values: 
Distributional assumption 0α  1α  1β  
Gaussian innovations 0.00004 0.0629 0.8340 
Student-t innovations 0.00002 0.0795 0.8715 
GED innovations 0.00003 0.0667 0.8589 
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Example 3: Finally a GARCH(1,1) process is simulated with Student-t(4) distributed 
innovations (400 data). Maximum-likelihood estimation (under the 
assumptions of Gaussian, Student-t and GED innovations) yields the 
parameters of the simulated process. The residuals of the process are 
calculated and plotted in a QQ-plot against the Gaussian distribution, the 
Student-t distribution and GED respectively. 

 
  
 
A GARCH(1,1) fit is done for the 
simulated process (with Student-t 
innovations) using MLE under the 
assumption of Gaussian innovations. 
The residuals from the fit on the 
simulated data are computed and 
plotted in a QQ-plot against the 
normal distribution. 
The fit good, but the tails indicate 
that the residuals are leptokurtic. A 
more heavy-tailed distribution for the 
innovations is probably a better 
assumption. 

=oα 0.00002 
=1α 0.1415 
=1β 0.7670 

 
 
 

 
 
Now, the GARCH(1,1) fit on the 
simulated process  (with Student-t 
innovations) is done with MLE under 
the assumption of Student-t 
distributed innovations.  
The residuals from the fit are 
computed and plotted in a QQ-plot 
against the Student-t distribution with 
an estimated degree of freedom. 
The fit is fairly good, but the 
estimated degree of freedom deviates 
from the simulated.   

=oα 0.00002 
=1α 0.0786 
=1β 0.8294 
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In this last plot, the GARCH(1,1) fit 
on the simulated process (with 
Student-t innovations) is done with 
MLE under the assumption of GED 
innovations. 
The residuals from the fit are 
computed and plotted in a QQ-plot 
against the GED with an estimated 
degree of freedom. 
The fit is good, and the estimated 
degree of freedom indicates that the 
innovations come from a heavy-
tailed distribution. 

=oα 0.00002 
=1α 0.1074 
=1β 0.8014 

 
 
 
 

 
Estimated parameter values: 
Distributional assumption 0α  1α  1β  
Gaussian innovations 0.00002 0.1415 0.7670 
Student-t innovations 0.00002 0.0786 0.8294 
GED innovations 0.00002 0.1074 0.8014 
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7.2.2 Conclusion of Examples 
 
First, by looking at the estimated parameters for the different distributional assumptions, 
one can conclude that the models seem to be robust. The values of the estimated 
parameters do not differ from each other much under the different distributional 
assumptions.   
 
The plots in the examples indicate that the MLE is robust under the assumptions of 
Gaussian and GED distributed innovations. The overall performance for the MLE under 
the assumption of Student-t distributed innovations is yet not convincing.  
The examples support the usefulness of QQ-plots as tools for examining the residuals. 
With the aid of the QQ-plots, an appropriate model can be chosen.   
 
If the innovations come from a Gaussian distribution, the maximum-likelihood 
estimations are good independent of the assumed distributions. The two MLE models that 
assume fat-tailed distributions for the innovations assign the degree of freedom so that 
the fat-tailed distribution is close to the Gaussian. 
On the other hand, if the innovations come from a fat-tailed distribution, the best fit is 
achieved with an MLE that assumes GED innovations. 
The maximum-likelihood estimation under the distributional assumption of Student-t 
distributed innovations is questioned. The overall performance for the estimation under 
the assumption of Student-t distributed innovations is not convincing.  
 
This robustness examination can be used to choose the right estimation model for given 
data.  
 

1. Estimate the parameters under the assumption of Gaussian innovations.  
2. Plot the residuals in a QQ-plot against the normal distribution. If the residuals are 

leptokurtic probably a better distributional assumption is a fat-tailed distribution, 
e.g. GED innovations.  

3. Now, estimate the parameters under the assumption of leptokurtic innovations, 
e.g. GED.  

4. Plot the residuals in a QQ-plot against the chosen leptokurtic distribution. If the fit 
is good, the distributional assumption most probably is correct. 

 
The simulations in this example consist of only 400 simulated data. Larger simulated 
sample sizes should give us more information, but large samples imply problems with the 
stationary assumption of { }tX . 
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7.3 Robustness of MLE on Empirical Data 
 
In following example, the robustness of MLE on empirical data is examined. 
 
7.3.1 Example With Empirical Data 
 
Empirical example: For the Volvo B log returns, the parameters in the GARCH(1,1) 

model are estimated with MLE under the assumption that the 
innovations are Gaussian distributed, Student-t distributed and 
GED respectively. The residuals are calculated and plotted in QQ-
plots.  

 
First, the maximum-likelihood estimation is done under the assumption of Gaussian 
innovations: =oα 0.0001, =1α 0.0762 and =1β 0.7622. 
 

 
In this first plot, the GARCH(1,1) fit 
to the Volvo return series is done 
with MLE under the assumption that 
the innovations comes from a 
Gaussian distribution. The residuals 
are calculated and plotted against the 
normal distribution. 
The fit is fairly good, but the fit in the 
tails fail. The residuals are 
leptokurtic. A more heavy-tailed 
distribution on the innovations in the 
MLE would probably be more 
appropriate.  
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Here, the residuals calculated above 
are plotted against the Student-t 
distribution with the chosen degree of 
freedom =ν 15. 
The chosen degree of freedom shows 
that the residuals have a distribution 
close to the Gaussian, except from 
that they have heavier tails. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, the residuals are plotted 
against the GED with chosen degree 
of freedom =ν 1.3. 
In this case, the fit is good, which 
indicates that the residuals have a 
heavy-tailed distribution. 
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Now, the same MLE procedure is done, but this time under the assumption that the 
innovations are Student-t distributed. =oα 0.0001, =1α 0.1114 and =1β 0.7228 

 
 
In this first plot, the GARCH(1,1) fit 
to the Volvo return series is done 
with MLE under the assumption that 
the innovations comes from a 
Student-t distribution. The residuals 
are calculated and plotted against the 
normal distribution. 
The fit is fairly good, but the fit in 
the tails fail. The residuals are 
leptokurtic. A more heavy-tailed 
distribution on the innovations in the 
MLE would probably be more 
appropriate.  
 
 
 
 
 
 
 
 
Here, the residuals are plotted against 
the Student-t distribution with the 
estimated degree of freedom =ν 6. 
The fit is poor and the robustness of 
the MLE under the assumption of 
Student-t distributed innovations is 
questioned. 
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Finally, the residuals are plotted 
against the GED with chosen degree 
of freedom =ν 1.3. 
In this case, the fit is good, which 
indicates that the residuals have a 
heavy-tailed distribution. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Finally, the same MLE procedure is done, but this time under the assumption that the 
innovations are GED. =oα 0.0001, =1α 0.0966 and =1β 0.7235 

 
 
Now, the GARCH(1,1) fit is done 
under the assumption that the 
innovations come from a GED. The 
residuals are calculated and plotted 
against the normal distribution in this 
QQ-plot. 
The fit is poor in the tails. The 
residuals are leptokurtic and a more 
heavy-tailed distribution would 
probably be more appropriate. 
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Secondly, the residuals are plotted 
against the Student-t distribution with 
chosen degree of freedom =ν 20.   
The chosen degree of freedom shows 
that the residuals have a distribution 
close to the Gaussian, except from the 
heavier tails. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, the residuals are plotted 
against the GED with the estimated 
degree of freedom =ν 1.34. 
The fit is good. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimated parameter values: 
Distributional assumption 0α  1α  1β  
Gaussian innovations 0.0001 0.0762 0.7622 
Student-t innovations 0.0001 0.1114 0.7228 
GED innovations 0.0001 0.0966 0.7235 
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7.3.2 Conclusion of Empirical Example 
 
By looking at the estimated parameters for the different distributional assumptions, one 
sees that the estimated parameter values not differ much from each other. This indicates 
that the models are robust.   
 
The plots in the example indicate that the MLE is robust under the assumptions of 
Gaussian and GED distributed innovations. The overall performance for the MLE under 
the assumption of Student-t distributed innovations is yet not convincing.  
Again, we can see the usefulness of the QQ-plots as tools for choosing the right 
distributional assumption for the innovations. 
  
Under the assumption of Gaussian innovations in the MLE, the QQ-plot of the residuals 
plotted against the normal distribution display excess kurtosis. The GED(1.3) fits the 
residuals much better, which indicates that the residuals are leptokurtic. 
Secondly, under the assumption of Student-t innovations in the MLE, the QQ-plot of the 
residuals plotted against the Student-t distribution display a platykurtic distribution. The 
performance of the Student-t modelling is not convincing. Again, the GED(1.3) seems to 
fit the residuals much better. 
Finally, under the assumption of GED innovations in the MLE, the QQ-plot of the 
residuals plotted against the GED shows that the model under GED assumption is robust.  
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7.4 Maximum-Likelihood Value Comparison 
 
Another way of finding the most appropriate model is to look at the negative log-
likelihood value at the maximum point for the different models. A significant larger 
likelihood value for a specific distributional assumption in the MLE indicates that this 
assumption most likely is the best model (better than the other models).  
 
First, we look at simulated data. Different distributional assumptions are used in the 
estimations and the innovations are assumed to have specific distributions.  
 
Negative l(θ *)  for simulated returns with known distribution of the innovations: 
Simulated with: Normal MLE Student-t (ν ) MLE GED (ν ) MLE 
normal innovations 1028.6 1028.8 (35) 1028.8 (1.85) 
t(4) innovations 1057.6 1079.9 (3.6) 1081.1 (1.1) 
t(8) innovations 1104.5 1108.0 (9.4) 1107.6 (1.57) 
GED(1.3) innovations  1034.3 1051.8 (10) 1052.9 (1.14) 
 
Now, we look at empirical data. Here follows a table of maximum negative log-
likelihood-values for different types of financial data estimated with different 
distributional assumptions for the innovations. 
 
Negative l(θ *) (maximum-likelihood values l(θ *)): 
 Normal MLE Student-t (ν ) MLE GED (ν ) MLE 
Ericsson B 820,7 826,2 (11,3) 822,8 (1,7) 
Volvo B 1199,0 1209,0 (6) 1209,4 (1,3) 
OMX-index 1191,1 1193,2 (18) 1191,4 (1,9) 
S&P 500-index 2952,3 2970,5 (7,1) 2972,0 (1,3) 
EUR exchange rate 1789,2 1803,0 (7,5) 1799,6 (1,4) 
GBP exchange rate 1892,8 1901,5 (7) 1905,0 (1,4) 
 
 
7.4.1 Conclusion Maximum-Likelihood Value Comparison 
 
Generally, it is difficult to draw conclusions by looking at the maximum log-likelihood 
values. The log-likelihood values do not differ much, which is an implication of that the 
log-likelihood surface is flat.  
Larger sample sizes could give us more information, but large samples imply problems 
with the stationarity assumption. 
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8 Variance Forecasting 
 
The GARCH-model considered in this thesis assumes that tσ  is a function of the past, 
i.e., 1−tX , 2−tX , … and 1−tσ , 2−tσ , …, and therefore it is in principle known at time t. For 
this reason, tσ  in connection with the distribution of tZ  can be used to give a 
distributional forecast of tX . Assume for example that tZ  is i.i.d. N(0,1). Then 
conditionally on the past values 1−tX , 1−tσ , 2−tX , 2−tσ , …, today’s return tX  has an 
N(0, 2

tσ ) distribution. ( [ ] [ ] [ ] [ ] 0=== ttttt ZEEZEXE σσ ). This allows one to give a 
distributional forecast of the values tX . For example, there is a 95% chance that tX  
assumes values in [-1.96 tσ , 1.96 tσ ]. Hence it is an easy matter to determine the 
conditional VaR (Value at Risk) of the sequence { }tX .  
 
8.1 GARCH(1,1) 
 
Once the parameters of the GARCH-models have been estimated one is interested in the 
variance forecast for the underlying asset. 
For the GARCH(1,1) model (given that 111 <+ βα ), the expected value of the one-
period variance 2

kt+
σ at time t is: 
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Derivation of this formula: 
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With increasing value of k the variance forecast will converge to the unconditional 
variance with the rate 11 βα + :  
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One can easily derive this expression by following arguments for the general 
GARCH(p,q) case: 
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thus, [ ] [ ]22
tt EXE σ=  and stationarity gives: 
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In the graph above, a volatility forecast is done for the OMX-index. As we can see, the 
volatility forecast converges to the unconditional variance. 
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8.2 IGARCH 
 
For the IGARCH(p,q) models ( 1)1()1( =+ βα ), the conditional expectation of the one 
period variance 2

kT +
σ at time T is: 
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9 Multivariate GARCH Models 
 
Recall chapter 3 where different “stylised facts” about financial data were considered. In 
addition to these, it is worth mention another “stylised” fact. In financial data the 
volatilities of different securities very often move together, indicating that there are 
linkages between markets and that some common factors may explain the temporal 
variation in conditional second markets. 
The analysis of many issues in asset pricing and portfolio allocation requires a 
multivariate framework. 
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10 Appendix A 
 
10.1 Stationarity 
 
Definition: { }tX  is (weakly) stationary if 
   (i) [ ]   oft independen is)( tXEt tX =µ  
  and 

(ii) heach for  t oft independen is),(),( thtX XXCovtht +=+γ   
Definition:  { }tX  is a strictly stationary time series if  

( ) ( )´
1

´
1 ,...,,..., hnh

d

n XXXX ++=  

for all integers h and n ≥ 1. (Here 
d

=  is used to indicate that the two 
random vectors have the same joint distribution function.) 

 
10.2 Proof of Corollary: 
 
Strict stationarity implies weak stationarity. (See Theorem in chapter 6.1.1). 
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