
Monte Carlo Simulation With Java and C++

Michael J. Meyer

Copyright c© January 15, 2003

ii

PREFACE

Classes in object oriented programming languages define abstract concepts
which can be arranged in logical hierarchies using class inheritance and
composition. This allows us to implement conceptual frameworks taylored
specifically for the intended domain of application.

Such frameworks have been constructed for application to the most di-
verse areas such as graphical user interface development, database manipula-
tion, data visualization and analysis, networking and distributed computing.

The framework provides the terms in which the problems in its domain
of application should be described and analyzed and the parts from which
solutions can be assembled. The crucial point is the class design, that is,
the definition of concepts of the right degree of generality arranged in the
proper relation to each other. If a good choice is made it will be easy and
pleasant to write efficient code. To create a good design requires a thorough
understanding of the application domain in addition to technical skills in
object oriented programming.

In this regard developers writing code dealing with problems in some
field of mathematics can draw on the enormous effort, sometimes spanning
centuries, made by mathematicians to discover the right concepts and to
polish them to the highest degree of efficiency and elegance. It suggests
itself that one should follow the theoretical development by systematically
defining the mathematical concepts as they occur in the abstract theory.
Object oriented languages make such an approach easy and natural.

In this book we will undertake this program in the field of probability the-
ory. Probability theory has an appeal far beyond mathematics and across all
levels of sophistication. It is too large to admit exhaustive treatment. Con-
sequently this effort must of necessity be partial and fragmentary. The basic
concepts of random variable, conditional expectation, stochastic process

iii

and stopping time are defined and several concrete instances of these notions
implemented. These are then applied to a random assortment of problems.
The main effort is devoted to the pricing and hedging of options written on
liquidly traded securities.

I have credited only sources that I have actually used and apologize to all
authors who feel that their contributions should have been included in the
references. I believe that some of the material is new but no comprehensive
survey of the existing literature has been carried out to ascertain its novelty.

Michael J. Meyer
March 30, 2002

iv

ACKNOWLDEGEMENTS

I am grateful to P. Jaeckel for useful discussion on low discrepancy se-
quences and Bermudan swaptions.

Contents

1 Introduction 1
1.1 Random Variables and Conditional Expectation 3
1.2 Stochastic Processes and Stopping Times 5
1.3 Trading, Options, Interest rates 6
1.4 Low Discrepancy Sequences and Lattice Models 8

2 Random Variables and Expectation 11
2.1 Monte Carlo expectation . 11
2.2 Monte Carlo Variance . 12
2.3 Implementation . 13
2.4 Empirical Distribution . 18
2.5 Random Vectors and Covariance 24
2.6 Monte Carlo estimation of the covariance 26
2.7 C++ implementation. 27
2.8 Control Variates . 29

2.8.1 C++ Implementation. 35

3 Stochastic Processes 37
3.1 Processes and Information . 37
3.2 Path functionals . 39

3.2.1 C++ Implementation 42
3.3 Stopping times . 42
3.4 Random Walks . 44
3.5 Markov Chains . 46
3.6 Optimal Stopping . 54
3.7 Compound Poisson Process 58
3.8 Brownian Motion . 62
3.9 Vector Processes . 63
3.10 Vector Brownian Motion . 65

v

vi CONTENTS

3.11 Asset price processes. 69

4 Markets 75
4.1 Single Asset Markets . 75
4.2 Basic Black-Scholes Asset . 85
4.3 Markov Chain Approximation 88
4.4 Pricing European Options 92
4.5 European Calls . 98
4.6 American Options . 100

4.6.1 Price and optimal exercise in discrete time. 101
4.6.2 Duality, upper and lower bounds. 105
4.6.3 Constructing exercise strategies 108
4.6.4 Recursive exercise policy optimization 113

5 Trading And Hedging 117
5.1 The Gains From Trading . 117
5.2 Hedging European Options 126

5.2.1 Delta hedging and analytic deltas 128
5.2.2 Minimum Variance Deltas 129
5.2.3 Monte Carlo Deltas 132
5.2.4 Quotient Deltas . 134

5.3 Analytic approximations . 134
5.3.1 Analytic minimum variance deltas 135
5.3.2 Analytic quotient deltas 135
5.3.3 Formulas for European calls. 136

5.4 Hedge Implementation . 137
5.5 Hedging the Call . 138

5.5.1 Mean and standard deviation of hedging the call . . . 141
5.5.2 Call hedge statistics as a function of the strike price. . 142
5.5.3 Call hedge statistics as a function of the volatility

hedged against. 145
5.6 Baskets of Assets . 145

5.6.1 Discretization of the time step 148
5.6.2 Trading and Hedging 149

6 The Libor Market Model 155
6.1 Forward Libors . 156
6.2 Dynamics of the forward Libor process 157
6.3 Libors with prescribed factor loadings 160
6.4 Choice of the factor loadings 162

CONTENTS vii

6.5 Discretization of the Libor dynamics 164
6.5.1 Predictor-Corrector algorithm. 165

6.6 Caplet prices . 167
6.7 Swap rates and swaption prices 168
6.8 Libors without drift . 170

6.8.1 Factor loadings of the Libors 172
6.8.2 Caplet prices . 173
6.8.3 Swaption prices . 174
6.8.4 Bond options . 176

6.9 Implementation . 178
6.10 Zero coupon bonds . 178
6.11 Model Calibration . 180

6.11.1 Volatility surface . 180
6.11.2 Correlations . 181
6.11.3 Calibration . 183

6.12 Monte Carlo in the Libor market model 187
6.13 Control variates . 188

6.13.1 Control variates for general Libor derivatives 188
6.13.2 Control variates for special Libor derivatives 190

6.14 Bermudan swaptions . 193

7 The Quasi Monte Carlo Method 197
7.1 Expectations with low discrepancy sequences 197

8 Lattice methods 207
8.1 Lattices for a single variable. 207

8.1.1 Lattice for two variables 210
8.1.2 Lattice for n variables 217

9 Utility Maximization 221
9.1 Introduction . 221

9.1.1 Utility of Money . 221
9.1.2 Utility and Trading 223

9.2 Maximization of Terminal Utility 225

A Matrices 229
A.1 Matrix pseudo square roots 229
A.2 Matrix exponentials . 233

viii CONTENTS

B Multinormal Random Vectors 235
B.1 Simulation . 235
B.2 Conditioning . 236
B.3 Factor analysis . 238

B.3.1 Integration with respect to PY 240

C Martingale Pricing 241
C.1 Numeraire measure . 241
C.2 Change of numeraire. 242
C.3 Exponential integrals . 244
C.4 Option to exchange assests 249
C.5 Ito’s formula . 252

D Optional Sampling Theorem 255
D.1 Optional Sampling Theorem 255

E Notes on the C++ code 257
E.1 Templates . 257
E.2 The C++ classes . 263

List of Figures

2.1 Histogram, N = 2000. 21
2.2 Histogram, N = 100000. 21
2.3 Smoothed histogram, N = 2000. 22
2.4 Smoothed histogram, N = 100000. 22

3.1 Brownian motion, path maximum. 41
3.2 Brownian motion . 67

4.1 Exercise boundary . 110

5.1 Returns . 123
5.2 Borrowings . 124
5.3 Borrowings . 125
5.4 Drawdown . 126
5.5 Returns: averaging down. 127
5.6 Returns: dollar cost averaging. 127
5.7 Hedged call . 140
5.8 Unhedged call . 140
5.9 Hedge standard deviation, µ = 0.3, σ = 0.4 143
5.10 Hedge means, µ = 0.3, σ = 0.4 144
5.11 Hedge standard deviation, µ = 0.8, σ = 0.2 144
5.12 Hedge means, µ = 0.8, σ = 0.2 145
5.13 Hedge standard deviation . 146

7.1 L2-discrepancies in dimension 10. 200
7.2 Relative error (%). 204
7.3 Probability that MT beats Sobol. 205

8.1 lattice . 208
8.2 Et[H] . 209

ix

x LIST OF FIGURES

Chapter 1

Introduction

The theory of random phenomena has always had widespread appeal not
least because of its application to games of chance and speculation. The
fundamental notion is that of the expected value of a bet. The Monte
Carlo method computes this expected value by simulating a large number
of scenarios and averaging the observed payoff of the bet over all scenarios.

The simulation of the scenarios is best accomplished by a computer pro-
gram. Computational power is becoming cheap and programming languages
more powerful and more elegant.

Object orientation in particular repesents a significant advance over pro-
cedural programming. The classes of an object oriented programming lan-
guage allow us replicate the fundamental notions of our domain of applica-
tion in the same order and with the same terminology as in the established
theory. A considerable effort has already been invested to discover the fun-
damental concepts and the most efficient logical organization and we can
take advantage the resulting efficiency.

Such an approach is taken here with regard to elementary probability
theory. The basic notions of random variable, random vector, stochastic
process, optional time, sampling a process at an optional time, conditioning
on information are all replicated and the familiar terminology is maintained.

The reader who is not familiar with all of these notions should not be put
off. Implementation on a finite and discrete computer entails a high degree
of simplification. Everything can be explained again from scratch. For the
most part all that is needed is a basic familiarity with the notion of a random
variable, the Law of Large Numbers and conditioning of a random variable
on information (sigma-fields). Martingales and the stochastic integral are
used in the sections dealing with option pricing and hedging but only in

1

2 CHAPTER 1. INTRODUCTION

routine ways and a superficial familiarity with the subject is sufficient.
The concepts are implemented in Java and C++ with some degree of

overlap but also essential differences. The Java language is chosen because of
the enormous support which the Java platform has to offer for various pur-
poses. The Java code examples in the book all refer to the library martingale
which can be downloaded from http://martingale.berlios.de/Martingale.html. The
Java code is more substantial and provides graphical interfaces and charting
capabilities. The C++ code is limited to Probability, Stochastic Processes
and the Libor market model. There are four different C++ implementa-
tions of a Libor market model with deterministic volatilities and constant
correlations.

From the perspective of numerical computation the code is completely
naive. There is no error analysis or attention paid to roundoff issues in
floating point arithmetic. It is simply hoped that double precision will keep
roundoff errors from exploding. In the case of C++ we can fall back on the
type long double if doubts persist.

The code is also only minimally tested. It is therefore simply not suitable
for commercial application. It is intended for academic experimentation and
entertainment. The target audience are readers who are willing to study the
source code and to change it according to their own preferences.

We will take minor liberties with the way in which the Java code is pre-
sented. To make the presentation more pleasant and the text more readable
member functions of a class might be introduced and defined outside a class
body. This helps us break up large classes into smaller pieces which can be
discussed separately. Moreover not all member functions might be described
in the text. Some classes are quite large containing multiple methods differ-
ing only in their parameter signatures but otherwise essentially similar. In
this case only the simplest method is described in order to illuminate the
principles.

Almost all code examples are given in Java while C++ is shown in case
there is no Java equivalent (templates). In case a Java idiom is not available
in C++ a possible workaround is indicated. The book can be read by a
reader familiar with Java but not with C++. A reader with a background
in C++ can regard the Java code snippets as detailed pseudo code and move
to the C++ source code.

In any case the code examples are not given in complete detail. Instead
the basic principles are illustrated. In particular in the later chapters deal-
ing with American option pricing and the Libor market model fewer code
examples are shown but detailed descriptions of the algorithms are provided.
It is hoped that this will be enough to allow the reader to work through the

1.1. RANDOM VARIABLES AND CONDITIONAL EXPECTATION 3

source code.
The code does not use complicated programming constructs and is lim-

ited to the simple use of class inheritance and composition and the most
basic use of class templates. Here is a brief overview of the topics which will
be covered:

1.1 Random Variables and Conditional Expecta-
tion

A random number generator provides samples from some probability dis-
tribution. A random variable X is much more than this. In addition to
providing samples from its distribution we would expect it to be able to
compute its mean, standard deviation, histograms and other statistics. One
could also imagine operations on random variables (sums, products, etc.)
although we will not implement these.

We should note that a random variable is usually observed in some con-
text which provides increasing information about the distribution of X as
time t increases. Naturally we will want to take advantage of this informa-
tion by sampling from the distribution of X conditioned on all information
available at time t.

The precise nature of this information and how we condition X on it
depends on the particular random variable and is left to each particular im-
plementation. In short we condense all this into the abstract (ie. undefined)
method

public abstract double getValue(int t)

to be intepreted as the next random sample of X conditioned on infor-
mation available at time t. All other methods are defined in terms of the
method getValue(t). To do this we don’t have to know how getValue(t) works.
In order to allocate a concrete random variable we do have to know how this
works however, that is, we have to define the method getValue(t). Time t is
an integer as time proceeds in multiples of a smallest unit, the time step.

The definition of the method getValue(t) can be as simple as a call to
a random number generator, a very fast operation. Frequently however X
is a deterministic function of the path of some stochastic process. In this
case a call X.getValue(t) involves the computation of an entire path of this
process which usually is considerably slower than a call to a random number
generator.

4 CHAPTER 1. INTRODUCTION

Quite often there is no information about X. In this case the parameter
t is simply ignored when the method getValue(t) is defined. In case X is a
deterministic function of the path of some stochastic process the information
available at time t is the realization of this path up to time t.

We can easily condition on this information by simulating only paths
which follow the current path up to time t and then branch off in a random
manner. In other words a call X.getValue(t) computes the next sample of X
from a branch of the current path of the underlying stochastic process where
branching occurs at time t.

The expected value (mean) of X can be approximated by the arithmetic
mean of a large number N of sample values of X. To condition this expecta-
tion on information available at time t we use only samples conditioned on
this information. Thus a simple method to compute this expectation might
read as follows:

public double conditionalExpectation(int t, int N)
{

double sum=0;
for(int j=0; j<n; j++) sum+=getValue(t);
return sum/N;

}

There are a number of reasons why one could want to assemble separate ran-
dom variables into a random vector. As noted above a call to the stochastic
mechanism generating the samples of a random variable can be quite costly
in terms of computational resources. Quite often several distinct random
variables derive their samples (in different ways) from the same underlying
stochastic mechanism.

In this case it is more efficient to introduce the random vector having
these random variables as components and to compute samples for all com-
ponents with a single call to the common stochastic generator.

If we want to compute correlations and covariances we must essentially
proceed in this way. If the random variables are kept separate and sampled
by separate calls to the underlying stochastic generator they will be found
to be independent. In order to preserve correlation samples derived from
the same call to the stochastic generator must be considered. These notions
are considered in Chapter 2.

1.2. STOCHASTIC PROCESSES AND STOPPING TIMES 5

1.2 Stochastic Processes and Stopping Times

Stochastic processes model the development of some random phenomenon
through time. The theory of stochastic processes is quite formidable. Fortu-
nately, in order to be able read this book, it is not necessary to have studied
this theory. Indeed, once simulation becomes the main objective and time
is discretized into multiples of a smallest unit (the time step dt) we find
ourselves in a greatly simplified context. In this context a stochastic process
is a finite sequence

X = (X0, X1, . . . , Xt, . . . , XT), (1.1)

of random variables. Integer time t corresponds to continuous time t ∗ dt,
t = 0, 1, . . . , T and T is the time horizon. The random variable Xt is the
state of the random phenomenon at time t ∗ dt. The outcomes (samples)
associated with the process X are paths of realized values

X0 = x0, X1 = x1, . . . , XT = xT . (1.2)

At any given time t the path of the process has been observed up to time
t, that is, the values X0 = x0, X1 = x1, . . . , Xt = xt have been observed
and this is the information available at time t to contemplate the future
evolution Xt+1 . . . , XT . Conditioning on this information is accomplished
by restricting sampling to paths which follow the realized path up to time
t. These paths are branches of the curent path where branching occurs at
time t.

Random variables τ associated with the process are often deterministic
functions τ = f(X0, X1, . . . , XT) of the path of the process. If such a random
variable τ takes integer values in [0,T] it is called a random time. The
random time τ might be the time at which we need to react to some event
associated with the process X.

At each time t we ask ourselves if it is now time to react, that is, if τ = t.
The information available to decide wether this is the case is the path of the
process X0, X1, . . . , Xt up to time t. We can make the decision if the event
[τ = t] (or more precisely its indicator function 1[τ=t]) is a deterministic
function of the observed values X0, X1, . . . , Xt but not of the future values
Xt+1, . . . , XT , for all t = 0, 1, . . . , T .

In this case the random time τ is called a stopping time or optional time.
The random variable Xτ defined as Xτ = Xt, whenever τ = t, equivalently

Xτ =
∑T

t=0
1[τ=t]Xt (1.3)

6 CHAPTER 1. INTRODUCTION

is called the process X sampled at τ . The value of this random variable is
a crucial quantity as it represents the state of the random phenomenon at
the time of our reaction.

The term stopping time arises from gambling where Xt is the size of the
gamblers fortune after game number t and τ represents a strategy for exiting
the game which relies only on information at hand and not on prevision of
the future.

The notion of sampling a process at an optional time is quite fundamental
and is considered in Chapter 3.

1.3 Trading, Options, Interest rates

Investing in the stock market beats gambling in casinos if for no other reason
than that there is no irrefutable mathematical proof yet that an investor
must necessarily lose at least on average. Casinos on the other hand are
businesses for which profits are assured by solid mathematical theories.

Consider a market in which only two assets are traded, a risky asset
S and the riskfree bond B. The prices S(t), B(t) follow some stochastic
process and the quotient SB(t) = S(t)/B(t) is the price of the asset at time
t discounted back to time t = 0. It is also the price of S expressed in a new
numeraire, the riskfree bond. The unit of account of this new currency is
one share of the risk free bond B. In the new numeraire the risk free rate
of interest for short term borrowing appears to be zero.

Keeping score in discounted prices makes sense as it properly accounts
for the time value of money and prevents the illusion of increasing nominal
amounts of money while inflation is neglected.

Given that a liquidly traded asset S is on hand we might want to engage
in a trading strategy holding w(t) shares of the asset S at time t. The
stochastic process w(t) is called the weight of the asset S. Our portfolio is
rebalanced (ie. the weight w(t) adjusted) in response to events related to the
price path of the asset S. Suppose that trades take place at an increasing
family of random times

0 = τ0 < τ1 < . . . < τn−1 < τn = T, (1.4)

where the number n of trades itself can be a random variable. The dis-
counted gains from trading are of great interest to the trader. These gains
can be viewed as the sum of gains from individual trades buying w(τk) share
of S at time τk and selling them again at time τk+1 (to assume the new po-
sition). Taking account of the fact that the price of the asset S has moved

1.3. TRADING, OPTIONS, INTEREST RATES 7

from S(τk) at time τk to S(τk+1) at time τk+1 this transaction results in a
discounted gain of

w(τk)[SB(τk+1)− SB(τk)] (1.5)

This computation assumes that the asset S pays no dividend and that trad-
ing is not subject to transaction costs. It is however quite easy to add these
features and we will do it in Chapter 4. The total discounted gain from
trading acording to our strategy is then given by the sum

G =
∑n−1

k=0
w(τk)[SB(τk+1)− SB(τk)] (1.6)

The term gain conceals the fact that G is a random variable which may not
be positive. Other than trading in the asset itself we might try to profit
by writing (and selling) an option on the asset S. For the premium which
we receive up front we promise to make a payment to the holder (buyer) of
the option. The size of this payment is random in nature and is a function
of the price path t ∈ [0, T] 7→ S(t). The option contract specifies how the
payment is calculated from the asset price path.

If we write such an option we cannot simply sit back and hope that
the payoff will turn out to be less than the premium received. Instead we
trade in the asset S following a suitable trading strategy (hedge) designed
to provide a gain which offsets the loss from the short position in the option
so that the risk (variance) of the combined position is reduced as much as
possible. If this variance is small enough we can increase the odds of a profit
by shifting the mean of the combined payoff upward. To do this we simply
increase the price at which the option is sold. This assumes of course that
a buyer can be found at such a price.

The hedge tries to replicate the discounted option payoff as the sum
of the option premium and discounted gains from trading according to the
hedging strategy. The central problem here is the computation of the weigths
w(t) of the underlying asset S in the hedging strategy. In Chapter 4 we will
investigate several alternatives and compare the hedge performance in the
case of a European call option.

One could derive the price at which an option is sold from an analysis
of the hedging strategy which one intends to follow and this would seem to
be a prudent approach. In this case there is the possibility that there are
better hedging strategies which allow the option to be sold at a lower price.
No unique option price can be arrived at in this way since every hedging
strategy can be improved by lowering transaction costs. If transaction costs
are zero the hedge can be improved by reacting more quickly to price changes
in the underlying asset S, that is, by trading more often.

8 CHAPTER 1. INTRODUCTION

This leads to the ideal case in which there are no transaction costs and
reaction to price changes is instantaneous, that is, trading is continuous. In
this case and if the asset S satisfies a suitable technical condition the risk
can be eliminated completely (that is the option payoff replicated perfectly)
and a unique option price arrived at.

In fact this price at time t is the conditional expectation of the discounted
option payoff conditioned on information available at time t and computed
not in the probability which controls the realizations of asset price paths (the
so called market probability) but in a related (and equivalent) probability
(the so called risk neutral probability) .

Fortunately for many widely used asset price models it is known how to
simulate paths under this risk neutral probability. The computation of the
ideal option price then is a simple Monte Carlo computation as it is treated
in Chapter 2. In reality an option cannot be sold at this price since trading
in real financial markets incurs transaction costs and instantaneous reaction
to price changes is impossible.

In case the technical condition alluded to above (market completeness) is
not satisfied the pricing and hedging of options becomes considerably more
complicated and will not be treated here.

Very few investors will be willing to put all their eggs into one basket and
invest in one asset S only. In Chapter 5 markets with multiple assets are
introduced and many of the notions from single asset markets generalized
to this new setting.

In Chapter 6 we turn to the modelling of interest rates. Rates of interest
vary with the credit worthiness of the borrower and the time period of the
loan (possibly starting in the future). The system of forward Libor rates is
introduced and the simplest model (deterministic volatilities and constant
correlations) developed. Some interest rate derivatives (swaps, caps, swap-
tions, Bermudan swaptions etc.) are considered also.

1.4 Low Discrepancy Sequences and Lattice Mod-
els

Chapter 7 gives a very brief introduction to the use of low disrepancy se-
quences in the computation of integrals and Monte Carlo expectations.

In Chapter 8 we introduce lattice models. The basic weakness of Monte
Carlo path simulation is the fact the path sample which is generated by
the simulation has no usefull structure. In particular paths do not split to
accomodate the computation of conditional expectations. Such path split-

1.4. LOW DISCREPANCY SEQUENCES AND LATTICE MODELS 9

ting has to be imposed on the sample and leads to astronomical numbers of
paths if repeated splits have to be carried out.

Lattices address this problem by introducing a very compact representa-
tion of a large path sample which is invariant under path splitting at a large
number of times (each time step). This leads to straightforward recursive
computation of conditional expectations at each node in the lattice. This
is very useful for the approximation of American option prices. There is a
drawback however. The lattice can only represent a statistical approxima-
tion of a true path sample. One hopes that the distribution represented by
the lattice converges to the distribution of the underlying process as time
steps converge to zero (and the number of nodes to infinity).

10 CHAPTER 1. INTRODUCTION

Chapter 2

Random Variables and
Expectation

2.1 Monte Carlo expectation

Let X be an integrable random variable with (unknown) mean E(X) = µ
and finite variance V ar(X) = σ2. Our problem is the computation of the
mean µ.

If X1, X2, . . . is a sequence of independent random variables all with the
same distribution as X we can think of the Xj as succesive independent
observations of X or, equivalently, draws from the distribution of X. By the
Law of Large Numbers

X1 +X2 + . . .+Xn

n
→ µ (2.1)

with probability one. Consequently

µ(X,n) :=
X1 +X2 + . . .+Xn

n
(2.2)

is an estimator of the mean µ ofX. This estimator is itself a random variable
with mean µ and variance σ2

n = σ2/n. As a sum of independent random
variables it is approximately normal (Central Limit Theorem). In cases of
interest to us the sample size n will be at least 1000 and mostly considerably
larger. Consequently we can regard µ(X,n) as a normal random variable
without sacrificing much precision. Let N(0, 1) denote a standard normal
variable and N(x) = Prob(N(0, 1) ≤ x) be the standard normal cumulative
distribution function. Then

Prob(|N(0, 1)| < ε) = 2N(ε)− 1 (2.3)

11

12 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

and since σ−1
n (µ(X,n) − µ) is standard normal we have the probabilistic

error estimate

Prob (|µ(X,n)− µ| < ε) = 2N(ε/σn)− 1 (2.4)
= 2N(ε

√
n/σ)− 1. (2.5)

The Monte Carlo method computes the mean µ = E(X) simply as the
sample mean µ(X,n) where n is a suitably large integer. Equation 2.4
shows how the sample size n and variance σ2 control the probability that
the estimate µ(X,n) approximates the mean µ to the desired precision ε.
As the sample size n ↑ ∞ increases, σn = σ/

√
n ↓ 0 decreases and the

probability on the right of 2.4 increases to 1.
Like the mean µ which we are trying to compute, the variance σ2 =

V ar(X) = E(X2)− µ2 is usually itself unknown but it can be estimated by
the sample variance

σ2(X,n) :=
X2

1 +X2
2 + . . .+X2

n

n
− µ(X,n)2. (2.6)

With this we can rewrite 2.4 as

Prob (|µ(X,N)− µ| < ε) = 2N
(
ε
√
n/σ(X,n)

)
− 1. (2.7)

at least to good approximation. In this new equation the quantity on the
right can be computed at each step in a simulation X1, . . . , Xn, . . . of X
which is terminated as soon as the desired confidence level is reached.

Summary. Monte Carlo simulation to compute the mean of a random vari-
able X generates independent draws X1, X2, . . . , Xn from the distribution
of X (observations of X) until either the sample size n hits a predeter-
mined ceiling or reaches a desired level of precision with a desired level of
confidence (2.7) and then computes the mean µ = E(X) as µ = µ(X,n).

If X1, X2, . . . , Xn are independent observations of X and f = f(x) is
any (deterministic) function, then f(X1), f(X2), . . . , f(Xn) are independent
observations of f(X) and consequently the mean E[f(X)] can be approxi-
mated as

E[f(X)] =
f(X1) + f(X2) + . . .+ f(Xn)

n
(2.8)

2.2 Monte Carlo Variance

Motivated by the formula σ2 = V ar(X) = E(X2) − µ2 we have above
estimated the variance by the sample variance

σ2(X,n) :=
X2

1 +X2
2 + . . .+X2

n

n
− µ(X,n)2. (2.9)

2.3. IMPLEMENTATION 13

However this estimator is biased in that E
[
σ2(X,n)

]
6= V ar(X). Observe

that E(XiXj) = E(Xi)E(Xj) = µ2 for i 6= j (by independence) while
E(XiXj) = E(X2), for i = j, to obtain

E
[
µ(X,n)2

]
=

1
n
E(X2)− n− 1

n
µ2

from which it follows that

E
[
σ2(X,n)

]
=
n− 1
n

(
E(X2)− µ2

)
=
n− 1
n

V ar(X).

This can be corrected by using n
n−1σ

2(X,n) as an estimator of V ar(X)
instead. For large sample sizes the difference is negligible.

2.3 Implementation

Let us now think about how the notion of a random variable should be
implemented in an object oriented programming language such as Java.
Section 1.1 was predicated on the ability to generate independent draws
X1, X2,. . . from the distribution of X. On the computer a random number
generator serves this purpose and such random number generators are avail-
able for a wide variety of distributions. Thus we could define

public abstract class RandomVariable {

// a new draw from the distribution of X
public abstract double getValue()
{

//call to appropriate random number generator
return next random number; }

} //end RandomVariable

Exactly which random number generator is called depends on the distribu-
tion of the random variable X. A random variable such as this is nothing
more than a random number generator by another name. Some improve-
ments immediately suggest themselves.

Rarely is a random variable X observed in isolation. More likely X
is observed in some context which provides additional information about
X. As time t passes more and more information is available about the
distribution ofX and one will want to make use it by computing expectations
conditioned on this information rather than unconditional expectations.

14 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

Assume for example that we are simulating some stochastic process
W (t), t = 0, 1, 2, . . . , T . The random variable X could be a functional
(deterministic function) of the path

t ∈ [0, T] 7→W (t).

At any time t this path is already known up to time t, information which we
surely do not want to disregard when contemplating probabilities involving
the random variable X. This leads us to define:

public abstract class RandomVariable {

// a new draw from the distribution of X conditioned on information
// available at time t
public abstract double getValue(int t)

//other methods: conditional expectation, variance,...

} //end RandomVariable

Time is measured in integer units even in the context of continuous time.
A simulation of continuous time typically proceeds in discrete time steps dt
and discrete time t (an integer) then corresponds to continuous time t ∗ dt.

To obtain a concrete random variable we only have to define the method
getValue(int t) which depends on the nature of the random variable X and the
information structure at hand. If there is no context providing additional
information about the distribution of X, the method getValue(int t) simply
does not make use of the parameter t and consequently is independent of t.

Here is how we might define a standard normal random variable (mean
zero, variance one) . To do this we make use of the standard normal random
number generator STN() in the class Statistics.Random:

public class StandardNormalVariable extends RandomVariable{

public abstract double getValue(int t){ return Random.STN(); }

} //end StandardNormalVariable

Once we have the ability to observe X conditioned on information Ft avail-
able at time t we can compute the conditional expectation Et[f(X)] =
E[f(X)|Ft] of any function of X via 2.8.

These expectations include the conditional expectation of X itself, vari-
ance (hence standard deviations), moments, central moments, characteristic

2.3. IMPLEMENTATION 15

function and others. All of these depend on X only through the observa-
tions getValue(t) of X conditioned on information available at time t and
so can already be implemented as member functions of the abstract class
RandomVariable in perfect generality. Ordinary (unconditional) expectations
are computed as conditional expectations at time t = 0. This agrees with
the usual case in which the information available at time t = 0 is trivial.

It’s now time to implement some member functions in the class Ran-

domVariable. Conditional expectations are fundamental and so a variety of
methods will be implemented. The simplest one generates a sample of values
of X of size N and computes the average:

public double conditionalExpectation(int t, int N)
{

double sum=0;
for(int n=0; n<N; n++) sum+=getValue(t);
return sum/N;

}

The ordinary expectation is then given as

public double expectation(int N)
{

return conditionalExpectation(N); }

Remark. The reader familiar with probability theory will remember that
the conditional expectation Et(X) is itself a random variable and might
wonder how we can compute it as a constant. In fact Et(X) is a random
variable when seen from time t = 0 reflecting the uncertainty of the infor-
mation that will have surfaced by time t. At time t however this uncertainty
is resolved and Et(X) becomes a known constant.

In more precise language let Ft denote the σ-field representing the in-
formation available at time t, that is, the σ-field of all events of which it is
known by time t wether they occur or not. Under the unconditional prob-
ability (at time t = 0) events in Ft may have any probability. Under the
conditional probability at time t events in Ft have probability zero or one
and so conditioning on this probability makes random variables constant.

When we call the routine X.conditionalExpectation(t) the parameter t is
current time and so this conditional expectation returns a constant not a
random variable.

The next method increases the sample size N until a certain level of
precision is reached with a certain level of confidence (probability):

16 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

// Continues until precision or N=1,000,000 samples are reached.
public double conditionalExpectation(int t, double precision, double confidence)
{

double sum=0, //X1 +X2 + ...+Xn

sumSquares=0, // X2
1 +X2

2 + ...+X2
n

mean, // current mean
variance, // current sample variance
f=−1000;

int n=0;
for(n=0; n<1000000; n++)
{

double x=getValue(); // x = Xn

sum+=x;
sumSquares+=x * x;

// check for termination every 100 samples
if(n%100==99)
{

mean=sum/n;
variance=sumSquares/n;
f=precision *Math.sqrt(N/variance); // see (2.7)
if(2 * FinMath.N(f)>confidence)) break;

} end if

} // end n

return sum/n;

} // end conditionalExpectation

A variety of other methods suggests itself. Recall that the computation of
an observation of X may not be as simple as a call to a random number
generator. For example in the case of greatest interest to us, the random
variableX is a functional of the path of some stochastic process. Information
available at time t is the state of the path up to time t. To generate a new
observation of X conditional on this information we have to continue the
existing path from time t to the horizon. In other words we have to compute
a new branch of this path, where branching occurs at time t.

Depending on the underlying stochastic process this can be computa-
tionally costly and slow. Thus the Monte Carlo computation of the mean of
X can take hours. In this case we would like know in advance how long we
will have to wait until the computation finishes, that is, we might want to
report projected time to completion to a progress bar. This is possible for
loops with a fixed number N of iterations.

2.3. IMPLEMENTATION 17

For the same reason we should try to minimize calls to the stochastic
mechanism which generates the observations of X. Thus it is more efficient
to compute mean and standard deviation simultaneously in the same method
from the same calls to the underlying mechanism rather than to compute
mean and standard deviation in separate methods (doubling the number of
these calls). The reader is invited to browse the javadoc documentation and
to study the source code.
Groups of dependent observations. So far we have assumed that the obser-
vations of the random variable X are independent. From 2.4 we can see the
influence of the standard deviation σ of X on the error estimate. Clearly
the smaller σ the better. In an attempt to reduce the variance occasionally
one does not generate pairwise independent observations of X. Instead one
generates observations of X in equally sized groups where observations are
independent accross distinct groups but observations within the same group
are not independent.

In this case the observations of X have to be replaced with their group
means (averages). These group means are again independent and have the
same mean (but not the same distribution) as X. To compute the mean of
X we now compute the mean of the group means.

It is hoped that the group means have significantly lower variance than
the observations of X themselves even if we take into account that their
number is far smaller. Obviously we must make sure that the number of
sample groups is still large and sample group means identically distributed
(which they are if all sample groups are generated by succesive calls to the
same stochastic mechanism).

Since the arithmetic average of the group averages is equal to the arith-
metic average of the observations themselves this modus operandi neces-
sitates no adjustment as long as only means are computed. If standard
deviations are computed however the group means must be introduced ex-
plicitly and their standard deviation computed. The standard deviation of
the observations themselves has no significance at all and is related to the
standard deviation of X in ways which depend on the nature of the de-
pendence between observations in the same group and which is generally
unknown.

For a concrete example of this procedure consider the case where X is a
functional of the path of some stochastic process. The method of antithetic
paths generates paths in groups of two paths which are mirror images of each
other in an appropriate sense. Accordingly observations of X come in pairs
which are averaged. We will go into more detail in the study of securities
and options where this and more general methods will be employed.

18 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

Example 1. The Hello World program of Monte Carlo simulation. We
create a random variableX of the typeX = Z2, where Z is standard normal.
Then E(X) = 1 and we will check how close Monte Carlo simulation of
100,000 samples gets us to this value.

The most interesting part of this is the creation of an object of the
abstract class RandomVariable. The definition of the abstract method get-
Value(int t) is provided right where the constructor RandomVariable() is called:

public class MonteCarloTest{

public static void main(String[] args)
{

RandomVariable X=new RandomVariable(){

//the definition of getValue missing in RandomVariable.
public double getValue(int t)
{

double x=Random.STN(); //standard normal random number
return x * x; }

}; //end X

double mean=X.expectation(100000);
System.out.println(”True mean = 1, Monte Carlo mean = ”+mean)

} //end main

} //end MonteCarloTest

2.4 Empirical Distribution

Interesting random variables can be constructed from raw sets of data. As-
sume we have a set of values {x1, x2, . . . , xN } (the data) which are inde-
pendent observations of a random variable X of unknown distribution. The
empirical distribution associated with these data is the probability concen-
trated on the data points in which all the data points are equally likely, that
is, the convex combination

Q =
1
N

∑N

j=1
δ(xj), (2.10)

where δ(xj) is the point mass concentrated at the point xj . In the absence
of other information this is the best guess about the distribution of X.

You may be familiar with the notion of a histogram compiled from a
raw set of data and covering the data range with disjoint intervals (bins).

2.4. EMPIRICAL DISTRIBUTION 19

This simplifies the empirical distribution in that data values in the same bin
are no longer distinguished and a simplified distribution is arrived at where
the possible ”values” are the bins themselves (or associated numbers such
as the interval midpoints) and the bin counts are the relative weights. In
other words you can think of the empirical distribution as the ”histogram”
of the data set with the finest possible granularity.

The empirical random variable X associated with the data set is dis-
tributed according to this empirical distribution. In other words, drawing
samples from X amounts to sampling the data with replacement. This ran-
dom variable is already interesting. Note that there is no information to
condition on and consequently the time parameter t below is ignored;

public class EmpiricalRandomVariable{

int sampleSize; // size of the data set
public int get sampleSize(){ return sampleSize; }

double[] data set; // the data set
public double[] get data set(){ return data set; }

// Constructor
public EmpiricalRandomVariable(double[] data set)
{

this.data set=data set;
sampleSize=data set.length;

}

// the next sample of X, parameter t ingnored
public double getValue(int t)
{

int k=Random.uniform 1.nextIntFromTo(0,sampleSize−1);
return data set[k];

}

} // end EmpiricalRandomvariable

Here Random.uniform 1.nextIntFromTo(0,sampleSize - 1) delivers a uniformly dis-
tributed integer from the interval [0,sampleSize-1]. You would use an empirical
random variable if all you have is a raw source of data. When dealing with
an empirical random variable X we have to destinguish between the size of
the underlying data set and the sizes of samples of X. Once we have the
random variable X we can compute sample sets of arbitrary size. If this size
exceeds the size of the underlying data set all that happens is that values
are drawn repeatedly. However such random oversampling has benefits for

20 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

the resulting empirical distribution as the pictures of histograms computed
in the following example show:

Example 2. We construct a data set of size N=2000 set by drawing from
a standard normal distribution, then allocate the empirical random vari-
able X associated with the sample set and display histograms of sample
sizes N and 50N. Both pure and smoothed histograms are displayed. The
smoothing procedure repeatedly averages neighboring bin heights (see Statis-

tics.BasicHistogram#smoothBinHeights().

public class EmpiricalHistogram{

public static void main(String[] args)
{

int N=2000; // size of data set
int nBins=100; // number of histogram bins

// construct a raw standard normal sample set
double[] data set=new double[N];
for(int i=0; i<N; i++) data set[i]=Random.STN();

// allocate the empirical random variable associatd with this sample set
RandomVariable X=new EmpiricalRandomVariable(data set);

// a histogram of N samples
System.out.println(”displaying histogram of N samples”);
X.displayHistogram(N,nBins);

Thread.currentThread.sleep(3000);

// a histogram of 50N samples
System.out.println(”displaying histogram of 50N samples”);
X.displayHistogram(50*N,nBins);

} // end main

} // end EmpiricalHistogram

The reader should note that a sample of size N of X represents N random
draws from the underlying data set and will thus not reproduce the data set
exactly even if it is of the same size as the data set. With this caveat the
improvement of the shape of the histogram from increasing the sample size
(by resampling) is nonetheless surprising.

Extreme values at both tails of the distribution have been lumped together

2.4. EMPIRICAL DISTRIBUTION 21

- 2.551 - 1.276 0.000 1.276 2.551

0.0

0.6

Figure 2.1: Histogram, N = 2000.

- 2.400 - 1.200 0.000 1.200 2.400

0.0

0.6

Figure 2.2: Histogram, N = 100000.

22 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

- 2.389 - 1.195 0.000 1.195 2.389

0.0

0.4

Figure 2.3: Smoothed histogram, N = 2000.

- 2.400 - 1.200 0.000 1.200 2.400

0.0

0.4

Figure 2.4: Smoothed histogram, N = 100000.

2.4. EMPIRICAL DISTRIBUTION 23

into the outermost displayed bins to keep the range of displayed values
reasonable.

If the data set is small as in our case the results are highly sensitive to
the number of bins used in the histogram. Increase the number of bins to
200 and see how the shape of the histogram deteriorates. 2000 data points
are not enough to increase the resolution of the data range to 200 bins.

24 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

2.5 Random Vectors and Covariance

The class RandomVariable implements methods to compute the variance of a
random variable X but no methods are included to compute the covariance
or correlation of two random variables X, Y (for example in the form
X.covariance(Y)).

The reason for this is simple: in mathematics computation of the covari-
ance Cov(X,Y) assumes that the random variables X, Y are defined on the
same underlying probability space (Ω,F , P) and one then defines

Cov(X,Y) =
∫
Ω
X(ω)Y (ω)P (dω)− E(X)E(Y). (2.11)

Note how in this integral both X and Y are ervaluated at the same state of
nature ω. Correspondingly, when simulated on a computer, the observations
of X and Y must be derived from the same state of the underlying stochastic
generator. This is very hard to ensure when the random variables X and Y
are considered as separate entities.

Naively producing observations of X and Y by repeated calls to their
respective stochastic generators will result in Cov(X,Y) = 0, even if X = Y ,
since repeated calls to one and the same stochastic generator usually produce
independent results.

Thus, to preserve correlation, the random variables X and Y have to be
more tightly linked. One solution is to combine X and Y into a random
vector and to ensure that observations of the components of this random
vector are all computed from the same state of the underlying stochastic
generator.

In other words, covariance and correlation are best implemented as co-
variance and correlation of the components of a random vector. This moti-
vates the introduction of the class

public abstract class RandomVector {

int dim; //dimension
double[] x; //the current sample of X (a vector)

2.5. RANDOM VECTORS AND COVARIANCE 25

//constructor
public RandomVector(int d)
{

dim=d;
double[] x=new double[dim]; }

// the next observation of X
public abstract double[] getValue(int t);

//other methods

} //end RandomVector

A concrete subclass might now define

public double[] getValue(int t)
{

// call to stochastic generator G at time t, then

for(int j=0; j<dim; j++)
{ x[j] is computed from the same state of G for all j; }

return x;

} //end getValue

Exactly what the stochastic generator G delivers at time t depends on the
context and in particular on the evolution of available information with time.

Calls to G can be quite expensive in computational terms. Consider
the case in which the components X are all functionals of the path of a
stochastic process. The information at time t is the realization of a path up
to time t. A new state of G conditioned on information at time t is a new
branch of this path, where branching occurs at time t. In other words a call
to G computes this path forward from time t to the horizon.

Besides ensuring that the correlation between components is preserved
this setup has an advantage over loose collections of random variables even
if we are not interested in correlations: it is more economical to derive new
observations of the components of X from a single call to the underlying
stochastic generator G rather than considering these components in isolation
and making a new call to G for each component.

It would be a bad idea to allocate the array x containing the new obser-
vation of X in the body of getValue via

26 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

double x=new double[dim]
...
return x;

since this would fill up memory with observations of X in short order. In-
stead we write the sample to the class member x[]. The class RandomVector

is quite similar to the class RandomVariable if it is noted that expectations
and standard deviations are computed component by component. Such op-
erations on vectors are implemented in the class Statistics.Vector.java, where
vectors are simply viewed as arrays of doubles. The reader is invited to
browse the javadoc and read the source code.

2.6 Monte Carlo estimation of the covariance

Let (Xj , Yj) be a sequence of independent random vectors all with the same
distribution as the random vector (X,Y) (a sequence of independent obser-
vations of (X,Y)). The formula

Cov(X,Y) = E(XY)− E(X)E(Y)

leads us to estimate the covariance Cov(X,Y) by the sample covariance

Cov(X,Y, n) =
X1Y1 +X2Y2 + . . .+XnYn

n
− µ(X,n)µ(Y, n), where

µ(X,n) =
X1 +X2 + . . .+Xn

n
.

This neglects the fact that µ(X,n) is only an estimate for the expectation
E(X). In consequence the estimator Cov(X,Y, n) is biased, ie. it does not
satisfy E(Cov(X,Y, n)) = Cov(X,Y). Indeed, observing that E(XiYj) =
E(Xi)E(Yj) = E(X)E(Y) for i 6= j (by independence) while E(XiYi) =
E(XY), for i = j, we obtain

E [µ(X,n)µ(Y, n)] =
1
n
E(XY) +

n− 1
n

E(X)E(Y)

from which it follows that

E [Cov(X,Y, n)] =
n− 1
n

(E(XY)− E(X)E(Y)) =
n− 1
n

Cov(X,Y).

This can be corrected by using n
n−1Cov(X,Y, n) as an estimator of Cov(X,Y)

instead. For large sample sizes the difference is negligible. In pseudo code

2.7. C++ IMPLEMENTATION. 27

mean X=(X1 +X2 + . . .+Xn)/n;
mean Y=(Y1 + Y2 + . . .+ Yn)/n;
mean XY=(X1Y1 +X2Y2 + . . .+XnYn)/n;
Cov(X,Y)=mean XY−mean X * mean Y;

2.7 C++ implementation.

Note how Java has forced us to treat the cases of random variables and
random vectors separately even though these concepts are very similar and
differ only in the type of the observed values. In the case of a random variable
these values are numbers, in the case of a random vector they are vectors.

It would be desirable to treat these two as special cases of a “random
variable” with values of an arbitrary type. Such a random quantity is called
a random object in probability theory.

C++ templates answer this very purpose. A class template can depend
on a number of template parameters which are types. To obtain a class from
the template these parameters are then specified at compile time (possibly
in the form of type definitions).

With this we can write much more concise code while simultaneously
increasing its scope. We can allow a random variable X to take values of
arbitrary type RangeType. This type merely needs to support the operators
+=(RangeType&) and /=(int) needed to perform the calculations in computing
an average. This allows for complex valued random variables, vector valued
random variables, matrix valued random variables etc.

In the case of a random vector we want to compute covariance matrices.
This assumes that RangeType is a vector type and supports the subscript-
ing operator ScalarType operator[](int i) which computes the components of a
RangeType object. Here ScalarType is the type of these components.

We can choose the basic number type Real (typedef long double Real;) as
the default for both RangeType and ScalarType and define

template〈typename RangeType=Real, typename ScalarType=Real〉
class RandomObject {

// a new draw from the distribution of X
virtual Real nextValue() = 0;

//other methods: expectation, variance, covariance matrix...

}; //end RandomObject

28 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

One of the advantages of C++ class templates is the fact that a template
class method is not instantiated unless it is actually used. This means
that the class template RandomObject can be coded assuming all manner of
features for the types RangeType, ScalarType such as operator *=(RangeType&)

needed for variances, operator *=(ScalarType&) needed for covariances and a
subscripting operator

ScalarType operator[](int i)

on RangeType needed for the covariance matrix and you can instantiate the
template with types that do not support these features. No error will result
unless you call methods which actually need them.

The type ScalarType comes into play only as the range type of the sub-
scripting operator in case RangeType is a vector type. No such subscripting
operator needs to be defined and ScalarType can become the default in case
no covariances or covariance matrix are computed. With this we can define
all sorts of random objects

typedef Complex std::complex;
typedef Vector std::vector;

// Real valued random variables (RangeType, ScalarType are the default Real)
typedef RandomObject<> RandomVariable;

// Complex valued random variables (ScalarType plays no role)
typedef RandomObject< Complex > ComplexRandomVariable;

// Real random vector (ScalarType is the default Real)
typedef RandomObject< Vector<Real> > RandomVector;

// Complex random vector
typedef RandomObject< Vector<Complex>, Complex >
ComplexRandomVector;

Note the absence of time t as a parameter to nextValue(), that is, there
is no notion of time and information and the ability to condition on infor-
mation available at time t is no longer built in. This reduces the number of
class methods. It is still possible to condition on information in a suitable
context by defining the method nextValue() so as to deliver observations al-
ready conditioned on that information. This is only a minor inconvenience
and the C++ class PathFunctional below implements conditioning in a fairly
general context.

2.8. CONTROL VARIATES 29

2.8 Control Variates

From the probabilistic error estimate 2.4 it can be seen that there are two
ways in which to decrease the probabilistic error: increase the sample size
n or decrease the standard deviation σ of X.

The sample size n is always chosen as large as the computational budget
will allow so that variance reduction is usually the only remaining option.
Of course the random variable X has a certain variance which we cannot
alter to suit our purpose. We can however replace the random variable X
with any other random variable X̃ which is known to satisfy E(X̃) = E(X)
and then compute the expectation of X̃ instead.

Means of groups of dependent observations of X is one possible replac-
ment for X mentioned above. In this case nothing is usually known about
the degree of variance reduction. On the other hand any random variable
X̃ satisfying E(X̃) = E(X) has the form

X̃ = X + β(E(Y)− Y), (2.12)

where Y is some random variable and β a constant. In fact we can choose
β = 1 and Y = X − X̃ in which case E(Y) = 0. Conversely any random
variable X̃ of the form 2.12 satisfies E(X̃) = E(X) and so can serve as a
proxy for X when computing the mean of X. We can easily compute the
variance of X̃ as

V ar(X̃) = V ar(X − βY) = V ar(X)− 2βCov(X,Y) + β2V ar(Y). (2.13)

As a function of β this is a quadratic polynomial assuming its minimum at

β = Cov(X,Y)/V ar(Y), (2.14)

the so called beta coefficient (corresponding to X and Y). Note that β can
be rewritten as

β = ρ(X,Y)σ(X)/σ(Y), (2.15)

where σ(X), σ(Y) denote the standard deviations of X, Y respectively and
ρ(X,Y) = Cov(X,Y)/σ(X)σ(Y) denotes the correlation of X and Y . En-
tering this into 2.13 computes the variance of X̃ as

V ar(X̃) = (1− ρ2(X,Y))V ar(X) ≤ V ar(X). (2.16)

Replacing X with X̃ defined by 2.13, 2.14 reduces the variance and the
variance reduction is the greater the more closely X and Y are correlated

30 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

(or anticorrelated). The random variable Y is called a control variate for
X.

To see how the control variate Y works to reduce the variance in X
assume first that Y is highly correlated with X (ρ(X,Y) ' 1). Then β > 0
and if X overshoots its mean then so will Y and the term β(E(Y)− Y) in
(2.12) is negative and corrects the error in X. The same is true if X samples
below its mean.

If X and Y are highly anticorrelated (ρ(X,Y) ' −1), then β < 0 and if
X overshoots its mean Y is likely to sample below its mean and the term
β(E(Y)−Y) is again negative and corrects the error in X. The same is true
if X samples below its mean.

Note carefully that we must have the mean E(Y) of the control variate
to be able to define X̃. Consequently a random variable Y is useful as a
control variate for X only if it is

• highly correlated (or anticorrelated) with X and
• the mean E(Y) is known or more easily computed than E(X).

As we have seen in section 1.3 care must be taken to preserve the correlation
of X and Y . Given a sample of X the control variate must deliver a sample
of Y corresponding to this selfsame sample of X ie. produced by the same
call to the underlying stochastic generator.

A practical way to ensure this is to combine the random variable X
and its control variate into one entity similar to a two dimensional random
vector. However we cannot simply extend the class RandomVector since ex-
pectations of random vectors are computed component by component while
a control variate for X is not used by computing its expectation separately
and combining it with the mean of X into a vector. This leads to:

2.8. CONTROL VARIATES 31

public abstract class ControlledRandomVariable{

final int nBeta=2000; // number of samples used for the beta coefficient

public abstract double[] getValue(int t);
public abstract double getControlVariateMean(int t);

//other methods

} //end ControlledRandomVariable

Here double[] is a double[2] with getValue(t)[0] being the next observation of
X and getValue(t)[1] the corresponding observation of the control variate Y
conditioned on information available at time t. In other words a concrete
subclass might define:

public double[] getValue(int t)
{

// call the stochastic generator G at time t
double x=..., //observation of X computed from the new state of G

y=...; //observation of Y computed from the same state of G
return new double[] {x,y};

}

It is best to avoid the creation of the new doubles[] by writing to preallocated
workspace. The ”other methods” will primarily be composed of methods
computing the expectation of X using the control variate Y but in order
to do so we must first compute the beta coefficient β = Cov(X,Y)/V ar(Y)
from (2.14). Here it is conditioned on information available at time t and
computed from a sample of size N :

public double betaCoefficient(int t, int N)
{

double sum X=0, sum Y=0, sum XX=0, sum XY=0;
for(int n=0; n<N; n++)
{

double[] d=getControlledValue(t); double x=d[0], y=d[1];
sum X+=x; sum Y+=y; sum XX+=x * x; sum XY+=x * y; }

return (N * sum XY− sum X * sum Y)/(N * sum XX− sum X * sum X);

} //end betaCoefficient

32 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

The unconditional version calls the conditional version at time t = 0 and is
distinguished from the conditional version by the parameter signature.

Recall how the control variate is used in the computation of the mean of
X: conditioning on all information available at time we replace the random
variable X with the random variable Xc = X + β(t)(Et(Y) − Y) which
has the same conditional mean as X but lower variance. Here Y is the
control variate and β(t) = Covt(X,Y)/V art(X) the beta coefficient (both
conditioned on all information available at time t).

Thus it is useful to have a member function controlled X which allocates
this random variable. We let current time t be a parameter of controlled X.
Thus the unconditional mean of controlled X corresponds to the conditional
mean of X:

public RandomVariable controlled X(int t)
{

final double beta=betaCoefficient(t,nBeta), // beta coefficient
mean y=getControlVariateMean(t); // control variate mean

// allocate and return the random variable Xc = X + β(t)(Et(Y)− Y)
return new RandomVariable(){
{

public double getValue(int t)
{

double[] value control variate pair=getControlledValue(t);

double x=value control variate pair[0], // sample of X
y=value control variate pair[1]; // control variate

return x+beta * (mean y− y);

} // end getValue

}; // end return new

} // end controlled X

With this the conditional expectation at time t computed from a sample of
size N becomes:

public double conditionalExpectation(int t, int N)
{

return controlled X(t).expectation(N);
}

and the ordinary expectation calls this at time t = 0:

2.8. CONTROL VARIATES 33

public double expectation(int N){ return conditionalExpectation(0,N); }

All other methods to compute the expectation of X using its control variate
follow a similar pattern. Recall that the measure of the quality of a control
variate for X is the degree of correlation with X. Since in general we will
have to experiment to find a suitable control variate it is useful to implement
a method computing this correlation. All that is necessary is to allocate X
and its control variate Y as a two dimensional random vector. We can then
draw on methods from RandomVector to compute the correlation between
the components. Note how the abstract class RandomVector is instantiated
on the fly:

public double correlationWithControlVariate(int t, int N)
{

// X and its control variate as a 2 dimensional random vector
RandomVector X=new RandomVector(2){

public double[] getValue(int t){ return getControlledValue(t); }

}; // end X

return X.conditionalCorrelation(0,1,t,N);

} // end correlationWithControlVariate

As usual the unconditional version calls this at time t = 0. Random vari-
ables will become more interesting in the context of stochastic processes.
These will be introduced in the next chapter. At present our examples are
admittedly somewhat contrived:

Example 2. We allocate a random variable X of the form X = U + εN ,
where U is uniform on [0, 1], N standard normal and independent of U and
ε = 0.1. Clearly then E(X) = 0.5. As a control variate for X we use
Y = U − εN . The correlation of X and Y is then given by ρ = ρ(X,Y) =
(1−12ε2)/(1+12ε2) = 0.78571. Consequently V ar(X̃) = (1−ρ2)V ar(X) =
0.3826 ∗ V ar(X) , a 72% reduction in variance.

We compute the correlation of X with its control variate and the mean
of X, both with and without using the control variate, from a sample of 100
observations of X. The sample size is chosen so small to allow the control
variate to show greater effect.

The uniform and standard normal random numbers are delivered by the
static methods U1() and STN() of the class Statistics.Random:

34 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

public class CVTest1{

public static void main(String[] args)
{

int nSamples=100; // sample size

// X without control variate
RandomVariable X=new RandomVariable(){

public double getValue(int t)
{

double U=Random.U1(), // uniform in [0,1]
N=Random.STN(), // standard normal
e=0.1;
return U+e *N;

}// end getValue

}; //end X

//Monte Carlo mean without control variate
double mean=X.expectation(nSamples);
//messages to report the findings...

// X with control variate
ControlledRandomVariable Xc=new ControlledRandomVariable(){

public double[] getControlledValue(int t)
{

double U=Random.U1(), // uniform in [0,1]
N=Random.STN(), // standard normal
e=0.1,
x=U+e * N, // X
y=U−e * N; // control variate Y

double[] result={x,y};
return result;

} // end getControlledValue

public double getControlVariateMean(int t){return 0.5;}

}; //end Xc

//correlation of X with control variate
double rho=Xc.correlationWithControlVariate(20000);

//Monte Carlo mean with control variate
mean=Xc.expectation(nSamples);

2.8. CONTROL VARIATES 35

//messages to report the findings...

} // end main

} // end CVTest1

If you run this code (Examples.ControlVariate.ControlVariateTest 1.java) you
should get 0.5481 for the uncontrolled mean and 0.5051 for the controlled
mean. The correlation of X with the control variate is computed as 0.7833
(from 20000 samples). This assumes that you have not tinkered with the
random number generators in the class Statistics.Random. The results depend
on the state of the random number generator.

If you increase the sample size you can find cases where the uncontrolled
mean is closer to the true mean than the controlled mean. There is nothing
wrong with that. The results are after all ”random”. The probabilistic error
bound 2.4 provides confidence intervals but we have no information exactly
where the results will actually fall. They may not even be in the confidence
interval.

Exercise. Increase the sample size to 10000 and embed this computation
in a loop over 50 iterations to see how often the controlled mean beats
the uncontrolled mean. You might want to remove the computation of the
correlation of X with its control variate.

2.8.1 C++ Implementation.

Some differences between Java and C++ now come to the surface. In C++
we can use private inheritance to implement a ControlledRandomVariable as
a two dimensional random vector and this approach will not be apparent
to users of the class. On the other hand we lose some handy Java idioms.
For example the instantiation of an abstract class by defining the abstract
methods in the body of the constructor call:

public abstract class AbstractClass {

public abstract void doSomething();

};

36 CHAPTER 2. RANDOM VARIABLES AND EXPECTATION

// some method somewhere
public AbstractClass foo() {

return new AbstractClass(args) {

//define doSomething here
public void doSomething(){ /* definition */ }

}; // end return new

} // end foo

no longer works and we have to officially define the type TheConcreteClass

which the method foo intends to return by derivation from AbstractClass.
Moreover quite likely foo will be a method in a class OuterClass and we could
want to define TheConcreteClass as an inner class of OuterClass:

class OuterClass {

class TheConcreteClass : public AbstractClass
{ /* definition */ };

AbstractClass* foo(){ return new TheConcreteClass(args); }

};

In Java TheConcreteClass is aware of its enclosing class OuterClass and can
make use of class methods and fields. Not so in C++. We have to hand a
pointer to OuterClass to the constructor of the TheConcreteClass and call this
constructor with the this pointer of OuterClass. This is more akward than
the Java solution but other features of C++ more than make up for these
shortcomings.

Chapter 3

Stochastic Processes and
Stopping Times

3.1 Processes and Information

A random phenomenon is observed through time and Xt is the state of the
phenomenon at time t. On a computer time passes in discrete units (the
size of the time step). This makes time t an integer variable and leads to a
sequential stochastic process

X = (X0, X1, . . . , Xt, . . . , XT), (3.1)

where T is the horizon. The outcomes (samples) associated with the process
X are paths of realized values

X0 = x0, X1 = x1, . . . , XT = xT , (3.2)

and it is not inappropriate to view the process X as a path valued random
variable. The generation of sample paths consists of the computation of a
path starting from x0 at time t = 0 to the horizon t = T according to the
laws followed by the process.

The most elementary step in this procedure is the single time step which
computes Xt+1 from the values Xu, u ≤ t. The computation of an entire
path is then merely a sequence of time steps.

At any given time t the path of the process has been observed up to time
t, that is, the values

X0 = x0, X1 = x1, . . . , Xt = xt, (3.3)

37

38 CHAPTER 3. STOCHASTIC PROCESSES

have been observed and this is the information available at time t to contem-
plate the future evolution Xt+1 . . . , XT . Conditioning on this information
is accomplished by restricting ourselves to paths which follow the realized
path up to time t. These paths are branches of the realized path where
branching occurs at time t.

This suggests that the basic path computation is the computation of
branches of an existing path, that is, the continuation of this path from the
time t of branching to the horizon. A full path is then simply a path branch
at time zero:

public abstract class StochasticProcess{

int T; // time steps to horizon
double dt; // size of time step
double x0; // initial value
double[] path; // path array

//constructor
public StochasticProcess(int T, double dt, double x0)
{

this.T=T;
this.dt=dt;
this.x0=x0;
path=new double[T+1]; // allocate the path array
path[0]=x0; // intialize

} // end constructor

// Compute path[t+1] from path[u], u≤t.
public abstract void timeStep(int t);

public void newPathBranch(int t){ for(int u=t;u<T;u++)timeStep(u); }
public void newPathBranch(){ newPathBranch(0); }

// other methods

} // end StochasticProcess

Clearly the repeated calls to timeStep in newPathBranch introduce some com-
putational overhead which one may want to eliminate for fastest possible
performance. Note that the above methods provide default implementa-
tions which you are free to override in any subclass with your own more
efficient methods if desired.

Exactly how the time step is accomplished depends of course on the na-
ture of the process and is defined accordingly in every concrete subclass. The

3.2. PATH FUNCTIONALS 39

method timeStep is the only abstract method of the class StochasticProcess.
All other methods can be implemented in terms of timeStep.

This means that a concrete stochastic process can be defined simply by
defining the method timeStep and all the methods of StochasticProcess are
immediately available. Here is how we could allocate a constant process
starting at x0 = 5 with T=1000 steps to the horizon and time step dt = 1
without officially introducing a new class extending StochasticProcess. The
method timeStep is defined in the body of the constructor call:

int T=1000,
double dt=1,

x0=5;

StochasticProcess constantProcess=new StochasticProcess(T,dt,x0){

//define the timeStep
public void timeStep(int t){ path[t+1]=path[t]; }

} // end constantProcess

3.2 Path functionals

A stochastic process X = X(t) provides a context of time and information
such that conditioning on this information has a natural interpretation and
is easily implemented on a computer.

The random variables which can be conditioned are the functionals
(deterministic functions) of the path of the process, that is, random variables
H of the form

H = f(X) = f(X0, X1, . . . , XT), (3.4)

where f is some (deterministic) function on RT . With the above interpre-
tation of information and conditioning we would define a path functional as
follows:

public abstract class PathFunctional extends RandomVariable{

StochasticProcess underlyingProcess;

// constructor
public PathFunctional(StochasticProcess underlyingProcess)
{

this.underlyingProcess=underlyingProcess;
}

40 CHAPTER 3. STOCHASTIC PROCESSES

// The value of the functional (this) computed from the
// current path of the underlying process

public abstract double valueAlongCurrentPath();

// New sample of H (this) conditioned on information
// available at time t.
public double getValue(int t)
{

// branch the current path (the information) at time t
underlyingProcess.newPathBranch(t);
return valueAlongCurrentPath();

}

} // end PathFunctional

A particular such functional is the maximumX∗
T = maxt≤T X(t) of a process

along its path which we might implement as follows:

public class MaximumPathFunctional extends PathFunctional{

// constructor
public MaximumPathFunctional(StochasticProcess underlyingProcess)
{ super(underlyingProcess); }

// Computing the value from the current path
public double valueAlongCurrentPath()
{

double[] path=underlyingProcess.get path(); // the path
double currentMax=underlyingProcess.get X 0(); // starting value
int T=underlyingProcess.get T(); // time steps to horizon

for(int s=0; s<=T; s++)
if(path[s]>currentMax)currentMax=path[s];
return currentMax;

}

} // end MaximumPathFunctional

With this we can now easily compute a histogram of the maximum of a
standard Brownian motion starting at zero:

3.2. PATH FUNCTIONALS 41

0.000 0.552 1.105 1.657 2.209 2.761

0.0

2.0

Figure 3.1: Brownian motion, path maximum.

public class PathFunctionalHistogram extends MaximumPathFunctional{

// constructor, allocates maximum functional of a Brownian motion
public PathFunctionalHistogram()
{ super(new BrownianMotion(100,0.01,0)); }

// Display the histogram of such a functional
// over 200,000 paths using 100 bins.
public static void main(String[] args)
{

new PathFunctionalHistogram().displayHistogram(200000,100);
}

} // end PathFunctionalHistogram

Since our Brownian motion W starts at zero the path maximum is nonega-
tive and it is zero with the exact probability with whichW stays non positive
along its entire path. Extreme values at the right tail of the distribution
have been lumped together into the last displayed bin to limit the range of
displayed values.

This example is provided only to illustrate principles. In the chapters on
financial applications we will see more interesting examples: asset prices are
stochastic processes and the gains from trading are functionals of the asset
price paths in which we will be very interested.

42 CHAPTER 3. STOCHASTIC PROCESSES

3.2.1 C++ Implementation

Recall that the C++ code does not implement conditioning as a feature of
random variables. Instead this feature is implemented in the class PathFunc-

tional. Indeed path functionals are exactly the random variables for which
we have a context of information and a natural way of conditioning on this
information. The class PathFunctional has a method conditionedAt(int t) which
returns the path functional as a random object conditioned on the state of
the path at time t. The use of templates allows us to have path functionals
with values in arbitrary types which support the algebraic structure needed
by the RangeType of RandomObject. For example we can have vector valued
or matrix valued path functionals.

3.3 Stopping times

A path functional τ = f(X0, X1, . . . , XT) of the stochastic process X which
takes integer values in [0,T] it is called a random time. It is called a stopping
time (optional time) if at each time t we can decide wether τ = t on the
basis of the history of the path up to time t and without using the future
Xt+1, . . . , XT . In more mathematical parlance the indicator function 1[τ=t]

of the event [τ = t] must be a determistic function gt(X0, X1, . . . , Xt) of the
path u ∈ [0, t] → Xu.

The term ”stopping time” is derived from the field of gambling. The
variable Xt might represent the cumulative winnings (possibly negative) of
the gambler at time t. A systematic gambler will have a rule to decide at
each time t wether it is now time to quit the game or wether one should keep
playing. Since most gamblers are not in a position to influence the future of
the game nor equipped with the power of clairvoyance such a rule must be
based on the history of the game alone.

An example of a random time which is not a stopping time is the first
time τ at which the path t ∈ [0, T] → Xt hits its maximum. In general,
at any given time t < T we do not know wether the maximum has already
been hit.

Natural examples of stopping times include hitting times (the first time
a process enters a given region), first exit times (the first time a process
leaves a given region) or, more applied, various sell or buy signals in the
stock market, where stock prices are regarded as stochastic processes.

We might be watching the process X waiting until some event occurs.
At time τ of the first occurence of the event (τ = T if the event fails to
occur) some action is planned. The state of the process X at the time of

3.3. STOPPING TIMES 43

this action is the random variable

Xτ =
∑T

t=0
1[τ=t]Xt, (3.5)

equivalently Xτ = Xt whenever τ = t, and is called the process X sampled
at time τ . If we have a stake in the process X the random variable Xτ

is of obvious significance. Consider the case where the Xt represents the
cumulative winnings of a gambler at time t and τ is a quitting rule. Xτ are
the final winnings (not necessarily positive) which the gambler takes home.

Recall that time is an integer variable t = 0, 1, . . . , T , where T is the
horizon. If the stochastic process X is a discretization of a process evolving
in continuous time, the size dt of the time step is significant. In this case
discrete time t corresponds to continuous time t ∗ dt. Here is the definition
of a stopping time:

public interface StoppingTime{

// Returns true if it is time to stop at t,
// false otherwise.
public abstract boolean stop(int t);

} //end StoppingTime

We have already seen that the fundamental path computation is the contin-
uation of a path s ∈ [0, t] → X(s) from time t to the horizon T . Sometimes
however we only want to continue a path to some stopping time τ rather
than the horizon. In this case we also need to retrieve the time τ . This
is why the following method has return type integer rather than void. It
returns the time τ and also computes the path forward from time t to time
τ ≥ t:

public int pathSegment(int t, StoppingTime tau)
{

int s=t;
while(!tau.stop(s)){ timeStep(s); s++; }
return s;

}

and the usual version of computing an entirely new path up to time τ :

public int pathSegment(StoppingTime tau){ return pathSegment(0,tau); }

With this we are set to compute the random variable Xτ (the process X
sampled at time τ):

44 CHAPTER 3. STOCHASTIC PROCESSES

RandomVariable bfseries sampledAt(final StoppingTime tau)
{

return new RandomVariable(){

// the random draw defining X tau
public double getValue(int t)
{

int s=pathSegment(t,tau);
return path[s];

}

}; //end return new

} //end sampledAt

Let us now introduce some concrete stochastic processes:

3.4 Random Walks

Betting repeatedly one dollar on the throw of a coin the cumulative winnings
Xt after game t+ 1 have the form

Xt = W0 +W1 + . . .+Wt, (3.6)

where the Wj are independent and identically distributed, Wj = +1 with
probability p and Wj = −1 with probability 1 − p. This game is fair if
p = 1/2 (symmetric random walk) and subfair if p < 1/2 (biased random
walk). The case p > 1/2 is of interest only to the operator of the casino.

To implement this we use the static method Sign(double p) of the class
Statistics.Random which delivers a random draw from {−1,+1} equal to +1
with probability p and equal to −1 with probability 1− p:

public class BiasedRandomWalk extends StochasticProcess{

double p; // probability of success

// constructor, time step dt=1
public BiasedRandomWalk(int T, double x0, double p)
{ super(T,1,x0); this.p=p; }

// the time step
public void timeStep(int t){ path[t+1]=path[t]+Random.Sign(p); }

} //end BiasedRandomWalk

3.4. RANDOM WALKS 45

The case of the symmetric random walk is the special case p=1/2 but has
its own implementation relying on the method Random.Sign() producing a
fair draw from {−1,+1}.

Example 1. (Examples.Probability.GamblersFortune.java) Let us now check how
we would fare playing this game following some stopping rules. We plan to
play until we are 5 dollars ahead or 100 dollars down or until 20000 games
have been played whichever comes first. Let τ denote the corresponding
stopping time. Since we intend to play no more than 20000 games we can
set up the random walk with horizon T = 20000. To make this realistic
we bias the random walk with odds 0.499/0.501 against us. What we are
interested in are the expected winnings E(Xτ) under this stopping rule:

public class GamblersFortune{

public static void main(String[] args)
{

int T=20000; //time steps to horizon
double x0=0.0; //initial value

// the process of winnings
final BiasedRandomWalk X=new BiasedRandomWalk(T,x0,0.499);

// here’s the quitting rule
StoppingTime tau=new StoppingTime(){

public boolean stop(int t)
{ return ((t==20000) | | (X.path[t]==+5) | | (X.path[t]==−100)); }

}; //end tau

// the winnings, X sampled at tau
RandomVariable X tau=X.sampledAt(tau);

// expected winnings, sample size 50000
double E=X tau.expectation(50000);

//message reporting findings...

} //end main

} // end GamblersFortune

The random walk X is declared final since the stopping rule tau is introduced
as a local class and such a class can only make use of final local variables.

46 CHAPTER 3. STOCHASTIC PROCESSES

Exercise. Using the above stopping rule and probability of success de-
termine with which probability we are wiped out with losses of 100 dollars.
Hint: compute this probability as the expectation E(Y), where Y is the
indicator function of the event [Xτ = −100]. You have to define the random
variable Y . The solution is in the file Examples.Probability.GamblersFortune.java.

3.5 Markov Chains

A Markov chain is a sequential stochastic process X (dt = 1) with range
Xt ∈ { 0, 1, 2, . . .}. The process is completely specified by its initial state
j0 and the transition probabilities q(t,i,j), the probability at time t that
a transition is made from state i to state j. It is understood that this
probability only depends on time t and the current state i but not on the
history of the path up to time t.

More precisely q(t,i,j) is the conditional probability at time t that the
next state is j given that the current state is i. This suggests the following
setup:

public abstract class MarkovChain extends StochasticProcess{

// Constructor, time step dt=1
public MarkovChain(int T, double j0){ super(T,1,j0); }

// transition probabilities
public abstract double q(int t, int i, int j);

// other methods

} // end MarkovChain

The constructor calls the constructor for StochasticProcess which allocates
and initializes the path array with x0=j0 (the initial state). T is the number
of time steps to the horizon and the size of the time step dt is set equal to
one.

The transition kernel q(int t, int i, int j) is the only abstract method. A
Markov X chain is defined as soon as this method is defined. In order to
make X concrete as a stochastic process all we have to do is define the
method timeStep(int t) of StochasticProcess from the transition probabilities
q(t,i,j).

The transition from one state to another is handled as follows: assume
that current time is t and the current state is i. We partition the interval

3.5. MARKOV CHAINS 47

[0,1) into subintervals I0, I1, . . . of respective lengths q(t,i,0), q(t,i,1),. . . , that
is, the probabilities that the chain will transition to state 0,1,. . . . We then
draw a uniform random number u from [0,1). If u falls into the interval
Ij the chain moves to state j. The following method computes this state j
from i and u:

private int j(int t, int i, double u)
{

int j=0; double sum=0;
while(sum<u){ sum+=q(t,i,j); j++; }
return j−1;

} // end j

With this we can now define the timeStep(int t) as follows:

public void timeStep(int t)
{

int i=(int)path[t]; //current state
double u=Random.U1(); //uniform draw from [0,1)
path[t+1]=j(t,i,u); //next state

} // end timeStep

Remember that a stochastic process stores its path in an array of doubles

whereas the states of a Markov chain are integers. The conversion from
integer to double is not a problem and is handled automatically but the con-
version from double to integer makes an explicit type cast int i=(int)path[t];

necessary.
The class MarkovChain has been designed for convenience but not for

computational efficiency. If there are only a finite number N of states and
the transition probabilities are independent of time t, the Markov chain is
called a stationary finite state (SFS) Markov chain .

For such a chain the sampling can be sped up considerably. Assume
that the possible states are j = 0, 1, . . . , N −1 and set q(i, j) = q(t, i, j). We
introduce two more abstract methods

private int a(int i);
private int b(int i);

with the understanding that only the states j with a(i) ≤ j ≤ b(i) can
be reached from the state i in one step. Introducing these quantities as
methods allows us to conveniently define them in the body of a constructor
call. Since calls to the functions a(i),b(i) carry some overhead we introduce

48 CHAPTER 3. STOCHASTIC PROCESSES

arrays a[],b[] to cache the values a(i), b(i). This allows us to retrieve these
values more quickly as a[i],b[i] if necessary.
Fix a state i. To sample from the conditional distribution

P [X(t+ 1) = j | X(t) = i] = q(i, j)

partition the unit interval [0, 1) into subintervals I(i, j) of length q(i, j),

I(i, j) = [I(i, j), I(i, j) + q(i, j)), where

I(i, j) =
∑j−1

k=a(i)
q(i, k), j = a(i), . . . , b(i).

Then draw a uniform random number u ∈ [0, 1) and transition to the state j
satisfying u ∈ I(i, j). To speed up computations the points of the partitions
are precomputed and stored as I(i, j) =partition[i][j−a[i]]. Note the baseline
subtraction in the second argument. The method

private int I(int i, int j){ return partition[i][j−a[i]]; }

then allows us to work with the more familiar syntax. The search for the
index j(i, u) = j such that u ∈ I(i, j) can then be conducted more efficiently
using continued bisection as follows:

private int j(int t, int i, double u)
{

int j=a[i], k=b[i]+1, m;
while(k−j>1){ m=(k+j)/2; if(I(i,m)>u) k=m; else j=m; }
return j;

}

Thus we can introduce stationary finite state Markov chains as follows:

public class SFSMarkovChain extends MarkovChain{

int N; // number of states

double[][] partition; // partition of [0,1) conditional on X(t)=i

public SFSMarkovChain(int T, int j0, double[][] Q) // constructor
{ /* see below */ }

public abstract double q(int i, int j); // transition probabilities
private abstract int a(int i); // bounds for states j reachable
private abstract int b(int i); // from state i in one step

3.5. MARKOV CHAINS 49

private int j(int i, double u){ /* as above */ }

public void timeStep(int t)
{

int i=(int)path[t]; //current state
double u=Random.U1(); //uniform draw from [0,1)
path[t+1]=j(i,u); //next state

}

} // end SFSMarkovChain

The method timeStep(int t) overrides the corresponding method in the super-
class MarkovChain and so leads to faster path computation. The construc-
tor performs the necessary initializations. With T being the number of time
steps to the horizon, j0 the state at time t = 0 and N the number of states
the constructor assumes the form

public SFSMarkovChain(int T, int j0, int N)
{

super(T,j0); // allocate MarkovChain
this.N=N; // possible states j = 0, 1, . . . , N -1
a=new int[N];
b=new int[N];
partition=new double[N][];

for(int i=0; i<N; i++)
{

a[i]=a(i); b[i]=b(i);
int ni=b(i)−a(i)+2; // number of indices a(i) ≤ j ≤ b(i) + 1
partition[i]=new double[ni];
double sum=0;
for(int j=0; j<ni; j++){ partition[i][j]=sum; sum+=q(i,j+a(i)); }

} // end for i

} // end constructor

Example 2. (Examples.Probability.GambersFortune1) Let us revisit our gambler
who bets 1 dollar on the throw of a coin biased 0.49/0.51 against her. This
time she starts with 6 dollars and intends to play until she has 10 dollars
or until she is wiped out or until 2000 games have been played whichever
occurs first.

Her fortune can be modelled as a Markov chain with states 0,...,10
and absorbing barriers 0 and 10, that is, transition probabilities q(t,0,0)=1

and q(t,10,10)=1. The other transition probabilities are q(t,i,i−1)=0.51 and
q(t,i,i+1)=0.49. All others are zero.

50 CHAPTER 3. STOCHASTIC PROCESSES

We know that our chainX will eventually hit the barrier and be absorbed
there. In other words, the chain settles down at an equilibrium distribution
on the set {0, 1, ..., 10} of states which is concentrated at the barrier {0, 10}.
If T is sufficiently large this equilibrium distribution can be approximated
as the vector of probabilities

(P (XT = j))j=0,...,10 (3.7)

and this in turn is the expectation of the random vector

F = (1[XT =j])j=0,...,10, (3.8)

that is, all coordinates of F are zero except Fj = 1 for j = XT . The following
program allocates the corresponding Markov chain and the random vector
(3.8) and computes the equilibrium distribution as its expectation over 20000
paths. At time T = 2000 most paths will have hit the barrier already that
is we can take T = 2000 as the horizon and expect to be close the the
theoretical equilibrium distribution which is concentrated at 0 and 10 with
the probabilities of total loss and success respectively:

3.5. MARKOV CHAINS 51

public class GamblersFortune1{

public static void main(String[] args)
{

//allocate fortune as a Markov chain
final int T=2000; // time steps to horizon
double j0=6; // initial fortune

final double p=0.49; // probability of success

// allocate a MarkovChain
final MarkovChain X=new MarkovChain(T,j0){

// define the transition probabilities q(t,i,j)
public double q(int t, int i, int j)
{

if((i==0) && (j==0)) return 1;
if ((i==10) && (j==10)) return 1;
if((i>0) && (i<10) && (j==i−1)) return 1-p;
if((i>0) && (i<10) && (j==i+1)) return p;
return 0; // all other cases

}

}; // end X

// allocate the random vector F above
RandomVector F=new RandomVector(11){

public double[] getValue(int t)
{

double[] x=new double[11], path=X.get path();
X.newPathBranch(t);
x[(int)path[T]]=1; // all other components zero
return x;

} // end getValue

}; // end F

// expectation of F over 10000 paths
double[] Q=F.expectation(10000);

// print the Q[j], j=0,..,10;

} // end main

} // end GamblersFortune 1

The reason why some of the above variables are declared final is the fact that

52 CHAPTER 3. STOCHASTIC PROCESSES

local classes such as X and F above can only use local variables if they are
final.

Example 3. (Examples.Probability.Urns) Consider two urns. The first urn is
filled with N white balls. The second urn is filled with M black balls. The
following operation is now performed repeatedly: from each urn a ball is
selected at random and the two balls exchanged. This procedure leaves the
number of balls in each urn unchanged.

We expect that eventually white (w) and black (b) balls will be mixed in
proportion N : M in both urns. To check this we let Xt denote the number
of white balls in the first urn immediately before the exchange number t+1.
Thus X0 = N .

Assume that Xt = i. Then we have i white balls in the first urn and
N − i white balls in the second urn. Setting

p1 =
i

N
, q1 = 1− p1 and p2 =

N − i

M
, q2 = 1− p2 (3.9)

we have the following probabilities for selection (w/b) of the pair of balls
from the two urns:

Prob((w,w)) = p1p2, P rob((b, b)) = q1q2,

P rob((w, b)) = p1q2, P rob((b, w)) = q1p2.

Consequently the possible transitions for Xt are as follows: unchanged with
probability p1p2 + q1q2, decrease by one with probability p1q2, increase by
one with probability q1p2.

Let us now allocate this Markov chain with horizon T=1000 and N=100,
M=200. At the horizon we expect one third of all balls in each urn to be
white. In other words we expect E(XT) = 100/3. This will be checked over
a sample of 2000 paths:

3.5. MARKOV CHAINS 53

public class Urns{

public static void main(String[] args)
{

final int N=100, // balls in urn1
M=200, // balls in urn2
T=1000, // horizon
j0=100; // initial state

//allocate the Markov chain (number of balls in urn1)
final MarkovChain X=new MarkovChain(T,j0){

// define the transition probabilities
public double q(int t, int i, int j)
{

double fi=(double)i,
p 1=fi/N, q 1=1−p 1,
p 2=(N−fi)/M, q 2=1−p 2;

if((i>=0) && (i<=N) && (j==i)) return p 1 * p 2+q 1 * q 2;
if((i>0) && (i<=N) && (j==i-1)) return p 1 * q 2;
if((i>= 0) && (i<N) && (j==i+1)) return q 1 * p 2;
return 0; // all other case

}

}; // end X

// allocate the random variable X T
RandomVariable X T=new RandomVariable(){

public double getValue(int t)
{

double[] x=X.get path();
X.newPathBranch(t); return x[T];

}

}; // end X T

// compute the expectation E(X T) over a sample of 20000 paths
double E=X T.expectation(2000);

// message to report the findings

} // end main

} // end Urns

54 CHAPTER 3. STOCHASTIC PROCESSES

Our Markov chain has only finitely many states and time independent transi-
tion probabilities. Thus we could also allocate it as an SFSMarkovChain. The
program Examples.Probability.Urns does both and times both computations.
The improved sampling in SFSMarkovChain leads to a tenfold speedup.

3.6 Optimal Stopping

Let X(t), t = 0, 1, . . . , T be a stochastic process and Ft the information
generated by the process up to time t, that is the σ-field generated by the
path

path(t) : u ∈ [0, t] 7→ X(u), (3.10)

and Et denote the conditional expectation with respect to Ft. A game is
played as follows: at each time t a player can decide to stop and receive a
reward R(t) or to continue in hopes of a greater future reward. Here the
reward R(t) is assumed to be a random variable which depends only on
the path of the process X up to time t, that is, a deterministic function of
path(t).

Let Z(t) denote the expected optimal reward at time t given that the
game has not been stopped yet. At time t we can either stop with reward
R(t) or continue and receive the expected optimal reward Et[Z(t+ 1)] and
we suspect that the optimal strategy will stop at time t if R(t) ≥ Et[Z(t+1)]
and continue otherwise.

This leads us to define the process Z(t) by backward induction on t as

Z(T) = R(T) and
Z(t) = max{R(t), Et[Z(t+ 1)] }, t < T ;

and we claim that the stopping time

τ0 = min{ t ∈ [0, T] | R(t) = Z(t) } (3.11)

is optimal , that is,
E[R(τ0)] ≥ E[R(τ)], (3.12)

for all stopping times τ with values in {0, 1, . . . , T}. Here it is understood
that τ0 = T if the event R(t) = Z(t) never happens. The proof relies on
elementary properties of supermartingales (the Optional Sampling Theorem
in the Appendix). Note first that

Z(t) ≥ Et[Z(t+ 1)],

3.6. OPTIMAL STOPPING 55

that is, Z(t) is a supermartingale. Moreover Z(t) ≥ R(t). It will now suffice
to show that

E[R(τ0)] = Z(0),

since the Optional Sampling Theorem for supermartingales implies that
Z(0) ≥ E[Z(τ)] ≥ E[R(τ)] for all stopping time τ with values in { 0, 1, . . . , T }
and so E[R(τ0)] ≥ E[R(τ)].

To set up a proof by backward induction on t we introduce the stopping
times τt defined as

τt = min{ s ≥ t | R(s) = Z(s) } (3.13)

and claim that more generally

Et(R(τt)) = Z(t), for all t ≤ T. (3.14)

This is certainly the case for t = T since then τt = T . Assume that t < T
and (3.14) is true if t is replaced with t+ 1. Let A be the event [τt = t] and
B = Ac = [τt > t]. The set A is Ft-measurable. This implies that random
variables U , V satisfying U = V on A will also satisfy Et(U) = Et(V) on A:

1AEt(U) = Et(1AU) = Et(1AV) = 1AEt(V)

and the same is true of the set B. On the set A we have R(t) = Z(t) and
so R(τt) = R(t) = Z(t). On the set B we have τt = τt+1 and R(t) < Z(t)
and consequently Z(t) = Et[Z(t+ 1)]. Thus Et[R(τt)] = Z(t) on A and

Et[R(τt)] = Et[R(τt+1)] = Et [Et+1[(R(τt+1)]] = Et[Z(t+ 1)] = Z(t)

on B, by induction hypothesis. Consequently Et[R(τt)] = Z(t) everywhere
(more precisely with probability one).

Continuation value. In implementations it is often best to think in terms of
the continuation value CV (t) defined recursively as

CV (T) = 0, and (3.15)
CV (t) = Et [max{R(t+ 1), CV (t+ 1) }] , t < T.

An easy backward induction on t then shows that

Z(t) = max{R(t), CV (t) }

and the optimal stopping time τ0 assumes the form

τ0 = min{ t ∈ [0, T] | R(t) ≥ CV (t) }

56 CHAPTER 3. STOCHASTIC PROCESSES

again with the understanding that τ0 = T if the event R(t) ≥ CV (t) never
happens. In other words it is optimal to stop as soon as the immediate
reward is no less than the continuation value. Substituting the defining
expressions for CV (t+1), CV (t+2), ... until we hit CV (T) = 0, the contin-
uation value at time t assumes the form

CV (t) = Et[max{ R(t+ 1), Et+1[max{. . . ET−1[R(T)]}] . . .]. (3.16)

In principle the iterated conditional expectations can be computed with the
Monte Carlo method by repeatedly branching paths. Suppose we branch 104

times for each conditional expectation. After the fifth conditional expecta-
tion we are already computing 1020 path branches which themselves continue
to split for each remaining conditional expectation. Such a computation is
not feasible on contemporary computing equipment.

Markov chains. The situation becomes manageable however if X(t) is
a Markov chain. In this case conditioning on the information generated by
the process X up to time t is the same as conditioning on the state X(t) at
time t and so all conditional expectations Et(·) are deterministic functions
f(X(t)) of the state X(t) = 0, 1, 2, . . . at time t.

Let R(t, j) and CV (t, j) denote the reward and continuation value at
time t given that Xt = j. Then relation (3.15) can be rewritten as

CV (t, i) =
∑

j
q(t, i, j)max{ R(t+ 1, j), CV (t+ 1, j) } (3.17)

where R(t+1, j) is the reward for stopping at time given that X(t+1) = j.
The sum in (3.17) needs to be computed only over all states j which can
be reached from the current state i in one step (that is q(t, i, j) 6= 0). Let
a(t, i), b(t, i) be such that

{ j : q(t, i, j) 6= 0 } ⊆ [a(t, i), b(t, i)]. (3.18)

Then (3.17) can be rewritten as

CV (t, i) =
∑b(t,i)

j=a(t,i)
q(t, i, j)max{ R(t+ 1, j), CV (t+ 1, j) } (3.19)

The Markov chain X starts at time zero in some definite state X0 = j0 but
as time progresses the number of possible states for X(t) increases. From
the quantities b(t, i) above we can compute u(t) such that

X(t) ∈ [0, u(t)], (3.20)

3.6. OPTIMAL STOPPING 57

that is, X(t) must be in one of the states j = 0, 1, . . . , u(t), as follows:

u(0) = j0, and (3.21)
u(t+ 1) = max{ b(t, j) : j ≤ u(t) }. (3.22)

Note that all these quantities depend only on the intial state X(0) = j0,
the transition probabilities q(t, i, j) and the reward function R(t, i) and so
can be computed without any path simulation. These computations can
therefore be relegated to the constructor of the following class:

public abstract class StoppableMarkovChain extends MarkovChain{

// possible states at time t: j=0,1,...,u[t]
int[] u;

// [t][i]: continuation value at time t in state i
double[][] continuationValue;

// optimal stopping time with respect to the reward function
StoppingTime optimalStoppingTime;

// reward from stopping at time t in state i
public abstract double reward(int t,int i);

// only states j>=a(t,i) can be reached from state i at time t in one step
public abstract int a(int t,int i);

// only states j<=b(t,i) can be reached from state i at time t in one step
public abstract int b(int t,int i);

// constructor, T time steps to horizon, j0 state at time zero
public StoppableMarkovChain(int T, double j0)
{

super(T,j0); // the constructor for MarkovChain

// possible states i at time t: i=0,1,...,u[t]
u[0]=(int)j0;
for(int t=0; t<T; t++)
{

u[t+1]=b(t,0);
for(int i=1; i<=u[t]; i++)
if(b(t,i)>u[t+1]) u[t+1]=b(t,i);

}

// continuation value at time t=T
for(int j=0; j<=u[T]; j++) continuationValue[T][j]=0;

// continuation value at times t<T

58 CHAPTER 3. STOCHASTIC PROCESSES

for(int t=T−1; t>= 0; t−−)
for(int i=0; i<=u[t]; i++) // loop over all possible states at time t
{

// sum over all possible states j which can be reached
// from state i at time t in one step
double sum=0;
for(int j=a(t,i); j<=b(t,i); j++)
{

double x=reward(t+1,j),
y=continuationValue[t+1][j],
max=(x>y)? x:y; //max{x,y}

sum+=q(t,i,j) * max;
}

} // end for t

// allocate the optimal stopping time
optimalStoppingTime=new StoppingTime(){

public boolean stop(int t)
{

int i=(int)path[t]; // current state
return(reward(t,i)>=continuationValue[t][i]);

} // end stop

}; // end optimalStoppingTime

} // end constructor

} // end StoppableMarkovChain

3.7 Compound Poisson Process

Let X be a random variable and N(t) a Poisson process. Recall that N(t)
can be viewed as the number of events that have occured by time t given
that the number of events occuring in disjoint time intervals are independent
and

Prob(N(t+ h)−N(t) = 1 | Ft) = λh+ o(h) and (3.23)
Prob(N(t+ h)−N(t) ≥ 2 | Ft)) = o(h), (3.24)

where Ft is the information generated by the process N(t) up to time t and
λ is a constant (the intensity of the process).

In this case the number N(t+ h)−N(t) of events occuring in the time
interval (t, t+ h] is a Poisson variable with mean λh, that is, it takes values

3.7. COMPOUND POISSON PROCESS 59

in the nonnegative integers with probabilities

Prob(N(t+ h)−N(t) = k) = e−λh (λh)k

k!
, k = 0, 1, 2, ... (3.25)

Let X0, X1, ... be a sequence of independent random variables all with the
same distribution as X. The process

CP (t) =
∑N(t)

k=0
Xk (3.26)

is called the compound Poisson process with intensity λ and event size X.
Think of these events as insurance claims and the Xk the size of the claims.
The compound Poisson process then represents the sum of all claims received
by time t.

After implementing a Poisson random variable in the obvious way relying
on a Poisson random number generator we can define the compound Poisson
process as follows:

public class CompoundPoissonProcess extends StochasticProcess{

double lambda; // intensity
RandomVariable X; // event size
RandomVariable N; // number of events in [t, t+dt], needed for time step.

// constructor
public CompoundPoissonProcess
(int T, double dt, double x0, double lambda, RandomVariable X)
{

super(T,dt,x0);
this.lambda=lambda;
this.X=X;
N=new PoissonVariable(lambda * dt);

} // end constructor

public void timeStep(int t)
{

int n=(int)N.getValue(0);
double sum=0;
for(int i=0; i<n; i++) sum+=X.getValue(0);
path[t+1]=path[t]+sum;

} // end timeStep

} // end CompoundPoissonProcess

It is known that E(N(t)) = λt (expected number of claims) and E(CP (t)) =
λtE(X) (expected total of claims). The insurance company collects premi-
ums leading to a cash flow of µt and has initial capital c0. Assuming that

60 CHAPTER 3. STOCHASTIC PROCESSES

claims are paid on the spot, c0 + (µ − λ)t is the expected cash position at
time t while the actual cash position is given by

c0 + µt− CP (t). (3.27)

The fundamental problem is that of ruin , ie. the possibility that CP (t) >
c0 + µt when claims can no longer be paid:

Example 4. (Examples.Probability.Insurance) What is the probability of ruin
before time T*dt (dt the size of the time step, T the number of time steps to
the horizon) given thatX = Z2, where Z is standard normal (then E(X)=1),
λ = 100, µ = (1 + 1/10)λE(X) and c0 = 50:

public class Insurance{

public static void main(String[] args)
{

final int T=500; // horizon
final double dt=0.01, // time step

lambda=100, // claim intensity
x0=0, // claims at time t=0
c0=30; // initial capital

final RandomVariable X=new RandomVariable(){

public double getValue(int t)
{

double z=Random.STN();
return z * z;

}

}; // end X

// premium rate, yes we know it’s λ * 1.1 here
final double mu=1.1 * lambda * X.expectation(20000);

// aggregate claims
final CompoundPoissonProcess
CP=new CompoundPoissonProcess(T,dt,x0,lambda,X);

3.7. COMPOUND POISSON PROCESS 61

// the time of ruin
final StoppingTime tau=new StoppingTime(){

public boolean stop(int t)
{

double[] claims=CP.get path();
return ((claims[t]>c 0+t * dt * mu) | | (t==T));

}

}; // end tau

// the indicator function of the event [τ < T] of ruin
RandomVariable ruin=new RandomVariable(){

public double getValue(int t)
{

// path computation and value of stopping time
int s=CP.pathSegment(t,tau);
if(s<T) return 1;
return 0;

} // end getValue

}; // end ruin

// probability of ruin, 20000 paths
double q=ruin.expectation(20000);

// message reporting findings

} // end main

} // end Insurance

62 CHAPTER 3. STOCHASTIC PROCESSES

3.8 One Dimensional Brownian Motion

A one dimensional Brownian motion is a continuous stochastic process W (t)
with increments W (t + h) −W (t) independent of the information (σ-field)
generated by the process up to time t and normally distributed with mean
zero and variance h, in other words

W (t+ h)−W (t) =
√
h Z, (3.28)

where Z is a standard normal variable (mean zero, variance one). This pro-
ces is fundamental in the theory of continuous martingales and has wide-
pread applicability outside of mathematics such as for example in finance
theory. Many stock market speculators have made the acquaintance of Brow-
nian motion and one hopes without regrets.

Remember that the constructor of each subclass of StochasticProcess must
call the constructor of StochasticProcess to pass the parameters T (time
steps to horizon), dt (size of time step) and x0 (initial value) so that the
path array can be allocated and initialized:

public class BrownianMotion extends StochasticProcess{

double sqrtdt; // compute this only once in the constructor

// constructor
public BrownianMotion(int T, double dt, double x0)
{

super(T,dt,x0);
sqrtdt=Math.sqrt(dt);

}

// Random.STN() delivers a standard normal deviate
public void timeStep(int t)
{

path[t+1]=path[t]+sqrtdt*Random.STN();
}

} // end BrownianMotion

We will see an application of Brwonian motion in dimension two after vec-
torial stochastic processes have been introduced in the next section:

3.9. VECTOR PROCESSES 63

3.9 Vector Valued Stochastic processes

The case of a vector valued stochastic process X is completely analogous to
the case of a scalar process. The path array now has the form

double[][] path;

with the understanding that path[t] is the vector Xt, that is, the state of the
process at time t, represented as an array of doubles. Clearly the dimension
of the process will be a member field and necessary argument to the con-
structor. If τ is a stopping time, then Xτ is now a random vector instead of
a random variable:

public abstract class VectorProcess{

int dim; // dimension
int T; // time steps to horizon
double dt; // size of time step

double[] x0; // initial value (a vector)
double[][] path; // path array, path[t]=Xt (a vector)

// constructor (call from concrete subclass)
public VectorProcess(int dim, int T, double dt, double[] x0)
{

this.dim=dim;
this.T=T;
this.dt=dt;
this.x0=x0;
path=new double[T+1][dim]; //allocate the path array
path[0]=x0;

} // end constructor

// other methods

} // end VectorProcess

The other methods are similar to those in the case of a one dimensional
process. For example here is how we sample such a process at an optional
time:

64 CHAPTER 3. STOCHASTIC PROCESSES

// the random vector Xτ

RandomVector sampledAt(final StoppingTime tau)
{

return new RandomVector(dim){

// the random draw defining Xτ

public double[] getValue(int t)
{

// compute a new path branch from time t to the time
// s=tau of stopping and get the time s.
int s=pathSegment(t,tau);
return path[s];

} // end getValue

}; // end return new

} // end sampledAt

The constructor of a concrete subclass of VectorProcess must call the con-
structor of VectorProcess (super(T,dt,x0,dim)) to pass the parameters
T,dt,x0,dim so that the path array can be properly allocated and initialized.

Hitting times. Let X be a stochastic process with values in Rd. There are
some important stopping times associated with the process X. If G ⊆ Rd is
a region (open or closed sets are sufficient for us) then the hitting time τG
is the first time at which the process enters the region G or more precisely

τG = inf{ t > 0 | Xt ∈ G }.

The first exit time is the first time the process leaves the region G, that is,
the hitting time of the complement Gc. If the process X has continuous
paths and X0 6∈ G, then X(τG) ∈ boundary(G). To implement this concept
we must first implement the concept of a region G ⊆ Rd. A point x viewed
as an array of doubles is either in the region D or it is not:

public interface Region nD{

public abstract boolean isMember(double[] x);

} // end Region nD

With this a hitting time needs a process X and a region G:

3.10. VECTOR BROWNIAN MOTION 65

public class HittingTime nD implements StoppingTime{

VectorProcess X;
Region nD D;

/** constructor */
public HittingTime nD(VectorProcess X, Region nD D)
{

this.X=X;
this.G=G;

}

// define the method stop()
public boolean stop(int t)
{

int T=X.get T();
return((D.isMember(X.path[t])) | | (t==T));

}

} // end HittingTime nD

3.10 Brownian Motion in Several Dimensions

A d-dimensional Brownian motion is a d-dimensional stochastic process

Xt = (X1
t , X

2
t , . . . , X

d
t)

such that each coordinate process Xj
t , j = 1, . . . , d, is a one dimensional

Brownian motion and such that the coordinate processes are independent.
With the fields T,dt,x0,dim inherited from StochasticProcess it can be imple-
mented as follows:

public class VectorBrownianMotion extends VectorProcess{

double sqrtdt; // compute this only once in the constructor

// constructor
public VectorBrownianMotion(int dim, int T, double dt, double[] x0)
{

super(dim,T,dt,x0);
sqrtdt=Math.sqrt(dt);

}

66 CHAPTER 3. STOCHASTIC PROCESSES

// Random.STN() generates a standard normal deviate.
public void timeStep(int t)
{

for(int i=0; i<dim; i++)
path[t+1][i]=path[t][i]+sqrtdt * Random.STN();

}

} // end VectorBrownianMotion

Example 5. Dirichlet’s problem. (Examples.Probability.DirichletProblem) Let
G ⊆ Rd be a bounded region and h a continuous function on the boundary
of G. We seek to extend h to a harmonic function on all of G, that is, we
want to solve the partial differential equation

∇f = 0 in the interior of G (3.29)
f = h on the boundary of G (3.30)

If f is a solution of 3.29 and 3.30 and Bt a d-dimensional Brownian motion
starting at some point x ∈ G it can be shown that the process f(Bt) is
a martingale up to the time τ when Bt hits the boundary of G (it is not
defined thereafter). In other words τ is the first exit time from G. From the
Optional Sampling Theorem and the fact that B0 = x is constant it follows
that

f(x) = E(f(B0)) = E(f(Bτ)) = E(h(Bτ)). (3.31)

Note that f(Bτ)) = h(Bτ) since Bτ ∈ boundary(G). This suggests that
one could try to solve (3.29) and (3.30) by starting a Brownian motion
Bt at points x ∈ G and computing the solution f at such a point x as
f(x) = E(h(Bτ)), where τ is the time at which Bt hits the boundary of G.

The following program carries out this idea in dimension d = 2 with G
being the unit disc x2

1 +x2
2 < 1 and the boundary function h(x1, x2) = x1x2.

This function is harmonic on the entire plane and so the solution f of (3.29)
and (3.30) is also given by the formula f(x1, x2) = x1x2. As the point x we
choose x = (x1, x2) = (1/4, 1/4) and consequently f(x) = 1/16.

Below we see a Brownian motion launched at the origin inside the disc
(Examples.Probability.DirichletDemo):

Our discrete approximation of Brownian motion does not exactly hit the
boundary of the disc but crosses it and then stops. To get back to the
boundary we project the first point u outside the disc back onto the circle
to the point u/||u||. Obviously this is a source of inaccuracy.

3.10. VECTOR BROWNIAN MOTION 67

Figure 3.2: Brownian motion

public class DirichletProblem{

// projects the point (u,v) radially on the unit circle
public static double[] boundaryProjection(double[] x)
{

double u=x[0], v=x[1], f=Math.sqrt(u * u+v * v);
double[] result={ u/f,v/f };
return result;

}

public static void main (String[] args)
{

int T=50000; //time steps to horizon
int dim=2; //dimension
double dt=0.001; //size of time step

double[] x={ 0.25,0.25 }; //starting point

// allocate a two dimensional Brownian motion starting at x
final VectorBrownianMotion B=new VectorBrownianMotion(dim,T,dt,x);

// define the unit disc as a two dimensional region
Region nD disc=new Region nD(){

public boolean isMember(double[] z)
{ return z[0] * z[0]+z[1] * z[1]<1; }

68 CHAPTER 3. STOCHASTIC PROCESSES

}; // end disc

// allocate the hitting time for the boundary
final FirstExitTime nD tau=new FirstExitTime nD(B,disc);

// allocate the random variable h(B tau)
RandomVariable hB tau=new RandomVariable(){

public double getValue(int t)
{

double[] z=boundaryProjection(B.sampledAt(tau).getValue(t));
double u=z[0], v=z[1];
return u * v;

} // end getValue

}; // end hB tau

//compute f(x)=E(h(B tau)) over 40000 paths
//this should be 0.25 * 0.25=0.0625
double fx=hB tau.expectation(40000);

// message to report the findings

} // end main

} // end DirichletProblem

The computation does not slow down very much as the dimension increases
since Brownian motion in higher dimensions moves out to infinity faster and
thus hits the boundary more quickly. Note that the time step dt has to be
chosen small enough to ensure accuracy when hitting the boundary and the
horizon T large enough to ensure that the Brownian path does in fact reach
the boundary of the disc.

The C++ implementation is somewhat more developed. It has a more
accurate algorithm to determine the point where the boundary is hit and
also allows for more general regions (DirichletProblem.h) in any arbitrary di-
mension.

3.11. ASSET PRICE PROCESSES. 69

3.11 Asset price processes.

Processes which model the prices in a financial market are often assumed to
satisfy a dynamics of the form

dSi(t) = Si(t) [µi(t)dt+ νi(s) · dW (t)] ,
Si(0) = si > 0, t ∈ [0, T], i = 1, . . . , n,

where W is a n-dimensional Brownian motion, the drift µi(t) and the vector
νi(t) are deterministic (state independent), µi is absolutely integrable on
[0, T] and ∫ T

0
‖νi(t)‖2dt <∞.

Let us write

σi(t) = ‖νi(t)‖, ui(t) = ‖νi(t)‖−1νi(t), and ρij(t) = ui(t) · uj(t).

Then
νi(t) = σi(t)ui(t) and νi(t) · νj(t) = σi(t)σj(t)ρij(t).

There are some standard simplifications which can now be applied. The
above dynamics implies that the process Si is positive and passing to the
logarithms Yi = log(Si) (the “returns” on the asset Si) turns (3.32) into

dYi(t) =
(
µi(t)−

1
2
σ2

i (t)
)
dt+ νi(t) · dW (t) (3.32)

where the drift term is deterministic and this implies that

Yi(t) = E[Yi(t)] + Vi(t), where Vi(t) =
∫ t

0
νi(s) · dW (s)

and E[Yi(t)] is Y (0) plus the deterministic drift up to time t:

E[Yi(t)] = Y (0) +
∫ t

0

(
µi(s)−

1
2
σ2

i (s)
)
ds.

In concrete asset price models the functions µi(t) and σi(t) are given explic-
itly and thus the quantities E[Yi(t)] can be computed by analytic formula
and need not be simulated. Consequently we have to concern ourselves only
with the Ito processes Vi(t) which satisfy

dVi(t) = νi(t) · dW (t). (3.33)

70 CHAPTER 3. STOCHASTIC PROCESSES

From these the asset prices Si(t) are reconstructed as

Si(t) = exp (E[Yi(t)] + Vi(t)) .

Expanding (3.33) in terms of the components of W yields

dVi(t) =
∑n

k=1
νjk(t)dWk(t).

The components Wk(s) of the Brownian motion will be called the factors
and the vectors νi the factor loadings. Indeed νi is the vector of weights
with which the factors influence the component Vi.

The determinisitic (state independent) nature of the νj implies that the
vector process V (t) is a Gaussian process (all marginal distributions multi-
normal). Consequently the νj(t) are also called Gaussian factor loadings.

Using the fact that the covariations of the Brownian motions Wi satisfy
d〈Wi,Wj〉 = δijds and the rule〈∫ t

0
H(s)dM(s),

∫ t

0
K(s)dN(s)

〉
=
∫ t

0
H(s)K(s)d〈M,N〉s

for the covariations of stochastic integrals with respect to scalar martingales
M , N we obtain the covariations

〈Yi, Yj〉t = 〈Vi, Vj〉t =
∫ t

0
νi(s) · νj(s)ds =

∫ t

0
σi(s)σj(s)ρij(s)ds (3.34)

The reader can disregard these covariations since they will be used only as a
more compact way of writing the integrals on the right. The factor loadings
are related to the volatility and correlation of the returns Yi(t) over any
interval [t, T]. Indeed set

∆i(t, T) = Vi(T)− Vi(t) =
∫ T

t
νi(s) · dW (s)

so that the vector V (T) satisfies

V (T) = V (t) + ∆(t, T).

To simulate the time step t→ T we need the distribution of ∆(t, T) condi-
tional on the state at time t. The deterministic nature of the factor loadings
implies that the increment ∆(t, T) is in fact independent of the state at time
t and has a multinormal distribution with covariance matrix D(t, T) given
by

Dij(t, T) =
∫ T

t
σi(s)σj(s)ρij(s)ds = 〈Yi, Yj〉Tt .

3.11. ASSET PRICE PROCESSES. 71

This suggests the following procedure for simulating paths of the process
V (t) in time steps tj → tj+1: at time tj we have V (tj) and since the incre-
ment ∆(tj , tj+1) = V (tj+1)− V (tj) is independent of the state at time t we
simply draw a random sample ∆ from its known multinormal distribution
and set

V (tj+1) = V (tj) + ∆.

Note that this approach to path simulation entails no approximation at all.
The paths are sampled precisely from the distribution of the process. This
is possible whenever the distribution of the innovation (process increment)
∆(t, T) = V (t)− V (t) conditional on the state at time t is known.

To simulate a random draw from the multinormal distribution of ∆(t, T)
we can proceed as follows (see Appendix B.1): we factor the covariane matrix
D(t, T) as

D(t, T) = R(t, T)R(t, T)′

with R(t, T) upper triangular for greatest speed (Cholesky factorization)
and then set

∆ = R(t, T)Z(t), hence V (T) = V (t) +R(t, T)Z(t), (3.35)

where Z(t) is a random sample of a standard normal vector. The components
of Z(t) are simply populated with independent standard normal deviates.
The time step for the returns Yi then becomes

Yi(T) = Yi(t) +mi(t, T) +
n∑

k=1

Rik(t, T)Zk(t),

where mi(t, T) is the deterministic drift increment

mi(t, T) =
∫ T

t

(
µi(s)−

1
2
σ2

i (s)
)
ds.

These increments are path independent and can be precomputed and cached
to speed up the path simulation.

Implementation

Note that we do not neeed the factor loadings νi(t) explicitly, only the
volatilities σi(t) and correlations ρij(t) are needed and these become our
model parameters. To simplify the implementation the correlations ρij(t)
are assumned to be independent of time (as well as state):

ρij(t) = ρij .

72 CHAPTER 3. STOCHASTIC PROCESSES

There is no difficulty in principle to handle time dependent correlations. All
that happens is that the covariation integrals (3.34) become more compli-
cated. The class FactorLoading declares the abstract methods

Real sigma(int i, int t);
Real rho(int i, int j);

and then provides methods to compute the covariance matrices D(t, T) and
their Cholesky roots. It is a good idea to allocate an array Z storing the
vectors Z(t) used to drive the time steps. If we want to drive the dynamics
of Y with a low discrepancy sequence all the standard normal deviates Zk(t)
involved in computing a new path of Y must be derived from a single uniform
vector of a low discrepancy sequence of a suitable dimension (the number
of deviates Zk(t) needed to compute one path of Y). See the Section 7.1.
In other words first the entire discretized path of the underlying Brownian
motion W (t) is computed and then we can compute the corresponding path
t→ Y (t).

In principle this would also be necessary if the Zk(t) are computed by
calls to a uniform random number generator with subsequent conversion to
standard normal deviates. In practice however the uniform random number
generator delivers uniform vectors of all dimensions by making repeated calls
to deliver the vector components so that the generation of the Zk(t) simply
amounts to repeated calls to the uniform random number generator.

The computation of the Zk(t) = Z[t][k] is independent of the rest of the
computation of the path t→ Y (t) and can be handled by a separate class

class StochasticGenerator {

// write the Z[t][k] for a full path into the array Z
virtual void newWienerIncrements(Real** Z) = 0;

};

This class will also declare other methods to compute the Z[t][k] needed for
frequently encountered partial paths of the process Y (such as computing
only the components Yj , j ≥ i up to some time t before the horizon.

We can then define concrete subclasses MonteCarloDriver, SobolDriver which
generate the Z[t][k] using a Mersenne Twister or a Sobol generator (with
subsequent conversion of uniform deviates to standard normal ones).

Each Ito process Y will contain a pointer to a StochasticGenerator and we
can switch from Monte Carlo (uniform rng) to Quasi Monte Carlo dynam-
ics (low discrepancy sequence) by pointing this pointer to an appropriate

3.11. ASSET PRICE PROCESSES. 73

object. This approach is implemented in the C++ classes ItoProcess, Libor-

MarketModel.

Factor reduced models.

Let λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 denote the eigenvalues λj of the covariance
matrix D = D(t, T) governing the time step (3.35) and assume that the
largest r eigenvalues dominate the rest in the sense that

ρ =
λ2

1 + λ2
2 + . . .+ λ2

r

λ2
1 + λ2

2 + . . .+ λ2
n

is close to one. Let U denote an orthogonal matrix of eigenvectors uj of
D (where the column uj of U satisfies Duj = λjuj). Then the covariance
matrix D can be approximated as

D ' LrL
′
r,

where Lr is the n× r matrix with columns

Lr =
(√

λ1u1, . . . ,
√
λrur

)
.

The relative approximation error in the trace norm

‖A‖2 = Tr(A′A) =
∑

ij
a2

ij

is given by
‖D − LrL

′
r‖

‖D‖ =
√

1− ρ.

See Appendix, A.1, B.3. This error will be small if the sum of the first r
eigenvalues is much bigger than the sum of the remaining n− r eigenvalues.
With this the increment V (T)− V (t) can be approximated as

V (T)− V (t) = LrZr(t), (3.36)

and this approximation still explains 100q% of the variability of V (T)−V (t).
Here Zr(t) is a standard normal vector of dimension r. If this reduction is
applied to all covariance matrices governing all the time steps the dynamics
of S can be driven by a Brownian motion in dimension r < n, that is the
number of factors has been reduced from n to r which obviously speeds up
the simulation of paths.

In practice often the largest two or three eigenvectors are already quite
dominant and this leads to a substantial reduction in the number of factors.

74 CHAPTER 3. STOCHASTIC PROCESSES

We should note however that the matrix Lr is no longer triangular, that is,
we must reduce the number of factors below n/2 before the benefits of the
reduced dimension become apparent. Ito processes are implemented only in
the C++ code (ItoProcess.h).

Chapter 4

Asset Pricing and Hedging

4.1 Single Asset Markets

We now turn to the simulation of the price processes of financial assets. In
the simplest case we consider a market consisting of only two assets S and
B referred to as the risky asset and the risk free bond respectively. B(t)
represents the value at time t of one dollar invested at time t = 0 into a
riskless money market account and the inverse 1/B(t) is the discount factor
which discounts cash prices from time t back to time zero. The cash price
B(t) is assumed to satisfy

B(t) = exp

(∫ t

0
r(s)ds

)
, (4.1)

where r(t) is the so called short rate process , that is, r(t) is the rate charged
at time t for risk free lending over the infinitesimal interval [t, t + dt]. The
purpose of the riskfree bond is to allow us to take proper account of the
time value of money. To do this automatically we work with the discounted
price S(t) of the asset S instead of the cash price S(t). The discounted price
S(t) is the quotient

S(t) = S(t)/B(t)

and is the price of the asset S at time t expressed in constant time zero
dollars. The discounted price S(t) can also be viewed as the price of the
asset S at time t expressed in a new unit of account: one share of the
riskfree bond B. When used in this role the riskfree bond B is also called
the numeraire asset .

Switching from cash to B as the new numeraire automatically takes
proper account of the time value of money, that is, eliminates interest rates

75

76 CHAPTER 4. MARKETS

from explicit consideration. For this reason we will always work with dis-
counted prices S(t) rather than cash prices S(t) = S(t)B(t).

The processes S(t), B(t) are assumed to live in continuous time defined
on some probability space (Ω,F , P) endowed with a filtration (Ft)0≤t≤T .
The σ-field represents the information available at time t and Et(·) denotes
the expectation conditioned on Ft. The probability P is called the market
probability and governs the realization of prices observed in the market. A
second probability will be introduced below.

For the puropose of simulation continuous time will be discretized and
sampled at evenly spaced times t ∗ dt, t = 0, 1, . . . , T , where dt is the size of
the time step and T now denotes the number of time steps to the horizon. In
this way time t becomes an integer variable and discrete time t corresponds
to continuous time t ∗ dt.

The dual use of T to denote both the continuous and the discrete time
to the horizon should not cause any confusion. The context should make
the meaning clear.

Risk neutral probability. Assume first that the asset S pays no dividend.
The market using discounted prices consists of the two price processes: the
constant process 1 and S(t). If there exists a second probability Q which
is equivalent to the market probability P and in which the discounted asset
price S(t) is a martingale, then there cannot be an arbitrage opportunity in
the market of discounted prices.

We assume that such a probability exists and is uniquely determined. In
many stochastic models of the discounted asset price S(t) such a probability
Q can found explicitly. The uniqueness is usually harder to prove and has
the following consequence: the cash price c(t) at time t of a random cashflow
h occuring at time T is given by the expectation

c(t) = B(t)EQ
t [h/B(T)].

This is the so called martingale pricing formula . The interesting point is
that it is not the market probability P which is used in this. See Appendix
C.1. If we replace cash prices by discounted prices the formula simplifies to

c(t) = EQ
t (h).

Here h is a random cashflow at any time and c(t) the value (price) of this
cashflow at time t both discounted back to time zero.

Stochastic models of the asset price. Directly from its definition it follows
that the riskless bond follows the dynamics

dB(t) = r(t)B(t)dt. (4.2)

4.1. SINGLE ASSET MARKETS 77

The discounted price S(t) is assumed to follow an Ito process of the form

dS(t) = S(t)[(µ(t)− r(t))dt+ σ(t)dW (t)], (4.3)

where W (t) is a one dimensional Brownian motion under the market prob-
ability P and the stochastic processes µ(t) and σ(t) satisfy suitable integra-
bility conditions. The process µ(t) is called the drift of the asset S (before
discounting) and σ(t) the volatility of S (under the market probability).

The process log(S(t)) measures the (continuously compounded) returns
on the asset S in excess of the riskfree rate (returns after inflation). By Ito’s
rule

d logS(t) = (µ(t)− r(t)− 1
2σ

2(t))dt+ σ(t)dW (t). (4.4)

Switching to the risk neutral measure Q affects only the drift but not the
volatility, and since S(t) is a martingale and hence driftless under Q we have

dS(t) = S(t)σ(t)dWQ(t) (4.5)

which, after taking logarithms, becomes

d logS(t) = −1
2
σ2(t)dt+ σ(t)dWQ(t). (4.6)

Here WQ(t) is a Brownian motion under the risk neutral measure Q. It is
known how this Brownian motion is related to the Brownian motion W (t)
under P but we do not need this relation.

Dividends. Assume now that the asset pays a dividend continuously with
yield q(t). We eliminate the dividend by reinvesting it immediately into the
asset S again thereby obtaining another asset S1 which pays no dividend.

Let us switch to the cash price S(t) as a new numeraire. In this new
numeraire the cash price S1(t) looks like a money market account with short
rate q(t), that is, S1(t)/S(t) = exp

(∫ t
0 q(s)ds

)
. Since the discounted prices

S(t), S1(t) satisfy S1(t)/S(t) = S1(t)/S(t) we have

S(t) = exp

(
−
∫ t

0
q(s)ds

)
S1(t). (4.7)

In particular it follows that S has the same volatility as S1 only the drift is
changed. But since S1 is a dividend free asset, the discounted price S1(t) is a
martingale under the risk neutral probability and so driftless. Consequently
dS1(t) = S1(t)σ(t)dWQ(t) from which it follows that

dS(t) = S(t)[−q(t)dt+ σ(t)dWQ(t)] (4.8)

78 CHAPTER 4. MARKETS

Upon taking logarithms this assumes the form

d logS(t) = (−q(t)− 1
2σ

2(t))dt+ σ(t)dWQ(t). (4.9)

The emergence of the term ”−q(t)S(t)dt” in 4.8 can also be understood
as follows: When a dividend is disbursed the price of the asset has to be
reduced by the amount of dividend paid out. Now, during the infinitesimal
interval [t, t+ dt], q(t)S(t)dt is paid out in dividends (discounted value) and
this quantity must therfore be subtracted from the asset price S(t + dt).
Here the dividend yield q(t) can be a stochastic process but we will only
implement models where the dividend yield is a constant q.

Set X(t) = exp(qt)S(t). An easy application of the product rule shows
that dX(t) = X(t)σ(t)dWQ(t). Thus X(t) is a martingale under the risk
neutral probability Q. Let EQ

t (·) denote the expectation under the prob-
ability Q conditioned on the information generated up to time t. Then
the martingale condition for X(t) can be written as EQ

t [exp(qT)S(T)] =
exp(qt)S(t), equivalently

EQ
t [S(T)] = exp(−q(T − t))S(t), t ∈ [0, T]. (4.10)

The discounted price S(T) at the horizon will be used as the default control
variate for European options written on the asset S and equation (4.10)
gives us the conditional mean of the control variate.

To make the above stochastic model concrete the processes r(t), µ(t)
and σ(t) have to be specified. Regardless of this specification a common
feature is the fact that we deal with two probability measures, the market
probability and the risk neutral probability and that the price dynamics
depends on the chosen probability.

Thus it will be useful to introduce a flag whichProbability which indicates
if the simulation proceeds under the market probability or under the risk
neutral probability.

In a simulation of any of the above stochastic dynamics the infinitesi-
mal increment dW (t) of the driving Brownian motion is replaced with the
increment W (t+ dt)−W (t) which is independent of the history of the path
u ∈ [0, t] → W (u) of the Brownian path up to time t. In a discretization
of time t as multiples of the time step t = 0, dt, 2dt, ..., T ∗ dt, this can be
rewritten as

W (t+ 1)−W (t) =
√
dtZ(t) (4.11)

where Z(0), . . . , Z(T − 1) is a sequence of independent standard normal
variables. Thus a simulated path is driven by an array Z[t], t < T , of
independent standard normal deviates.

4.1. SINGLE ASSET MARKETS 79

The Z[t] will be referred to as the Wiener increments driving the price
path. Recall that a Brownian motion is also called a Wiener process and that
the Z[t] are the normalized increments of the process W (t). The generation
of these Wiener increments is computationally costly. However, once such a
sequence has been generated

±Z[0],±Z[1], . . . ,∓Z[T − 1] (4.12)

is another such sequence, for any of the 2T possible distributions of signs.
This suggests that we generate paths in groups of dependent paths where
each group is based on the same sequence of standard normal increments
subject to a certain fixed number of sign changes. These sign changes should
include the path based on the increments

−Z[0],−Z[1], . . . ,−Z[T − 1], (4.13)

the so called antithetic image of the original path. In addition to save
computational cost in the generation of normal deviates this device also
serves to reduce the variance of random variables which are functionals of
the price path. More precisely it is hoped that the means of such functionals
over groups of dependent paths display significantly reduced variance when
compared to the values of the functional computed from independent paths.

This topic has already been considered in the treatment of random vari-
ables in Chapter 1. Our class RandomVariable has methods for the computa-
tion of a Monte Carlo mean which take proper account of the dependence
of paths in a group which is based on sign changes of the same sequence of
Wiener increments. This now leads to the definition of the following basic
setup:

80 CHAPTER 4. MARKETS

public abstract class Asset{

int T; // time steps to horizon
double dt; // size of time step
double S0; // asset price at time t = 0
double q; // constant dividend yield
boolean volatilityIsDeterministic; // is the volatility deterministic?

// number of sign changes before another array of standard
// normal deviates driving the asset price path is computed
int nSignChange;

double[] Z; // array of Z-increments driving the price path
double[] B; // price path of the risk free bond
double[] S; // the discounted price path S[t]=S(t * dt)

//constructor
public Asset(int T, int dt, double S0, double q, int nSignChange)
{ /* see below */ }

// compute B[t+1], S[t+1] from B[u], S[u], u<=t.
public abstract void timeStep(int whichProbability, int t);

// other methods

} // end Asset

The constructor allocates the arrays and initializes fields:

public Asset(int T, int dt, double S0, double q)
{

this.T=T; this.dt=dt;
this.S0=S0; this.q=q;
this.nSignChange=nSignChange;
volatilityIsDeterministic=false; // the default

// allocate the path arrays
Z=new double[T];
B=new double[T+1];
S=new double[T+1];

// initialize the paths B(t), S(t)
B[0]=1;
S[0]=S0;

} // end constructor

One could argue that the array Z[] of Wiener increments driving the asset
price path and the number nSignChange of sign changes are implementation

4.1. SINGLE ASSET MARKETS 81

details which should be moved to the various concrete subclasses. After all
asset price models may not even rely on Brownian motions to generate asset
price paths. We have chosen the above approach for reasons of exposition.
Note that a concrete subclass of Asset need not actually use the array Z[].
The path generating methods can be defined as is deemed desirable.

Path computation. The only abstract method in the class Asset is timeStep.
Thus an Asset becomes concrete as soon as this method is defined. In prin-
ciple path computation can be reduced to repeated calls to timeStep. This
approach is implemented as the default. It obviously is not the most efficient
approach (each function call carries some overhead). Moreover it is akward
to keep track of Z-increments and sign changes in this case.

Methods for computing paths are intended to be overidden in concrete
subclasses. The default methods are useful for quick experimentation.

Remember that the basic path computation is the continuation of a path
which exists up to time t from this time t to the horizon. This computes
branches of the existing path at time t. If t is current time, the path up to
time t represents the available information at time t and branches of this
path at time t represent future scenarios conditioned on this information.

public void newPathBranch(int whichProbability, int t)
{ for(int u=t; u<T; u++) timeStep(whichProbability,u); }

The following method newPath is intended to compute a new path not reusing
the Wiener increments through sign changes (thus ensuring that the new
path is independent of previous paths). Therefore we cannot simply imple-
ment it as newPathBranch(whichProbability,0) since the method newPathBranch

is intended to be overidden so as to reuse Z-increments:

public void newPath(int whichProbability)
{ for(int t=0; t<T; t++) timeStep(whichProbability,t); }

Only very rarely does a stochastic model force small time steps dt on us for
the sake of accuracy. More likely small time steps are taken because the
price path has to be observed at all times. Small time steps slow down the
simulation. Thus it is more efficient to move directly in one step from one
time t to the next time s > t when the price path must be observed again.

Exactly how this is accomplished with satisfactory accuracy depends
on the stochastic model. This suggests that we declare such a method
but not define it. On the other hand one often wants to do some quick
experimentation without worrying about efficiency. Therfore we provide a
convenience default implementation which reverts to individual time steps.
It is intended to be overridden in concrete subclasses:

82 CHAPTER 4. MARKETS

public void timeStep(int whichProbability, int t, int s)
{ for(int u=t; u<s; u++) timeStep(whichProbability,u); }

In the class ConstantVolatilityAsset for example this is overridden by a far more
efficient method without loss of accuracy.

Triggers. On occasion, as the price of some asset evolves, we might be
watching for some signal or trigger to initiate some action. For example a
hedger might watch for the time t when a rebalancing of the hedge position
is indicated or a speculator might be watching for sell or buy signals. The
class trigger has been introduced for this purpose:

public abstract class Trigger{

int T; // time steps to horizon
public Trigger(int T){ this.T=T; } // constructor

public abstract boolean isTriggered(int t, int s);

} // end Trigger

The reader might wonder why there are two times t and s instead of only
one. Frequently a price path will be moved from one trigger event to the
next. In this context t should be interpreted as the last time the event was
triggered and isTriggered(t,s) returns true if s > t is the first time the event
is triggered again. For example if the event is a doubling in the discounted
price of the asset S we might define

isTriggered(int t, int s){ return S[s]==2 * S[t]; }

It is frequently necessary to compute a path forward from current time t to
the time s > t when the action is triggered. Moreover one then also wants
to know at which time s this occurred:

public int pathSegment(int whichProbability, int t, Trigger trg)
{

int s=t;
do{ timeStep(whichProbability,s); s++; }
while((s<T) && !trg.isTriggered(t,s));
return s;

}

Note that the computation of the first time s > t when the action is triggered
is important but is not the primary objective here. The computation of the

4.1. SINGLE ASSET MARKETS 83

path from time t to this time s which occurs as a side effect to the function
call is the primary objective.

In a sense a Trigger defines a family τt of stopping times τt ≥ t. The
method isTriggered(t,s) then returns true exactly if the event [τt = s] occurs.
We have already encountered such families of stopping times in the analysis
of the optimal stopping problem 3.6 and will do so again in the related
pricing of American options 4.6.

If the short rate r(t) is a stochastic process the computation of a price
path involves both the price B(t) of the risk free bond and the discounted
price S(t) of the asset. From now on the short rate will be assumed to
be deterministic. The risk free bond then has only one path which can be
computed by the constructor of the corresponding subclass of Asset. The
path computation then simplifies to the computation of the path of the
discounted asset price.
Forward price. The forward price of the asset S is the cost of delivering one
share of S at time T by buying the asset immediately and holding it to the
horizon T expressed in constant dollars at time t = T .

If S pays no dividend we simply buy one share of S at the current time t
for S(t) time zero dollars, equivalently, B(T)S(t) dollars deliverable at time
T , and hold this position until time T . If S pays a continuous dividend at
the rate q(t) we reinvest all dividends immediately into the asset S.

Thus if a(t) shares of S are bought at time t, a(t)exp
(∫ T

t q(s)ds
)

shares
are held at time T . Since we wish to deliver exactly one share of S at time
T , we need to buy

a(t) = exp
(
−
∫ T
t q(s)ds

)
(4.14)

shares of S at time t for a cost of a(t)B(T)S(t) time T dollars. The factor
a(t) corrects for the dividend and so is called the dividend reduction factor.
Recall that we are restricting ourselves to the case of a constant dividend
yield q. In this case the factor a assumes the form a(t) = exp(−q(T − t)).
This motivates the following two methods:

public double dividendReductionFactor(int t)
{ return Math.exp(-q * (T-t) * dt); }

public double forwardPrice(int t)
{ return S[t] * B[T] * dividendReductionFactor(t); }

Note that the array element S[t] is the discounted price S(t ∗ dt) and that
continuous time T − t appears as (T − t)∗dt after discretization. At the cost
of providing trivial or inefficient default implementations we have been able

84 CHAPTER 4. MARKETS

to keep the number of abstract methods in the class Asset to one: timeStep

is the only abstract method. We did this in order that an Asset could be
allocated quickly by merely defining this method.

This also explains the following seemingly absurd definition of a method
intended to return σ(t)

√
dt whenever this is defined:

public double get sigmaSqrtdt(int t)
{ System.err.println(”Asset: sigma(t) * sqrt(dt) undefined in present context”);

System.exit(0);
}

Obviously the above code is only executed if the method is called from
a subclass which does not provide a definition of this method and then it is
exactly appropriate.

Some other methods are declared in the class Asset and will be discussed
in the appropriate context. In the next section we turn to the implementa-
tion of the simplest concrete Asset class.

4.2. BASIC BLACK-SCHOLES ASSET 85

4.2 Basic Black-Scholes Asset

The simplest single asset market arises if the short rate r(t) = r, drift
µ(t) = µ and volatility σ(t) = σ are all assumed to be constants. In this case
the riskless bond B(t) = exp(rt) is nonstochastic and so can be computed by
the constructor (there is only one path). From (4.4) and (4.9) the discounted
price S(t) satisfies

S(s) = S(t) exp[α(s− t) + σ(W (s)−W (t))] (4.15)

where α = µ − r − σ2/2 for the market probability and α = −q − σ2/2
for the risk neutral probability. Here W (s) −W (t) =

√
s− t Z where Z is

a standard normal random variable. In discrete time s and t are replaced
with s*dt, t*dt, where dt is the size of the time step and s, t nonnegative
integers (the number of the time step). Consequently it is useful to store
the following constants

sigmaSqrtdt = σ
√
dt

marketDriftDelta = (µ− r − σ2/2)dt and
riskNeutralDriftDelta = (−q − σ2/2)dt.

The driftDelta is the change in the drift of the return process log(S(t)) over
a single time step dt in the respective probability. Recalling that the array
S[] contains the discounted asset price S[t]=S(t*dt) and that Random.STN()

delivers a standard normal deviate the time step s→ t assumes the form

Z=Random.STN();
S[s]=S[t] * Math.exp(driftDelta * (s-t)+sigmaSqrtdt * Math.sqrt(s-t) * Z);

where driftDelta is set according to the probability. Even though the time
step t→ s may be arbitrarily large there is no approximation involved. The
ability to make large time steps if the price process has to be observed only
at a few times greatly speeds up any simulation.

The case s = t + 1 is of particular importance since a complete path
is composed of exactly these time steps. In this case we want to store the
standard normal increments Z used in the time steps along with the asset
price path since these increments will be used in the computation of hedge
weights below. Assuming that these increments are in the array Z[] the
single time step t→ t+ 1 assumes the form

S[t+1]=S[t] * Math.exp(driftDelta+sigmaSqrtdt * Z[t]);

86 CHAPTER 4. MARKETS

The array Z[] is filled with the necessary standard normal increments before
a new path or path branch of the discounted asset price is computed:

public class ConstantVolatilityAsset extends Asset{

int pathCounter; // paths in current simulation of full paths
int branchCounter; // branches in current simulation of path-branches

double r; // constant short rate
double mu; // drift under market probability
double sigma; // volatility

double riskNeutralDriftDelta; // −(q + σ2/2)dt
double marketDriftDelta; // (µ− r − σ2/2)dt
double sigmaSqrtdt; // σ

√
dt

//constructor
public ConstantVolatilityAsset
(int T, double dt, int nSignChange, double S0, double r, double q,
double mu, double sigma)
{

super(T,dt,S0,q,nSignChange);

this.r=r; this.mu=mu; this.sigma=sigma;
pathCounter=0; branchCounter=0;

riskNeutralDriftDelta=-(q+sigma * sigma/2) * dt;
marketDriftDelta=(mu-sigma * sigma/2) * dt;
sigmaSqrtdt=sigma *Math.sqrt(dt);

// compute the nonstochastic riskfree bond
for(int t=0; t<=T; t++) B[t]=Math.exp(r * t * dt);

} //end constructor

// other methods

} // end ConstantVolatilityAsset

The important other methods are of course methods to compute asset price
paths or branches of such paths. Assume that we wish to generate branches
of a path which exists up to time t and branching is to occur at time t. Each
branch simply continues the existing path to the horizon and is computed
from standard normal increments Z[u], u=t,t+1,. . .,T-1. A full path simulation
corresponds to the case t = 0.

Recall also that we intend to compute paths (or branches) in groups
of size nSignChange where within each group only the signs of the standard

4.2. BASIC BLACK-SCHOLES ASSET 87

normal increments Z[u] are changed. Thus paths within the same groups are
not independent. Paths are only independent across distinct groups. This
does not affect the computation of (conditional) means of random variables
which are functionals of a path but it does affect the computation of standard
deviations of these. This issue has already be dealt with in Chapter 1.

In the present context this makes it necessary to be able to separate
distinct groups as a simulation is in progress. The variables pathCounter

and branchCounter serve this purpose for paths respectively branches. Our
setup does not extend to branches of branches (for this we woud need a
branchBranchCounter). The reason is that we will never split paths repeatedly.
In fact such a computation is not realistic with affordable computational
resources. The variables pathCounter and branchCounter have to be reset to
zero at the begining of each new path respectively branch simulation:

public void simulationInit(int t)
{

if(t==0) pathCounter=0; //it’s a full path simulation
else branchCounter=0; //it’s a simulation of path branches

}

In order to compute a path branch from time t to the horizon T we need
standard normal increments Z[t],Z[t+1],. . . ,Z[T-1]. The following routine gen-
erates these cycling through sign changes.

public void newWienerIncrements(int t)
{

int m; //counts position in the cycle of sign changes
if(t==0) m=pathCounter; else m=branchCounter;

switch(m % nSignChange)
{

case 0 : //new standard normal increments
for(int u=t; u<T; u++) Z[u]=Random.STN();
break;

case 1 : //increments driving the anthithetic path
for(int u=t; u<T; u++) Z[u]=-Z[u];
break;

default : //change signs randomly
for(int u=t; u<T; u++) Z[u] *=Random.Sign();

}

if(t==0) pathCounter++; else branchCounter++;

} // end NewWienerIncrements

88 CHAPTER 4. MARKETS

Once we have these increments a new path branch can be computed:

public void newPathBranch(int whichProbability, int t)
{

double driftDelta=0;
switch(whichProbability)
{

case Flag.MARKET PROBABILITY: driftDelta=marketDriftDelta; break;
case Flag.RISK NEUTRAL PROBABILITY: driftDelta=riskNeutralDriftDelta;

}

//compute the standard normal increments driving the branch
newWienerIncrements(t);
for(int u=t; u<T; u++) S[u+1]=S[u] * Math.exp(driftDelta+sigmaSqrtdt * Z[u]);

} // end newPathBranch

The computation of a single time step is similar. A new standard normal
increment driving the time step is computed. Since some routines (hedge
coefficients) make use of this increment it is stored in the array Z[]:

public void timeStep(int whichProbability, int t)
{

// compute and store the new standard normal increment
Z[t]=Random.STN();

//choose drift according to probability
double driftDelta=0;
switch(whichProbability)
{

case Flag.MARKET PROBABILITY: driftDelta=marketDriftDelta; break;
case Flag.RISK NEUTRAL PROBABILITY: driftDelta=riskNeutralDriftDelta;

}

S[t+1]=S[t] * Math.exp(driftDelta+sigmaSqrtdt * Z[t]);

} // end timeStep

The computation of larger time steps and full paths is similar. The reader
is invited to read the source code in Market.ConstantVolatilityAsset.java.

4.3 Markov Chain Approximation

The pricing of American options leads to optimal stopping problems (early
option exercise). Such problems can be dealt with easily in the context of a
Markov chain. In fact the class StoppableMarkovChain implements the optimal

4.3. MARKOV CHAIN APPROXIMATION 89

stopping time which maximizes the expected reward from stopping the chain
(see Section 2.5).

The discounted price process S(t) of a ConstantVolatilityAsset is a Markov
process but it is not a Markov chain even after the time domain has been
discretized. In order to be able to deal with early option exercise we ap-
proximate S(t) with a Markov chain by discretizing the range of S(t) also.
Recall that the process S(t) satisfies

dS(t) = S(t)[−qdt+ σdWQ(t)] (4.16)

under the risk neutral probability Q, where q denotes the constant dividend
yield of the asset S. Thus, for a time step of size dt > 0,

S(t+ dt)− S(t) =
∫ t+dt

t
S(u)[−qdu+ σdWQ(u)] (4.17)

∼= S(t)[−qdt+ σ(WQ(t+ dt)−WQ(t)) (4.18)
= S(t)[−qdt+ σ

√
dt Z], (4.19)

where Z = (WQ(t+dt)−WQ(t))/
√
dt is standard normal and independent of

the information generated up to time t. Here we have replaced S(u) with the
initial value S(t) in the integral to obtain the approximation. Rearranging
terms we can rewrite this as

S(t+ dt) = S(t)[1− qdt+ σ
√
dt Z] (4.20)

with Z as above. The Markov chain approximation of S(t) is now obtained
by subdividing the range of S(t) into intervals [jds, (j + 1)ds), j = 0, 1 . . .
and collapsing all the values in [jds, (j + 1)ds) to the midpoint (j + 1

2)ds.
Here ds > 0 is the mesh size of the range grid.

The state X(t) = i of the approximating Markov chain X is interpreted
as S(t) = (i+ 1

2)ds and the chain transitions from state i at time t to state
j at time t+ dt with probability

q(t, i, j) = Prob(S(t+ dt) ∈ [jds, (j + 1)ds] | S(t) = (i+ 1
2)ds) (4.21)

Setting q(t, s, a, b) = Prob(S(t+ dt) ∈ [a, b] | S(t) = s) we can rewrite 4.21
as

q(t, i, j) = q(t, (i+ 1
2)ds, jds, (j + 1)ds). (4.22)

Assume that S(t) = s and set v = s(1− qdt). Then S(t+dt)−v ∼= sσ
√
dt Z

according to 4.20 and it follows that

S(t+ dt) ∈ [a, b] ⇐⇒ S(t+ dt)− v ∈ [a− v, b− v]

⇐⇒ Z ∈
[
a− v

sσ
√
dt
,
b− v

sσ
√
dt

]

90 CHAPTER 4. MARKETS

and so q(t, s, a, b) = N((b− v)/sσ
√
dt)−N((a− v)/sσ

√
dt), where N is the

cumulative standard normal distribution function as usual. Entering this
into 4.22 yields the transition probabilities as

q(t, i, j) = N(f+)−N(f−), where (4.23)

f± = f±(i, j) =
j − i± 0.5

(i+ 0.5)σ
√
dt

+ q
√
dt/σ (4.24)

Working with these probabilities spreads the possible values of the chain
over all nonnegative integers. This can induce lengthy computations. Thus
we introduce an upper and lower bounds jmax(i), jmin(i) for the possible
states j which can be reached from state i at time t. Note that

Prob(X(t+ dt) ≤ j | X(t) = i) = N(f+(i, j)) and (4.25)
Prob(X(t+ dt) ≥ j | X(t) = i) = 1−N(f−(i, j)), (4.26)

Residual states j for which these probabilities are small will be collapsed
into a single state. Fix a small cutoff probability δ > 0 and set

jmin(i) = max{ j | N(f+(i, j)) < δ } and (4.27)
jmax(i) = min{ j | 1−N(f−(i, j)) < δ } (4.28)

Conditional on the state X(t) = i at time t all states j ≤ jmin(i) are then
collapsed into the state jmin(i) and all states j ≥ jmax(i) are collapsed into
the state jmax(i), that is, the transition probabilities are adjusted as follows:

q(t, i, j) =

N(f+(i, j)) if j = jmin

N(f+(i, j))−N(f−(i, j)) if jmin < j < jmax(i)
1−N(f−(i, j)) if j = jmax(i)
0 if else

(4.29)

Observing that N(f+(i, j)) = N(f−(i, j + 1)) it is then easy to check that∑∞
j=0

q(t, i, j) =
∑jmax(i)

j=jmin(i)

q(t, i, j) = 1. (4.30)

The transition probabilities q(t, i, j) are independent of time t and so X(t)
is a stationary finite state Markov chain. When implemented as an SFS-

MarkovChain with N possible states j = 0, 1, . . . , N −1 the member functions
a(i), b(i) are given by

a(i) = jmin(i) b(i) = min{ N − 1, jmax(i) } (4.31)

4.3. MARKOV CHAIN APPROXIMATION 91

The class ConstantVolatilityAsset implements the method markovChain which al-
locates the Markov chain approximating the discounted asset price process.
The approximating Markov chain is implemented as an object of class SFS-

MarkovChainImpl, that is, the transition probabilities q(i, j) are precomputed
at initialization and stored in the matrix Q of type double[][]. This matrix
tends to occupy hundreds of megabytes of memory. In this regard see the
exercise below.

The main method of the class MC Asset Test is a test program to compare
the Monte Carlo price of a European call computed from the Markov chain
approximation of the asset price with its analytic price. Tests show the
following: the cutoff probability δ should be kept no larger than δ = 0.01.
The number of states nStates of the chain has to be limited or else the
transition matrix Q (which is already made as small as possible only storing
nonzero entries) consumes too much memory. Thus the mesh of the range
grid has to be chosen larger. How large depends on the context, that is, how
large the asset price S(T) is likely to become which in turn depends on S(0)
and the volatility σ. The value ds=0.5 still yields reasonable approximations.

Exercise. The method markovChain in the class ConstantVolatilityAsset com-
putes the Markov chain approximating the asset price as an object of class
SFSMarkovChainImpl, that is, the transition probabilities q(i, j) are precom-
puted at initialization and stored in the matrix Q of type double[][].

The idea is to speed up the retrieval of these transition probabilities.
Instead of having to compute them repeatedly we simply read them from
system memory. However the matrix Q is far too large to fit in the cache of
the microprocessor and so resides in main memory. Access to that memory
is rather slow.

Implement a second method markovChain 1 in the class ConstantVolatilityAs-

set which computes the approximating Markov chain as an object of type
SFSMarkovChain. Although this class is abstract it can be instantiated by
calling its constructor and defining all its abstract methods in the body of
the constructor call.

All that is required is a slight rewrite of the method markovChain. Then
expand the test program MC Asset Test by computing the call price using
both approximating Markov chains and time the computation to see which
approach is faster.

92 CHAPTER 4. MARKETS

4.4 Pricing European Options

An option on some asset S is a financial instrument deriving a nonnegative
payoff h in some way from the price path t ∈ [0, T] → S(t) of the asset (the
so called underlying) from the present to the time T of expiry.

The contract can specify payouts at several points in time. Taking proper
account of the time value of money these payouts can be moved forward to
the time T of expiry and aggregated there as a single equivalent payment
at the time of expiry. We can therefore assume the option payoff is a single
payment at time T .

If the option is of European style the option holder does not have the
ability to influence the payout in any way. If it is of American style the
option holder can influence the payoff by exercising the option at any time
prior to the time T of expiration. Option exercise forces the calculation of
the payout from the state of the asset price path at the time of exercise in
a way which is specified in the option contract. Quite often the value of the
asset price at the time of exercise alone determines the payout.

Thus the payout of a European option is a deterministic function of the
asset price path t ∈ [0, T] → S(t) alone while the payoff of an American
option is a function of the asset price path and the exercise strategy of the
option holder.

We shall now restrict attention to European options. Frequently the
discounted payoff h depends only on the value S(T) of the asset at the time
T of expiration, that is h = f(S(T)), for some function f = f(s). In this
case the option is called path independent.

The prudent seller of an option will try to hedge her short position in
the option by trading in the underlying and the riskfree bond with the
aim to replicate the option payoff. Ideally the dynamic portfolio which is
maintained requires an investment only at the time of inception and sustains
itself thereafter, that is, the cost each new hedge position is exactly equal
to the proceeds of the preceeding hedge position. In this case the trading
strategy is called selffinancing.

The simplest example of such a portfolio buys one share of the asset S
at time zero and holds this position to expiration without further trading.
This portfolio has discounted price process S(t) which is a martingale under
the risk neutral probability Q. Under weak assumptions it can then be
shown that the discounted price process of each selffinancing portfolio is a
martingale in the risk neutral probability.

The option is called replicable if the payoff can be replicated by a self-
financing dynamic portfolio. Let C(t) denote the discounted price of the

4.4. PRICING EUROPEAN OPTIONS 93

option at time t. In order to avoid arbitrage (riskless profits with probabil-
ity greater than zero) the option price must equal the price of the replicating
portfolio at all times t ≤ T .

Consequently the discounted option price C(t) is a martingale under the
risk neutral probability Q. However at the time of expiration the option
price equals the payoff and so c(T) = h. The martingale property of the
process C(t) now implies that the discounted option price C(t) at time t is
given by the conditional expectation

C(t) = EQ
t [h]. (4.32)

The subscript t indicates that the expectation is conditioned on information
available at time t, that is, the path of the asset and the riskfree bond up
to time t. The superscript Q indicates that the expectation is taken with
respect to the risk neutral probability Q. Note also that h is the option
payoff discounted back to time zero.

Our treatment is grossly simplified and omits several subtleties. It is
included here only to motivate the appearance and significance of the risk
neutral probability Q and the martingale pricing formula (4.32). The reader
is referred to the financial literature for the details.

The martingale pricing formula (4.32) makes the computation of the
price of a European option amenable to Monte Carlo simulation: all we
have to do is to implement the discounted option payoff h as an object
of class RandomVariable and we can then draw on methods from the class
RandomVariable to compute conditional expectations.

When the discounted option payoff is implemented as a RandomVariable,
the risk neutral probability enters as follows: the payoff is computed as a
deterministic function of the asset price path. In order to base samples on
the risk neutral probability Q paths are generated following the dynamics
of the asset price under Q. This dynamics is different from the dynamics of
the asset price under the market probability in general.

Samples are conditioned on the information available at time t as follows:
at time t the paths of the asset price and the riskfree bond are known up to
time t. Rather than generating arbitrary paths we restrict the simulation to
paths which follow the observed path up to time t (branches of the observed
path where branching occurs at time t).

Such branches are computed by simply continuing the observed path
from time t to the time T of option expiry. The asset price after the time of
expiry is not relevant and so the horizon of the simulation can be set equal
to T :

94 CHAPTER 4. MARKETS

public abstract class Option
{

int T; // time steps to horizon
double dt; // size of time step
Asset underlying; // the underlying
double[] C; // the option price path

// constructor
public Option(Asset asset)
{

underlying=asset;
T=underlying.get T(); dt=underlying.get dt();
C=new double[T+1];

}

// payoff aggregated to time T
public abstract double currentDiscountedPayoff();

// other methods

} // end Option

The only abstract method is currentDiscountedPayoff (the option payoff com-
puted from the current path of the underlying asset S(t) discounted back to
time t = 0). An Option becomes concrete as soon as this method is defined.
The next method allocates the discounted payoff as a RandomVariable:

public RandomVariable discountedPayoff()
{

return new RandomVariable(){

public double getValue(int t)
{

underlying.newPathBranch(Flag.RISK NEUTRAL PROBABILITY,t);
return currentDiscountedPayoff();

}

}; // end return new

} // end DiscountedPayoff

Here getValue(t) is a draw from the distribution of currentDiscountedPayoff con-
ditioned on information at time t and hence is to be computed from a branch
of the current asset price path where branching occurs at time t.

Having the discounted option payoff as a random variable is very useful if
we want to compute discounted option prices as Monte Carlo means (under
the risk neutral probability). In fact we might try to improve on this by

4.4. PRICING EUROPEAN OPTIONS 95

implementing the discounted payoff as a controlled random variable. The
control variate cv must be correlated with the discounted option payoff and
the conditional mean EQ

t (cv) must be known. See Chapter 1.
In this generality only the discounted price cv = S(T) of the underlying

at expiration answers this purpose. We can hope for some correlation with
the discounted option payoff although the correlation may be weak in the
case of a path dependent option. The conditional mean EQ

t (cv) is given by
equation (4.10). The following allocates the discounted option payoff as a
ControlledRandomVariable with this control variate:

public ControlledRandomVariable controlledDiscountedPayoff()
{

return new ControlledRandomVariable(){

// the (value, control variate) pair
public double[] getControlledValue(int t)
{

double[] S=underlying.get S(); //discounted price path

// path sample under Q conditioned on information at time t
underlying.newPathBranch(Flag.RISK NEUTRAL PROBABILITY,t);

double x=discountedPayoff(), // value
cv=S[T]; // control variate

double[] value control variate pair={ x,cv };

return value control variate pair;

} // end getControlledValue

// it remains only to define the control variate mean
// conditioned on information at time t:

public double getControlVariateMean(int t)
{

double[] S=underlying.get S();
double q=underlying.get q();
return S[t] * Math.exp(-q * (T-t) * dt);

}

}; // end return new

} // end controlledDiscountedPayoff

To test the quality of the control variate (how closely the discounted option
payoff is correlated or anticorrelated with its control variate) we include

96 CHAPTER 4. MARKETS

public double conditionalControlVariateCorrelation(int t, int nPaths)
{

return controlledDiscountedPayoff().correlationWithControlVariate(t,nPaths);
}

This computes the above correlation conditioned on information available
at time t from a sample of nPaths price paths of the riskfree bond and the
underlying asset.

With this we can implement the martingale pricing formula for the dis-
counted option price at any time t. If our default control variate for the
discounted payoff does not perform well and you don’t have a better one
compute the option price as follows:

public double discountedMonteCarloPrice(int t, int nPath)
{

underlying.simulationInit(t);
return discountedPayoff().conditionalExpectation(t,nPath);

} // end discountedMonteCarloPrice

The price at time t = 0 is then given by

public double discountedMonteCarloPrice(int nPath)
{ return discountedMonteCarloPrice(0,nPath); }

However if we have a good control variate we use

public double controlledDiscountedMonteCarloPrice(int t, int nPath)
{

underlying.simulationInit(t);
return controlledDiscountedPayoff().conditionalExpectation(t,nPath);

}

Again the price at time t = 0 is given by

public double controlledDiscountedMonteCarloPrice(int nPath)
{ return controlledDiscountedMonteCarloPrice(0,nPath); }

All the methods from the classes RandomVariable respectively ControlledRan-

domVariable which compute conditional expectations can be transferred to
the present context as above. In addition to these the class Option contains
other methods related to hedging the option. These will be examined below.

You may wonder why one would want to compute such a price at any
time t other than t = 0. For example if we want to simulate trading strate-
gies involving the option and the underlying it maybe necessary to compute

4.4. PRICING EUROPEAN OPTIONS 97

the option price along with the price of the underlying. If the option price
cannot be derived from the price of the underlying via an analytic formula
and Monte Carlo simulation has to be used, such an endevour can be com-
putationally expensive.

In case the option payoff depends only on the asset price S(T) at expiry
the computation of the martingale price can be sped up. When computing
the option price at time t we can step to time T in as few time steps as
accuracy will allow (often in a single time step). The abstract method
Asset.timeStep(int t, int T) is intended to be implemented in this way. See
for example how this is implemented in the class ConstantVolatilityAsset. The
class PathIndependentOption overrides the methods of Option which compute
Monte Carlo prices with these more efficient methods. The reader is invited
to read the source code.

In order to make use of what we have we need a concrete option. The
European call is a useful test case since an analytic formula exists for the
call price against which we can test our Monte Carlo means.

98 CHAPTER 4. MARKETS

4.5 European Calls

The European call with strike K and expiry T on the asset S has discounted
payoff h = (S(T)−K/B(T))+, where x+ = max{x, 0}. Recall that S(T) is
the discounted price of the asset S at time T .

If the discounted asset price S(t) follows the dynamics (4.3), (4.5), (4.8)
in Section 1 with nonstochastic volatility σ(t) and short rate r(t) the call
price C(t) can be computed as a deterministic function of the asset price
S(t) via an analytic formula. The formula is best expressed in terms of
forward prices, that is, prices in constant time T dollars.

The forward price FY (t) of any asset Y (t) is the discounted price Y (t)
pushed forward to time T and reduced by the dividend payout over the
interval [t, T]. In other words

FY (t) = a(t)B(T)Y (t), (4.33)

where a(t) = exp(−q(T − t)) is the dividend reduction factor. The member
functions dividendReductionFactor(int t) and forwardPrice(int t) in the class Asset

compute these quantities. The forward price FC(t) of the call is now given
by the following formula:

FC(t) = FS(t)N(d+)−KN(d−), where (4.34)

d± = Σ(t)−1log(FS(t)/K)± 1
2

Σ(t, T) and (4.35)

Σ(t, T)2 =
∫ T

t
σ2(t)dt. (4.36)

Here N is the cumulative standard normal distribution function and Σ(t, T)
is a measure of the aggregate volatility of the return process log(S(t)) over
the remaining life [t, T] of the call. Methods to compute the forward price
FS(t) and the quantity Σ(t) have been implemented in the class Asset. Note
however that the above call price formula is only valid in the case of a
nonstochastic volatility σ(t). Introducing the function

blackScholesFunction(Q,K,Σ) = QN(d+)−KN(d−), (4.37)

d± = Σ−1log(Q/K)± 1
2
Σ (4.38)

(implemented in the class Statistics.FinMath) the call price assumes the form

FC(t) = blackScholesFunction(FS(t),K,Σ(t, T)) (4.39)

See Appendix C.4 for a derivation.

4.5. EUROPEAN CALLS 99

public class Call extends PathIndependentOption
{

double K; // strike price

//constructor, aaset is the underlying
public Call(double K)
{

super(asset,”Call”);
this.K=K;

} // end constructor

//Payoff computed from current path of underlying.
public double currentDiscountedPayoff()
{

double[] S=underlying.get S(), //price path
B=underlying.get B(); //riskfree bond

double x=S[T]-K/B[T];
return (x>0)? x:0;

}

// analytic price
public double discountedAnalyticPrice(int t)
{

double Q=underlying.forwardPrice(t),
Sigma=underlying.Sigma(t);

double[] B=underlying.get B(); //riskfree bond
return FinMath.blackScholesFunction(Q,K,Sigma)/B[T];

}

//other methods

} // end Call

The method discountedAnalyticPrice computes a valid price only if the volatil-
ity of the underlying is deterministic. Since there is no restriction on the
underlying we need a boolean flag hasAnalyticPrice which is set by examining
the type of the underlying. The class Call contains several other methods
which will be introduced in the proper context.

100 CHAPTER 4. MARKETS

Example 1 We compute the correlation of the default control variate with
the call payoff and the Monte Carlo price of the call and compare this price
to the analytic call price. The underlying will be a ConstantVolatilityAsset:

public class CallTest{

public static void main(String[] args)
{

int T=50, // time steps to horizon
nPaths=20000, // paths in simulation
nSignChange=5; // path group size (irrelevant here)

double S 0=50, // asset price at time t = 0
mu=0.24, // market drift of asset
sigma=0.31, // volatility of asset
q=0.04, // dividend yield of asset
r=0.07, // riskfree rate
K=55, // call strike
dt=0.02; // size of time step

ConstantVolatilityAsset
asset=new ConstantVolatilityAsset(T,dt,nSignChange,S 0,r,q,mu,sigma);
Call call=new Call(K,asset);

double cv corr=call.controlVariateCorrelation(3000);
String Str=”Call control variate correlation = ”+cv corr;
System.out.println(Str);

double an price=call.discountedAnalyticPrice(0);
Str=”analytic price = ”+an price; System.out.println(Str);

double mc price=call.discountedMonteCarloPrice(nPaths);
Str=”Monte Carlo price = ”+mc price; System.out.println(Str);

double cmc price=call.controlledDiscountedMonteCarloPrice(nPaths);
Str=”Controlled Monte carlo price = ”+cmc price;
System.out.println(Str);

} // end main

} // end CallTest

4.6 American Options

American options introduce a new feature, early exercise. The holder of
such a contract is entitled to exercise the option at any time on or before

4.6. AMERICAN OPTIONS 101

the time of expiration and if the option is exercised at time t the option
holder receives the discounted payoff ht ≥ 0.

Due to the nonnegativity of the payoff we can assume the option will
in fact be exercised at the latest at the time of expiry. Exercise out of the
money receives nothing but is not penalized.

In other words the problem of exercising and valuing American Options
is nothing but the Optimal Stopping Problem with a finite time horizon and
nonnegative rewards. However we will now investigate this problem in more
detail.

As usual the σ-field Ft denotes the information available at time t and
Et(·) denotes the expectation EQ [· | Ft] under the risk neutral probability
Q conditioned on all information Ft available at time t. All processes Zt will
be assumed to be adapted to the filtration (Ft), that is Zt is Ft-measurable
(the value of Zt known by time t).

In the case of the random variable ht this merely means that you know
what the payoff will be if you decide to exercise the option. The notation
ht = h(t) will also be employed where convenient.

The option contract is specified by the process h = (ht) of discounted
payoffs. In practice this process will typically be a deterministic function
ht = h̃(Xt) of a state vector process. In the simplest case the state vector
consists merely of the assets underlying the option but there could also be
interest rates, exchange rates and other ingredients necessary to compute
the option payoff at exercise time.

4.6.1 Price and optimal exercise in discrete time.

In simulation the processes ht, Xt have to be discretized. Let t = 0, 1, . . . , T
denote the time steps of the discretization. In order to determine the value
of the American option we use backward induction from discrete time t = T .
Let Vt denote the discounted value of the option at time t given that it has
not been exercised before time t. Clearly we have VT = hT . Let now t < T
and note that we can do only one of two things at time t:

• exercise and receive ht

• continue to hold and receive Et(Vt+1).

Consequently
Vt = max{ht, Et(Vt+1) }. (4.40)

In the discussion of the continuation value below it will be seen that this
recursion is not useful for the computation of the values Vt.

102 CHAPTER 4. MARKETS

Exercise strategies and optimal exercise. Assume the current time is
t and the option has not yet been exercised. The relevant exercise times are
then exactly the stopping times ρt with values in [t, T]. Let Tt denote the
family of all such stopping times ρt.

An exercise time ρt ∈ Tt decrees that the option will be exercised at time
ρt ≥ t and under this strategy the option holder receives the discounted
random payoff h(ρt) with discounted value Et[h(ρt)] at time t.

An exercise strategy ρ is a sequence of exercise times ρ = (ρt) with
ρt ∈ Tt, for all t ∈ [0, T]. Such a strategy will be called consistent if

ρt = ρt+1 on the set [ρt > t].

For example if Bt ⊆ R is a Borel set, for all t ∈ [0, T], and Zt any process
then the stopping times ρt defined by

ρt = min{ s ≥ t | Zs ∈ Bs },

define a consistent exercise strategy ρ = (ρt). Here it is understood that
ρt = T if the event Zs ∈ Bs does not happen for any time s ∈ [t, T]. From
(4.40) it follows immediately that

Et(Vt+1) ≤ Vt, equivalently Et(Vt+1 − Vt) ≤ 0, ∀t ∈ [0, T]. (4.41)

A process with this property is called a supermartingale. The supermartin-
gale property implies that

Et[V (ρt)] ≤ Vt, (4.42)

for all stopping times ρt ∈ Tt. This is the simplest case of the Optional
Sampling Theorem for sequential processes (see Appendix, D.1). Note that
the supermartingale property (4.41) is the special case of (4.42) for the
stopping time ρt = t+ 1. Let us note that

Proposition 4.6.1 Vt is the smallest supermartingale πt satisfying πt ≥ ht

for all t ∈ [0, T].

Proof. From the definition it is obvious that Vt ≥ ht and we have already seen
that Vt is a supermartingale. Let now πt be any supermartingale satisfying
πt ≥ ht, for all t ∈ [0, T]. We have to show that πt ≥ Vt, for all t ∈ [0, T],
and use backward induction starting from t = T .

4.6. AMERICAN OPTIONS 103

For t = T the claim is true since VT = hT . Let now t < T and assume
that πt+1 ≥ Vt+1. Then, using the supermartingale condition for π,

πt ≥ Et[πt+1] ≥ Et[Vt+1].

Since also πt ≥ ht (by assumption) we have πt ≥ max{ht, Et(Vt+1) } = Vt,
as desired.

Optimal exercise time. Next we show that the following defines an opti-
mal exercise time τt ∈ Tt (starting at time t):

τt = min{ s ≥ t | hs = Vs } (4.43)

The time τt exercises the option as soon as option exercise pays off the
current value of the option. Note that the stopping times τt form a consistent
exercise strategy τ = (τt). Let ρt ∈ Tt be any stopping time. Then, using
Vt ≥ ht and the supermartingale property of Vt we obtain Vt ≥ Et[V (ρt)] ≥
Et[h(ρt)] by the Optional Sampling Theorem. Consequently

Vt ≥ sup
ρt∈Tt

Et [h(ρt)] ≥ Et [h(τt)] . (4.44)

We now claim that
Vt = Et [h(τt)] . (4.45)

This shows that ρt = τt is optimal among all stopping times ρt ∈ Tt and
that equality holds in (4.44):

Vt = sup
ρt∈Tt

Et [h(ρt)] = Et [h(τt)] . (4.46)

The proof of (4.45) will be by backward induction starting from t = T . For
t = T the equality (4.45) is clear since τT = T . Let now t < T , assume that

Vt+1 = Et+1 [h(τt+1)]

and employ the following trick: if αt, βt are Ft measurable and Ut is any
random variable then

Et [αt + βtUt] = αt + βtEt[Ut]
= αt + βtEt [Et+1(Ut)] .

By consistency τt = τt+1 on the event B = [τt > t] while h(τt) = ht on the
event A = Bc = [τt = t] = [ht = Vt] = [ht ≥ Et(Vt+1)] and all these events
are Ft-measurable. Consequently

1Aht + 1BEt(Vt+1) = max{ht, Et(Vt+1) } = Vt

104 CHAPTER 4. MARKETS

and so we can write

Et [h(τt)] = Et [1Ah(τt) + 1Bh(τt)]
= Et [1Aht + 1Bh(τt+1)]
= 1Aht + 1BEt [Et+1(h(τt+1))]
= 1Aht + 1BEt [Vt+1] = Vt.

Here the second to last equality uses the induction hypothesis. Let us sum-
marize these findings as follows:

Theorem 4.6.1 Let Vt be the discounted value at time t of an American
option with discounted payoff hs if exercised at time s. Then

(i) Vt is the smallest supermartingale πt satisfying πt ≥ ht, for all t ∈ [0, T].

(ii) At time t the exercise time τt = min{ s ≥ t | hs = Vs } is optimal:

Vt = Et [h(τt)] = sup
ρt∈Tt

Et [h(ρt)] .

Continuation value. In practical computations it is often better to think
in terms of the continuation value CV (t) at time t defined recursively as:

CV (T) = 0, and (4.47)
CV (t) = Et [max{h(t+ 1), CV (t+ 1) }] , t < T ; (4.48)

A straightforward backward induction on t = T, T − 1, . . . , 0 shows that

Vt = max{ht, CV (t) }

in accordance with intuition. With this the optimal exercise time τt starting
from time t becomes

τt = min{ s ≥ t | ht ≥ CV (t) }. (4.49)

ie. we exercise the option as soon as the value from exercise is at least as
great as the value from continuation and this is also in accordance with
intuition.

Following the recursion (4.48) to its root presents the continuation value
as an iterated conditional expectation

CV (t) = Et [max {h(t+ 1), Et+1 [max {h(t+ 2), Et+2[. . .]}] (4.50)

4.6. AMERICAN OPTIONS 105

which cannot be computed for the sheer number of path branches of the
state vector process which this would entail (path branches must be split at
each time t at which a conditional expectation is taken).

Therefore it is not feasible to compute the optimal exercise policy from
the continuation value without some sort of approximation. The following
two approaches avoid the exact computation of the continuation value:

• Obtaining lower bounds for the option price from concrete exercise
strategies and computing associated upper bounds.

• Regression of the continuation value on the current information (path
history).

4.6.2 Duality, upper and lower bounds.

Duality methods to find upper bounds for the price of an American option
appeared first in [Rog01]. We follow the development in [HK01]. If πt is any
supermartingale then

ψt := Et

[
sups∈[t,T](hs − πs)

]
is a supermartingale (this does not use the supermartingale property of πt)
and

Mπ
t = πt + ψt = πt + Et

[
sups∈[t,T](hs − πs)

]
(4.51)

is a supermartingale satisfying Mπ
t ≥ πt + (ht − πt) = ht and consequently

Mπ
t ≥ Vt.

Recall that Vt is the smallest supermartingale dominating ht. If here πt = Vt

(which is a supermartingale), then ψt ≤ 0 (since then πs ≥ hs) and so
Mπ

t ≤ Vt and consequently Mπ
t = Vt. This leads to the following dual

characterization of the price process Vt:

Vt = infπ Mπ
t , (4.52)

where the infimum is taken over all supermartingales π = (πt) and is in fact
a minimum assumed at the price process πt = Vt. Of course we cannot use
π = V to compute the unknown price process Vt. The idea is now to replace
πt = Vt with an approximation πt ' Vt in the hope that then Mπ

t ' Vt

giving us a close upper bound Mπ
t for Vt.

106 CHAPTER 4. MARKETS

All this depends on having a suitable supermartingale πt. If Ut is any
process an associated supermartingale πt can be defined as follows

π0 = U0 and (4.53)
πt+1 = πt + (Ut+1 − Ut)− (Et[Ut+1 − Ut])

+ .

The supermartingale property of πt in the form Et(πt+1 − πt) ≤ 0 follows
from g − g+ ≤ 0 applied to g = Et(Ut+1 − Ut).

If Ut is already a supermartingale then g ≤ 0, hence g+ = 0, and the
recursion (4.53) becomes πt+1 = πt + (Ut+1 − Ut) and so πt = Ut.

If Ut is close to the price process Vt (which is a supermartingale) then
we hope that πt is close to Ut and hence close to Vt. We then hope that Mπ

t

is close to Vt also in which case it is a close upper bound for Vt.
Recall that Mπ

t = Vt if πt = Vt. The following estimates the error
|Mπ

t − Vt| in terms of the errors |Us − Vs|:

Theorem 4.6.2 Assume that the process Ut satisfies Ut ≥ ht and the su-
permartingales πt, Mπ

t are derived from Ut as in (4.53) and (4.51). Then
we have the estimate

Mπ
0 ≤ U0 + E(K), where K =

∑
t<T

(Et[Ut+1 − Ut])
+ . (4.54)

Proof. The recursion (4.53) implies that πs = Us −
∑

j<s (Ej [Uj+1 − Uj])
+

and so, using hs ≤ Us,

hs − πs ≤ Us − πs =
∑

j<s
(Ej [Uj+1 − Uj])

+ ≤ K,

for all s ∈ [1, T]. The same equality is also true for s = 0 since h0 − π0 =
h0 − U0 ≤ 0. Thus

sups∈[t,T](hs − πs) ≤ K, for all t ∈ [0, T].

(4.54) now follows from Mπ
0 = U0 + E

[
sups∈[t,T](hs − πs)

]
.

In a sense K is a measure of the deviation of U from the supermartingale
property. It is easy to relate this deviation to the deviation of U from the
supermartingale V . We do this under the assumption ht ≤ Ut ≤ Vt.

Our estmates Ut for Vt will be the payoff of concrete exercise strategies
and these estimates have this property. Write

Ut+1 − Ut = (Ut+1 − Vt+1) + (Vt+1 − Vt) + (Vt − Ut)
≤ (Vt+1 − Vt) + |Vt − Ut|

4.6. AMERICAN OPTIONS 107

and take the conditional expectation Et observing that Et(Vt+1 − Vt) ≤ 0
by the supermartingale property of Vt. This yields

(Et [Ut+1 − Ut])
+ ≤ ‖Ut − Vt‖L1 .

It now follows from (4.54) that

Mπ
0 ≤ U0 +

∑
t≤T

‖Ut − Vt‖L1 .

Putting all this together we obtain the following procedure for estimating
the option price V0:

Estimates of V0. A lower bound for the price V0 is always obtained by
specifying a clever exercise policy ρ = (ρt). A general class of policies which
works well in several important examples is introduced below. However in
most cases an investigation of each particular problem does suggest suitable
exercise policies.

Once we have a policy ρ the discounted payoff A0 = h(ρ0) from exercising
according to ρ is a lower bound for V0. There are now two possibilities to
obtain an upper bound for V0. Setmt = h(ρt) (the price process if the option
is exercised according to ρ) and Ut = max{mt, ht}. Then ht ≤ Ut ≤ Vt and
the price V0 satisfies

V0 ≤ U0 + E
∑

t<T
(Et[Ut+1 − Ut])

+ . (4.55)

This upper bound has the advantage that it is completely determind by the
exercise policy ρ. It has the disadvantage that it is expensive to compute
(path splitting). In practice it requires subtle methods to get useful upper
bounds this way. See [HK01].

The second method due to C. Rogers [Rog01] makes use of the duality
(4.52) and obtains an upper bound

V0 ≤Mπ
0 = π0 + E

[
supt∈[0,T](ht − πt)

]
(4.56)

by choosing a particular supermartingale π. In practice martingales are
chosen more precisely the discounted price processes of trading strategies.
We know that equality (4.56) is exact if πt = Vt, that is, if the chosen
strategy is a replicating strategy. Of course the problem of finding a perfect
replicating strategy is even harder than the pricing problem. So in practice
we design approximate replicating strategies (see 5.2, 5.6.2).

To ensure the martingale property the trading strategies are kept self-
financing and this can easily be effected by trading in a designated asset
(such as the risk free bond for example) to finance the strategy. See [JT] for
an application of this approach to Bermudan swaptions.

108 CHAPTER 4. MARKETS

4.6.3 Constructing exercise strategies

Recall that the optimal strategy τ satisfies

τt = min{ s ≥ t | ht > CV (t) },

where CV (t) is the continuation value above. A first exercise strategy
ρ = (ρt) is obtaind approximating the continuation value CV (t) with the
quantity

Q(t) = max{Et(ht+1), Et(ht+2), . . . , Et(hT) } (4.57)

and then exercising as soon as hs ≥ Q(s):

ρt = min{ s ≥ t | hs ≥ Q(s) } (4.58)

At each time s ≥ t the exercise time ρt compares the discounted payoff
hs from immediate exercise to the expected discounted payoffs Es(hj) from
exercise at all possible future dates j > s and exercises the option if hs

exceeds all these quantities. Let us call this strategy the pure strategy. It
is a baseline from which other strategies are derived.

This strategy is easily implemented in stochastic models of the state price
process Xt: to compute the quantities Q(t) we merely have to compute the
conditional expectations Es(H) of the random vector H = (h1, h2 . . . , hT).
At worst this involves path splitting. Quite often however the payoff hs is
identical to the payoff of the coresponding European option. In this case the
conditional expectation Et(hs) is the price of the European option maturing
at time s (discounted to time t = 0). It is then often possible to use analytic
formulas and to avoid the costly Monte Carlo computation of Et(hs). This is
the case for American puts on a single Black-Scholes asset and for Bermudian
swaptions.

Let us note note an important property of the strategy ρ: the strategy
ρ always exercises earlier than the optimal strategy τ :

ρt ≤ τt, t ≤ T. (4.59)

This follows from the inequality

CV (t) ≥ Q(t). (4.60)

For a proof of this inequality set a∨ b = max{a, b}, observe that CV (T) = 0
and

Et [CV (s)] = Et [hs+1 ∨ CV (s+ 1)] , t < s ≤ T,

4.6. AMERICAN OPTIONS 109

and repeatedly use the trivial inequality Et[f ∨ g] ≥ Et[f] ∨Et[g] to obtain

CV (t) = Et [ht+1 ∨ CV (t+ 1)]
≥ Et [ht+1] ∨ Et [CV (t+ 1)] = Et [ht+1] ∨Et [ht+2 ∨ CV (t+ 2)]
≥ . . . ≥ Et [ht+1] ∨ Et [ht+2] ∨ . . . ∨ Et [hT] = Q(t).

The difference between Et[f∨g] and Et[f]∨Et[g] is large if f is small on a set
where g is large and conversely. There is no difference at all for example if
g ≥ f . Here f is the payoff from immediate exercise and g the continuation
value. For most options in practice the payoffs from immediate exercise and
continuation are related, that is, with a high probability g ≥ f and even if
f > g then usually g is still close to f .

In this case we would expect the continuation value CV (t) to be close
to Q(t) with high probability and consequently the strategy ρ = (ρt) to
be close to the optimal strategy τ = (τt). This would not be the case for
options specifying payoffs at different times which are completely unrelated.

Continuation and exercise regions. Fix a time t and assume our option has
not been exercised yet. At time t the option is then exercised on the region
[τt = t] = [ht ≥ CV (t)] and is held on the region [τt > t] = [ht < CV (t)].
These regions are events in the probability space and so are hard to visualize.
Instead we project them onto the two dimensional coordinate plane by using
coordinates x and y which are Ft-measurable, that is, the values of x and y
are known at time t.

The most descriptive coordinates are of course x = CV (t) and y = ht. In
these coordinates the continuation region assumes the form [y < x]. Since we
cannot compute CV (t) we use the coordinates x = Q(t) and y = ht instead.
In these coordinates [y < x] is the continuation region of the suboptimal pure
exercise strategy while the optimal continuation region completely contains
this region.

This points us to the idea of constructing better exercise strategies as
follows: we enlarge the continuation region (the region below the diagonal
[y = x]) by denting the diagonal [y = x] upward and parametrize the exercise
boundary as y = k(x) for a function k(x) ≥ x. Experiments with the
function

k(x, α, β) =

{
β (x/β)α : x < β

x : x ≥ β
(4.61)

with parameters 0 < α < 1 and β > 0 have shown excellent results in several
examples.

For α = 0.65 and β = 0.5 the boundary assumes the shape seen in
figure 4.1. It is a good idea to make α and β time dependent. As time t

110 CHAPTER 4. MARKETS

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: Exercise boundary

approaches the time T of expiration Q(t) will approach CV (t) (they are
equal for t = T − 1) and so we might want to have α(t) ↑ 1 and possibly
also β(t) ↓ 0 as t ↑ T . This flattens out the diagonal as expiry approaches.
Note that we are approximating the continuation value CV (t) as

CV (t) = k(Q(t), α(t), β(t))

and starting from time t we exercise at the first time s ≥ t such that

hs > k(Q(s), α(s), β(s)) = β(s) (Q(s)/β(s))α(s) . (4.62)

Let us call this strategy convex exercise (from the convexity of the contin-
uation region) while the strategy exercising as soon as hs > Q(s) will be
called pure exercise.

Parameter optmization To find good values for the parameters α(t), β(t)
generate a set of training paths of the underlying and store the values of
ht and Q(t) along each path (though not the path itself) for all paths.
Parameters α, β optimizing the payoff over this set of paths are computed
by backward recursion on t starting from t = T − 1. Together with these
parameters we also store for each exercise date t and each training path
the optimal exercise time s ≥ t under the computed optimal parameters.
Parameter optimization at the exercise date t−1 then uses this information
for very fast computation of the payoff from exercise under any parameters
α(t− 1), β(t− 1).

Examples. Here are some results in the case of particular examples. The
first example is a plain vanilla American put on a Black-Scholes asset S
satisfying S(0) = 50, σ = 0.4, r = 10% and T = 5/12. The exact price of
this put is 4.28. The price of the corresponding European option is 4.07. The

4.6. AMERICAN OPTIONS 111

pure exercise strategy with 10 exercise dates yields 4.225. Convex exercise
with recursive parameter optimization at each exercise date improves this to
4.268. The class AmericanPutCvxTrigger implements the selfcalibrating trigger
and the class AmericanBlackScholesPut in the package Option contains the price
computation.

The second example is the call on the maximum of 5 uncorrelated Black-
Scholes assets. This is the example in [HK01]. We use the same parameter
values (volatilities, time to expiration, number of exercise periods, strike).
With 10 exercise periods to expiry [HK01] locates the price for the at the
money call in interval [26.15, 26.17]. The pure exercise strategy yields 25.44
while the parameters α = 0.85 and β = 150 with linear adjustment along the
exercise dates improve this to 26.18. The corresponding European price is
23.05. The results were computed from only 10000 paths of the underlying
basket (no analytic formulas) and are not very reliable.

Finally in the case of Bermudan swaptions benchmark prices were pro-
vided by Peter Jaeckel computed using a sophisticated setup (low discrep-
ancy sequences, reduced effective dimension). For a long dated 20 year
semiannual Bermudan swaption callable after 2 years Jaeckel gives a price
of 0.06813. The pure exercise strategy results in 0.065 while convex exercise
with parameter optimization improves this to 0.0675. Here the price of the
most expensive European swaption was 0.041. This case will be discussed
again below where it will be seen that exercise strategies constructed using
information about the particular problem can be superior and much faster
computationally.

Implementation. An American option will be written on some underlying
either a single asset or a basket of assets. Let’s assume it is a single asset.
The payoff from exercise at time t computed from the current path of the
underlying is given by the abstract method currentDiscountedpayoff:

public class AmericanOption {

Asset underlying; // the underlying

// discounted payoff ht from exercise at time t computed
// from the current path of the underlying.
public abstract double currentDiscountedPayoff(int t);

// other methods

} // end AmericanOption

Here is Q(t). The parameter nBranch is the number of path branches spent

112 CHAPTER 4. MARKETS

on computing each conditional expectation Et(hj), t < j ≤ T :

public double Q(int t, int nBranch)
{

// the random vector H = (h0, h1, . . . , hT), draws at time t only
// compute ht+1, . . . , hT . This is all we need for Q(t).
final double[] x=new double[T+1];
RandomVector H=new RandomVector(T+1){

public double getValue(int t)
{

underlying.newPathBranch(Flag.RISK NEUTRAL PROBABILITY,t);
for(int j=t+1; j<T+1; j++) x[j]=currentDiscountedPayoff(j);
return x;

}
}; // end H

// max{Et(ht+1), Et(ht+2), . . . , Et(hT) } = maxj>t y[j]
double[] y=H.conditionalExpectation(s,nBranch);
double max=y[t+1]; for(int j=t+2; j<=T; j++) if(y[j]>max)max=y[j];
return max;

} // end Q

In case the conditional expectations Et(hj), t < j ≤ T , can be computed
via analytic formula the random vector H will obviously be replaced with
these formulas and the parameter nBranch is not needed.

Recall that the concept of a family ρ = (ρt) of stopping times ρt ≥ t
is already implemented in the class Trigger.java in the package Trigger. The
method isTriggered(t,s) returns true if ρt = s and false otherwise. With this
we can now implement the exercise strategy strategy (4.58). The parameter
nBranch is as above:

public Trigger pureExercise(final int nBranch)
{

return new Trigger(T){

public boolean isTriggered(int t, int s)
{

if(s==T) return true;
if(currentDiscountedPayoff(s)>Q(s,nBranch)) return true;
return false;

}

4.6. AMERICAN OPTIONS 113

public boolean nextTime(int t)
{

int s=t;
while(!isTriggered(t,s))
{ underlying.timeStep(Flag.RISK NEUTRAL PROBABILITY,s); s++; }
return s;

}

}; // end return new

} // end naiveExercise

Note that the method nextTime(int t, int s) advances the path of the underlying
asset (or basket of assets or Libor process) to the first time s ≥ t at which
the trigger triggers (ρt = s). If exercise is any trigger then the discounted
payoff h(ρt) for the exercise strategy ρt corresponding to the trigger exercise

can be implemented as follows:

public double currentDiscountedPayoff(int t, Trigger exercise)
{

int s=exercise.nextTime(t);
return currentDiscountedPayoff(s);

}

The classes Options.AmericanOption and Options.AmericanBasketOption follow this
pattern. Forward prices instead of discounted prices are used in the case
of Bermudan swaptions (Libor.LiborDerivatives.BermudanSwaption). All these
classes implement a variety of exercise triggers. In addition there are the
standalone triggers pjTrigger, cvxTrigger for Bermudan swaptions in the pack-
age Libor.LiborDerivatives which optimize their parameters using a BFGS mul-
tidimensional optimizer.

4.6.4 Recursive exercise policy optimization

All our exercise policies rely on an approximation CV0(t) of the continua-
tion value CV (t) and we exercise at time t if ht ≥ CV0(t). Let us recall
how we have approximated the continuation value CV (t) above. We have
recognized that the quantity Q(t) probably is an important feature of the
continuation value which will be somewhat larger than Q(t) and the dis-
crepancy diminishes as option expiry approaches. Based on these insights
we have chosen the approximation

CV (t) ' k(Q(t), α(t), β(t)), (4.63)

114 CHAPTER 4. MARKETS

where k = k(x, α, β) is as in (4.61). This method can be generalized as
follows: rather than limiting ourselves to the specific approximation (4.63)
we try a more general form

CV (t) ' f(t, α), (4.64)

where the random variable f(t, α) depends on a parameter vector α and
is Ft-measurable, the minimal requirement which ensures that the value of
f(t, α) is known by time t when it is needed. The random variable f(t, α)
can incorporate any feature from the path s ∈ [0, t] → X(t) of the state
vector process up to time t (the information at hand at time t) which we
deem significant.

Except for the value of the parameter vector α (which will be optimized)
we need to come up with all details of the quantity f(t, α). See [TR99] for
a detailed discussion how such a function f might be specified in a concrete
example.

The task at hand is now to find for each time t an optimal parameter
vector α(t) and the solution uses backward recursion starting with t = T .
For t = T we have CV (t) = 0.
Training paths. We generate a number (typically tens of thousands) of train-
ing paths of the state vector and for each path we store all the information
needed to compute the quantities f(t, α) for each parameter vector α. At
worst we have to store the entire path s ∈ [0, T] → X(s) and precompute
and store all computationally expensive features (such as Q(t) for example)
which are incorporated into f(t, α). This costs memory but does allow for
fast computation of f(t, α) for each parameter α over all training paths.

For each training path and at each time t we also store the first time s =
s(t) ≥ t at which the computed optimal parameters exercise the option and
the resulting payoff. Here ”optimal parameters” designates the parameters
resulting from our parameter optimization. For t = T we can already set
s = T (recall our convention hT ≥ 0).

Suppose optimal parameters α(s) have been found for s > t and the
corresponding exercise times set for each training path. We now want to
determine the optimal parameter vector α(t) at time t and can proceed in
one of two ways:
Maximizing the payoff. Each parameter vector α defines how we exercise at
time t. With this we can compute the payoff H(α) from exercise starting
at time t as a function of α. Morever this computation is very fast since we
only have to decide wether we exercise immediately (determined by α) or
later, in which case the time s(t+1) of exercise is already set and the payoff

4.6. AMERICAN OPTIONS 115

cached. We can then employ methods to maximize the payoff H(α). This is
a computationally efficient approach and intuitively appealing since we are
in fact looking for an exercise strategy which maximizes the payoff.
Recursive approximation of CV (t). This method, also proposed in the lit-
erature, is less appealing. The idea is as follows: once we already have an
approximation CV (t+ 1) ' f(t+ 1, α(t+ 1)) we can compute the continu-
ation value CV (t) approximately as

CV (t) = Et [max{ht+1, CV (t+ 1) }]
' Et [max{ht+1, f(t+ 1, α(t+ 1)) }] .

Monte Carlo simulation is usually necessary but paths are split only once at
time t and advanced only one time step to time t+1. We compute CV (t) for
each training path and then minimize the squared error [CV (t) − f(t, α)]2

over all trainig paths as a function of the parameter α. This approach is
computationally much more expensive and also addresses the goal of finding
an exercise strategy which maximizes the option payoff only indirectly.

The convex exercise strategy is very general but the computation of the
quantity Q(t) = maxs>tEt(hs) is computationally quite expensive even if
analytic formulas are available for the conditional expectations Et(hs). It is
extremely expensive if no such formulas are available.

116 CHAPTER 4. MARKETS

Chapter 5

Trading And Hedging

5.1 The Gains From Trading

Betting on a single asset S is an acceptable form of gambling and the theory
of finance more intellectually rewarding than the analysis of odds in lotteries
or casinos. Let us therefore consider a market in which only two assets are
traded, a risky asset S and the riskfree bond B. The prices S(t), B(t) are
stochastic processes and S(t) is the discounted price of the asset S at time
t. We can also view S(t) as the price of S expressed in a new numeraire,
the riskfree bond. The unit of account of this new currency is one share of
the risk free bond B. In this currency the risk free rate of interest for short
term borrowing appears to be zero.

We will assume that we have the ability to borrow unlimited amounts
at the risk free rate. Keeping score in discounted prices then automatically
accounts for the time value of money and eliminates interest rates from
explicit consideration.

A trading strategy is defined by the number w(t) shares of the asset S
held at time t (the weight of the asset S, a random variable). A trade takes
place to adjust the weight w(t) in response to events related to the price path
of the asset S. The trades take place at an increasing family of random times

0 = τ0 < τ1 < . . . < τn−1 < τn = T, (5.1)

where the number n of trades itself can be a random variable. The trade
at time T liquidates the position and we then take a look at the discounted
gains from trading which the strategy has produced. These gains can be
viewed as the sum of gains from individual trades buying w(τk) share of S
at time τk and selling them again at time τk+1 (to assume the new position).

117

118 CHAPTER 5. TRADING AND HEDGING

Taking account of the fact that the price of the asset S has moved from S(τk)
at time τk to S(τk+1) at time τk+1 this transaction results in a discounted
gain of

w(τk)[S(τk+1)− S(τk)] (5.2)

This computation assumes that the asset S pays no dividend and that trad-
ing is not subject to transaction costs. If on the other hand the asset S
pays a continuous dividend with yield q and if each trade has fixed trans-
action costs ftc and proportional transaction costs ptc (cost per share) (5.2)
becomes

w(τk)[(S(τk+1)− S(τk)) + dvd(k)]− trc(k), (5.3)

where
dvd(k) = qS(τk)(τk+1 − τk) (5.4)

is the dividend earned by one share of the asset S during the interval
[τk, τk+1] (closely approximated) and

trc(k) = |w(τk+1 − w(τk)|ptc + ftc (5.5)

are the transaction costs. The total (discounted) gains from trading are
then given by the sum

G =
∑n−1

k=0
w(τk)[∆S(τk) + dvd(k)]− trc(k), (5.6)

where
∆S(τk) = S(τk+1)− S(τk). (5.7)

Note that G is a random variable in accordance with the uncertainty and
risk surrounding every trading activity. The first question which presents
itself is how we should implement the increasing sequence (5.1) of times at
which the trades occur. Typically the time of a new trade is determined
with reference to the time of the last trade. Quite often the size of the price
change from the time of the last trade triggers the new trade (”if it goes
down 15%” etc.). The class Trigger implements this concept. The method
isTriggered(t,s) returns true if an event (such as a trade) is triggered at time
s with reference to time t where usually t is the last time the event was
triggered. The sequence (5.1) is then defined recursively as

τ0 = 0 and τk+1 = min{ s > τk | isTriggered(τk, s) } (5.8)

and this is even easier to code by checking at each time step s if isTriggered(t,s)

is true and moving t from trigger time to trigger time. With this a trading
strategy consists of an asset to invest in, a trigger triggering the trades and
an abstract method delivering the weights:

5.1. THE GAINS FROM TRADING 119

public abstract class TradingStrategy{

double currentWeight; // current number of shares held
Asset asset; // the asset invested in
Trigger tradeTrigger; // triggers the trades
double fixed trc; // fixed transaction cost (per trade)
double prop trc; // proportional transaction cost (per trade)

int T; // time steps to horizon
double dt; // size of time step
double[] S; // price path of the asset
double[] B; // price path of the riskfree bond
int nTrades; // current number of trades

// the new weight of the asset given that a trade occurs at time t
public double abstract newWeight(int t);

// constructor
public TradingStrategy
(double fixed trc, double prop trc, Asset asset, Trigger tradeTrigger)
{

this.fixed trc=fixed trc; this.prop trc=prop trc;
this.asset=asset; this.tradeTrigger=tradeTrigger;
T=asset.get T(); dt=asset.get dt();
S=asset.get S(); B=asset.get B();
nTrades=0;
currentWeight=newWeight(0);

}

// other methods

} // end TradingStrategy

The field currentWeight is kept to allow the method newWeight to compute
the new weight of the asset with reference to the last weight (”selling half”
etc.). Consequently it is important to keep this variable up to date at all
times even in sections of code which do not explicitly use it. It might be
used through calls to newWeight.

The ”other methods” alluded to above are devoted to the analysis of
the discounted gains from trading. First we need a method which computes
these gains along one path of the asset. This path is computed simulta-
neously with the trading strategy and driven by new Z-increments and is
thus independent of previous paths. Thus the variable Asset.nSignChange is
irrelevant. Nonetheless it must be assigned some value if we want to allocate
an asset.

120 CHAPTER 5. TRADING AND HEDGING

public double newDiscountedGainsFromTrading()
{

int t=0, // time of last trade
s=0; // current time

double q=asset.get q(), //dividend yield
gain=0, // discounted gain from trading
w=newWeight(t), // current number of shares held
currentWeight=w; // update

while(t<T)
{

// Currently w=newWeight(t), number of shares held at time t of last trade
// Move the price path forward to time s of next trade
s=asset.pathSegment(Flag.MARKET PROBABILITY,t,tradeTrigger);

double w new, // new weight we move to at time s
deltaS=S[s]−S[t]; // price change

if(s<T)w new=newWeight(s); // adjust position
else w new=0; // sell all

// the dividend in [t,s], 1 share:
double dividend=q * S[t] * (s-t) * dt;

// the transaction costs:
double trc=Math.abs(w new−w) * prop trc+fixed trc;

gain+=w * (deltaS+dividend)−trc;

// move state forward to time s:
t=s; w=w new; currentWeight=w;

} // end while

return gain;

} // end newDiscountedGainsFromTrading

This produces one sample of the discounted gains from trading viewed as a
random variable. The following method returns this random variable:

5.1. THE GAINS FROM TRADING 121

public RandomVariable discountedGainsFromTrading()
{

return new RandomVariable(){

public double getValue(int t)
{ return newDiscountedGainsFromTrading(); }

}; // end return new

} // end discountedGainsFromTrading

Note that the time variable t is ignored in the method getValue defining the
random variable discountedGainsFromTrading. This means that we have not
implemented the ability to condition on information available at time t. It
would be somewhat more complicated to implement this and we will not use
it. This means however that the discounted gains from trading can only be
meaningfully considered at time t = 0.

Once we have the gains from trading as a random variable we can call
on methods implemented in the class RandomVariable to compute interest-
ing statistics associated with it. What sort of trading strategies should we
pursue? A popular strategy is to increase the stakes when the position has
moved against you. For an investor going long this means averaging down.
For example we might initially buy 100 shares and double our position every
time the asset price declines 5% from the level of the last buy. Assuming an
Asset has already been allocated this strategy could be defined as follows:

double prcnt=5; // percentage decline which triggers the next buy
fixed trc=0.1; // fixed transaction cost per trade
prop trc=0.25; // proportional transaction cost

Trigger tradeTrigger=new TriggerAtPercentDecline(asset,prcnt);

TradingStrategy doubleOrNothing=
new TradingStrategy(fixed trc,prop trc,asset,tradeTrigger){

// define the weights
public double newWeight(int t){ return 2 * currentWeight; }

}; // end doubleOrNothing

Here TriggerAtPercentDecline is a trigger defined in the package Triggers which
triggers every time the discounted asset price declines a certain percentage
from the level of the last trigger event. The time parameter t is ignored
since the new weight is defined with reference to the last weight. Some trad-

122 CHAPTER 5. TRADING AND HEDGING

ing strategies however will make use of time t, most notably the strategies
hedging option payoffs defined below.

Proceeding like this allocates the strategy for local use. If we want to use
it more than once we could define a class DoubleOrNothing which extends the
abstract class TradingStrategy and implements the above method in the class
body. Some such strategies are implemented in the package TradingStrategies.
The reader is invited to read the source code and browse the javadoc.

The gains from trading are not the only quantity of interest associated
with a trading strategy. For example the double or nothing strategy above
provides excellent returns even in the case of an asset drifting down. Un-
doubtedly this accounts for its appeal to money managers which later be-
come fugitives from the law or inmates of minimum security prisons. The
reason for this are other quantities of interest associated with the strategy
such as the borrowings necessary to maintain the strategy and the drawdown
which is experienced and must be stomached during the life of the strategy.
Here we assume that the strategy is financed completely by borrowing at
the riskfree rate, that is the trader does not put up any capital initially.

The doubleOrNothing strategy above executed in a bear market will bal-
loon your position to astronomical size. Borrowings may not be availble in
sufficient quantity to last until a reversal of fortune sets in.

Thus we see that it is is prudent to compute some metrics in addition
to the gains from trading associated with a trading strategy. These are
best all computed simultaneously and assembled into a random vector. The
methods

public double[] newTradeStatistics(){ /* definition */ }
public RandomVector tradeStatistics(){ /* definition */ }

defined in the class TradingStrategy do this and the following quantities associ-
ated with a trading strategy are computed: maximum borrowing, maximum
drawdown, gains from trading, return on investment and number of trades.
The reader is invited to check the source code for bugs and browse the
javadoc.

Results. The package TradingStrategies defines the following strategies:

• Buy and hold.
• Dollar cost averaging.
• Averaging down.
• Double or nothing.

5.1. THE GAINS FROM TRADING 123

-0.47 -0.37 -0.28 -0.19 -0.09 0.00 0.09 0.19 0.28

Asset drift

-0.5

-0.4

-0.2

-0.1

0.0

0.1

0.2

0.4

0.5

0.6

re
tu

rn
s

b&h
dc-avg
avg-dn
d-or-n

Figure 5.1: Returns

All strategies start with an initial purchase of 100 shares at time t = 0. The
buy and hold strategy keeps this position until the time horizon, averaging
down buys another 100 shares whenever the asset price declines a certain
trigger percentage below the level of the last buy, dollar cost averaging buys
100 shares at regular time intervals regardless of price, and double or nothing
increases the current position by a certain factor f whenever the asset price
declines a certain trigger percentage below the level of the last buy.

How we fare depends on the asset drift µ, that is, wether we are in a
bear market (µ < 0) or a bull market (µ > 0). To compare performance we
compute some statistics as functions of the asset drift µ evaluated at points
evenly spaced between extremes µmin and µmax.

Lets first look at the return on investment. The return of a trading
strategy will be computed as the return on the maximum amount invested
during the lifetime of the strategy. The gains from trading are viewed as
interest on this maximum and a corresponding continuously compounded
return derived. The strategy is assumed to be financed by borrowing at
the risk free rate. The following parameters apply to all figures below:
S(0) = 50, σ = 0.3, q = 0, r = 0.05, dt = 0.02, T = 50, fixed trc = 10,
prop trc = 0.25, Trigger percentage = 7, dollar cost averaging, number of buys
= 5.

In pondering the returns in figure 5.1 recall that the cash price process S(t)
of the constant volatility asset (no discounting) satisfies

S(t) = S(0)exp[(µ− 0.5σ2)t+ σW (t)] (5.9)

124 CHAPTER 5. TRADING AND HEDGING

-0.28 -0.19 -0.09 0.00 0.09 0.19 0.28

Asset drift

-72934

0

72934

145869

218803

291737

364672

437606

m
e

a
n

 m
a

xi
m

a
l b

o
rr

o
w

in
g

s

double or nothing

Figure 5.2: Borrowings

where µ and σ are the drift and volatility of the (cumulative) returns and
W (t) is a Brownian motion. Thus the expected returns of the buy and hold
strategy are µ− 0.5σ2 and this is borne out by the simulation.

Dollar cost averaging is a rather mediocre strategy under all scenarios.
Note that our definition of dollar cost averaging (buying constant numbers of
shares) differs from the more usual one (investing a constant sum of money)
on each buy. This latter strategy should improve returns in a bear market
and decrease returns in a bull market. The reader is invited to define such
a strategy and carry out the simulation.

The most striking aspect is the return profile of the double or nothing
strategy. It is able to stay above water even in a severe bear market. Ag-
gressively increasing the bets and waiting for a reversal of fortune however
is the path to ruin for most who succumb to temptation.

Figure 5.2 explains why. Enormous amounts of money have to be borrowed
should the drift be down. In fact this chart is completely dominated by
the borrowings of the double or nothing strategy. Note that your creditors
are likely to become nervous in case your fortunes turn down while your
borrowings expand. For this reason it might be a good idea to to do the
following
Exercise. Compute the returns from the double or nothing strategy under
the assumption that you will be sold out by your broker in case borrow-
ings exceed 200% of the intial investment. You might want to add a new
field cumulativeBorrowings to the class TradingStrategy and define the method

5.1. THE GAINS FROM TRADING 125

-0.47 -0.37 -0.28 -0.19 -0.09 0.00 0.09 0.19 0.28

Asset drift

0

3769

7538

11308

15077

18846

22615

26384

30154

33923

37692

m
e

a
n

 m
xi

m
a

l b
o

rr
o

w
in

g
s

b&h
dc-avg
avg-dn

Figure 5.3: Borrowings

TradingStrategy.newWeight with reference to the state of this field.
The fact that huge funds can overcome subfair odds is already known

from ordinary gambling. Needless to say the strategy is not viable in practice
even if you have the funds. You must begin with a large cash hoard and a
rather small position (lest your funds not suffice to support the ballooning
portfolio should the drift be down). If the unknown asset drift µ turns out
to be positive and volatility small you will remain underinvested to the end.
At worst your stock is delisted and the strategy ends in total loss. Thus we
concentrate on the other strategies. (invested funds).

Figure 5.3 gives us another look at the borrowings. A dollar cost averaging
investor will need more funds in a rising market while one who averages
down will need less. Other definitions of dollar cost averaging have the
investor buy a varying number of shares for a fixed amount of cash at each
buy. This copes with the uncertainty of the funds needed to maintain the
strategy. You can implement this strategy and check its performance as an
exercise.

Investors must face the unpleasantness of drawdowns (from the original
investment) depicted in figure 5.4 as a percentage of invested funds (that
is funds sunk into the strategy regardless of what’s left). Drawdowns are
important for psychological reasons. Many an investor has been prompted
to sell out at an inopportune time due to the pressure of the drawdowns.
Drawdowns are also alarming for creditors who in the end will make the
final decisions.

126 CHAPTER 5. TRADING AND HEDGING

-0.28 -0.19 -0.09 0.00 0.09 0.19 0.28

Asset drift

0.09

0.13

0.18

0.22

0.26

0.31

0.35

0.40

0.44

0.48

0.53

m
e

a
n

 m
a

xi
m

a
l d

ra
w

d
o

w
n

 (
%

) b&h
dc-avg
avg_dn

Figure 5.4: Drawdown

The graphs are computed by the class Examples.Trading.GainsFromTrading.
The directory Pictures/GainsFromTrading/FunctionOfDrift contains these and oth-
ers as PNGs. The colors should make the distinction between the graphs
easier. We conclude this excursion with histograms of the returns from trad-
ing. These histograms are smoothed and normalized (area equal to one).

It is undeniable that averaging down produces superior returns.

5.2 Hedging European Options

Recall that we work with discounted prices, that is, S(t) denotes the dis-
counted price of the asset S at time t. In other words we keep score in
constant time zero dollars.

Assume we have written an option with discounted payoff h at time T
and discounted price process C(t). We then effectively have a short position
of one such option. To offset the risk associated with this position we trade
in the underlying S according to some trading strategy (the hedge). The
idea is to determine the weights w(t) of the strategy in such a manner that
the gains from trading track the loss on the option short position as closely
as possible.

We assume that the discounted option price C(t) is a martingale in the
risk neutral probability Q and consequently

C(t) = Et(h), t ∈ [0, T],

5.2. HEDGING EUROPEAN OPTIONS 127

- 0.415 0.000 0.415 0.830 1.245

0.0

1.2

Figure 5.5: Returns: averaging down.

- 0.661 - 0.331 0.000 0.331 0.661

0.0

1.5

Figure 5.6: Returns: dollar cost averaging.

128 CHAPTER 5. TRADING AND HEDGING

where the conditional expectation is taken with respect to Q.

5.2.1 Delta hedging and analytic deltas

The classic weights arise from a straightforward discretization of the contin-
uous strategy of delta hedging. Here it is assumed that the discounted price
C(t) of the option is given by a known function of time and the discounted
price S(t) of the underlying

C(t) = c(t, S(t)) (5.10)

where c = c(t, s) is a continuously differentiable function. The martingale
property of the discounted price C(t) in the risk neutral probability Q im-
plies that the bounded variation terms in the expansion of the stochastic
differential dC(t) = d c(t, S(t)) must vanish leaving us with

dC(t) = w(t)dS(t), where w(t) =
∂c

∂s
(t, S(t)).

(Ito’s formula). In integrated form

C(t) = C(0) +
∫ t

0
w(s)dS(s), t ∈ [0, T].

Since the integral on the right represents the discounted gains from trading
S continuously with weights w(s), the continuously rebalanced hedge with
weights w(s) perfectly replicates the option payoff h. The weight

w(t) =
∂c

∂s
(t, S(t)) (5.11)

is called the analytic delta of the option at time t. Such analytic deltas
exist only if the option price is given by an analytic formula and have to be
implemented differently for each concrete option.

If the hedge is not continuously rebalanced and instead the hedge weights
w(t) are constant on intervals [τk, τk+1) the discounted gains G(T) from
trading on [0, T] assume the form

G(T) =
∑

k
w(τk)∆S(τk),

where ∆S(τk) = S(τk+1)−S(τk). The error with which the hedge tracks the
option is the quantity C(0) + G(T) − C(T) and telescoping the difference
C(T)− C(0) as

∑
k ∆C(τk) this can be written as

C(0) +G(T)− C(T) =
∑

k
[w(τk)∆S(τk)−∆C(τk)] . (5.12)

5.2. HEDGING EUROPEAN OPTIONS 129

Although this quantity is the discounted gain from selling and hedging the
option it may assume negative values and so is best thought of as the tracking
error of the hedge. We are interested in minimizing this error and since the
mean can always be absorbed into the option premium we are interested in
minimizing the variance of the tracking error.

5.2.2 Minimum Variance Deltas

The tracking error on a single interval [t, s) on which the weight w(t) is kept
constant is the quantity

e(t) = w(t)∆S(t)−∆C(t),

where ∆S(t) = S(s) − S(t) and ∆C(t) = C(s) − C(t). This quantity is
written as a function of t only since s is understood to be the first time
s > t where the hedge is rebalanced. To minimize this tracking error we
choose w(t) so as to minimize the L2-norm

‖e(t)‖2
2 = Et

[
e(t)2

]
(conditioned on the state at time t) over all possible weights w(t) which are
Ft-measurable, that is, the value of w(t) can be identitfied at time t. In
the risk-neutral probability Q the discounted asset prices S(t) and C(t) are
martingales and so Et(∆S(t)) = Et(∆C(t)) = 0. From this it follows that
Et[e(t)] = 0 and consequently the L2-norm is also the variance of the hedge
error on the interval [t, s]. This is not true for the market probability P .
Let X and Y be random variables and w a constant. Then

E
[
(wX − Y)2

]
= w2E[X2]− 2wE[XY] + E[Y 2]

and this polynomial in w is minimized by w = E(XY)/E(X2). Applying
this to X = ∆S(t) and Y = ∆C(t) and conditioning on the state at time t
yields the minimum variance delta w(t) as

w(t) =
Et [∆S(t)∆C(t)]
Et [(∆S(t))2]

. (5.13)

In practical simulation the conditioning on the state at time t only means
that these quantities will be computed from simulated paths which are
branches of the current path with branching at time t. Here we have not
specified the probability (market/risk neutral) under which these quantities

130 CHAPTER 5. TRADING AND HEDGING

will be computed. It can be shown that the above weights minimize the
variance of the cumulative hedge error (5.12) for the entire hedge in the risk
neutral probability. They do not in general minimize the variance of this
error in the market probability.

To determine the weights which minimize the hedge error in the market
probability is considerably more complicated. See [Sch93]. A minimizing
hedge strategy may not exist. Even under conditions where existence can
be shown the weights have to be computed by backward recursion starting
with the last weight and involving iterated conditional expectations which
makes them impossible to compute in practice. We shall therefore have to
stick with (5.13).

Let us reflect upon the effort involved in computing the weight w directly
from 5.13. In the absence of explicit formulas (the usual case) the conditional
expectations Et[...] involve the simulation of a large number of branches
(say 20,000) of the current path at time t. Now look at the expression
∆C(t) = C(s)−C(t) in the numerator. At time t the value C(t) is already
known but

C(s) = Es[h] (5.14)

has to be computed for each of these 20,000 branches by splitting each
of these branches at time s into yet another 20,000 branches resulting in
N = 400, 000, 000 path segments from time s to the horizon T .

This can take hours and yields only the hedge weight for one single path
at one single time t. Suppose now you want to check the efficieny of this
hedge policy along 1000 paths of the underlying rebalancing the hedge 15
times along each path. The above then has to be multiplied by another
15,000. This is not feasible on anything less than a supercomputer. The
problem here is the numerator

Et[∆S(t)∆C(t)] = Et[∆S(t)(C(s)− C(t))] (5.15)
= Et[∆S(t)C(s)]− Et[∆S(t)C(t)]. (5.16)

Assume now that we are working in the risk neutral probability Q. Since the
discounted price S(t) is a Q-martingale we have Et[∆S(t)] = 0. Moreover
C(t) a known constant at time t and so

Et[∆S(t)C(t)] = C(t)Et[∆S(t)] = 0. (5.17)

To simplify the first summand recall that C(s) = Es[h] and that ∆S(t) =
S(s)− S(t) is a known constant at time s and so

Et[∆S(t)C(s)] = Et[∆S(t)Es[h]] (5.18)

5.2. HEDGING EUROPEAN OPTIONS 131

= Et[Es[∆S(t)h]] (5.19)
= Et[∆S(t)h] (5.20)

Thus we can rewrite 5.13 as

w(t) =
Et[∆S(t)h]

Et[∆S(t)∆S(t)]
(5.21)

which gets rid of the iterated conditional expectations and dramatically
decreases the computational effort. So far we have only made use of the
fact that the discounted prices t → S(t) and t → C(t) are Q-martingales
but not of the particular form of the dynamics of the underlying S. The
minimum variance delta of an option can now be added to the class Option

as the following method:

public double minimumVarianceDelta
(int whichProbability, int t, int nPath, Trigger rebalance)
{

double sum 1=0, sum 2=0,
deltaSt, deltaCt;

double[] S=underlying.get S(); //price path
underlying.simulationInit(t); //sets pathCounter to zero

switch(whichProbability){

case Flag.RISK NEUTRAL PROBABILITY:
// compute delta as Et[∆S(t)h]/Et[(∆S(t))2]

for(int n=0; n<nPath; n++)
{

// move path to time s of next hedge trade to get ∆S(t) = S(s)− S(t)
int s=underlying.pathSegment(whichProbability,t,rebalance);
deltaSt=S[s]−S[t];
// move path to horizon T to get h
underlying.newPathBranch(whichProbability,s);
double h=currentDiscountedPayoff();

sum 1+=deltaSt * h;
sum 2+=deltaSt * deltaSt;

}

return sum 1/sum 2; //Et[Z(t)h]/Et[(∆S(t))2]

132 CHAPTER 5. TRADING AND HEDGING

case Flag.MARKET PROBABILITY:
// compute delta as Et[∆S(t)∆C(t)]/Et[∆S(t)2]

for(int n=0; n<nPath; n++)
{

// path computation to time s of next hedge trade
int s=underlying.pathSegment(whichProbability,t,rebalance);

// compute C[s]
if(hasAnalyticPrice)C[s]=discountedAnalyticPrice(s);
else C[s]=discountedMonteCarloPrice(s,nPath);

deltaSt=S[s]−S[t];
deltaCt=C[s]−C[t];

sum 1+=deltaSt * deltaCt;
sum 2+=deltaSt * deltaSt;

} // end for n

return sum 1/sum 2; //Et[∆S(t)∆C(t)]/Et[∆S(t)2]

} // end switch

return 0; // keep the compiler happy

} // end minimumVarianceDelta

5.2.3 Monte Carlo Deltas

The dynamics of the discounted asset price S(t) under the risk neutral prob-
ability Q has the driftless form

dS(t) = S(t)σ(t)dWQ(t) (5.22)

Let us now use this dynamics to simplify 5.21. Rewriting (5.22) in integral
form yields

∆S(t) = S(s)− S(t) =
∫ s

t
S(u)σ(u)dWQ(u). (5.23)

From this and properties of the Ito integral (martingale property and form
of the quadratic variation) it follows that

Et[(∆S(t))2] =
∫ s

t
S2(u)σ2(u)du (5.24)

5.2. HEDGING EUROPEAN OPTIONS 133

Replacing the integrand by its value at t = u (a constant) we obtain the
approximation

∆S(t) ' S(t)σ(t)[WQ(s)−WQ(t)] and (5.25)
Et[(∆S(t))2] ' S2(t)σ2(t)(s− t). (5.26)

In practical computation the quantity WQ(s)−WQ(t) has to be computed
as the path S(t) → S(s) is simulated. Entering this into 5.21 and observing
that S(t)σ(t) is a known constant at time t, we obtain the Monte Carlo delta
at time t as

w(t) =
Et[(WQ(s)−WQ(t))h]

S(t)σ(t)(s− t)
. (5.27)

Obviously our approximations are good only if s − t is small. For example
if rehedging takes place at each time step and dt is the size of the time step,
we have s = t+ dt, WQ(s)−WQ(t) =

√
dt Z(t), where Z(t) is the standard

normal increment driving the time step t → t + dt (t → t + 1 in discrete
time) and the Monte Carlo delta assumes the form

w(t) =
Et[Z(t)h]
σ(t)S(t)

√
dt
. (5.28)

See also [CZ02]. For small dt this approximates the analytic delta w(t) =
(∂c/∂s)(t, S(t)). We implement it with s = t+ 1:

public double monteCarloDelta(int whichProbability, int t, int nPath)
{

double sum=0, mean=0;
double[] Z=underlying.get Z(), //driving standard normal increments

S=underlying.get S(); //discounted price path

double sigmaSqrtdt=underlying.get sigmaSqrtdt(t); //σ(t)
√
dt

underlying.simulationInit(t); //sets pathCounter to zero

// compute Et[Z(t)h]
for(int n=0; n<nPath; n++)
{

underlying.newPathBranch(whichProbability,t);
double h=discountedPayoff();
sum+=Z[t] * h;

}

mean=sum/nPath; // Et[Z(t)h]
return mean/(S[t] * sigmaSqrtdt);

} // end monteCarloDelta

134 CHAPTER 5. TRADING AND HEDGING

5.2.4 Quotient Deltas

The simplest attempt to make the tracking error e(t) = w(t)∆S(t)−∆C(t)
on [t, s) small is to chose the weight w(t) so that the conditional mean
Et[e(t)] is equal to zero leading to the equation w(t)Et[∆S(t)] = ∆C(t). If
Et[∆S(t)] 6= 0, then

w(t) =
Et[∆C(t)]
Et[∆S(t)]

(5.29)

is the unique weight satisfying this equation. These weights can be com-
puted only in the market probability since in the risk neutral probability
Et[∆S(t)] = 0. They also perform better than analytic deltas at least in the
case of a European call on a basic Black-Scholes asset.

5.3 Analytic approximations

There is no problem with computing the conditional expectations involved
in a single hedge weight. However if we want to carry out a simulation of
the hedge over tens of thousands of paths rebalancing the hedge dozens of
times along each path then hundreds of thousands of such weights will have
to be computed and that makes the Monte Carlo computation of conditional
expectations forbidding. Instead we need analytic formulas which approx-
imate the above weights. We give such formulas for a basic Black-Scholes
asset for hedging in the market probability. More specifically it is assumed
that the discounted asset price S(t) follows the dynamics

dS(t) = S(t) [(µ− r)dt+ σdW (t)] ,

where µ and σ are the (constant) drift and volatility of the asset, r is the
riskfree rate and W a standard Brownian motion. It is assumed that the
asset pays no dividend and that the option price C(t) satisfies

C(t) = c(t, S(t))

where c = c(t, s) is a twice continuously differentiable function. We then set

d(t, s) =
∂c

∂s
, D(t) = d(t, S(t)),

∂D

∂S
(t) =

∂d

∂s
(t, S(t)) and

∂D

∂t
(t) =

∂d

∂t
(t, S(t)).

In other words D(t) is the classical analytic delta and ∂D/∂t and ∂D/∂S
are the sensitivities of this delta with respect to changes in time and price

5.3. ANALYTIC APPROXIMATIONS 135

of the underlying. We need the following functions:

f(α, β, u) = α exp(βu)
F (α, β) =

∫∆t
0 f(α, β, u)du = (α/β)[exp(β∆t)− 1],

h(α, β, u) = u f(α, β, u) and
H(α, β) =

∫∆t
0 h(α, β, u)du = (α/β) [(β∆t− 1)exp(β∆t) + 1] .

Set

κn = n(µ− r) + 1
2σ

2(n2 − n), and
q = exp(κ1∆t) = exp[(µ− r)∆t]

and note that κ1 = µ− r, κ2 = 2(µ− r) + σ2 and κ3 = 3(µ− r) + 3σ2. The
derivation of the following formulas an be found in [Mey02b]:

5.3.1 Analytic minimum variance deltas

The minimum variance deltas w(t) from (5.13) computed in the market
probability can be approximated as

w(t) ' D(t) + α
∂D

∂t
(t) + βS(t)

∂D

∂S
(t), where (5.30)

α =
σ2H1 − [F3 − 2F2 + F1]
σ2[q2exp(σ2∆t)− 2q + 1]

, β =
3F2 − F3 − 2F1

q2exp(σ2∆t)− 2q + 1
,

Hj = qH(κ1 + σ2, κj + jσ2)−H(κ1, κj) and
Fj = qF (κ1 + σ2, κj + jσ2)− F (κ1, κj).

The constants α, β depend on µ, r, σ and ∆t but not on t. This means
that they can be computed in advance of a simulation run of the hedge error
which greatly speeds up the computation.

5.3.2 Analytic quotient deltas

The quotient deltas w(t) from (5.29) can be approximated as follows

w(t) ' D(t) + φ
∂D

∂t
(t) + ψS(t)

∂D

∂S
(t), where (5.31)

φ =
σ2H(κ1, κ1)− F (κ1, κ3) + 2F (κ1, κ2)− F (κ1, κ1)

σ2(q − 1)
and

ψ =
3F (κ1, κ2)− F (κ1, κ3)− 2F (κ1, κ1)

q − 1
.

136 CHAPTER 5. TRADING AND HEDGING

Again the constants φ, ψ depend on µ, r, σ and ∆t but not on t and can
therefore be precomputed.

5.3.3 Formulas for European calls.

Let us collect some formulas which are useful in testing the above deltas
when hedging a European call in the simple Black-Scholes model. We assume
that the discounted asset price S(t) follows the dynamics

dS(t) = S(t) [(µ− r)dt+ σdW (t)]

under the market probability P with constant drift µ, volatility σ and short
rate r. We also assume that the asset S does not pay any dividends. The
discounted price C(t) of the European call on S with strike price K is then
given by C(t) = V (t, S(t)), where

c(t, s) = sN(d+)−K e−rTN(d−), with

d± =
log(s)− log(K) + rT

Σ(t)
± 1

2
Σ(t) and Σ(t) = σ

√
T − t,

for t ∈ [0, T] and s > 0. Here N(x) is the cumulative normal distribution
function and so N ′(x) = (2π)−1/2e−x2/2. Observe that

1
2
(d2

+ − d2
−) =

1
2
(d+ + d−)(d+ − d−) = log(serT /K)

which implies

N ′(d−)
N ′(d+)

= serT /K, that is, sN ′(d+) = Ke−rTN ′(d−).

Note also that
∂d±
∂s

=
1

sΣ(t)
and

∂d±
∂t

=
1

2(T − t)
d∓

where the signs on the right hand side of the second equation are reversed.
From this it follows that

d(t, s) =
∂c

∂s
= N(d+),

s
∂d

∂s
= N ′(d+)

1
Σ(t)

and
∂d

∂t
= N ′(d+)

d−
2(T − t)

.

In case the asset pays a dividend continuously with yield q the delta must
be corrected as follows:

d(t, s) = exp(−q(T − t))N(d+).

5.4. HEDGE IMPLEMENTATION 137

5.4 Hedge Implementation

The following are the constituents which make up a hedge: the underlying
asset, the option to be hedged and the trading strategy which hopefully will
provide the gains from trading with which we intend to cover the option
payoff:

public class Hedge
{

Asset underlying; // the underlying on which the option is written
Option option; // option to be hedged
TradingStrategy hedgeStrategy; // gains from trading hedge option payoff

// Constructor
public Hedge(/* all the above */){ /* initialize as usual */ }
. . .

} // end Hedge

The transaction costs for the hedgeStrategy have a fixed component (cost
per trade) and proportional component (cost per share per trade). When
choosing these parameters note that our simulation simulates the hedge of
an option on one share of the underlying. Thus, if you typically transact in
lots of 1000 shares and this costs you 12$ per trade choose fixed trc=0.012. A
reasonable value for proportional transaction costs is 0.2 (the bid ask spread
alone will do that to you).

Assuming the option is sold for the martingale price (this disregards the
friction in real markets) the gain (profit and loss) of hedging the option along
one new path of the underlying is now easily computed as follows (remember
everything is discounted to time t = 0):

public double newDiscountedHedgeGain()
{

// price option is sold at
double option premium=option.get C()[0];

// compute a new asset price path and the corresponding gains from trading:
double trading gains=hedgeStrategy.newDiscountedGainsFromTrading();

// option payoff
double option payoff=option.currentDiscountedPayoff();

// hedge profit
return trading gains+option premium-option payoff;

} // end HedgeGain

138 CHAPTER 5. TRADING AND HEDGING

Needless to say it is unwise to sell an option for its martingale price. This
price is based on numerous assumptions such as instant reaction to price
changes in the underlying, zero transaction costs and unlimited borrowing
at the riskfree rate none of which is satisfied in existing markets. Instead
we will try to shift the premium upward. If the trading strategy employed
is unaffected (for example all delta hedges are independent of the premium
received) this shifts the mean of the hedge gain by the same amount and
has no other effect.

To compute statistics associated with the hedge gain we set it up as a
random variable. For the sake of simplicity we disregard conditional expec-
tations, that is, the method disregards the time parameter t:

public RandomVariable discountedHedgeGain()
{

return new RandomVariable(){

public double getValue(int t)
{

// this computes a new path of the underlying also:
return newDiscountedHedgeGain();

}
}; // end return new

} // end DiscountedHedgeGain

With this setup it is now easy to compute the mean and standard variation
of the hedge profit and loss. The following method computes the pair (mean,
standard deviation) as a double[2]:

public double[] hedgeStatistics(int nPaths)
{

nHedgeTrades=0; //initializes the simulation
return discountedHedgeGain.meanAndStandardDeviation(nPaths);

}

A hedge simulation can be extremely lengthy in particular if hedge deltas are
computed under the market probability in the absence of analytic formulas
for the option price. Thus the class Hedge.java contains a similar method
which reports the computational progress and projects the time needed.
The reader is invited to read the source code.

5.5 Hedging the Call

It is now time to examine how the various hedge weights perform in the
case of a European call on a basic Black-Scholes asset. The following code

5.5. HEDGING THE CALL 139

snippet shows how easy it is to set up an option hedge and compute and
display a histogram of the hedge payoff. The hedge is to be rebalanced
whenever the price of the underlying has moved 12% and classic analytic
deltas are used as hedge weights:

ConstantVolatilityAsset
asset=new ConstantVolatilityAsset(T,dt,nSignChange,S 0,r,q,mu,sigma);

Call call=new Call(K,asset);

double q=0.12; // price percent change triggering a hedge trade
Trigger rebalance=new TriggerAtPercentChange(asset, q);

int nBranch=0; // number of branches per conditional expectation
// irrelevant since we use analytic deltas

double fixed trc=0.02; // fixed transaction cost
double prop trc=0.05; // proportional transaction cost

Hedge callHedge=new DeltaHedge(asset,call,rebalance,
Flag.A DELTA,Flag.MARKET PROBABILITY,
nBranch,fixed trc,prop trc);

int nPaths=20000; // compute the hedge payoff along 20000 paths
int nBins=100; // number of histogram bins

RandomVariable callHedgeGains=callHedge.discountedHedgeGains();

callHedgeGains.displayHistogram(nPaths,nBins);

The parameters nBranch (number of branches spent on each conditional ex-
pectation involved in computing the deltas) and MARKET PROBABILITY (the
probability under which these conditional expectations are computed) are
irrelevant here since we are using analytic deltas. Nonetheless these param-
eters must be passed to the hedge constructor.

Figure 5.7 is the histogram of the gains from hedging a call using ana-
lytic deltas and rebalancing the hedge whenever the price of the underlying
changes 10%. The parameters are as follows: S(0) = 50, strike K = 55,
time to expiration τ = 1 year, drift µ = 0.3, volatility σ = 0.4, dividend
yield q = 4%, and riskfree rate r = 5%. The price of the call is 5.993. The
source code is in the file Examples/CallHedgeHistogram.java.

The gains are seen on the x-axis. The values on the y-axis can be inter-
preted as values of the probability density of the distribution.

Compare this with the payoff from the unhedged position in Figure 5.8.
This distribution has a point mass at 5.993, the call price and also the largest

140 CHAPTER 5. TRADING AND HEDGING

- 2.275 - 1.138 0.000 1.138 2.275

0.0

0.6

Figure 5.7: Hedged call

- 14.544 - 10.908 - 7.272 - 3.636 0.000

0.0

1.9

Figure 5.8: Unhedged call

5.5. HEDGING THE CALL 141

possible payoff. This payoff is received with the positive probability that the
call ends up out of the money.

Let us now analyze the performance of hedging a call in more detail. The
classes used to do this have main methods which bring up a rudimentary
graphical user interface (GUI). The values of the parameters are set by the
use of sliders. To measure the quality of the hedge we report the mean
and standard deviation of the payoff of the hedge as a percentage of the
price of the call. The following is a brief description of the various classes.
The reader wishing to inspect the source code should disregard the code
which drives the graphical user interface. This code has been generated by
wizards and is correspondingly ugly. In each class the code carrying out the
actual computation is collected in a method called mainComputation() and
listed toward the end of the class.

5.5.1 Mean and standard deviation of hedging the call

Class: Examples.Hedging.CallHedgeStatistics. To measure the performance of a
hedge for the call we compute the mean and standard deviation of the gains
from hedging as a percentage of the (Black-Scholes) call price. All deltas
(analytic, Monte Carlo, minimum variance) are allowed. Analytic deltas
are very fast and are included always. Wether or not the other deltas are
included is chosen in the GUI.

Two policies for rebalancing the hedge are applied. Periodic rebalancing
rebalances the hedge at equal time intervals with a certain number of hedge
trades specified in advance (the actual number of hedge trades can differ
slightly from the specified target).

Reactive rebalancing reacts to price changes in the underlying: the
hedge is rebalanced as soon as the price of underlying has moved by a trigger
percentage. The trigger percentage is specified by the user.

The computation of Monte Carlo and minimum variance deltas is time
consuming. The program reports on estimated time to completion after the
first few cycles. If you don’t like what you see kill it by closing the window.

The price paths of the underlying are simulated under the market proba-
bility since this probability controls the price changes with which the hedger
has to cope.

In choosing the transaction costs recall that our simulation simulates the
hedge of a call on one share of the underlying. In real life the size of the
transactions will be much larger. Assume that your average hedge trade
involves 500 shares and that such a trade costs you 10 dollars. In this case
set the fixed transaction costs to 10/500=0.02 dollars. The proportional

142 CHAPTER 5. TRADING AND HEDGING

transaction costs (costs per share transacted) can be set much higher. Note
for example the bid ask spread.

Rebalancing the hedge reacting to price changes significantly beats pe-
riodic rebalancing at equal time intervals even if the mean number of hedge
trades is the same. This is also unsurprising. Would you enter a risky posi-
tion and then check it every other Wednesday? This is exactly the approach
of the periodic hedger.

As the call is moved more and more out of the money and hence its
price decreases it becomes increasingly harder to hedge, that is, the hedge
standard deviation increases as a percent of the call price. This indicates
that we should study the dependence of the hedge statistics on the strike
price.

5.5.2 Call hedge statistics as a function of the strike price.

Class: Examples.Hedging.DrawCHGraphs 1. Let us examine the mean and stan-
dard deviation of hedging a call as a function of the strike price K for n
strikes evenly spaced in the interval [Kmin,Kmax]. Both mean and standard
variation are reported as a percent of the call price. The hedge is rebalanced
at each time step. Graphs of both the means and standard deviations are
displayed on screen and saved as PNG files. The graph of the standard de-
viation shows a dramatic deterioration in the quality of the hedge as the call
strike increases regardless of the type of hedge delta employed (transaction
costs were set to zero).

Classic analytic deltas and the (highly accurate) analytic approximations
for minimum variance and market deltas are used in the hedge. The asset
dynamics is

dS(t) = S(t) [(µ− r)dt+ σdW (t)]

with constant drift µ, volatility σ and risk free rate r. The hedge is re-
balanced at each time step and the size of the time steps is chosen to be
∆t = 0.05 (fairly large). In a rough sense the size of the drift term is
(µ− r)∆t while the size of the volatility term is σ

√
∆t. In other words the

volatility will dominate the drift unless µ is dramatically larger than σ.
Moreover the volatility term will dominate the drift term to increasing

degree as ∆t → 0. The Greek deltas (referred to as analytic deltas below)
are designed for perfect replication and continuous trading (∆t = 0). In this
case the drift no longer matters at all and in fact does not enter into the
computation of the Greek deltas.

Minimum variance and quotient deltas on the other hand are designed
to take the drift and size of the time step (inter hedge periods) into account.

5.5. HEDGING THE CALL 143

40.3 43.4 46.5 49.6 52.7 55.8 58.9 62.0 65.1

Call strike

0.0

8.3

16.6

25.0

33.3

41.6

49.9

58.2

66.6

74.9

83.2

h
e

d
g

e
 s

ta
n

d
a

rd
 d

e
vi

a
tio

n
 (

%
 o

f
p

ri
ce

)

a-deltas
mv-deltas
q-deltas

Figure 5.9: Hedge standard deviation, µ = 0.3, σ = 0.4

For practical applications that means that you must correctly forecast the
drift of the underlying until option expiration. Thus you must hedge with
an opinion regarding the drift.

While minimum variance deltas are designed to minimize the hedge vari-
ance, quotient deltas are designed to minimize the hedge mean (over each
hedge period). Let’s see how the results stack up.

For high volatility low drift (µ = 0.3, σ = 0.4) we expect little difference
in the performance of the different weights regarding the hedge variance
(Figure 5.9). Indeed there is no recognizable difference. The same is not true
for the hedge means. Quotient deltas show the best tracking performance
while minimum variance deltas err on the side of positive hedge profits.

Greek deltas on the other hand incur losses in the mean (figure 5.10).
The picture changes in a high drift low volatility situation (µ = 0.8, σ = 0.2).

Greek deltas now show visible performance deterioration in the hedge
standard deviation while minimum variance deltas perform best (figure
5.11).

The difference is even more dramatic regarding the hedge mean (figure
5.12). Since the price of the call is now much less particularly for far out of
the money calls the negative mean associated with Greek deltas is becoming
a problem while minimum variance deltas show a tidy profit. Note the near
perfect tracking of quotient deltas. The directory pictures/CHGraphs contains
coloured PNG versions of these graphs. The reader can investigate other
parameter settings by running Examples.Hedging.DrawCHGraphs 1.

144 CHAPTER 5. TRADING AND HEDGING

37.2 40.3 43.4 46.5 49.6 52.7 55.8 58.9 62.0 65.1

Call strike

-4.2

-3.1

-2.1

-1.0

0.0

1.0

2.1

3.1

4.2

5.2

6.3

h
e

d
g

e
 m

e
a

n
 (

%
 o

f
p

ri
ce

)

a-deltas
mv-deltas
q-deltas

Figure 5.10: Hedge means, µ = 0.3, σ = 0.4

40.3 43.4 46.5 49.6 52.7 55.8 58.9 62.0 65.1

Call strike

-32.2

0.0

32.2

64.4

96.6

128.8

161.1

193.3

225.5

257.7

h
e

d
g

e
 s

ta
n

d
a

rd
 d

e
vi

a
tio

n
 (

%
 o

f
p

ri
ce

)

a-deltas
mv-deltas
q-deltas

Figure 5.11: Hedge standard deviation, µ = 0.8, σ = 0.2

5.6. BASKETS OF ASSETS 145

43.4 46.5 49.6 52.7 55.8 58.9 62.0 65.1

Call strike

-278.7

-223.0

-167.2

-111.5

-55.7

0.0

55.7

111.5

167.2

223.0

278.7

h
e

d
g

e
 m

e
a

n
 (

%
 o

f
p

ri
ce

)

a-deltas
mv-deltas
q-deltas

Figure 5.12: Hedge means, µ = 0.8, σ = 0.2

5.5.3 Call hedge statistics as a function of the volatility hedged
against.

File: Examples/DrawCHGraphs 2.java. The volatility σ of the underlying is a
parameter necessary to compute the analytic deltas employed in hedging the
call. In our ideal world we have the luxury of knowing the constant volatility
of the underlying. In reality the future realized volatility is unknown. A
hedger hedging with analytic deltas must choose the volatility σ from which
these deltas are computed (hedge volatility). This brings up the interesting
question how the quality of the hedge is affected by misjudging the true
volatility of the underlying.

The class DrawCHGraphs 2.java computes the mean and standard variation
of hedging a call as a function of the hedge volatility σ for volatilities σ evenly
spaced in the interval [σmin, σmax].

The hedge is rebalanced at each time step (figure 5.13). Unsurprisingly
misjudging the true volatility decreases the quality of the hedge. The true
volatility of the underlying in this example was σ = 0.4.

5.6 Baskets of Assets

Trading in markets with only one risky asset is interesting for the pricing
and hedging of options written on a single asset. In general however one will
trade more than one asset. Let us therefore consider a market consisting of

146 CHAPTER 5. TRADING AND HEDGING

-0.2 0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.5

hedge volatility

-7.7

0.0

7.7

15.4

23.2

30.9

38.6

46.3

54.1 Mean
Standard deviation

Figure 5.13: Hedge standard deviation

a riskless bond B(t) satisfying

B(t) = exp(rt),

where r is the constant riskfree rate andm+1 risky assets S0, S1, . . . , Sm. As
before we work with discounted prices and let Sj(t) denote the discounted
price of the asset Sj at time t. Let P denote the market probability and
Q the risk-neutral probability. We shall restrict ourselves to the simple
Black-Scholes dynamics

dSi(t) = Si(t) [(µi − r)dt+ νi · dW (t)] (5.32)
= Si(t) [(µi − r)dt+ νi0dW0(t) + . . .+ νimdWm(t)] , (5.33)

where W (t) = (W0(t),W1(t), . . . ,Wm(t))′ is an m+ 1-dimensional standard
Brownian motion and νi = (νi0, νi1, . . . , νim)′ ∈ Rm+1 a constant vector. As
usual the prime denotes transposition, that is, all vectors are column vectors
and the dot denotes the dot product.

The coordinate Brownian motions Wi(t) are independent one dimen-
sional Brownian motions and are called the (risk) factors and the vectors νi

the factor loadings. More precisely νij is the loading of the factor Wj(t) in
the asset Si. Usually however we do not think in terms of the factor loadings
νi themselves. Instead we work with the volatilities σi and correlations ρij

defined as
σi = ‖νi‖, and ρij = ui · uj ,

5.6. BASKETS OF ASSETS 147

where ui is the unit vector ui = σ−1
i νi. Writing

Vi(t) = ui ·W (t)

it is easily seen that Vi is a standard one dimensional Brownian motion and

dVi(t) = ui · dW (t)

(by linearity of the stochastic differential) and so

dSi(t) = Si(t) [(µi − r)dt+ σidVi(t)] . (5.34)

Consequently σi is seen to be the (annual) volatility of Si (more precisely
of the return process log(Si)). Moreover the Brownian motions Vi are no
longer independent, instead the covariation processes 〈Vi, Vj〉 satisfy

d〈Vi, Vj〉t = ρijdt. (5.35)

Observing that the return processes log(Si) satisfy

d log(Si) = (µi − r − 1
2σ

2
i)dt+ σidVi(t) (5.36)

it follows that the covariation processes of the returns satisfy

d〈log(Si), log(Sj)〉t = σiσjρijdt

which justifies the interpretation of ρij as the instantaneous correlation of
the returns d log(Si(t), d log(Sj(t). In fact in the very special case of the
above dynamics it is not necessary to resort to infinitesimals or covariation
processes. One can easily verify that the covariance and correlation of the
random variables log(Si(t)), log(Sj(t)) are given by

Cov [log(Si(t), log(Sj(t)] = σiσjt and
Corr [log(Si(t), log(Sj(t)] = ρij .

If we switch to the risk neutral probability Q, then the discounted asset
prices follow the dynamics

dSi = Si(t) [−qidt+ σidVi(t)] and (5.37)
d log(Si) = (−qi − 1

2σ
2
i)dt+ σidVi(t), (5.38)

where qi denotes the continuous dividend rate of the asset Si. We will
assume that the matrix of factor loadings ν = (νij) has full rank. This
matrix however will not be used as a model parameter. Instead we work
with the volatilities σi and correlations ρij . Since the matrix ν of factor
loadings has full rank the matrix u with columns ui has full rank also and
consequently the matrix ρ = (ρij) = (ui · uj) = uu′ is positive definite.

148 CHAPTER 5. TRADING AND HEDGING

5.6.1 Discretization of the time step

Recall that we are usually not given the factor loadings νi but instead have
to work from the volatilities σi and correlations ρij . From the dynamics of
the returns log(Si) we see that the time step t→ s is carried out as follows

Si(s) = Si(t)exp
[
di∆t+ σi

√
∆t Yi(t)

]
, (5.39)

where ∆t = s− t, the drift delta di is given by di = µi− r− 1
2σ

2
i in the case

of the market probability and di = −qi − 1
2σ

2
i in the case of the risk neutral

probability and Yi(t) = (∆t)−1/2(Vi(s)−Vi(t)) is a standard normal random
variable. Observing that

Yi(t) = ui · (∆t)−1/2(W (s)−W (t))

and that (∆t)−1/2(W (s) − W (t)) is a vector with independent standard
normal components it follows that

Cov(Yi(t), Yj(t)) = ui · uj = ρij .

It follows that Y (t) = (Y0(t), . . . , Ym(t))′ is a zero mean multinormal vec-
tor with covariance matrix ρ = (ρij). The mean and covariance matrix
completely determine the joint distribution of the multinormal vector Y (t).

To drive the time step t→ s such a vector can be generated as follows:
the positive definite correlation matrix admits a Cholesky factorization

ρ = RR′

where the matrix R (the Cholesky root of ρ) is lower triangular and uniquely
determined. If Z(t) = (Z0(t), . . . , Zm(t))′ is a column vector of independent
standard normal random variables Zj(t), then Y (t) = RZ(t) is a mean
zero multinormal vector with covariation matrix ρ exactly as needed (see
Appendix B.1). In other words we can generate the Yi(t) as

Yi(t) =
∑

j≤i
RijZj(t).

Note how the lower triangularity of C reduces the number of floating point
multiplications thereby speeding up the simulation of paths.

Implementation This suggests the following implementation. Volatilities
σi, correlations ρij and initial asset prices Si(0) are model parameters.

Suppose that continuous time has been discretized into integral multiples
t ∗ dt, t = 0, 1, . . . , T of the time step dt and that the array S[][] contains the

5.6. BASKETS OF ASSETS 149

path t 7→ Si(t), in the array S[i][], that is S[i][t] = Si(t ∗ dt). The Cholesky
root R of the correlation matrix ρ and the quantities

sigmaSqrtdt[i] = σi

√
dt

marketDriftDelta[i] = µi − r − 1
2
σ2

i and

riskNeutralDriftDelta[i] = −qi −
1
2
σ2

i

are all computed and stored by the constructor. The time step t → s in
discrete time then assumes the form

double f=Math.sqrt(s-t);

for(int i=0; i<=m; i++)
{

double Yi=0,
driftDelta i=...// depending on the probability
g=driftDelta i * (s-t);

for(int j=0; j<=i; j++) Yi+=R[i][j] * Random.STN();
S[i][s]=S[i][t] * Math.exp(g+sigmaSqrtdt[i] * f * Yi);

}

Note that there is no approximation involved at all. The distribution of
Si(s) conditioned on Si(t) is reproduced exactly. It is very useful to be
able to make long time steps since we will then of course compute the path
t→ S(t) only at times t for which S(t) is really needed.

The case s = t+1 is special since full paths and path branches are made
up of such steps. We might want to allocate an array Z[][] of size T ×m to
be filled with the standard normal increments needed for the path or path
branch. These can the be reused through random sign changes (antithetic
paths). The call Random.STN() above is then replaced with Z[t][j].

5.6.2 Trading and Hedging

A trading strategy investing in the asset vector S is now a vector valued
process t 7→ w(t) = (w0(t), . . . , wm(t))′ ∈ Rm+1. The quantity wi(t) is the
number of shares of the asset Si (the weight of Si) held at time t. If w(t) is
constant on the interval [t, s], then

w(t) ·∆S(t) =
∑

j≤m
wj(t)∆Sj(t),

where ∆S(t) = S(s)−S(t), is the discounted gain from holding the position
on the interval [t, s]. Recall that we are using discounted asset prices Sj(t).

150 CHAPTER 5. TRADING AND HEDGING

The weights wj(t) must obviously be Ft-measurable, that is, it must be
possible to determine the value of wj(t) at time t.

Suppose now that we have another asset with discounted price C(t) and
that we want to hedge a short position of one share of C by trading in the
asset vector S. We assume only that the discounted prices Si(t) and C(t)
are Q-martingales but make no other assumptions on the price dynamics of
S and C. The hedge is rebalanced at times

0 = τ0 < τ1 < . . . < τn = T.

The τl can be stopping times and the weights w(t) are assumed to be con-
stant on each interval [τl, τl+1). Fix l and write t = τl, s = τl+1. Then the
combined position which is short one share of C and long w(t) shares of S
shows the discounted gain

e(t) = w(t) ·∆S(t)−∆C(t)

on the interval [t, s]. This quantity is best viewed as the tracking error of the
hedge over the interval [t, s]. It is not hard to show that the Ft-measurable
weights w(t) which minimize the L2-norm ‖e(t)‖2

2 = E[e(t)2] of the tracking
error are the solutions of the system of linear equations∑

j≤m
Aij(t)wj(t) = bi(t) (5.40)

where

Aij(t) = Et [∆Si(t)∆Sj(t)] and (5.41)
bi(t) = Et [∆Si(t)∆C(t)] . (5.42)

This is true regardless of the probability in which the weights and L2-norm
are computed. If this computation is carried out in the risk neutral proba-
bility Q then it can also be shown that the trading strategy using the above
weights minimizes the variance of the cumulative hedge error over the entire
interval [0, T]. The computation of the weights w(t) can be quite laborious
since many conditional expectations have to be evaluated.

If C(t) is an asset of which the price dynamics is known the right hand
side bi(t) can be computed by straightforward Monte Carlo simulation of
the single time step t→ t+ ∆t. In case C is a European option written on
the basket S with known (discounted) payoff

h = C(T)

5.6. BASKETS OF ASSETS 151

but unknown price process C(t) we have to compute C(s) as Es(h). Ob-
serving that ∆S(t), ∆C(t) are both Fs-measurable we can write

∆S(t)∆C(t) = Es [∆S(t)(h− C(t))]

and with this bi(t) becomes

bi(t) = Et [∆Si(t)(h− C(t))] .

This quantity can be computed by Monte Carlo simulation of paths to the
horizon T . If the computation is carried out in the risk-neutral probability
Q, then Et [∆Si(t)] = 0 (martingale condition) and the expression for Yi(t)
can be simplified further to

bi(t) = Et [∆Si(t)h] (risk neutral probability Q only).

Connection to Greeks. The weights w(t) are related to the classical deltas
and can be used for numerical computation of these deltas if ∆t = s − t is
chosen to be sufficiently small. More precisely assume that the discounted
asset price C(t) satisfies

C(t) = c(t, S(t)) = c(t, S0(t), . . . , Sm(t)),

for some continuously differentiable function c = c(t, s0, s1, . . . , sm) and
write

θ(t) =
∂c

∂t
(t, S(t)) and Di(t) =

∂c

∂si
(t, S(t)).

In other words the Di(t) are the usual Greek deltas. A first order Taylor
approximation of the function c = c(t, s0, . . . , sm) yields

∆C(t) = C(t+ ∆t, S(t) + ∆S(t))− C(t, S(t)) (5.43)
∼= θ(t)∆t+

∑
j≤m

Dj(t)∆Sj(t) (5.44)

∼=
∑

j≤m
Dj(t)∆Sj(t) (5.45)

where the time sensitivity θ(t) has been ignored. Here the deltas Di(t) are
Ft-measurable. Multiplying this with ∆Si(t) and taking the conditional
expectation Et we obtain

Et[∆Si(t)∆C(t)] ∼=
∑

j≤m
Et[∆Si(t)∆Sj(t)]Dj(t) (5.46)

=
∑

j≤m
Aij(t)Dj(t). (5.47)

152 CHAPTER 5. TRADING AND HEDGING

In other words the classical deltas w̃i(t) = Di(t) form an approximate so-
lution of (5.40). This justifies a numerical computation of the deltas Di(t)
as solutions of (5.40) for small ∆t = s − t (if these Greeks are needed) or
the use of the deltas in hedging if they are available by analytic formula
and time steps are small. However if time steps are large then the actual
solutions wi(t) of (5.40) can visibly outperform the classical deltas Di(t) in
a hedge of the asset C.

So far everything is true for any asset price dynamics not only the very
restrictive dynamics (5.34). It only has to be assumed that the asset prices
Si(t) and C(t) are martingales under Q (see [Mey02b]). Let us now simplify
(5.40) in the case of the dynamics (5.34).

Assume that the times τk = t and τk+1 = t+∆t of hedge trade k, k+1 are
constants. This case would occur for example if the hedge is rebalanced at
regular time intervals regardless of price developments. In this case and for
our simple asset price dynamics we can get exact formulas for the coefficients
Aij(t) of (5.40). Setting

λi = exp(di ∆t), βi = exp
[(
di + 1

2σ
2
i

)
∆t
]

Ui = σi

√
∆t Yi(t) and Uij = Ui + Uj

we have ∆Si(t) = Si(t) [λiexp(Ui)− 1] (from (5.39)) and so

∆Si(t)∆Sj(t) = Si(t)Sj(t) [λiλjexp(Uij)− λiexp(Ui)− λjexp(Uj) + 1] .

Recall that E(σZ) = σ2/2, for any standard normal variable Z. Note that
Uij is a mean zero normal variable with variance (σ2

i +σ2
j +2σiσjρij)∆t and

that all of Ui, Uj , Uij are independent of the σ-field Ft. With this

Aij(t) = Et [∆Si(t)∆Sj(t)]
= Si(t)Sj(t) [βiβjexp (σiσjρij∆t)− βi − βj + 1]
= Si(t)Sj(t)Bij , (5.48)

where
Bij = βiβjexp (σiσjρij∆t)− βi − βj + 1. (5.49)

We can now substitute this into equation (5.40), divide by Si(t) and switch
to the variables xj(t) = Sj(t)wj(t) to reduce (5.40) to Bx(t) = v(t), that is,

x(t) = B−1v(t),

where the m×m-matrix B with entries (5.49) is state independent and

vi(t) = Si(t)−1bi(t).

5.6. BASKETS OF ASSETS 153

The matrix inverse B−1 can be precomputed and stored to speed up the
calculation. The weights wi(t) are recovered as wi(t) = Si(t)−1xi(t). For
small ∆t we can approximate the exponential exp(x) in (5.49) with 1+x to
obtain

Bij ' (βi − 1)(βj − 1) + βiβjσiσjρij∆t

Dropping all terms which are of order (∆t)2 we obtain Bij ' σiσjρij∆t,
equivalently

Aij(t) ' Si(t)Sj(t)σiσjρij∆t.

On the right of (5.40) we can approximate ∆Si(t) with Si(t)σi

√
∆t Yi(t) to

write
bi(t) ' Si(t)σi

√
∆t Et [hYi(t)] .

Enter all this into (5.40), cancel Si(t)σi

√
∆t and switch to the variables

xi(t) = wi(t)Si(t)σi

√
∆t. The linear system (5.40) becomes ρ x(t) = y(t),

that is,
x(t) = ρ−1Et[hY (t)]

The matrix inverse ρ−1 can be precomputed and stored. The weights wi(t)
are then recovered as

wi(t) '
xi(t)

Si(t)σi

√
∆t

.

Only the vector Et[(hY (t)] has to be computed by Monte Carlo simulation.
Here Y (t) = (∆t)−1/2 (V (t+ ∆t)− V (t)) is the normalized increment of the
driving Brownian motion t 7→ Vt over the time step t→ t+ ∆t.

The Greek deltas Di(t) can then be approximated with the weights wi(t)
computed using a small time step ∆t. For larger time steps a hedge based
on deltas Di(t) does not perform as well as the actual solutions of (5.40).

154 CHAPTER 5. TRADING AND HEDGING

Chapter 6

The Libor Market Model

Early interest rate models were models of the (instantaneous) risk free rate
r(t) associated with the risk free bond B(t). These models tried to express
some desirable properties of interest rates (such as mean reversion) and
usually offered only a small number of parameters and Brownian motions
to drive the interest rate dynamics. The main appeal of these models was
the lack of alternatives.

A significant advance was made in [DHM92] which took up the modelling
of a whole continuum of instantaneous forward rates f(t, T), the rate charged
at time t for lending over the infinitesimal interval [T, T + dt]. The crucial
insight was the fact that the absence of arbitrage between zero coupon bonds
enforces a relation between the drift µ(t, T) and volatility processes σ(t, T)
in the dynamics

df(t, T) = µ(t, T)dt+ σ(t, T) · dW (t)

of the forward rates which allows the drifts to be computed from the volatil-
ities. However instantaneous forward rates are not well adapted to the pre-
vailing reality of cash flows at discrete times. A finite vector of forward rates
for lending over the periods between successive cash flows is exactly what is
needed in this case. The corresponding rates are called forward Libors and
will be defined below.

After pioneering work by Brace, Musiela and Gatarek [ABM97] the dy-
namics of the forward Libor process found elegant treatment at the hands
of Jamshidian [Jam97] and it is this treatment which we follow with some
modifications and extensions.

155

156 CHAPTER 6. THE LIBOR MARKET MODEL

6.1 Forward Libors

Let 0 = T0 < T1 < . . . < Tn be a sequence of dates at which cash flows occur,
referred to as the tenor structure, write δj = Tj+1− Tj and let Bj(t) denote
the cash price of the zero coupon bond maturing at time Tj . To simplify
the exposition this bond is assumed to be defined on the entire interval I =
[0, Tn] and to be a continuous semimartingale on a filtered probability space
(Ω, (Ft)0≤t≤Tn , P). The probability P represents the market probability and
the σ-field Ft the information available at time t.

Let t ≤ Tj . By trading in the zero coupon bonds Bj , Bj+1we can imple-
ment at time t a loan of one dollar over the future time interval [Tj , Tj+1]: at
time t sell one zero coupon bond maturing at time Tj and with the proceeds
Bj(t) buy Bj(t)/Bj+1(t) zero coupon bonds maturing at time Tj+1. With
the understanding that the zero coupon bonds are redeemed at the time of
maturity, this strategy induces the following cash flows:

0•
t

-1•
Tj

Bj(t)/Bj+1(t)•
Tj+1

Forward Libor Lj(t) for the accrual interval [Tj , Tj+1] is the simple rate
of interest corresponding to these cash flows defined as as

Bj(t)/Bj+1(t) = 1 + δjLj(t). (6.1)

By abuse of terminology the quantities Xj = δjLj will also be referred to
as forward Libors and are assumed to be strictly positive. Note the basic
relation Bj+1Xj = Bj −Bj+1. The (vector) process

t ∈ I 7→ X(t) = (X0(t), X1(t), . . . , Xn−1(t))′

is called the (forward) Libor process. According to the corresponding con-
vention about zero coupon bonds all forward Libors Xj(t) are defined on
the entire interval I and hence so is the process X(t).

6.2. DYNAMICS OF THE FORWARD LIBOR PROCESS 157

6.2 Dynamics of the forward Libor process

The next two sections assume some familiarity with the concept of the
stochastic integral with respect to a continuous semimartingale and the
covariation process associated with two continuous semimartingales. The
reader can safely skip these sections. Only the dynamics (6.2) below will be
used later.

Let us briefly review the relevant facts. If Uj , Vj , Xj , Yj are continuous
semimartingales on [0, T] then the stochastic integrals

∫ t
0 Uj(s)dXj(s) and∫ t

0 Vj(s)dYj(s) are defined for all t ∈ [0, T] and the equality∑
j
Uj(t)dXj(t) =

∑
j
Vj(t)dYj(t)

is defined to be a shorthand for∑
j

∫ t

0
Uj(s)dXj(s) =

∑
j

∫ t

0
Vj(s)dYj(s)

for all t ∈ [0, T]. If the Yj are local martingales and theXj bounded variation
processes then the the right hand side is a local martingale while the left
hand side is a bounded variation process implying that both sides are zero
(a continuous local martingale which is also a bounded variation process is
constant).

Let X, Y be continuous semimartingales on [0, T]. Then the covariation
process 〈X,Y 〉t is a bounded variation process on [0, T] and we have the
stochastic product rule

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d〈X,Y 〉t.

IfX and Y have paths contained in open sets F andG on which the functions
f and g are continuously differentiable, then the processes f(X) and g(Y)
are well defined continuous semimartingales and (as a consequence of Ito’s
lemma)

d〈f(X), g(Y)〉t = f ′(X(t))g′(Y (t))d〈X,Y 〉t.

In particular if X and Y are positive and f(t) = g(t) = log(t) this assumes
the form

d〈X,Y 〉t = X(t)Y (t)d〈log(X), log(Y)〉t.

Let us now return to the forward Libor process of the preceeding section.
The quotients Hj = Bj/Bn are the forward zero coupon bond prices at the
terminal date t = Tn. They are also the prices of the zero coupon bonds Bj

158 CHAPTER 6. THE LIBOR MARKET MODEL

in the Bn-numeraire. We assume that these forward prices are continuous
local martingales in some probability Q which is equivalent to P .

We fix such a probability and refer to it as the (terminal) forward mar-
tingale measure. Note that Q is a numeraire measure associated with the
Bn numeraire. Obviously the cash prices Bj(t) themselves cannot be as-
sumed to be local martingales under any probability since these prices have
a tendency to increase as maturity approaches.

The existence of the measureQ is equivalent to the no arbitrage condition
NFLVR (no free lunch with vanishing risk) defined in [DS94] for the system
of forward zero coupon bond prices Bj/Bn. The proof of this fact is one
of the most fundamental results in finance and is far too complicated to
be presented here. The reader should merely note that the existence of the
measure Q is indeed related to the absence of arbitrage between zero coupon
bonds.

We will now use the local martingale condition to derive the dynamics of
the forward Libors Xj = δjLj in the forward martingale measure Q. Note
that

Hj+1Xj = Hj −Hj+1

is a Q-local martingale and that the zero coupon bonds and forward Libors
are semimartingales under Q also. The continuous semimartingale Zj =
log(Xj) then has a decomposition

Zj = log(Xj) = Aj +Mj ,

where Aj is a continuous bounded variation process and Mj a continuous
Q-local martingale with Mj(0) = 0. Note that Zj is the ”return” process
associated with Xj and that Aj and Mj can be thought of as the ”drift”
and ”volatility” of the return Zj respectively (the Q-local martingale Mj is
driftless but of unbounded variation whereas Aj is of bounded variation but
not driftless). By Ito’s lemma we have

dXj = eZjdZj +
1
2
eZjd〈Zj〉 = Xj [dMj + dBj]

where dBj = dAj + 1
2d〈Mj〉. We have

d(Hj+1Xj) = XjdHj+1 +Hj+1dXj + d〈Xj , Hj+1〉
= XjdHj+1 +Hj+1XjdMj + [Hj+1XjdBj + d〈Xj , Hj+1〉].

Since here Hj+1dBj + d〈Xj , Hj+1〉 is the differential of a bounded variation
process while all the remaining terms are differentials of local martingales it
follows that

Hj+1XjdBj + d〈Xj , Hj+1〉 = 0.

6.2. DYNAMICS OF THE FORWARD LIBOR PROCESS 159

Note that Hj = (1 +Xj)(1 +Xj+1) . . . (1 +Xn−1) and so

log(Hj+1) =
∑n−1

k=j+1
log(1 +Xk)

and that d〈Xj , Hj+1〉 = XjHj+1d〈log(Xj), log(Hj+1〉 to rewrite the previous
equation as

dBj +
∑n−1

k=j+1
d〈log(Xj), log(1 +Xk)〉 = 0,

equivalently

dBj = −
n−1∑

k=j+1

1
Xj(1 +Xk)

d〈Xj , Xk〉 = −
n−1∑

k=j+1

Xk

1 +Xk
d〈Mj ,Mk〉

and so

dXj = Xj

− n−1∑
k=j+1

Xk

1 +Xk
d〈Mj ,Mk〉+ dMj

 .
This is the general dynamics of continous forward Libors and it identifies

the drift of the forward Libors in terms of the ”volatilities” Mj of the Libor
returns Zj .

Finally let us assume that W = (W1,W2, . . . ,Wm)′ is a Brownian motion
in Rm under Q and that the zero coupon bonds and hence the forward Libors
are adapted to the filtration generated by W . Then the adapted Q-local
martingale Mj can be represented as a stochastic integral

Mj(t) =
∫ t

0
νj(s) · dW (s)

for some integrable process νj ∈ L(W), that is, νj(t) is a predictable Rm-
valued process satisfying∫ Tn

0
‖νj(s)‖2ds <∞, Q-almost surely.

With this we have dMj(t) = νj(t) · dW (t) and the Libor dynamics assumes
the form

dXj(t) = Xj(t)

− n−1∑
k=j+1

Xk(t)
1 +Xk(t)

νj(t) · νk(t)dt+ νj(t) · dW (t)

 (6.2)

160 CHAPTER 6. THE LIBOR MARKET MODEL

The individual components Wi(t) of the Brownian motion W are called the
factors and the vector processes νj ∈ L(W) are referred to as the factor
loadings. The numerical process σi(t) = ‖νi(t)‖ is called the (instantaneous)
volatility of Xi. The factor loadings are often also called volatilities in the
literature.

The absence of arbitrage between zero coupon bonds thus determines
the Libor drifts from the factor loadings νj(t). In the next section we show
that for each Brownian motion W and given factor loadings νj ∈ L(W) we
can construct a solution X of (6.2) with associated zero coupon bonds Bj

such that the system of forward prices Bj/Bn is arbitrage free.

6.3 Libors with prescribed factor loadings

Now we tackle the problem of the existence of a solution of (6.2).

Theorem 6.3.1 Let Q be a probability on the filtered space (Ω, (Ft)), W
a Brownian motion under Q, and νj ∈ L(W) a W -integrable process and
xj > 0, for j < n.

Then there exists a solution X of (6.2) with Xj(0) = xj and such that
the forward price Bj/Bn in the associated system of zero coupon bonds Bj

is a Q-local martingale, for j < n. Moreover Bn can be chosen to be any
positive continuous semimartingale satisfying

Bn(Tj)(1 +Xj(Tj)) . . . (1 +Xn−1(Tj)) = 1,

for all j ≤ n.

Proof. Recall that for integrable processes µ ∈ L(dt) and ν ∈ L(W) the
solution of the equation

dX(t) = X(t)[µ(t)dt+ ν(t) · dW (t)]

can be obtained explicitly as

X(t) = X(0)exp
(∫ t

0
µ(s)ds

)
Et(ν •W),

where ν •W denotes the integral process
∫ t
0 ν(s) · dW (s) and Et(ν •W) is the

exponential local martingale

Et(ν •W) = exp

(
−1

2

∫ t

0
‖ν(s)‖2ds+

∫ t

0
ν(s) · dW (s)

)
.

6.3. LIBORS WITH PRESCRIBED FACTOR LOADINGS 161

The triangular nature of the equations (6.2) allows a straightforward solution
by backward induction from j = n−1, n−2, ...0. For j = n−1 the equation
(6.2) reads

dXn−1(t) = Xn−1(t)νn−1(t) · dW (t)

with solution
Xn−1(t) = Xn−1(0)Et(νn−1 •W).

Assume that the processes Xj+1, . . . , Xn−1 have been constructed as solu-
tions of (6.2) and rewrite (6.2) as dXj(t) = Xj(t)[µj(t)dt + νj(t) · dW (t)]
where the drift

µj(t) = −
n−1∑

k=j+1

Xk(t)
1 +Xk(t)

νj(t) · νk(t)

does not depend on Xj(t). Thus the solution is simply

X(t) = X(0)exp
(∫ t

0
µj(s)ds

)
Et(νj •W).

In this manner all the processes Xj are obtained and it remains to construct
the corresponding zero coupon bonds Bj and to examine wether the quo-
tients Bj/Bn are all Q-local martingales. Indeed let Bn(t) be any positive
continuous semimartingale satisfying

Bn(Tj)(1 +Xj(Tj)) . . . (1 +Xn−1(Tj)) = 1,

for all j ≤ n and define the remaining zero coupon bonds as

Bj(t) = Bn(t)(1 +Xj(t)) . . . (1 +Xn−1(t)).

Then the preceeding condition for Bn is exactly the zero coupon bond con-
dition Bj(Tj) = 1. Moreover

Bj(t)/Bj+1(t) = 1 +Xj(t)

so that the Xj(t) are indeed the forward Libors associated with the zero
coupon bonds Bj(t). Fix j < n and note that

Yj := Bj/Bn = (1 +Xj) . . . (1 +Xn−1)

Taking logarithms we have log(Yk) =
∑n−1

i=j log(1 +Xi), where

d log(1 +Xi) =
1

1 +Xi
dXi −

1
2

(
1

1 +Xi

)2

d〈Xi〉. (6.3)

162 CHAPTER 6. THE LIBOR MARKET MODEL

Here d〈Xi〉t = Xi(t)2‖νi(t)‖2dt (from (6.2)). Setting Xi/(1 +Xi) = Ki we
can rewrite (6.3) as

d log(1 +Xi) = (Ki/Xi)dXi −
1
2
‖Kiνi‖2dt. (6.4)

Set
γi(t) =

∑n−1

j=i
Kjνj(t), 0 ≤ i < n,

and γn(t) = 0. Then (6.2) can be rewritten as

dXi(t) = −Xi(t)νi(t) · γi+1(t)dt+Xi(t)νi(t) · dW (t)

and so (Ki/Xi)dXi = −γi+1 ·Kiνidt+Kiνi · dW (t). Substituting this into
(6.4) and observing that

Kiνi(t) = γi(t)− γi+1(t),

we obtain

d log(1 +Xi) = −γi+1 ·Kiνi(t)dt−
1
2
‖γi − γi+1‖2dt+Kiνi(t) · dW (t)

=
[
−γi+1 · (γi − γi+1)−

1
2
‖γi − γi+1‖2

]
dt+Kiνi(t) · dW (t)

=
1
2

[
‖γi+1‖2 − ‖γi‖2

]
dt+Kiνi(t) · dW (t).

Summing over all i = j, . . . , n− 1 and observing that γn−1 = 0 we obtain

d log(Yj(t)) = −1
2
‖γj(t)‖2dt+ γj(t) · dW (t).

from which it follows that

Bj/Bn = Yj = Yj(0)Et(γj •W)

is indeed a Q-local martingale.

6.4 Choice of the factor loadings

In the greatest generality the factor loadings νi(t) can be any W -integrable
process. However to obtain a computationally feasible Libor model this
generality has to be restricted. From now on we assume that the factor
loadings have the form

νj(t) = σj(t)uj , (6.5)

6.4. CHOICE OF THE FACTOR LOADINGS 163

where the uj are constant unit vectors in Rn and set

ρjk(t) = ρjk = uj · uk. (6.6)

Recall also that the volatilities σj(t) are assumed to be deterministic. A
Libor model satisfying these assumptions is called a Libor market model
abbreviated as LMM.

Special correlation structures. The ρjk are interpreted as the correlations of
the infinitesimal log-Libor increments dYj(t), dYk(t), where Yj(t) = log(Xj(t)).
It follows from (6.6) that the matrix ρ = (ρjk) is positive semidefinite.

A concrete Libor market model does not provide the vectors uj explicitly.
Rather the matrix ρ is parametrized in terms of a small number of paramters.
However this is done the resulting matrix must be positive semidefinite.
There are many papers dealing with the problem of parametrizing a suit-
able family of correlation matrices and then calibrating the parameters to
observed caplet and swaption prices. See for example [CS00], [CS99], [JR],
[Bri].

The correlation matrix ρ itself is a possible parameter albeit of very high
dimension. This makes model calibration very difficult since an enormous
parameter space has to be searched. Consequently we restrict ourselves to
special correlation structures which can be parametrized with a parameter
of smaller dimension. For example Coffee and Shoenmakers [CS00] propose
the following correlation structure:

ρij =
bi ∧ bj
bi ∨ bj

(6.7)

where b = (bj) is a positive, nondecreasing sequence such that the sequence

j 7→ bj/bj+p

is nondecreasing for each p. The sequence will be called the correlation
base. Here a∧ b = min{a, b} and a∨ b = max{a, b} as usual. Consequently
ρij = bi/bj for i ≤ j and ρij = ρji.

In concrete models sequences bj depending on only a few parameters will
be chosen. For example bj = exp(βjα) is such a sequence.

To see that the matrix ρ in (6.7) is in fact positive semidefinite let (Zk)
be a sequence of independent standard normal variables. Set b−1 = 0,

ak =
√
b2k − b2k−1

164 CHAPTER 6. THE LIBOR MARKET MODEL

and Yj =
∑j

k=0 akZk. Then, for i ≤ j we have

Cov(Yi, Yj) =
i∑

k=0

a2
k = b2i − b2−1 = b2i . (6.8)

Thus σ(Yi) = bi and so

Corr(Yi, Yj) =
b2i
bibj

=
bi
bj

=
bi ∧ bj
bi ∨ bj

= ρij . (6.9)

This implies that ρ is positive semidefinite. The vectors ui and factor load-
ings νi(t) can be recovered from ρ as follows: use a Cholesky Decomposition
to factor ρ as

ρ = uu′

(with u triangular) and let ui = ri(u) be the ith row of u. Then ρij = ui ·uj

and νi(t) = σi(t)ui. In any concrete model the log-Libor volatilities σi(t)
are specified as functions depending on a small number of parameters. The
entire model is then determined from a small number of parameters and
calibration of the model to observed market prices becomes possible.

For the correlation matrix ρ as in (6.9) (ρij = bi/bj , 0 ≤ i ≤ j < n) we
can compute the Cholesky factorization explicitly. From (6.8) and (6.9) we
know that

ρij =
∑i

k=0
a2

k/(bibj) =
∑n−1

k=0
uikujk = (uu′)ij , i ≤ j,

where

ujk =

{
ak/bj = b−1

j

√
b2k − b2k−1 : k ≤ j

0 : k > j

Here b−1 = 0. The Coffee-Shoenmakers correlation structure is implemented
in the class CS FactorLoading.

We now proceed to examine several implementation of a Libor market
model. Since the parameters of such a model are calibrated to observed
caplet and swaption prices it will be necessary to derive exact or approximate
analytic formulas for these prices in each of the models.

6.5 Discretization of the Libor dynamics

Every discretization of a continuous dynamics entails some approximation
and with that comes approximation error. Unfortunately the Libor Market
Model is very unforgiving in this respect. To understand why recall that

6.5. DISCRETIZATION OF THE LIBOR DYNAMICS 165

(6.2) is the dynamics of the Libor process in the terminal martingale mea-
sure Q at time Tn. This measure is the numeraire measure associated with
the zero coupon bond Bn(t) and so the value ct(h) of a random cashflow
occurring at time T = Tn can be computed as

ct(h) = Bn(t)EQ
t [h/Bn(Tn)] = Bn(t)EQ

t [h]. (6.10)

If the cashflow h occurs at any other time T = Tj it has to be transported
forward to time Tn before the above formula (6.10) can be applied. To
transport the cashflow forward we multiply with the accrual factor

f = (1 +Xj(T))(1 +Xj+1(T)) . . . (1 +Xn−1(T)). (6.11)

If the number n − j of factors is large even small errors in the individual
factors can compound to large overall errors. We will use caplets one third of
the way out to the horizon as test cases. The payoff has to be compounded
forward for a sizeable number of accrual intervals and is small in comparison
to the accrual factor. Moreover we have an analytic formula for the caplet
price as a benchmark.

Assume that volatilities σi(s), factor loadings νi(s) = σi(s)ui and corre-
lations ρij = ui ·uj are as in the previous section and pass to the logarithms
Yj(t) = log(Xj(t)) in the Libor dynamics (6.2) to obtain

dYi(s) = µi(s)ds+ σi(s)ui · dW (s) (6.12)

where

µi(s) = −1
2
σ2

i (s)−
n−1∑

j=i+1

Fj(s)σi(s)σj(s)ρij , (6.13)

and Fj(s) = f(Yj(s)) with f(y) = ey/(1 + ey).

6.5.1 Predictor-Corrector algorithm.

A discretization of this dynamics which proceeds in small time steps will be
very slow because of the high dimension of the Libor process. The algorithm
[CHJ] which will be employed allows us to take longer and hence fewer time
steps. This speeds up the simulation of paths. Of course the size of the time
steps is limited by the times at which the Libors have to be sampled. We
can at most step from one sampling time to the next. A standard situation
is that the Libors are sampled only at the reset times Tj . In this case one
steps from time Tj to time Tj+1.

166 CHAPTER 6. THE LIBOR MARKET MODEL

Such a time step is far to large if a standard Euler scheme is employed.
Consider a general time step t → T . Integrating (6.12) over the interval
[t, T] we obtain

Y (T)− Y (t) = mi(t, T) + Vi(t, T), (6.14)

where

mi(t, T) =
∫ T

t
µi(s)ds, and Vi(t, T) =

∫ T

t
σi(s)ui · dW (s) (6.15)

The Ito integral Vi(t) =
∫ t
0 σi(s)ui · dW (s) has already been dealt with in

section 3.11. Recalling that ui · uj = ρij the vector V (t, T) = (Vi(t, T)) has
a multinormal distribution with mean zero and covariance matrix C(t, T) =
(Cij(t, T)) given by

Cij(t, T) =
∫ T

t
σi(s)σj(s)ρijds

and can easily be sampled precisely as

V (t, T) = R(t, T)Z(t),

where Z(t) is a standard normal vector and R(t, T) is any matrix satisfying
C(t, T) = R(t, T)R(t, T)′. Such matrices can be chosen to be upper or lower
triangular (Cholesky decomposition) and the triangularity speeds up the
computation. Moreover the matrix C(t, T) and hence the marix R(t, T) are
state independent and hence can be precomputed and cached to speed up
the simulation of the time step.

The drift stepmi(t, T) will be approximated. Note first that
∫ T
t σ2

i (s)ds =
Cii(t, T). Next approximate the term Fj(s) = Xj(s)/(1 + Xj(s)) in (6.13)
with some constant fj on the interval [t, T]. This yields the approximation

mi(t, T) ' −1
2
Cii(t, T)−

n−1∑
j=i+1

fjCij(t, T). (6.16)

The crudest approximation uses fj = Fj(0) = Xj(0)/(1 + Xj(0)). With
this the drift step becomes state independent and can be precomputed and
cached also resulting in very fast path computations (referred to as “X0”-
paths in the Java source code documentation). Unfortunately this approxi-
mation is too crude to be useful.

The accelerated predictor-corrector algorithm uses this drift step ap-
proximation merely to compute predicted values for the Libors Xj(T) =

6.6. CAPLET PRICES 167

exp(Yj(T)) and quantities Fj(T) = Xj(T)/(1 + Xj(T)). These predicted
values are then used to obtain a better approximation

fj = [Fj(t) + Fj(T)]/2.

With this the drift step (6.16) is recomputed to yield the corrected values
for the Libors Xj(T) = exp(Yj(T)). In this approach the drift (6.16) has to
be computed once since the deterministic drift steps used to compute the
predicted values are cached in advance.

The true predictor-corrector algorithm uses fj = Fj(t) to compute the
drift step (6.16) used to obtain the predicted values and then proceeds as
above. This is more accurate but since the drift step approximation used
to compute the predicted values is no longer state independent it cannot be
precomputed and cached. Consequently we have to compute the drift step
twice.

In practice the accelerated predictor corrector algorithm (implemented
in FastPredictorCorrectorLMM.h) performs just as well as a true predictor cor-
rector algorithm (implemented in PredictorCorrectorLMM.h, LiborProcess.java).
There is no noticeable difference but the simulation of paths is faster and
the code somewhat simpler.

6.6 Caplet prices

The caplet Cplt([Ti, Ti+1], κ) on [Ti, Ti+1] with strike rate κ pays off h =
(Xi(Ti)− κi)+ at time Ti+1, where κi = δiκ. Using the forward martingale
measure Q = Pi+1 at time Ti+1 this payoff can be valued as

ci(t) = Bi+1(t)E
Q
t

[
(Xi(Ti)− κi)+

]
since Q is the numeraire measure associated with the numeraire Bi+1. See
Appendix C.1 and note that Bi+1(Ti+1) = 1. In the measure Q the quo-
tient Bi/Bi+1 = 1 +Xi is a local martingale (traded assets divided by the
numeraire) and hence so is Xi. Thus Appendix C.4 applies with S1 = Xi,
S2 = 1, P = Pi+1 and T = Ti. The caplet price is given by the Black caplet
formula

ci(t) = Bi+1(t) [Xi(t)N(d+)− κiN(d−)] , (6.17)

where
d± =

log(Xi(t)/κi)
Σi(t, Ti)

± 1
2
Σi(t, Ti).

and Σ2
i (t, Ti) is the quadratic variation of the logarithm Yi = log(Xi) on

[t, Ti] This is the cumulative volatility of returns on Libor Xi on the interval

168 CHAPTER 6. THE LIBOR MARKET MODEL

[t, Ti] to option expiry. Since Xi is driftless under Q and the factor loading
is not affected by the switch from Pn to the measure Q we have

dXi(t) = Xi(t)σi(t)dW i+1(t)

and so
dYi(t) = −1

2
σ2

i (t)dt+ σi(t)dW i+1(t),

where W i+1 is a Brownian motion under Q = P i+1. It follows that

Σ2
i (t, Ti) = 〈Yi〉Ti

t =
∫ Ti

t
σ2

i (t)dt.

6.7 Swap rates and swaption prices

Let Sp,q(t) denote the swap rate along [Tp, Tq]), that is, the rate at which a
forward swap over the interval [Tp, Tq] can be entered into at time t at no
cost. Recall that this rate is computed from the zero coupon bonds Bj as

Sp,q = (Bp −Bq)/Bp,q = (Hp −Hq)/Hp,q where (6.18)

Hp,q =
∑q−1

j=p
δjHj+1

is the forward price of the annuity on [Tp, Tq]. Thus Sp,q is a local martingale
under the equivalent martingale measure Q associated with the numeraire
Bp,q (traded assets divided by the numeraire). According to Appendix C.1
the cash price c(t) of any option with a single payoff of h at time T can be
computed as

c(t) = Sp,q(t)E
Q
t [h/Sp,q(T)] , t ≤ T.

Consider in particular the forward swaption Swpn(T, [Tp, Tq], κ), that is, the
right to enter at time T ≤ Tp into a swap with strike rate κ over the interval
[Tp, Tq]. Here Libor is swapped against the constant rate κ. This swaption
has payoff

h = (Sp,q(T)− κ)+Bp,q(T), that is, h/Bp,q(T) = (Sp,q(T)− κ)+

at time T . Thus Appendix C.4 applies with S1 = Sp,q, S2 = 1 and P = Pp,q.
An analytic approximation cp,q(t) to the swaption price is given as

cp,q(t) = Bp,q(t)[Sp,q(t)N(d+)− κN(d−)], where (6.19)

d± = Σp,q(t, T)−1log(Sp,q(t)/κ)±
1
2
Σp,q(t, T)

6.7. SWAP RATES AND SWAPTION PRICES 169

and Σ2
p,q(t, T) is an Ft-measurable estimate of the quadratic variation of the

logarithm Yp,q = log(Sp,q) on [t, T]:

Σ2
p,q(t, T) = Et〈Yp,q〉Tt , Yp,q = log(Sp,q). (6.20)

This is the forecast for the cumulative volatility of returns on the swap
rate Sp,q on the interval [t, T] to option expiry. Here p ≥ 1. If p = 0 the
swaption has to be exercised immediately and the formula does not apply.
Let us now find an estimate for the quadratic variation (6.20. Note that
Hm = (1 +Xm) . . . (1 +Xn−1) and hence

∂Hm

∂Xk
= 0, k < m and

∂Hm

∂Xk
=

1
1 +Xk

Hm, k ≥ m.

From this it follows that

Yp,q = log(Hp −Hq)− log

(∑q−1

j=p
δjHj+1

)
= f(Xp, . . . , Xn−1)

where the function f satisfies

∂f

∂Xk
=

1
1 +Xk

[
Hp

Hp −Hq
− Hp,k

Hp,q

]
, p ≤ k < q and

∂f

∂Xk
= 0, k ≥ q.

Setting

Gj(s) = Xj(s)
∂f

∂Xj
(X(s))

it follows that

d〈Yp,q〉s =
∑q−1

j,k=p

∂f

∂Xj
(X(s))

∂f

∂Xk
(X(s))dXj(s)dXk(s) (6.21)

=
∑q−1

j,k=p
Gj(s)Gk(s)σj(s)σk(s)ρjkds.

Set

Cjk =
∫ T

t
σj(s)σk(s)ρjkds

let C be the matrix C = (Cjk)
q−1
j,k=p and x = x(t) the q − p-dimensional

vector with coordinates

xj(t) = Gj(t) =
Xj(t)

1 +Xj(t)

[
Hp(t)

Hp(t)−Hq(t)
− Hp,j(t)
Hp,q(t)

]
,

170 CHAPTER 6. THE LIBOR MARKET MODEL

for p ≤ j < q. Now integrate (6.21) over [t, T], approximate xj(s) with the
value xj(t) at the left endpoint t and pull these quantities out of the integral.
This yields the Ft-measurable approximation

Σ2
p,q(t, T) = Et〈Yp,q〉Tt '

q−1∑
j,k=p

xj(t)xk(t)Cjk = (Cx, x).

The matrix C is positive semidefinite and hence can be factored as C = RR′

and we can then write

Σp,q(t, T) '
√

(Cx, x) = ||R′x||.

This quantity is entered into formula 6.19 and yields the desired approx-
imate analytic swaption price. This approximation is not as accurate as
the analytic approximations in the driftless Libor market model introduced
below. We will use it mainly a a source of synthetic data for calibration
experiments. For a different approach see [Jae02], p167, and the references
cited therein.

6.8 Libors without drift

The drift term in the Libor dynamics causes another problem: it is useless
to try to speed up the simulation of paths by reducing the number of factors
(see 3.11) since this has no effect on the computation of the drift term and
that is exactly where the predictor- corrector algorithm spends most of its
effort.

For this reason we want to get rid of the drift term alltogether. Instead
of the Libors Xj we simulate some other variables Uj which are driftless
under Pn and such that the Libors Xj are deterministic functions of the Uj .
The variables

Uj = Xj(1 +Xj+1)(1 +Xj+2) . . . (1 +Xn−1), Un−1 = Xn−1 (6.22)

have this property. Indeed, setting Hk = Bk/Bn (a Pn-local martingale),
we have

Uj = XjHj+1 = Hj −Hj+1

and so Uj is a local martingale under Pn (and hence driftless). From Hn = 1
and Hj = Uj +Hj+1 we obtain

Hj = 1 + Uj + . . .+ Un−1, (Hn = 1) (6.23)

6.8. LIBORS WITHOUT DRIFT 171

and so
Xj =

Uj

Hj+1
=

Uj

1 + Uj+1 + . . .+ Un−1
. (6.24)

The Uj are the Libors Xj “accrued forward” to time time t = Tn. The
relation between the Xj and the Uj is analogous to the relation between
cash prices and forward prices. If the Uj are nonnegative they will follow a
driftless dynamics of the form

dUj(t) = Uj(t)νj(t) · dW (t) (6.25)

(martingale representation theorems) and conversely the dynamics (6.25)
ensures that the Uj and hence the Libors Xj are nonnegative. In order to
take full advantage of the driftless nature of (6.25) we simulate the Uj with
Gaussian (state independent) factor loadings νj . We assume that

νj(t) = σj(t)uj ,

for some state independent volatility functions σj(t) and (constant) unit
vectors uj and set ρij = ui · uj . As a consequence the logarithms

Yj(t) = log(Uj(t))

which follow the dynamics

dYj(t) = −1
2
σ2

j (t)dt+ νj(t) · dW (t) (6.26)

form a Gaussian vector process Y (t). The time step Y (t) → Y (T) can be
sampled precisely (see 3.11 for more details): the increment Y (T)− Y (t) is
independent of Ft (of earlier time steps) and multinormal with covariance
matrix C(t, T) given by

Cij(t, T) =
∫ T

t
νi(s) · νj(s)ds =

∫ T

t
σi(s)σj(s)ρijds. (6.27)

and means

mi(t, T) = −1
2

∫ T

t
σ2

i (s)ds,

all of which are state independent and hence can be precomputed and
cached. The Libors Xj themselves now have stochastic volatility. We will
compute the factor loadings of the Xj from the factor loadings of the Uj

below. It is a good idea to compute the accrual factors Hj(t) along with the
Uj(t). Because of the backward recursion

Hn(t) = 1, Hj = Uj +Hj+1

172 CHAPTER 6. THE LIBOR MARKET MODEL

the computational effort is negligible. All other quantities of interest can
easily be computed from the Uj and Hj , such as for example the Libors Xj

(see (6.24), the forward price of the annuity

Hp,q = Bp,q/Bn =
∑q−1

j=p
δjHj+1

and the swap rate
Sp,q = (Hp −Hq)/Hp,q. (6.28)

Zero coupon bonds Bj(t) and the annuity Bp,q cannot be computed at an
arbitrary time t, their values are only determined at times t = Tj : for this t
we have Bj(t) = 1 hence Hj(t) = 1/Bn(t), that is

Bn(t) = 1/Hj(t), t = Tj . (6.29)

and so
Bi(t) = Hi(t)Bn(t) = Hi(t)/Hj(t), t = Tj . (6.30)

However we have to pay a price for this convenience and speed, the factor
loadings of the Libors Xj are now state dependent. We will determine them
in the next section.

6.8.1 Factor loadings of the Libors

The simulation of the Uj only pays off if we assume state independent factor
loadings νj(t) = νU

j (t) for the processes Uj . To see wether or not this is
reasonable we relate these factor loadings to the factor loadings νX

j (t) of the
foward Libors Xj . These processes follow a dynamics of the form

dXj(t) = dAj(t) +Xj(t)νX
j (t) · dW (t) and (6.31)

dUj(t) = Uj(t)νU
j (t) · dW (t)

where the process Aj(t) =
∫ t
0 µj(s)ds is the cumulative drift of Xj . All we

need to know of this process is that it is of bounded variation. Now take
stochastic differentials on both sides of the identity

Xj =
Uj

1 + Uj+1 + . . .+ Un−1
=

Uj

Hj+1

using Ito’s formula (Appendix C.5) on the right. Beause of the uniqueness
of the decomposition of a semimartingale as a sum of a bounded variation

6.8. LIBORS WITHOUT DRIFT 173

process and a local martingale the bounded variation part in Ito’s formula
on the right will have to be dAj(t) and so we obtain

dXj(t) = dAj(t) +
1

Hj+1(t)
dUj(t)−

Uj(t)
H2

j+1(t)

n−1∑
k=j+1

dUk(t).

substituting the right hand sides of (6.31) for dXj(t), dUj(t), cancelling
dAj(t) and observing that Uj/Hj+1 = Xj we can rewrite this as

Xj(t)νX
j (t) · dW (t) = Xj(t)

νU
j (t)−Hj+1(t)−1

n−1∑
k=j+1

Uk(t)νU
k (t)

 · dW (t).

and it follows that

νX
j (t) = νU

j (t)−Hj+1(t)−1
n−1∑

k=j+1

Uk(t)νU
k (t).

Strictly speaking this is an equality in the space of integrands L(W), that is,
equality almost surely in a suitable probability. We do not need the details
here. We see that the Libor factor loading νX

j (t) is now state dependent. In
the next two sections we will see that we can still price caplets and swaptions
by approximate analytic formula.

6.8.2 Caplet prices

We have already seen in 6.6 that the price ci(t) of the caplet Cplt([Ti, Ti+1], κ)
with strike rate κ is given by

ci(t) ' Bi+1(t) [Xi(t)N(d+)− κiN(d−)] , where (6.32)

d± = Σi(t, Ti)−1log(Xi(t)/κi)±
1
2
Σi(t, Ti),

κi = δiκ and Σ2
i (t, Ti) as an Ft-measurable estimate of the quadratic varia-

tion of the logarithm Yi = log(Xi) on [t, Ti]:

Σ2
i (t, Ti) ' 〈Yi〉Ti

t , Yi = log(Xi).

This is the forecast for the cumulative volatility of returns on Libor Xi on
the interval [t, Ti] to option expiry. In 6.6 this price was exact now it is
a forecast because of the stochastic nature of the Libor volatilities. See
Appendix (C.4. We have

Yi = log(Xi) = log(Ui)− log(1 + Ui+1 + . . .+ Un−1)
:= f(Ui, Ui+1, . . . , Un−1).

174 CHAPTER 6. THE LIBOR MARKET MODEL

Let’s apply Ito’s formula (Appendix C.5) to get the quadratic variation of
Yi. Using

d〈Uj , Uk〉s = Uj(s)Uk(s)σj(s)σk(s)ρjkds

and setting

Gj(s) = Uj(s)
∂f

∂Uj
(U(s))

we have

d〈Yi〉s =
n−1∑
j,k=i

Gj(s)Gk(s)σj(s)σk(s)ρjkds.

Now integrate this over [t, Ti] and approximate the quantities Gj(s) with
the value Gj(t) at the left end of the interval of integration. We can then
pull the factor Gj(t)Gk(t) out of the integral and obtain

〈Yi〉Ti
t '

n−1∑
j,k=i

Gj(t)Gk(t)Cjk, with Cjk =
∫ Ti

t
σj(s)σk(s)ρjkds. (6.33)

Factoring the matrix C = (Cjk)n−1
j,k=i as C = RR′ (with R upper triangular

for greatest speed) we can rewrite this as

〈Yi〉Ti
t ' (Cx, x) = ‖R′x‖2, (6.34)

where x is the vector x = (Gi(t), Gi+1(t), . . . , Gn−1(t)). Let us note that

Gj(t) =

{
1 : j = i

−Uj(t)/Hi+1(t) : i < j < n.
(6.35)

and that the Gj depend on i as well as j. This yields the approximate caplet
price (6.32) with

Σi(t, Ti) =
√

(Cx, x) = ‖R′x‖.
The approximation shows excellent agreement with Monte Carlo caplet
prices.

6.8.3 Swaption prices

In 6.7 we have seen that the price of the swaption Swpn(T, [Tp, Tq], κ) which
can be exercised into a payer swap with strike rate κ along [Tp, Tq] at time
T ≤ Tp can be approximated as

cp,q(t) ' Bp,q(t) [Sp,q(t)N(d+)− κN(d−)] , where (6.36)

d± = Σp,q(t, T)−1log(Sp,q(t)/κ)±
1
2
Σp,q(t, T).

6.8. LIBORS WITHOUT DRIFT 175

and Σ2
p,q(t, T) is an Ft-measurable estimate of the quadratic variation of the

swaprate logarithm Yp,q = log(Sp,q) on [t, T]:

Σ2
p,q(t, T) ' 〈Yp,q〉Tt , Yp,q = log(Sp,q).

This is the forecast for the cumulative volatility of returns on the swap rate
Sp,q on the interval [t, T] to option expiry. Observing that∑q−1

j=p
δjHj+1 = αq +

∑n−1

j=p+1
αjUj ,

where

αj =

{
Tj − Tp : p < j ≤ q
Tq − Tp : q < j

and using (6.28) we obtain

Yp,q(t) = log (Sp,q(t))

= log(Up + . . .+ Uq−1)− log

(
αq +

∑n−1

j=p+1
αjUj

)
:= f(Up, . . . , Un−1).

Let C = (Cjk)p≤j,k<q be the matrix with coordinates

Cjk =
∫ T

t
σj(s)σk(s)ρjkds

and factor C as C = RR′. As in the preceeding section it follows that

〈Yp,q〉Tt ' (Cx, x) = ‖R′x‖2,

where x is the vector x = (xp, . . . , xn−1) with components

xj = Uj(t)
∂f

∂Uj
(U(t)) =

Aj(t) : j = p

Aj(t)−Bj(t) : p < j < q
−Bj(t) : j ≥ q

,

with
Aj(t) =

Uj(t)
Hp(t)−Hq(t)

and Bj(t) =
αjUj(t)∑q−1

j=p δjHj+1(t)
.

resulting in the approximate swaption price (6.36) with

Σp,q(t, T) =
√

(Cx, x) = ‖R′x‖.

176 CHAPTER 6. THE LIBOR MARKET MODEL

6.8.4 Bond options

A general bond B is simply a linear combination

B(s) =
∑q−1

j=p
cjBj(s)

of zero coupon bonds. In fact every bond portfolio long or short or both has
this form. We will now study the European call exercisable at time Tt ≤ Tp

with strike K on this bond. Note that here t is an integer (discrete time)
and that call exercise is assumed to take place at a Libor reset point. The
call payoff at time Tt has the form

h =
(∑q−1

j=p
cjBj(Tt)−K

)+

.

Multiplying with 1/Bn(Tt) = Bt(Tt)/Bn(Tt) = Ht(Tt) this payoff accrued
forward to time Tn assumes the form

h/Bn(Tt) =
(∑q−1

j=p
cjHj(Tt)−KHt(Tt)

)+

.

Here the assets

S1 = F :=
∑q−1

j=p
cjHj (forward bond price) and S2 = Ht

are local martingales under Pn, in fact square integrable martingales. Con-
sequently C.4 applies with P = Pn and T = Tt. An analytic approximation
for the bond option price c(s) is given by

c(s) = Bn(s) [F (s)N(d+)−KHt(s)N(d−)] (6.37)
= B(s)N(d+)−KBt(s)N(d−), where (6.38)

d± = Σ(s, Tt)−1log (F (s)/KHt(s))±
1
2
Σ(s, Tt)

and Σ2(s, Tt) is an Ft-measurable estimate of the quadratic variation of the
logarithm Y = log(Q) = log(F)− log(Ht) on the interval [s, Tt]. This is the
forecast for the cumulative volatility of returns on the quotient Q on the
interval [t, Tt] to option expiry. Note that Q = F/Ht = B/Bt is just the
forward price of the bond at the time Tt of option expiry. From (6.23) we
have

F = q − p+ bqUq + . . .+ bn−1Un−1, (6.39)

where
bj = cp + . . .+ cj∧(q−1)

6.8. LIBORS WITHOUT DRIFT 177

and a ∧ b = min{a, b}. It follows that

Y = f(Ut, . . . , Un−1)
= log (q − p+ bpUp + . . .+ bn−1Un−1)− log (1 + Ut + . . .+ Un−1) .

Set

Cjk =
∫ Tt

s
σj(u)σk(u)ρjk(u)du.

and factor the matrix C = (Cjk)t≤j,k<n as C = RR′. As in the preceeding
section it follows that a suitable estimate is given by

Σ(s, Tt) =
√

(Cx, x) = ‖R′x‖,

where x is the vector x = (xt, . . . , xn−1) with components

xj = Uj(s)
∂f

∂Uj
(U(s)) =

{
−Uj(s)/Ht(s) : t ≤ j < p

bjUj(s)/F (s)− Uj(s)/Ht(s) : p ≤ j < n
.

Note that this formula prices the bond as if the bond price at expiration
were lognormal. Moreover the variance increases with the time to option
expiration. These assumptions have several weaknesses: the lognormal dis-
tribution has positive mass on all of (0,+∞) but the bond price is bounded
above. For short dated bonds the variance of the bond price will decrease
as time approaches the maturity of the bond.

An option on a zero coupon bond which expires shortly before bond
maturity is the worst case for these assumptions. The bond price will have
very little variance and certainly not exceed one. The formula was tested
in a few such cases for at the money options (strike price is the cash price
of the bond) and worked very well. This seems to be due to cancellation
effects in the tails of the lognormal distribution which places too much mass
far below the strike price but makes up for it by placing mass at bond prices
bigger than one.

Obviously this cancellation will not work if the strike price is moved up
or down. For example the formula will report a positive price for a call on
the zero coupon bond with strike price bigger than one. We are interested
in analytic bond option formulas since they allow us to calibrate a Libor
market model for hedging a bond portfolio. If you do that you need to be
aware of the limitations of this formula. In other words decide which options
you will use for calibration and then test how the formula performs on these
options in a Libor market model with a factor loading that roughly reflects
market conditions.

178 CHAPTER 6. THE LIBOR MARKET MODEL

6.9 Implementation

The reader can find an implementations in the Java package Libor.LiborProcess

as well as the C++ files LiborMarketModel.h, PredictorCorrectorLMM.h, FastPre-

dictorCorrectorLMM.h, DriftlessLMM.h.
The Libor dynamics steps directly from one point Tj in the tenor struc-

ture to the next point Tj+1. No intermediate Libors are computed.
The abstract class FactorLoading encapsulates the volatility and correla-

tion structure and lists abstract methods to compute the covariance integrals
C(t, T) and their Cholesky roots R(t, T) which are needed to drive the time
step t→ T of the Libor path.

Every concrete factor loading depends on the choice of the concrete
volatility and correlation structure. Three different structures are imple-
mented. The Coffee-Shoenmakers factor loading is discussed in detail in the
section on calibration below.

6.10 Zero coupon bonds

The Libors Lj(t) do not determine even the zero coupon bonds Bj(t) =
B(t, Tj) which mature at points on the tenor structure completely. Only
the ratios Bj/Bk are determined. Combining this with Bj(Tj) = 1 we see
that the zero coupon bonds Bj(t) = B(t, Tj) are determined at all times
t = Tk < Tj .

A rough approximation for the zero coupon bond B(t, T) can be com-
puted from the Libors in our model if we follow the convention that Libor
is earned fractionally on subintervals of any accrual interval. This is in
accordance with the fact that Libor is a simple rate of interest.

Set Xj(t) = δjLj(t) as above and assume that i ≥ j and the times t, T
satisfy

Tj−1 ≤ t ≤ Tj < Ti ≤ T < Ti+1.

The factor 1/B(t, T) compounds from time t to time T . At time t Libor for
the interval [Tj−1, Tj] is already set and so compounding from time t to Tj

is accomplished by the factor 1 + δ−1
j−1(Tj − t)Xj−1(Tj−1).

Likewise compounding (at time t) from time Tk to time Tk+1 is accom-
plished by the factor 1 + Xk(t). Finally the factor 1 + δ−1

i (T − Ti)Xi(t)
compounds from time Ti to time T . Putting all this together yields

1/B(t, T) = [1+δ−1
j−1(Tj−t)Xj−1(Tj−1)]×A×[1+δ−1

i (T−Ti)Xi(t)], (6.40)

6.10. ZERO COUPON BONDS 179

where A = [1 +Xj(t)][1 +Xj+1(t)] . . . [1 +Xi−1(t)]. In case Tj−1 ≤ t ≤ T ≤
Tj , that is, both times t, T are in the same accrual interval we set

1/B(t, T) = 1 + δ−1
j−1(T − t)Xj−1(Tj−1).

These formulas preserve the relation Bj(t)/Bj+1(t) = 1+Xj(t) and the zero
coupon bond condition B(T, T) = 1.

In our implementation [Mey02a] Libor Xk(t) is only computed at times
t = Tj ≤ Tk. Consequently t is replaced with the nearest Tj in the compu-
tation of B(t, T). This is rather crude and causes jumps in the computed
zero coupon bond path prices at times t when the nearest Tj jumps, see
Examples.Libor.BondPaths.java.

180 CHAPTER 6. THE LIBOR MARKET MODEL

6.11 Model Calibration

In this section we will study in detail how a Libor market model is calibrated
to caplet and swaption prices. We will consider both the calibration of a
predictor-corrector and a driftless model. To get a better grip on the prob-
lem we parametrize the factor loading in terms of a deterministic volatility
surface σ(t, T) and constant correlation matrix ρ = (ρij).

6.11.1 Volatility surface

More precisely we assume that the volatility functions σj(t) have the form

σi(t) = ciσ(t, Ti)

where σ(t, T) > 0 is a deterministic function (the volatility surface) and the
cj > 0 are scaling factors. Set

Bij(t, T) =
∫ T

t
σ(s, Ti)σ(s, Tj)dt. (6.41)

With this the covariation matrix C = C(t, T) given by

Cij(t, T) =
∫ T

t
σi(s)σj(s)ρijdt

assumes the form
Cij = cicjρijBij . (6.42)

Any abstraction of the concept of a volatility surface will take the quantity
σ(t, T) and integrals

∫ T
t σ(u, Ti)σ(u, Tj)dt as the fundamental features. See

the class VolSurface in VolatilityAndCorrelation.h. Three volatility surfaces are
implemented:

Jaeckel-Rebonato volatilities

This surface depends on four parameters a, b, c, d and is given by

σ(t, T) = d+ (a+ b(T − t))e−c(T−t).

M-volatilities

These volatilities depend on 2 parameters a, d and are defined as

σ(t, T) = g(1− t/T), where g(t) = 1 + ate−t/d.

The constant volatility surface σ(t, T) = 1 is a special case but it is useful
to implement it separetely.

6.11. MODEL CALIBRATION 181

6.11.2 Correlations

The correlation matrix ρ must of course be symmetric and positive semidef-
inite. A general parametrization of all such matrices is difficult and requires
a high number of parameters. See [JR]. Therefore we take another ap-
proach. We try to isolate some properties which the correlations of the
log-Libors Yj = log(Xj) (in the case of the predictor-corrector model) or
the Yj = log(Uj) (in the case of the driftless model) should have and then
find a low dimensional parametrization conforming to these requirements.
In general we confine ourselves to correlations of the form

ρij = bi/bj , 1 ≤ i ≤ j < n.

where bj is an increasing sequence [CS00]. The sequence b is called the
correlation base. We have already seen in 6.4 that the matrix ρ is then
positive semidefinite. Libor L0 is set at time T0 = 0 and hence is a constant.
With this in mind only the correlations ρij for 0 < i, j < n will actually be
used in the simulation.

Coffee-Shoenmakers correlations

Coffee and Shoenmakers [CS00] postulate some desirable properties for log-
Libor correlations and derive a suitable parametrization of the correlation
base b. We follow these ideas with slight modifications. We have already
seen in 6.4 that the matrix ρ is positive semidefinite. The correlation base
b = (b1, . . . , bn−1) should ensure the following properties of the log-Libor
correlations:

• ρij ≤ 1, equivalently bi ≤ bj , i ≤ j.
• i 7→ ρii+1 = bi/bi+1 is nondecreasing.

Clearly we may assume that b1 = 1. Setting ζi = log(bi) these conditions
translate to ζ1 = 0 and

ζi ≤ ζi+1, and (6.43)
ζi ≥ 1

2(ζi−1 + ζi+1), 1 < i < n− 1, (6.44)

and can be satisified by setting

ζi = −f
(
i− 1
n− 2

)
ie. bi = exp

[
−f

(
i− 1
n− 2

)]
, 1 ≤ i ≤ n− 1, (6.45)

for some decreasing and convex function f = f(x), x ∈ [0, 1]. The convexity
of f is satisfied if f ′′(x) ≥ 0 on [0, 1] and the decreasing property then follows

182 CHAPTER 6. THE LIBOR MARKET MODEL

from f ′(1) < 0. A suitably simple function f(x) is obtained by requiring
that

f ′′(x) = α+ (β − α)x.

The parameters α, β are then the derivatives f ′′(0), f ′′(1) which control the
concavity of the sequence ζi. As i increases the values of the correlations
ρi,i+1, ρi−1,i, ρi+1,i+2 move closer to each other. It is thus desirable that the
sequence

i 7→ logρi,i+1 −
1
2
(logρi−1,i + logρi+1,i+2) (6.46)

be decreasing. In terms of the funtion f we would thus like to see f ′′(x)
decreasing and so we want to have

α ≥ β ≥ 0.

If the number n of Libors is large, then the concavity of (6.46) should become
small, in other words we want β = f ′′(1) to be small. Recall that ζ1 = 0
and so f(0) = 0. Integration then yields

f ′(x) = c+ αx+ (β − α)x2/2 and
f(x) = cx+ ax2 + bx3, where a = α/2 and b = (β − α)/6.

Let us replace the parameter c with the correlation

ρ∞ := ρ1,n−1 = b1/bn−1 = 1/bn−1.

Observing that log(ρ∞) = −ζn−1 = f(1) = a+ b+ c we have

c = log(ρ∞)− (a+ b).

Recall that we must satisfy the condition f ′(1) = c+2a+3b < 0, equivalently
a+2b < −log(ρ∞) ie. α/6+β/3 < −log(ρ∞). Thus we obtain the following

CS-Correlations.

ρij = bi/bj , 1 ≤ i < j < n, with (6.47)

bi = exp

[
−f

(
i− 1
n− 2

)]
, where f(x) = cx+ ax2 + bx3, (6.48)

a =
α

2
, b =

β − α

6
and c = log(ρ∞)− (a+ b).

where the parameters α, β, ρ∞ must satisfy

α ≥ β ≥ 0 and
α

6
+
β

3
< −log(ρ∞). (6.49)

The parameters α, β control the concavity of the sequence ζi = log(bi) and
β should be chosen small, the smaller the larger the number n of Libors.

6.11. MODEL CALIBRATION 183

Jaeckel-Rebonato correlations

Setting bj = exp(βTj) we obtain a special case of the correlations suggested
by Jaeckel and Rebonato, see [Jae02], 12.4, page 165. This results in corre-
lations

ρij = exp(β(Tj − Ti)), i ≤ j.

Correlations and Volatility surfaces are implemented in VolatilityAndCor-

relations.h,cc and can be combined arbitrarily to produce a number of factor
loadings for the Libor market model.

6.11.3 Calibration

Note that we need at most 7 parameters a, b, c, d, α, β, ρ∞ for both the
volatility surface and the correlation matrix. Combining these with the
scaling factors cj we obtain an n+ 6 dimensional parameter vector x

xj = cj , 1 ≤ j < n,

xn = a, xn+1 = b, xn+2 = c, xn+3 = d,

xn+4 = α, xn+5 = β, xn+6 = ρ∞.

Depending on the volatility surface and correlation matrix in actual use
some of these parameters may have no influence on the factor loading. In
order to calibrate the parameter vector to the market prices of caplets and
swaptions we need an objective function which minimizes the calibration
error as a function of the parameter vector x. We take the usual function

error(x) =
∑

(market price − calibrated price(x))2,

where the sum extends over all instruments used in the calibration. An
alternative would be to use implied and calibrated volatilities instead. We
also must decide which instruments we use as the basis for calibration. In
our implementation we use all at the money caplets

Caplet(i) = Cplt([Ti, Ti+1], κi), with κi = Li(0)

and all coterminal at the money swaptions

Swaption(i) = Swpn([Ti, Tn], κi), with κi = Spq(0), p = i, q = n.

Note that these swaptions all exercise into a swap terminating at the horizon
Tn. This decision is somewhat arbitrary designed to keep the implementa-
tion particularly simple.

184 CHAPTER 6. THE LIBOR MARKET MODEL

With this we have a constrained optimization problem: the parameters
must be positive and, in the case of Coffee-Shoenmakers correlations we
must have

α/6 + β/3 + log(ρ∞) > 0.

In our own implementation we use a crude quasi random search: starting
from a reasonable initial guess we center a search rectangle at the current
optimal parameter vector and search this rectangle with a Sobol sequence.
After a certain number of points have been evaluated we move to search
rectangle to the next optimum, contract it and cut the number of search
points in half. The search stops when the number of search points reaches
zero.

To make his work it is important to find initial values for the scaling
factors cj which approximate the caplet prices well. The details depend on
the type of Libor market model which is being calibrated, that is wether
we are calibrating a predictor-corrector model or a driftless model. In each
case we convert the observed caplet prices to implied aggregate volatilties
Σi(0, Ti) to expiry by solving the caplet price formula (6.6) or (6.8.2) for
the aggregate volatility Σi(0, Ti). Here the term aggregate volatility denotes
cumulative volatility to expiry as opposed to annualized volatility σi. the
two are related as

Σi(0, Ti) = σi

√
Ti.

Calibration of a predictor-corrector model

In the predictor-corrector Libor market model the theoretical aggregate
volatility Σi(0, Ti) to be used in the caplet pricing formula is given by

Σ2
i (0, Ti) = Cii = c2iBii, where Bii =

∫ Ti

0
σ2(t, Ti)dt

depends only on the volatility surface. Note how the correlations do not
appear. If we equate this with the implied aggregate volatility

c2iBii = Σ2
i (0, Ti)

we obtain the scaling factor ci which exactly reproduces the market ob-
served caplet price. This is a good first guess that applies equally well to all
correlations.

6.11. MODEL CALIBRATION 185

Calibration of a driftless model

In the case of a driftless Libor market model the situation is complicated by
the fact that the correlations appear in the caplet price formula and that
these correlations are themselves varied in the course of the calibration. One
can take two approaches: recompute the scaling factors cj for each new set of
correlations to match caplet prices exactly or start with a reasonable guess
for the correlations and compute a corresponding set of scaling factors as an
initial guess. Then let the search routine do the rest.

Matching caplet prices exactly is obviously quite restrictive and unlikeley
to produce optimal results. However it does reduce the dimension of the
optimization problem to the number of parameters for the volatility surface
and correlations and this is the approach followed in our implementation
(class LiborCalibrator.h).

Let us now assume that we have some correlations and we want to com-
pute the coresponding saling factors cj which match the market observed
caplet prices exactly. Set

Bij =
∫ Ti

0
σ(t, Ti)σ(t, Tj)dt.

With this the covariation matrix C in the caplet volatility estimate (6.33)
in a driftless Libor market model (at time t = 0) assumes the form

Cij = cicjρijBij .

We will see that the scaling factors ci can be computed by backward recur-
sion starting from i = n− 1, that is, ci is computed from ci+1, . . . , cn−1. Fix
an index i < n and set Gj = Gj(0) and xj = cjGj , i ≤ j < n, where the Gj

are the quantities from (6.35) in section (6.8.2). Note that the Gj depend
on i also and Gi = 1. Consequently ci = xi. With this we can rewrite (6.33)
(at time t = 0) as

Σ2
i (0, Ti) = E〈Yi〉Ti

0 '
∑n−1

j,k=i
xjxkρjkBjk (6.50)

Solve formula (6.8.2) for the quantity Σi(0, Ti) to obtain the market implied
aggregate volatility to expiry Σi(0, Ti). We now have to determine the cj
such that

Σ2
i (0, Ti) =

∑n−1

j,k=i
xjxkρjkBjk with xj = cjGj . (6.51)

The quantity on the right depends only on the factors ci, ci+1, . . . , cn−1.
Consequently ci can be computed from ci+1, . . . , cn−1. For i = n−1 equation

186 CHAPTER 6. THE LIBOR MARKET MODEL

(6.51) assumes the form

x2
n−1Bn−1,n−1 = Σ2

n−1(0, Tn−1)

while for i < n− 1 we have

ux2
i + 2vxi + w = Σ2

i (0, Ti), where

u = Bii, v =
∑n−1

k=i+1
xkρikBik and w =

∑n−1

j,k=i+1
xjxkρjkBjk

The solution (which must be positive) is

xi = u−1

[
−v +

√
v2 − u

(
w − Σ2

i (0, Ti)
)]
.

From this ci can be obtained as ci = xi. The quantities v and w only depend
on ci+1, . . . , cn−1. Note that the correlations ρij make their appearance.
These correlations will also vary during calibration. There are two possible
approaches to this problem: recompute the scaling factors for each new set
of correlations or start with a reasonable guess for the correlations, use these
to get initial values for the cj and then let the search routine do the rest.

6.12. MONTE CARLO IN THE LIBOR MARKET MODEL 187

6.12 Monte Carlo in the Libor market model

We have derived the dynamics of the Libor process only in the forward
martingale measure Q at the terminal date t = Tn. This probability Q is
the numeraire measure associated with the zero coupon bond Bn maturing
at t = Tn. In this probability the Libor dynamics driven by a Brownian
motion W asumes the form

dXj(t) = Xj(t)

− n−1∑
k=j+1

Xk(t)
1 +Xk(t)

νj(t) · νk(t) + νj(t) · dW (t)

 . (6.52)

Simulations using this dynamics can therefore be used only to compute
expectations EQ(·) with respect to the terminal measure Q. If a Libor
derivative has a single payoff h at time t = Tn then its cash price c(t) can
be computed from an EQ-expectation via the formula

c(t) = Bn(t)EQ
t (h). (6.53)

If h induces cash flows at several points in time we transport all cash flows
forward to the horizon and aggregate them to a single payoff h at time
t = Tn. Likewise there is a numeraire measure Pj associated with the zero
coupon bond Bj maturing at time t = Tj . It is called the forward martingale
measure at t = Tj and defined by the density

gj =
dPj

dQ
= c(Bj/Bn)(Tn) = cBj(Tn),

where c is the normalizing factor Bn(0)/Bj(0). This means that EPj (h) =
EQ(gjh) for all measurable, nonnegative functions h (and also others of
course). Recall our convention that all zero coupon bonds live to time Tn.
One can then show that the quotient Bk/Bj is a Pj-local martingale, for
each k ≤ n. In the new probability Pj the martingale pricing formula (6.53)
assumes the form

c(t) = Bj(t)E
Q
t (h) (6.54)

for a cash flow h which occurs at time t = Tj . See Appendix C.1 and note
Bj(Tj) = 1. With this terminology the terminal forward martingale measure
Q is the probability Pn.

For example the ith caplet Cpl([Ti, Ti+1], k) with strike rate k has payoff
δi(Li(Ti)−k)+ at time t = Ti+1 and so its price Cpli(0) at time zero is most
conveniently computed using the forward martingale measure Pi+1 at time
T = Ti+1 as

Cpli(0) = δiBi+1(0)EPi+1 [(Li(Ti)− k)+] (6.55)

188 CHAPTER 6. THE LIBOR MARKET MODEL

but this formula cannot be used in Monte Carlo simulation unless we switch
to the Pi+1-dynamics of Li. If we want to use the Pn-dynamics (6.52) instead
we need to push the payoff forward from time t = Ti+1 to the equivalent
payoff (Li(Ti)− k)+/Bn(Ti+1) at time t = Tn and rewrite (6.55) as

Cpli(0) = δiBn(0)EPn [(Li(Ti)− k)+/Bn(Ti+1)]. (6.56)

The payoff (Li(Ti)− k)+/Bn(Ti+1) at time Tn can then be simulated under
the Pn-dynamics (6.52) and the expectation in (6.56) approximated as an
ordinary arithmetic average over simulated payoffs. Since in general there
are several cash flows occuring at different points in time there is no single
probability Pj which is preferred and consequently we standardize on the
terminal forward martingale measure Q = Pn.

Pushing the caplet payoff forward to time Tn involves all Libors Lj ,
j = i + 1, . . . , n − 1 and comparison of the Monte Carlo simulated caplet
prices under the Pn-dynamics to Black caplet prices (involving only Bi+1(0))
provides a good test of the correctness of the Libor model implementation.

6.13 Control variates

The high dimensionality of the Libor process makes the simulation of paths
very slow. Control variates allow us to reduce the number of paths which
have to be generated to reach a desired level of precision. A control variate
Y for a random variable X is used together with its expctation E(Y). Con-
sequently we must be able to compute the expectation E(Y) significantly
faster than the expectation E(X). The best possible case occurs if E(Y)
can be computed by analytic formula. However the control variate Y must
also be highly correlated (or anticorrelated) with the random variable X.
Recall that Pn = Q denotes the forward martingale measure at time t = Tn.

6.13.1 Control variates for general Libor derivatives

Assume that a Libor derivative has payoff h at time T = Tn

h = f(V) with V = (X0(T0), X1(T1), . . . , Xn−1(Tn−1)) ∈ Rn (6.57)

(other payoffs are handled in a similar manner). We obtain a highly corre-
lated control variate Y if we compute Y as

Y = f(U) with U = (X̃0(T0), X̃1(T1), . . . , X̃n−1(Tn−1)) ∈ Rn

6.13. CONTROL VARIATES 189

where the process X̃(t) approximates the process X(t) path by path and
the distribution of the vector U is known. In this case the mean EPn(Y)
can be computed by sampling directly from the distribution of U which is
much faster than Libor path simulation. Once this mean has been obtained
we can use Y as a control variate for h and compute the expectation EPn(h)
by simulating a smaller number of Libor paths.

This means of course that both paths t → X(t) and t → X̃(t) driven
by the same underlying Brownian path are computed side by side. In our
implementation this simply means that both paths are driven by the same
sequence of standard normal increments.

As a suitable process X̃ we could use the Gaussian approximation for the
Libor process derived in Section 2 by linearizing the Libor drift. In fact even
the less sophisticated X0-approximation works well enough. This replaces
the drift

µi(t) = −
n−1∑

k=j+1

Xk(t)
1 +Xk(t)

σi(t)σj(t)ρij

with the deterministic drift term

µ̃i(t) = −
n−1∑

k=j+1

Xk(0)
1 +Xk(0)

σi(t)σj(t)ρij

and thus approximate the Libor process X(t) with the process X̃(t) defined
by

dX̃i(t) = X̃i(t)[µ̃(i)(t)dt+ σi(t)ui · dW (t)], X̃(0) = X(0).

Setting Zi(t) = log(X̃i(t)) we have

Y = f(U) with U = (exp(Z0(T0)), . . . , exp(Zn−1(Tn−1)) ∈ Rn,

where the process Z(t) satisfies

dZi(t) = λi(t)dt+ σi(t)ui · dW (t) with λi(t) = µ̃i(t)− 1
2σ

2
i (t).

Since the drift mi(t) is deterministic the vector

log(U) := (Z0(T0), . . . , Zn−1(Tn−1))

is multinormal with mean vector m = (mi) and covariance matrix C = (Cij)
given by

mi =
∫ Ti

0
λi(t)dt and Cij =

∫ Ti

0
σi(t)σj(t)ρijdt, i ≤ j.

190 CHAPTER 6. THE LIBOR MARKET MODEL

Consequently sampling from the distribution of log(U) is very fast and such
samples lead directly to samples from the distribution of Y . The mean
EPn(Y) can therefore be computed to high precision with a small fraction
of the effort needed to compute the mean E(X).

6.13.2 Control variates for special Libor derivatives

We now turn to control variates Y for special Libor derivatives with the prop-
erty that the mean EPn(Y) can be computed analytically. These derivatives
are all implemented in the package [Mey02a] and each has a method which
computes the correlation of the derivative payoff with the control variate.
The observed correlations are quite good but do obviously depend on the
choice of the various parameters.

Control variates for caplets

Libor Li(Ti) is highly correlated with the caplet payoff (Li(Ti)−k)+ at time
Ti+1. Recall however that we are simulating under the terminal martingale
measure Pn and hence must work with the forward transported payoff

X = (Li(Ti)− k)+/Bn(Ti+1) = (Li(Ti)− k)+Bi+1(Ti+1)/Bn(Ti+1).

This would suggest the control variate Y0 = Li(Ti)Bi+1(Ti+1)/Bn(Ti+1).
Unfortunately the expectation EPn(Y) is not easily computed. We do know
however that

Li(t)Bi+1(t)/Bn(t) = δ−1
i (Bi −Bi+1)/Bn

is a Pn-martingale (traded assets divided by the numeraire). Consequently
the closely related random variable Y = Li(Ti)Bi+1(Ti)/Bn(Ti) satisfies

EPn(Y) = Li(0)Bi+1(0)/Bn(0)

and is thus useful as a control variate for the forward transported caplet
payoff.

Control variates for swaptions

The forward swaption Swpn(T, [Tp, Tq], κ)-exercisable at time T ≤ Tp with
strike rate κ exerices into a payer swap on [Tp, Tq] with strike rate κ. If
Sp,q(t) = (Bp(t) − Bq(t))/Bp,q(t) denotes the swap rate for this swap the

6.13. CONTROL VARIATES 191

swaption payoff at time T is the quantity Bp,q(T)(Sp,q(T) − κ)+ and this
payoff is obviously highly correlated with

Y0 = Bp,q(T)Sp,q(T) = Bp(T)−Bq(T)

and so the forward tansported payoff Y0/Bn(T) highly correlated with

Y = (Bp(T)−Bq(T))/Bn(T).

Since (Bp − Bq)/Bn is a Pn-martingale (traded assets divided by the nu-
meraire) the mean of Y is given by

EPn(Y) = (Bp(0)−Bq(0))/Bn(0).

The reverse floater

Let K1 > K2. The [Tp, Tq]-reverse floater RF receives Libor Lj(Tj) while
paying max{K1 − Lj(Tj),K2 } resulting in the cash flow

C(j) = δj [Lj(Tj)−max{K1 − Lj(Tj),K2 }] (6.58)

at times Tj+1, j = p, . . . , q − 1. Set κ = K1 −K2, x = K1 −K2 − Lj(Tj)
and recall that (−x)+ = x− and x+ − x− = x and so (−x)+ = x− = x+ − x
to rewrite (6.58) as

C(j)/δj = Lj(Tj)−K2 −max{κ− Lj(Tj), 0 }
= Lj(Tj)−K2 − (κ− Lj(Tj))+

= Lj(Tj)−K2 − [(Lj(Tj)− κ)+ − (Lj(Tj)− κ]
= 2Lj(Tj)−K1 − (Lj(Tj)− κ)+.

and so

C(j) = δj(2Lj(Tj)−K1)− δj(Lj(Tj)− κ)+

= 2Xj(Tj)− δjK1 − δj(Lj(Tj)− κ)+. (6.59)

Here δj(Lj(Tj)−κ)+ is the payoff of the caplet Cpl([Tj , Tj+1], κ) with strike
rate κ and Lj(t) is a Pj+1-martingale. Evaluation of C(j) in the Pj+1-
numeraire measure thus yields the (cash) price Ct(j) at time t as

Ct(j) = Bj+1(t)E
Pj+1

t [C(j) | Ft]
= 2Xj(t)Bj+1(t)−K1δjBj+1(t)− Cplt([Tj , Tj+1], κ)
= 2(Bj(t)−Bj+1(t))−K1δjBj+1(t)− Cplt([Tj , Tj+1], κ).

192 CHAPTER 6. THE LIBOR MARKET MODEL

and summation over p ≤ j < q yields the price RFt of the reverse floater as

RFt = 2(Bp(t)−Bq(t))−K1Bp,q(t)−
∑q−1

j=p
Cplt([Tj , Tj+1], κ)].

Obviously the cash flow (6.59) is highly correlated with Xj(Tj) = δjLj(Tj)
and so, as a control variate for (6.59) we take forward transported X-Libor

Yj = Xj(Tj)Bj+1(Tj)/Bn(Tj) = (Bj(Tj)−Bj+1(Tj))/Bn(Tj).

Since XjBj+1/Bn = (Bj −Bj+1)/Bn is a Pn-martingale we have EPn(Yj) =
Xj(0)Bj+1(0)/Bn(0). Consequently for the reverse floater RF we use as a
control variate the sum

Y =
∑q−1

j=p
Xj(Tj)Bj+1(Tj)/Bn(Tj)

with mean E(Y) =
∑q−1

j=p Xj(0)Bj+1(0)/Bn(0). Since XjBj+1 = Bj − Bj+1

this sum collapses to

E(Y) = (Bp(0)−Bq(0))/Bn(0).

The callable reverse floater

Let K1 > K2. The callable [Tp, Tq]-reverse floater CRF is the option to enter
into the [Tp, Tq]-reverse floater RF at time Tp (at no cost). This option is
only exercised if the value RFTp of the reverse floater at time Tp is positive
and thus has payoff

h = RF+
Tp

at time Tp. This quantity can be computed by Monte Carlo simulation. As
a control variate we use the same as for the reverse floater except that all
Libors are transported forward from time Tp of exercise. Since XjBj+1 =
Bj −Bj+1 this simplifies the control variate Y to

Y =
∑q−1

j=p
(Bj(Tp)−Bj+1(Tp))/Bn(Tp) (6.60)

= (Bp(Tp)−Bq(Tp))/Bn(Tp) = (1−Bq(Tp))/Bn(Tp). (6.61)

with mean (Bp(0)−Bq(0))/Bn(0) as above. Note that (Bp(t)−Bq(t))/Bn(t)
is a Pn-martingale.

6.14. BERMUDAN SWAPTIONS 193

The trigger swap

The trigger swap trswp([Tp, Tq], κ,K) initiates a payer swap swp(([Tj , Tq], κ)
at the first time j ∈ {p, . . . , q − 1} such that Lj(Tj) > K. Here K is called
the trigger level and κ the strike level of the trigger swap. This is a nasty
derivative for which the Monte Carlo mean converges very slowly. However
the caps cap([Tp, Tq], k), where k = κ or k = K provide closely correlated
control variates with analytic mean.

6.14 Bermudan swaptions

The owner of the Bermudan swaption bswpn(κ, [Tp, Tn]) is entitled to enter
into a swap which swaps Libor against a fixed coupon with strike rate κ at
any date Tj , where p ≤ j < n. In the case of a payer swaption the fixed
coupon is paid and Libor received while it is the other way around in the
case of a receiver swaption.

Recall that paying off a debt now is equivalent to paying off the debt later
while paying Libor in the interim. Thus such a contract occurs naturally
as follows: suppose that a bond has coupon dates Tj and the issuer has
the right to cancel the bond by prepayment of the principal at any date Tj ,
where p ≤ j < n. Such prepayment is equivalent to swapping Libor against
the fixed coupon rate (paying Libor and receiving fixed), that is, the exercise
of a Bermudan receiver swaption. Consequently the prepayment option is a
Bermudan receiver swaption.

The valuation of Bermudan options has already been dealt with in Sec-
tion 4.6 using the general convex exercise strategy based on an approxima-
tion of the continuation value CV (t) involving the quantities

Q(t) = maxs>tEt(hs),

where hs is the discounted payoff from option exercise at time t. In the case
of Bermudan swaptions it is easier to work with forward payoffs ht instead
since the dynamics of the underlying Libor process is modeled in the forward
martingale measure at the terminal date Tn. The convex exercise strategy
then exercises at time t if

ht > β(t) [Q(t)/α(t)]β(t) . (6.62)

The parameters α(t), β(t) are computed by recursive optimization starting
with t = Tn−2 and moving backward to t = Tp. Exercise at time t = Tn−1

depends only on the difference Lt(Tt)−κ. A payer swaption exercises if this

194 CHAPTER 6. THE LIBOR MARKET MODEL

difference is positive. A receiver swaption exercises if it is negative. The
strategy is implemented in the class LiborDerivatives.CvxTrigger.

The conditional expectation Et(hs) is now the forward price of the Euro-
pean swaption swpn(κ, [Ts, Tn]) exercisable at time Ts into a swap terminat-
ing at time Tn. For this we have a very good analytic approximation but the
computation is expensive. Consequently the computation of the quantities
Q(t) is expensive.

This prompts us to search for other exercise strategies. Let us assume
we are dealing with a payer swaption. P. Jaeckel [Jae02] approaches the
problem as follows: at any given time t = Tj we only have to make the
decision between immediate exercise and continuation. Immediate exercise
leads to a deterministic payoff δj(Lj(t) − κ) and an expected future payoff
which is strongly correlated with the swap rate Sj+1,n(t) (for a swap along
[Tj+1, Tn]). This suggests that we parametrize the exercise boundary at
time t = Tj in terms of the two coordinates x = Lj(t) and y = Sj+1,n(t).
To determine what the boundary looks like in these coordinates Jaeckel
implements a nonrecombining lattice for forward Libors and then recursively
computes for each node wether the swaption is exercised at this node or not.

Since the lattice represents a simplified probabilistic model with finitely
many states (Libor paths) all of which are processed by the recursive com-
putation, the continuation value (in the simplified model) can be determined
accurately at each node of the lattice.

Once this is accomplished we can fix a date t = Tj and go through all
nodes in the lattice at time t printing for each node the point (x, y) with
x = Lj(t) and y = Sj+1,n(t) and coloring the points red in case of exercise
and black in case of continuation. If red and black dots are strongly mixed
there is no easy way to separate exercise from continuation based on the
statistics x and y. If on the other hand red and black dots form two regions
which are well separated we can try to parametrize the exercise boundary
in terms of x and y alone.

In Chapter 8 we will see how fully recombining two and three factor lat-
tices can be implemented for a driftless Libor market model with constant
volatilities. Using such a lattice the function plotBermudanExercise() imple-
mented in ExercisePlot.h carries out this computation in less than a minute.

Some results are contained in the file ExerciseBoundary.tar.gz which can be
downloaded from http://martingale.berlios.de/Martingale.html. Inspection
shows that the exercise region is well separated from the continuation region

6.14. BERMUDAN SWAPTIONS 195

and the boundary can be parametrized as the graph

x = p1
Sj+1,n(0)
y − p2

+ p3 (6.63)

(the numerator is a normalization factor) depending on three parameters
pj = pj(t). The parameters are then optimized recursively as in the case of
the convex strategy (Section 4.6.4). Exercise at time t occurs if

Lj(t) = x > p1
Sj+1,n(0)
y − p2

+ p3 = p1
Sj+1,n(0)

Sj+1,n(t)− p2
+ p3.

While the two approaches are similar the approach in [Jae02] makes use of
additional information about the problem extracted from a computation of
all possible scenarios in a simplified model (the lattice). Consequently we
can hope that a more precise parametrization of the exercise boundary is
obtained. In addition the statistics x = Lj(t) and y = Sj+1,n(t) involve
much less computational effort than a computation of Q(t).

This approach yields very satisfactory results. The class PjTrigger imple-
ments the corresponding exercise strategy. Experiments show that triggers
based on the parametrization (6.63) yield slightly better (higher) payoffs
than convex exercise (6.62) and the computation is about 10 times faster.

196 CHAPTER 6. THE LIBOR MARKET MODEL

Chapter 7

The Quasi Monte Carlo
Method

7.1 Expectations with low discrepancy sequences

The Quasi Monte Carlo method (QMC) is usually formulated as a method
to compute an integral

I =
∫

Q
f(x)dx (7.1)

where Q = [0, 1]d is the unit cube in Rd and dx denotes the uniform distri-
bution on Q. As the integral I is the expectation I = E(f(X)), where X
is a uniformly distributed random variable on Q the Monte Carlo method
evaluates the integral as

I ' N−1
∑N

j=1
f(x(j)) := SN (f, x) (7.2)

where x = (x(j))j≥1 ⊆ Q is a uniformly distributed sequence and the points

x(j) = (x1(j), x2(j), . . . , xd(j))

in this sequence are constructed by simply making repeated calls to a one
dimensional uniform random number generator and filling the coordinates
with the returned values. If the concrete sequence of points x(j) is replaced
with a sequenceX(j) of independent uniformly distributed random variables
on Q then the Law of Large numbers guarentees convergence

SN (f, x) → I =
∫

Q
f(x)dx (7.3)

197

198 CHAPTER 7. THE QUASI MONTE CARLO METHOD

with probability one and the Central Limit Theorem provides the standard
deviation C/

√
N , where C = σ(f(X)), as a probabilistic error bound. Such

a bound only allows us to make inference about the probability with which
the error exceeds any given size.

For any concrete sequence of points x(j) (such as one delivered by a
uniform random number generator) an application of the Strong Law of
Large Numbers is not really appropriate and it is not clear how useful a
probabilistic error bound is in such a situation. Nothing on our computer
is truly random. What we need instead is a property which guarentees the
convergence (7.3) for a reasonably large class of functions.

We call the sequence x(j) equidistributed in Q if it satisfies (7.3) for all
continuous functions f on Q. The term uniformly distributed is also used
in the literature but should not be confused with the probabilistic term. In
this terminology our random number generator should be able to deliver an
equidistributed sequence in dimension d.

The problem here is the dimension. The larger the dimension the harder
it is to generate equidistributed sequences. The best current uniform random
number generator, the Mersenne Twister, is known to deliver equidistributed
sequences up to dimension 623.

Quasi Monte Carlo methods replace the uniformly distributed random
sequence x(j) (or rather the output of the random number generator) with
nonrandom so called low discrepancy sequences which are constructed with
the explicit goal to fill the cube Q in a regular and efficient manner. Such
sequences avoid the wastefull clustering observed in random sequences and
the construction is highly nontrivial. Instead of the requirement

SN (f, x) → I

a low discrepancy sequence satisfies the more stringent requirement that this
convergence occurs with a certain speed uniformly over a suitable class of
test functions defined on Q, namely the indicator functions f = 1R, where
R ⊆ Q is a subrectangle with lower left corner at the origin:

R = [0, b1)× [0, b2)× . . .× [0, bd). (7.4)

Let R denote the family of all such functions f = 1R. The function f = 1R

can be identified with the vector b = (b1, . . . , bd) ∈ Q and the approximation
error is the given as

DN (x, b) = DN (x, f) =
∣∣∣∣SN (f, x)−

∫
Q
f(u)du

∣∣∣∣

7.1. EXPECTATIONS WITH LOW DISCREPANCY SEQUENCES 199

The star discrepancy is the sup-norm

D∗
N (x) = supf∈RDN (x, f) (7.5)

and measures this error uniformly over the test class R. The definition of
the star discrepancy implies the estimate∣∣∣∣SN (f, x)−

∫
Q
f(u)du

∣∣∣∣ ≤ D∗
N (x),

for the test functions f ∈ R and this estimate extends from test functions
in f ∈ R to more general functions to provide several deterministic error
bounds ∣∣∣∣SN (f, x)−

∫
Q
f(u)du

∣∣∣∣ ≤ V (f)D∗
N (x),

where V (f) is any one of several types of variation of f on Q (see [Nie92])
and ∣∣∣∣SN (f, x)−

∫
Q
f(u)du

∣∣∣∣ ≤ ω(f,D∗
N (x)),

if f is continuous on Q and

ω(f, δ) = sup{ |f(u)− f(v)| : u, v ∈ Q, |u− v| < δ }

is the modulus of continuity of f . It is clear how such estimates are more
useful than mere convergence. One can show that the sequence x is equidis-
tributed in Q if D∗

N (x) → 0, as N ↑ ∞. Unfortunately when we compute
an integral we cannot let N ↑ ∞. Instead we have to make do with a fixed
number N which often is not very large.

No explicit bounds on the size of DN (control over the speed of conver-
gence) are required for equidistribution. By contrast the sequence x is called
a low discrepancy sequence if the star discrepancies D∗

N (x), N = 1, 2, . . . sat-
isfy

D∗
N (x) ≤ C(log(N))d

N
, N ≥ 1.

Values for the constant C are known for many concrete constructions (see
[Nie92]). This accelerates the speed of convergence quite a bit over the
probabilistic bound C/

√
N . The larger the dimension d the longer it takes

for (log(N))d/N to fall below 1/
√
N . This accounts for the widespread

belief that low discrepancy sequences lose their edge over uniform random
sequences as the dimension increases.

Three low discrepancy sequences, Halton, Sobol and Niederreiter-Xing
are implemented in our package. The best comparison of these sequences

200 CHAPTER 7. THE QUASI MONTE CARLO METHOD

1395 2790 4185 5580 6975 8370 9765

Number of points

0.0000

0.0002

0.0004

0.0006

0.0007

0.0009

0.0011

0.0013

0.0015

L
2

-d
is

cr
e

p
a

n
cy

Halton
Sobol
NX

Figure 7.1: L2-discrepancies in dimension 10.

would be a plot of the star-discrepancies as a function of the number N
of points in the sequence. Unfortunately the star discrepancies are difficult
to compute. The related L2-discrepancy D

(2)
N is obtained by replacing the

sup-norm in (7.5) with an L2-norm:

D
(2)
N (x) =

(∫
Q
DN (x, b)2db

) 1
2

and is computed much more easily (see [Jae02]). Figure 7.1 contains a plot
of the L2-discrepancy of these three sequences in dimension 10 plotted as a
function of the number N of points of the sequence with N ∈ [1000, 10000].

We have mostly used the Monte Carlo method in a seemingly different con-
text. A stochastic process X(t), t ∈ [0, T] is given and we want to compute
the expectation of E(H) of some functional H (deterministic function) of the
path t ∈ [0, T] 7→ X(t). For example H could be the payoff of a derivative
written on X, where X is a vector of asset prices.

In a simulation this path is replaced with a discretization and the time
steps in the discretized path are driven by random numbers z1, z2, . . . , zM
drawn from a suitable distribution. In our case the zj were always (inde-
pendent) standard normal numbers and were derived from uniform random
numbers x1, x2, . . . , xM via the inverse normal cumulative distribution func-
tion

zj = N−1(xj). (7.6)

7.1. EXPECTATIONS WITH LOW DISCREPANCY SEQUENCES 201

With this the simulated path functional H becomes a deterministic function

H = h(x) = h(x1, x2, . . . , xM)

of the vector x = (x1, x2, . . . , xM) of random numbers needed to compute a
value of H and the Monte Carlo expectation E(H) computed in the simu-
lation is the integral

E(H) =
∫

Q
h(x)dx.

The functional relation between h and the vector x may not be known ex-
plicitly but is completely determined by the path generation algorithm. We
are now in the situation where low discrepancy sequences can be applied:
the vectors x = (x1, . . . , xM) of uniform random numbers derived from the
uniform random number generator used to compute each new value of H
are replaced with points x = (x1, . . . , xM) from an M -dimensional low dis-
crepancy sequence. In our examples where the paths of the process X are
driven by Brownian motions the coordinates of the low discrepancy points
are converted to normal deviates via (7.6).

The dimension M is the number of normal deviates needed to simulate a
path of X or more precisely to compute a new value of the functional H. It
is easy to overlook this issue of dimensionality. In the course of a simulation
one simply makes repeated calls to the uniform random number generator
converts uniform deviates to normal deviates, uses these to compute a path
of the process X, computes a new value for the functional H from the path
and repeats this procedure.

How large can this dimension be for example in the case of a Libor
derivative H? Here X is the forward Libor process. With quarterly accrual
and a ten year life the number of Libors involved is n = 40. For a single
time step evolving p Libors we need p normal deviates. 39 Libors make
the first step, 38 the second step and only one Libor makes the last step.
This assumes that the simulated Libor paths step directly from time Tj to
time Tj+1 on the tenor structure without intermediate steps. In this case the
dimension M is n(n−1)/2 = 780. This is already larger than the guarenteed
dimension 623 of the Mersenne Twister. If more time steps are taken this
dimension increases dramatically.

Contrast this with the situation in the driftless Libor market model
6.8. Here the distribution of the process U(t) of the state variables Uj(t)
is known (the logarithms form a Gaussian process). Consequently it may
not be necessary to compute the expectation of a path functional h by path
simulation. Instead if we can sample directly from the joint distribution

202 CHAPTER 7. THE QUASI MONTE CARLO METHOD

of the Uk(tk) which determine the functional h. Quite often only a few of
these are needed and the expectation E[h] can then be computed as a low
dimensional Gaussian integral.

Example. Consider for example the case of an asset S(t) which follows a
geometric Brownian motion with constant volatility σ:

dS(t) = S(t)[µ(t)dt+ σdW (t)] (7.7)

(W (t) a standard Brownian motion) and assume that interest rates are zero.
Then the asset is already discounted and hence, in the risk neutral proba-
bility, follows the driftless dynamics

dS(t) = S(t)σdW (t) (7.8)

with the known solution

S(t) = exp[−σ2t/2 + σW (t)] (7.9)

Thus a time step S(t) 7→ S(t+∆t) can be simulated without approximation
using the equation

S(t+ ∆t) = S(t)exp
[
−σ2∆t/2 + σ(W (t+ ∆t)−W (t))

]
= S(t)exp

[
−σ2∆t/2 + σ

√
∆tZ(t)

]
,

where Z(t) = (W (t+ ∆t)−W (t))/
√

∆t is standard normal (the normal de-
viate driving the time step). Moreover increments Z(t), Z(s) corresponding
to nonoverlapping time intervals [t+ ∆t), [s+ ∆s) are independent. In this
way a path t 7→ S(t) is driven by a multinormal vector z = (z1, z2, . . . , zn) of
increments zj , where the increment zj drives the time step S(tj−1) 7→ S(tj).
In particular we can write S(T) as

S(T) = S(0)exp
[
−σ2T/2 + σ

√
∆t (z1 + z2 + . . .+ zn)

]
(7.10)

if the path simulation proceeds in equal time steps tj − tj−1 = ∆t for some
fixed positive number ∆t. Now let the functional H = H(t 7→ S(t)) be the
payoff H = (S(T) −K)+ of the vanilla call on S with strike K expiring at
time T . Then we have the explicit formula

H(z) =
(
S(0)exp

[
−σ2T/2 + σ

√
∆t (z1 + z2 + . . .+ zn)

]
−K

)+

(7.11)

7.1. EXPECTATIONS WITH LOW DISCREPANCY SEQUENCES 203

With this the computation of the call price E(H) (recall that we are oper-
ating under the risk neutral probability) can be phrased as an integration
problem in any arbitrary dimension n (the number of time steps to the hori-
zon). This makes it useful to experiment and to compare the results of MC
and QMC simulation with each other and also with the known analytic call
price. The inverse normal cumulative distribution function N−1 is used to
transform uniform x ∈ Q ⊆ Rn to standard multinormal z = φ(x) ∈ Rn.
Apply N−1 to each coordinate of x:

z = φ(x) = (N−1(x1), N−1(x2), . . . , N−1(xn)). (7.12)

Now we are ready for the following experiment: set S(0)=50, T = 1 (time
to expiry), r = 0 (riskfree rate), σ = 0.4 and let C(K) denote the (analytic)
price of the vanilla call with strike K expiring at time T .

Let QMC(K) denote the call price estimated by QMC simulation of
N=1000 paths. Here the asset paths are driven by z = φ(x) quasinormal
vectors (of increments), where x ∈ Q ⊆ Rn moves through the Sobol se-
quence.

Let MC(K) denote call price estimated by MC simulation of the same
number N of paths driven by standard normal vectors z derived from the
Mersenne Twister also using N−1.

The Sobol estimate QMC(K) is deterministic (we always run through
the same Sobol points x(1),. . . ,x(N)). The Monte Carlo estimate MC(K)
however is ”random”. The result of the simulation depends on the state
(seed) of the Mersenne Twister at the beginning of the simulation. Repeated
Monte Carlo simulations will show variability. For any given simulation some
seeds work better than others but of course it is not known which seeds
work well. Thus we can view the Monte Carlo computed price MC(K) as
a random variable.

Consequently it makes sense to consider histograms of Monte Carlo com-
puted values MC(K) or the probability with which the Monte Carlo esti-
mate MC(K) beats the Sobol estimate QMC(K). A histogram in dimen-
sion 10 with the error for both the Sobol and the Halton sequence superim-
posed is seen above for the following parpameters: asset S(0) = 50, volatility
σ = 0.4, time to expiry T = 1.

The histogram is based on 10000 Monte Carlo runs with 10000 paths each.
The Sobol sequence beats the Halton sequence (both yield deterministic
results) while considerable uncertainty (dependence on the initial seed) re-
mains with the Mersenne Twister.

204 CHAPTER 7. THE QUASI MONTE CARLO METHOD

Figure 7.2: Relative error (%).

Next we see a graph plotting the probability that the Monte Carlo es-
timate is closer to the true value than the Sobol estimate (also derived
from 1000 Monte Carlo runs with N paths each) and the relative error
|C(K) − QMC(K)|/C(K) of the Sobol estimate both as a function of the
strike K for 10 strikes K = 40, 45, 50, 55, ..., 90:

At very low dimensions QMC easily beats MC but then the efficiency of
QMC trails off. Interestingly at very high dimensions (1600,2000 were
tested) QMC becomes much more accurate again and also easily beats
MC with high probability. The explanation seems to be that the Mersenne
Twister has problems delivering equidistributed vectors in high dimensions.
This argues in favour of Quasi Monte Carlo in very high dimensions.

PNG files of Graphs and histograms in other dimensions can be found
in the directory Pictures/QMCversusMC. These have been computed by the
classes Examples.Pricing.QMCversusMC 1,2.

The Java class Market.ConstantVolatitilityAssetQMC implements a basic Black-
Scholes asset with a dynamics driven by low discrepancy sequences. The
C++ implementations of the Libor market models PredictorCorrectorLMM.h,

PCLMM.h, LognormalLMM.h, BondLMM.h all have the ability to use a dynamics
based on the Sobol sequence built in.

7.1. EXPECTATIONS WITH LOW DISCREPANCY SEQUENCES 205

48.8 55.8 62.8 69.8 76.7 83.7 90.7

Call Strike

-0.03

0.00

0.03

0.07

0.10

0.14

0.17

0.21

0.24

0.28 Probability MC beats Sobol
Sobol relative error

Figure 7.3: Probability that MT beats Sobol.

206 CHAPTER 7. THE QUASI MONTE CARLO METHOD

Chapter 8

Lattice methods

The state space of a stochastic process is the set of all paths. This set
is very large and carries a complicated probability distribution. A Monte
Carlo simulation generates a raw sample of paths from the distribution of
the process. The principle shortcoming of this approach is the fact that
the path sample has very little useful structure. For example it cannot be
used to compute the conditional expectations Et[H] of a path functional H
at any time other than time zero. If we want to compute the conditional
expectation Et[H] we must average over paths which split at time t and an
arbitrary path sample does not have this property.

Of course we can always enforce the path splitting at any point in time.
If this is carried out repeatedly the number of paths will quickly become
unmanageable. Lattices are an attempt to find a compact representation of
a large set of paths which is invariant under path splitting at a large number
of times.

8.1 Lattices for a single variable.

Consider the case of a single asset S in state S = S(0) at time zero and
following the dynamics

dS(t) = S(t) [µ(t)dt+ σdW (t)] ,

whereW is Brownian motion, the drift µ(t) is deterministic and the volatility
σ constant. The case of nonconstant volatility will be dealt with in the next
sction. Passing to the returns Y (t) = log(S(t)) this assumes the form

dY (t) =
(
µ(t)− 1

2
σ2
)
dt+ σ(t)dW (t),

207

208 CHAPTER 8. LATTICE METHODS

V(t,2)=V(0)+2a, t=2

V(0)
T_0

T_1
T_2

T_3

T_4
T_5

Figure 8.1: lattice

with deterministic drift term. From this it follows that

Y (t) = E[Y (t)] + V (t), where V (t) =
∫ t

0
σdW (s) = σW (t).

and E[Y (t)] is Y (0) plus the cumulative drift up to time t. This quantity is
nonstochastic and can be dealt with separately. Thus we need to model only
the variable V . From this S is reconstructed as S(t) = exp (E[Y (t)] + V (t)).
Our lattice will sample V at equidistant times

0 = T0 < T1 < . . . < Tt < . . . Tn

with δ = Tt+1−Tt. Here t = 0, 1, . . . , n plays the role of discrete time. Note
that V follows an additive random walk. At each time step Tt → Tt+1 we
allow V to tick up by an amount a or down by an amount b with probabilities
p, q respectively. We will choose a = b. As a consequence an up move
cancels a previous down move and conversely. The lattice is recombining.
This greatly limits the number of possible states at discrete time t. Indeed
we must have V (Tt) = V (0) + ja, where j ∈ {−t, . . . , t}.
This makes for a small number of nodes, see figure 8.1. Let us now compute
the transition probabilities. Fix t and set ∆ = V (Tt+1)− V (Tt). Then ∆ is
a mean zero normal variable with variance δ. Moreover

∆ =

{
a : with probability p

−a : with probability q
.

We have three variables at our disposal and with these we can match the
conditions E[∆] = 0 and E[∆2] = δ resulting in the equations

p+ q = 1, a(p− q) = 0, a2(p+ q) = δ.

8.1. LATTICES FOR A SINGLE VARIABLE. 209

F(t+1,j+1)

F(t+1,j−1)

F(t,j)

p

q

Figure 8.2: Et[H]

with solution
p = q = 1/2, a =

√
δ.

Here everything is pleasantly simple due to the fact that the volatility σ does
not depend on time t. In the next section we will deal with time dependent
volatility functions σ(t) in a lattice for two assets. Let n(t, j) denote the
node at time t at which V (Tt) has the value

V (Tt) = V (t, j) := V (0) + ja.

The lattice has only (n + 1)(n + 2)/2 nodes but represents 2n asset price
paths, namely all paths which follow edges in this lattice. Moreover the set
of these paths is invariant under path splitting at any time t. This leads to a
recursive computation of conditional expectations along nodes in the lattice
as follows: let H be an functional (deterministic function) of the path of S.
Our simple asset S has the Markov property: the information generated by
the path of S up to time t is merely the value S(t) equivalently the value
V (t). Consequently the conditional expectation Et[H] is a deterministic
function Ft(V (t)) of V (t). Let

F (t, j) = Ft(V (t, j)) = Ft(V (0) + ja)

denote the value of Et[H] at the node n(t, j).
Then the Double Expectation Theorem

Et[H] = Et[Et+1[H]]

evaluated at the node n(t, j) assumes the form

F (t, j) = pF (t+ 1, j + 1) + qF (t+ 1, j − 1),

where p, q are the probabilities of an up move respectively down move from
the node n(t, j) (figure 8.2). If the value of the functional is known by time
t = n we can populate the nodes at time t = n (continuous time Tn) with the
corresponding values of H and then compute the conditional expectations
Et[H] by backward induction starting from t = n at each node in the tree.

210 CHAPTER 8. LATTICE METHODS

8.1.1 Lattice for two variables

Assume we have two assets Sj(t) satisfying the dynamics

dSj(t) = Sj(t) [µj(t)dt+ σj(t)uj(t) · dW (t)] , j = 1, 2,

where W is a d-dimensional Brownian motion and the drift µj(t) and volatil-
ity σj(t) ≥ 0 as well as the unit vector uj(t) are deterministic for all t ∈ [0, T].
Set ρij(t) = ui(t) · uj(t) and assume that

|ρ12(t)| ≤ ρ < 1, (8.1)

for some constant ρ. The bound ρ measures the degree to which the assets
S1, S2 are decorrelated. We will see below that a high degree of decorre-
lation is desirable in the construction. Passing to the returns Yj = log(Sj)
simplifies the dynamics to

dYj(t) =
(
µj(t)−

1
2
σ2

j (t)
)
dt+ σj(t)uj(s) · dW (t).

Centering the variable Yj(t) yields Yj(t) = E[Yj(t)] + Vj(t) where

Vj(t) =
∫ t

0
σj(s)uj(s) · dW (s) (8.2)

is the volatility part of Yj and

E[Yj(t)] = Y (0) +
∫ t

0
(µj(s)− σ2

j (s)/2)ds. (8.3)

This term is deterministic and can be handled separately and so we will
build a lattice for the variables Vj since we can then reconstruct the Sj as

Sj(t) = exp (E[Yj(t)] + Vj(t)) .

The lattice will sample the variables V1, V2 at times

0 = T0 < . . . < Tt < . . . Tn = T.

Note that here t = 0, 1, . . . , n plays the role of discrete time. Fix t < n,
consider the time step Tt → Tt+1. The variables Vj follow a additive random
walks and hence will be allowed to tick up or down by an amount Aj = Aj(t).
Set

∆j = ∆j(t) = Vj(Tt+1)− Vj(Tt).

8.1. LATTICES FOR A SINGLE VARIABLE. 211

The vector ∆(t) is multinormal with mean zero and covariance matrix D =
D(t) given by

Dij = Dij(t) =
∫ Tt+1

Tt

σi(s)σj(s)ρij(s)ds.

In particular the quantity
√
Djj(t) is the volatility of Vj on the interval

[Tt, Tt+1]. We now allow transitions(
∆1

∆2

)
=

(
A1

A2

)
,

(
A1

−A2

)
,

(
A1

0

)
,

(
−A1

A2

)
,

(
−A1

−A2

)
,

(
−A1

0

)
,(

0
A2

)
,

(
0
−A2

)
Let us index the transition probabilities as pi,j with i, j ∈ {−1, 0.1} as fol-
lows: the first index i corresponds to V1, the second index j to V2, the values
1,−1, 0 correspond to an uptick, a downtick and no movement respectively.
For example p1,−1 denotes the probability that V1 ticks up while V2 ticks
down. The tick sizes Aj = Aj(t) will be dependent on t and will be chosen
below.

To derive the transition probabilities pij let us first match the martingale
condition E [∆j] = 0 (probability of uptick = probability of downtick = qj).
This yields ∑

pi,j = 1
p1,1 + p1,−1 + p1,0 = p−1,1 + p−1,−1 + p−1,0 := q1

p1,1 + p−1,1 + p0,1 = p1,−1 + p−1,−1 + p0,−1 := q2

Next we match the covariances E [∆i∆j] = Dij to obtain

2A2
1q1 = D11

2A2
2q2 = D22

A1A2[(p1,1 + p−1,−1)− (p1,−1 + p−1,1)] = D12

Finally we match the mixed moments E
[
∆2

i ∆j
]

= E
[
∆i∆2

j

]
= 0. This

yields the equations

A2
1A2 [(p1,1 + p−1,1)− (p1,−1 + p−1,−1)] = 0

A1A
2
2 [(p1,1 + p1,−1)− (p−1,1 + p−1,−1)] = 0

212 CHAPTER 8. LATTICE METHODS

Let us write
Qij = Dij/AiAj .

With this the equations become∑
pi,j = 1

p1,1 + p1,−1 + p1,0 = p−1,1 + p−1,−1 + p−1,0 := Q11/2
p1,1 + p−1,1 + p0,1 = p1,−1 + p−1,−1 + p0,−1 := Q22/2
(p1,1 + p−1,−1)− (p1,−1 + p−1,1) = Q12

p1,1 + p−1,1 = p1,−1 + p−1,−1

p1,1 + p1,−1 = p−1,1 + p−1,−1

Adding the last two equations yields p1,1 = p−1,−1 whence p−1,1 = p1,−1.
This implies p1,0 = p−1,0 and p0,1 = p0,−1. One now finds that

p1,0 = p−1,0 =
1
2
(1−Q22)

p0,1 = p0,−1 =
1
2
(1−Q11)

p1,−1 = p−1,1 =
1
4
(Q11 +Q22 −Q12 − 1)

p1,1 = p−1,−1 =
1
4
(Q11 +Q22 +Q12 − 1)

From this we see that we must have

Q11, Q22 ≤ 1. (8.4)

Moreover we must also have

Q11 +Q22 ≥ 1 +Q12. (8.5)

Wether or not this is satisfied depends on the choice of the tick sizes Aj .
Obviously we must choose Aj ≥

√
Qjj but not too large. This suggests that

we simply choose Aj =
√
Qjj . With this choice (8.5) is indeed satisfied (as

we shall see below) but there are other considerations.
We need to limit the number of possible states of the vector V (t) =

(V1(t), V2(t). To do this we choose a numbers a1, a2 > 0 which are indepen-
dent time t and require that the time dependent tick Aj = Aj(t) be integral
multiples

Aj(t) = kj(t)aj

8.1. LATTICES FOR A SINGLE VARIABLE. 213

of aj . Here kj = kj(t) is chosen such that

(kj − 1)aj ≤
√
Djj < kjaj , that is, kj = 1 +

[√
Djj/aj

]
, (8.6)

where [x] denotes the greatest integer less than or equal to x as usual. Note
that Djj = Djj(t) depends on t and hence so does the factor kj . With this
(8.4) is automatically satisfied. Since Vj(s) moves up or down in ticks of
size kj(s)aj it follows that Vj(t) = Vj(0) + kaj , where

|k| ≤ Kj(t) =
∑
s<m

kj(s)

This limits the number of possible states at time t to

(2K1(t) + 1)(2K2(t) + 1). (8.7)

As we will see below this number can be quite large. However k is limited
to numbers which can be represented in the form

k =
∑
s<t

εskj(s)

with εs ∈ {−1, 0, 1}. In the Libor market model it often happens that
kj(s) = kj > 1 is constant on [0, t] for all but the last several values of
t. This then limits k to multiples of kj for all such times t and limits the
number of states further. The upper bound (8.7) for the number of states
at time t depends on the tick sizes aj as

Kj(t) = m+
∑
s<t

[√
Djj(s)/aj

]
.

Obviously this bound (and in fact the number of states) increases as aj ↓ 0.
Consequently we must find out how small the aj > 0 have to be made.

Recall that aj is not dependent on time t to ensure the recombining
property of the lattice. Fix t and write Dij = Dij(t), Qjj = Qjj(t) and
kj = kj(t). We must satisfy the inequality (8.5). From the Cauchy-Schwartz
inequality and the inequality relating the geometric and arithmetic mean we
have

Q12 ≤ ρ
√
Q11

√
Q22 ≤

ρ

2
(Q11 +Q22)

with ρ as in (8.1) and so

Q11 +Q22 − (1 +Q12) ≥ (1− ρ/2)(Q11 +Q22)− 1

214 CHAPTER 8. LATTICE METHODS

and it will suffice to ensure that

Q11 +Q22 ≥
1

1− ρ/2

and for this it will suffice to have

Qjj ≥
1
2

1
1− ρ/2

=
1

2− ρ
, j = 1, 2.

Recalling that Qjj = Djj/A
2
j , Aj = kjaj and (kj − 1)2a2

j ≤ Djj < k2
ja

2
j it

will suffice to have (
1− 1

kj

)2

≥ 1
2− ρ

,

that is
1
kj
≤ 1− 1√

2− ρ
:= ε, j = 1, 2.

Since 1/kj < aj/
√
Djj this will be satisfied if

aj ≤ ε
√
Djj(t), j = 1, 2,

and this inequality must be satisfied for all t. If ρ is close to one the estimates
for the number of possible states become so weak that even a number of
hundreds of millions of states cannot be ruled out.

The number of nodes depends on the degree of variation of the quantities
Djj(t) with t. If these quantities are constant then we can choose aj =

√
Djj

and have kj(t) = 1 and Kj(t) = 2t+ 1 leading to a small number of nodes.
On the other hand if the quantities Djj(t) are highly variable, then so will
be the kj(t) leading to a huge number of nodes.

From the definition of ε it is clear that we want ρ to be as small as
possible. In case the variables V1, V2 are highly correlated we simply pass
to the variables

V 1 = V1 − V2, V 2 = V2

and construct the lattice for V 1, V 2.

Arbitrage

Assume that the assets Sj are martingales. In practice this means that
the Sj are prices in some numeraire evolved in the corresponding numeraire
measure. The assets Sj then follow a driftless dynamics, that is, µj = 0.

8.1. LATTICES FOR A SINGLE VARIABLE. 215

Recall that it is the martingale condition which ensures the absence of
arbitrage in the market. Naturally we want to know wether the lattice
preserves the martingale condition

Et[Sj(t+ 1)] = Sj(t) equivalently Et [Sj(t+ 1)/Sj(t)] = 1.

Our lattice does not evolve the Sj directly. Instead we pass to the returns
Yj = log(Sj) and decompose these into a deterministic drift

Aj(t) = −1
2

∫ t

0
σ2

j (s)ds (8.8)

and the martingale Vj (the volatility part). The drift for Yj is derived from
Ito’s formula which applies to continuous time processes. By construction
the lattice preserves the martingale condition for the Vj but the use of the
continuous time drifts in the reconstruction

Sj = exp(Yj), Yj(t) = E[Yj(t)] + Vj(t) = Yj(0) +Aj(t) + Vj(t) (8.9)

does not preserve the martingale property of the Sj . If the continuous time
drift Aj is used we take the view that the lattice is an approximation of the
arbitrage free continuous time dynamics but this approximation need not
itself be arbitrage free.

To see what drifts Bj for Yj have to be used to preserve the martingale
property of the Sj in the lattice write

∆Yj(t) = Yj(t+ 1)− Yj(t) = ∆Bj(t) + ∆Vj(t)

and so, taking exponentials,

Sj(t+ 1)/Sj(t) = exp (∆Bj(t)) exp (∆Vj(t)) .

Applying the conditional expectation Et we see that the martingale condi-
tion for Sj assumes the form

1 = exp (∆Bj(t))Et [exp (∆Vj(t))] .

which yields the drift increment ∆Bj(t) as

∆Bj(t) = −log (Et [exp (∆Vj(t))]) . (8.10)

In the case of our lattices this quantity is easily seen to be deterministic.
Observing that Bj(0) = 0 we can obtain the arbitrage free drift Bj(t) of
Yj(t) in the lattice as

B(t) =
∑
s<t

∆Bj(t).

216 CHAPTER 8. LATTICE METHODS

Constant volatilities and correlations

In case the volatility functions σj(t), correlations ρij(t) and the time steps
δj = Tj+1 − Tj are constant

σj(t) = σj , ρij(t) = ρij , δj = δ

the preceeding discussion simplifies considerably. It then follows that

Dij = δσiσjρij

and we can take
aj =

√
Djj = σi

√
δ

and so Qij = Dij/aiaj = ρij . From this it follows that the transition
probabilities satisfy pi,0 = p0,i = 0 and

p1,1 = p−1,−1 =
1
4
(1 + ρ12), and p1,−1 = p−1,1 =

1
4
(1− ρ12).

Thus V1 and V2 move in the same direction with probability (1 + ρ12)/2
and in opposite directions with probability (1 − ρ12)/2 in accordance with
intuition. Moreover we have kj(t) = 1 and Kj(t) = t which greatly reduces
the number of nodes.

However in this case we can reduce the simulation to even more primitive
stochastic components. The dynamics of the Vj assumes the form

dVj(t) = σjuj · dW (t), Vj(0) = 0,

from which it follows that

Vj(t) = σjuj ·W (t). (8.11)

Here we have ρij = ui · uj , that is , ρ = RR′, where R is the 2 × 2 matrix
with rows ui. In concrete models the correlation matrix ρ is usually a model
parameter and the matrix R can be computed from ρ using the Cholesky
factorization of ρ.

Writing W (t) = (Z1(t), Z2(t)), where Z1, Z2 are independent one dimen-
sional Brownian motions (8.11) assumes the form

V1(t) = σ1 [R11Z1(t) +R12Z2(t)]
V2(t) = σ2 [R21Z1(t) +R22Z2(t)]

8.1. LATTICES FOR A SINGLE VARIABLE. 217

so that we have to simulate only the variables Zj(t) and for these the lattice
is particularly simple: the correlation ρ12 = 0 and hence the transition
probabilities are

p1,1 = p−1,−1 = p1,−1 = p−1,1 =
1
4

and all other probabilities are zero. A generalization of this case are stochas-
tic models for the assets Sj(t) in which the volatility parts Vj are given as
deterministic functions

Vj(t) = fj(X(t), Y (t))

of processes X(t), Y (t) with a simple dynamics which can easily be modelled
in a lattice. If such a lattice is built without being based on an arbitrage
free continuous time model it is crucial to preserve the martingale condition
for asset prices relative to a numeraire by computing the correct drifts for
the Yj = log(Sj) in the lattice.

8.1.2 Lattice for n variables

Assume now that we are faced with n > 2 assets Sj and corresponding
variables Vj as above. Since the number of states in the lattice explodes as
the number of variables increases there is no hope to build a lattice which
models the evolution of all variables Vj .

The lattice will have to be limited to 3 variables at most. Moreover we
have to assume that the volatility functions σj(t), correlations ρij(t) and the
time steps δj = Tj+1 − Tj are all constant

σj(t) = σj , ρij(t) = ρij , δj = δ.

In this case we can proceed as in (8.1.1) with an approximate rank three
factorization of the correlation matrix

ρ ' RR′,

where R is an approximate root of rank 3 of ρ, that is,

R = (
√
λ1h1,

√
λ2h2,

√
λ3h3)

with λj being the three largest eigenvalues of ρ and the hj corresponding
orthonormal eigenvectors. See Appendix (A.1). This yields

Vj(t) ' σj [Rj1Z1(t) +Rj2Z2(t) +Rj3Z3(t)] (8.12)

218 CHAPTER 8. LATTICE METHODS

where the state variables Zj(t) are independent one dimensional Brownian
motions. Here the annualized volatility on the right hand side is

σj

√
R2

j1 +R2
j2 +R2

j3 < σj .

If we want to preserve volatilities we must rescale the rows of R to unit
norm. This will also reestablish the unit correlations 1 = ρjj = (RR′)jj .
However it does diminish the quality of the approximation ρ ' RR′.

The lattice is built for the variables Zj(t), j = 1, 2, 3 and is particularly
simple. The Vj are then obtained from the Zj using (8.12) and the Sj are
obtained using the continuous time drifts (8.8) and (8.9). If the Sj are mar-
tingales the use of the continuous time drifts in the lattice does not preserve
the martingale property. The lattice is then merely an approximation of the
continuous time arbitrage free dynamics of the assets Sj .

Implementation

Let us consider the implementation of a three factor lattice in which the
time step and the volatility functions are all constant. In this case the lattice
evolves the independent standard Brownian motions Zj(t), j = 1, 2, 3, and
all other quantities are deterministic functions of these. The variables Zj

start out with values Zj(0) = 0 and tick up and down independently with
ticks of size a =

√
δ where δ is the size of the time step. At time t they can

be in any state

Z1 = ia Z2 = ja, Z3 = ka with |i|, |j|, |k| ≤ K(t) = t+ 1.

This suggests that we index the nodes by quadruples (t, i, j, k). Transition
probabilities are indexed as triples prob(p, q, r) with p, q, r = ±1 where the
indices p,q,r correspond to Z1, Z2, Z3 respectively and the sign signifies an
up move or a down move. There are eight such probabilities all equal to
1/8. Each node has eight edges which we keep in a standard list and which
are constructed in a loop

for(int p=-1; p<2; p+=2)
for(int q=-1; q<2; q+=2)
for(int r=-1; r<2; r+=2){ /* loop body */}

The indices then correspond exactly to up and down ticks and the node
node(t, i, j, k) will be connected to the node

node(t+ 1, i+ p, j + q, k + r)

8.1. LATTICES FOR A SINGLE VARIABLE. 219

and this node may already exist. Each new node can be reached from several
nodes at time t (the recombining property) and we have to avoid to allocate
a new node for the same state several times. One way to deal with this is to
allocate a three dimensional array NewNodes[i][j][k] of pointers to nodes
with |i|, |j|, |k| ≤ t+1, that is, containing pointers to all possible new nodes
and initialized with zero (null pointer). Each new node node(t+1,i,j,k)
is then registered with this matrix by setting

NewNodes(i,j,k)=&node(t+1,i,j,k)

The existence of the node can be queried with

if(NewNodes(i,j,k)){ /* exists already, don’t allocate it */ }

The matrices NewNodes are large but only temporary.

Number of nodes. The lattice for the variables Zj(t) has a very simple
structure which allows us to compute the number of nodes in the lattice. If
r denotes the number of factors then the lattice has (t+1)r nodes at discrete
time t and N = 1 + 2r + . . .+ (t+ 1)r nodes up to time t. In case r = 2, 3
this works out to be

N =

{
(t+ 1)(t+ 2)(2t+ 3)/6 : r = 2

[(t+ 1)(t+ 2)/2]2 : r = 3
(8.13)

With 1GB main memory we can tolerate about 5.3 million nodes cor-
responding to 250 time steps in a two factor lattice and 3.5 million nodes
corresponding to 60 time steps in a three factor model.

Lattice for the Libor market model

The driftless Libor market model 6.8 is amenable to this approach. The
assets Sj are the forward transported Libors Uj . We have to assume con-
stant volatility functions σj(t) for the Uj . The volatilities of the Libors Xj

themselves are stochastic. Two and three factor lattices are implemented in
the classes LmmLattice2F, LmmLattice3F.

220 CHAPTER 8. LATTICE METHODS

Chapter 9

Utility Maximization

9.1 Introduction

In this chapter we investigate trading according to risk preferences specified
by a utility function.

9.1.1 Utility of Money

An informed agent taking part in a lottery must have a way to specify
preferences between the random payoffs X ≥ 0 for which tickets can be
purchased. A utility function

U : [0,+∞) → [−∞,+∞)

is a convenient way to define these preferences. The payoff X is preferred
to the payoff Y if and only if

E[U(X)] ≥ E[U(Y)].

In case of equality the agent is indifferent to a choice between X and Y .
The quantity E[U(X)] is interpreted as the expected utility of the payoff X.
With this interpretation the value U(x) is the utility of x dollars (let X = x
be a constant) and the function U(x) can be assumed to be increasing. If
U is differentiable then

U(x+ 1)− U(x) = U ′(ξ) ' U ′(x), for some ξ ∈ (x, x+ 1)

is the utility of an additional dollar given that we already have x dollars. The
derivative U ′(x) is called the marginal utility of wealth at wealth level x and

221

222 CHAPTER 9. UTILITY MAXIMIZATION

is assumed to be a decreasing function of x. In other words it is assumed that
we care less and less about each additional dollar as our wealth increases.
The utility function U(x) is then concave and this property has convenient
mathematical consequences. For example it will be used below to establish
the existence of certain maxima on noncompact sets.

Let X be a nonconstant (uncertain) random payoff. Because of the
indifference between payoffs of the same expected utility an agent with utility
function U(x) is willing to pay up to x dollars for the payoff X where x is
given by

U(x) = E[U(X)].

Since U is concave E[U(X)] < U(E[X]) (Jensen’s inequality) and the in-
creasing property of U implies that x < E[X]. In other words an agent with
a concave utility function U is willing to pay less than the expected value
E[X] for an uncertain payoff X. Consequently such an agent is called risk
averse.

The thriving insurance industry presents evidence that most people are
risk averse. Only risk averse agents are willing to buy insurance against loss
for an amount greater than the expected value of the loss while insurance
companies have to charge premiums higher than this expected value (the
Law of Large Numbers).

Let us now fix a utility function U : [0,+∞) → [−∞,+∞) with the
following properties:

• U is increasing, continuous on [0,+∞) and differentiable on (0,+∞).
• The derivative U ′(x) is (strictly) decreasing.
• limx↓0+U

′(x) = +∞ and limx↑∞U ′(x) = 0.

Then U is strictly concave and U ′ an invertible function from (0,+∞) onto
itself with decreasing inverse function I = (U ′)−1 : (0,+∞) → (0,+∞).

Fix y > 0 and set g(x) := U(x) − yx, x > 0. Then g′(x) = U ′(x) − y
is decreasing and g′(x) = 0 for x = I(y). It follows that g(x) increases for
x ≤ I(y) and decreases for x ≥ I(y) and consequently has a global maximum
at x = I(y). In other words we have

U(x)− yx ≤ U(I(y))− yI(y), x ≥ 0, y > 0. (9.1)

Recall that the graph of the inverse function I is obtained from the graph
y = U(x) by reflection about y = x and consequently I inherits the following
properties from U :

I(y) ↓ 0 for y ↑ +∞ and I(y) ↑ +∞ for y ↓ 0. (9.2)

9.1. INTRODUCTION 223

9.1.2 Utility and Trading

Trading in a market

S(t) = (S1(t), . . . , Sn(t)), t ∈ [0, T],

is a particular lottery. Entering the market with x dollars and trading
according to the strategy

H(t) = (H1(t), . . . , Hn(t))

(holding Hj(t) shares of Sj(t) at time t ∈ [0, T]) we buy a ticket to the payoff

X = x+
∫ T

0
H(u)dS(u) (9.3)

the so called terminal wealth of our trading strategy. Recall that the stochas-
tic integral

G(t) =
∫ t

0
H(u)dS(u) (9.4)

represents the gains (or losses) from trading according to H and conse-
quently

C(t) = x+
∫ t

0
H(u)dS(u) = x+G(t) (9.5)

our wealth at any time t ∈ [0, T]. Assuming that we do not wish to inject
funds after initiation of the trading strategy we can admit only strategies
H satisfying C(t) ≥ 0, for all t ∈ [0, T]. Such a strategy will be called
admissible. With this the family of admissible trading strategies depends on
the initial capital x and this is the only significance of x.

Let P denote the market probability, that is the probability governing the
realizations of prices observed in the market while Q denotes a probability
equivalent to P in which the asset prices Sj(t) are local martingales. This
means that the Sj are not cash prices but prices in a numeraire for which
Q is a numeraire measure. For example the numeraire could be the riskless
bond in which case we are dealing with prices discounted back to time t = 0.

We are interested only in the terminal payoff X = C(T) = x+G(T) and
want to maximize the expected utility

EP [U(X)]. (9.6)

Starting from initial capital x we would like to find an admissible trading
strategy H which maximizes the (9.6). To solve this problem we take a

224 CHAPTER 9. UTILITY MAXIMIZATION

pragmatic approach. Rather than identifying the trading strategy H we
look for a payoff X0 which maximizes (9.6) among all payoffs X of the
form (9.3), that is, among all payoffs X which can be reached from initial
capital x by trading according to an admissible strategy H. To obtain a
simple characterization of these payoffs X we assume that the market S is
complete (details below).

Once an optimal payoff X0 is identified it can be viewed as a derivative
and we can use trading strategies described in Chapter 5 to replicate X0

at least approximately. For example we might trade in the assets S with
weights minimizing the hedge variance between trades. This is a reasonable
approach for discrete hedging of X0. More sophisticated methods (beyond
the scope of this book) are needed to find continuous strategies which exactly
replicate X0.

Let us now investigate which payoffs X can be replicated by admissible
trading strategies starting from capital x. If H is an admissible strategy,
then the process (9.5) is a nonnegative local martingale and hence a super-
martingale in the martingale probability Q. In particular the mean EQ[C(t)]
is a decreasing function of t and so

EQ[X] = EQ[C(T)] ≤ EQ[C(0)] = x. (9.7)

Conversely let FT denote the sigma field generated by the process S(t) up to
time T . Call the market S is complete if every FT -measurable, Q-integrable
payoff X ≥ 0 satisfying (9.7) has the form

X = x+
∫ T

0
H(u)dS(u)

for some admissible strategy H. This simplifies the discussion considerably
and we assume from now on that the market S is complete. With this our
optimization problem can be restated as follows:

Maximize EP [U(X)] subject to X ≥ 0 and EQ[X] ≤ x. (9.8)

The assumption of completeness has eliminated the price process S from
explicit consideration and reduced the problem to a problem about ran-
dom variables only. The process S enters into the picture only through the
equivalent local martingale measure Q. In general (S a locally bounded
semimartingale) the existence of such a probability Q is equivalent to a
topological no arbitrage condition (the condition NFLVR of [DS94]). Mar-
ket completeness is then equivalent to the uniqueness of the equivalent local
martingale probability Q. The proofs of these fundamental results are quite

9.2. MAXIMIZATION OF TERMINAL UTILITY 225

complicated. In the case of a market S driven by a Brownian motion W ,
that is, satisfying a dynamics

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t)

with µ ∈ L1(dt) and σ ∈ L1(W), the existence ofQ is related to the existence
of a suitable market price of risk process relating the drift vector µ to the
volatility matrix σ, see Theorem 4.2 on page 12 of [KS98]. Assuming that
the dimensions of S and W are equal, market completeness is equivalent to
the invertibility of the volatility matrix σ. See Theorem 6.6 on page 24 of
[KS98].

9.2 Maximization of Terminal Utility

Let X (x) := {X ≥ 0 : EQ[X] ≤ x } denote the set of all payoffs which can
be reached by admissible trading with initial capital x. It is not clear that
the functional EP [U(X)] assumes a maximum on X (x) but let us assume
that we have a maximum at X0 ∈ X (x), that is

EP [U(X)] ≤ EP [U(X0)], ∀X ∈ X (x). (9.9)

We will try to determine X0 from this condition and then intend to check
wether (9.9) is indeed satisfied. Consequently our determination of the ran-
dom variable X0 does not have to be fully rigorous. We will use the following
simple fact:

Let φ, ψ be linear functionals on a vector space B. If ψ(f) = 0 implies
φ(f) = 0, that is, φ = 0 on ker(ψ), then φ = λψ for some constant λ.

This is clear if ψ = 0. If ψ 6= 0 choose f0 ∈ B with ψ(f0) = 1 and note
that then f − ψ(f)f0 ∈ ker(ψ) for all f ∈ B.

Now fix ε > 0 and let Bε denote the vector space of all bounded random
variables which vanish outside the set [X0 ≥ ε] and let

f ∈ Bε with EQ[f] = 0.

Then X(t) = X0 + tf ∈ X (x) for sufficiently small t (more precisely for
|t| < ‖f‖∞ which ensures that X(t) ≥ 0). Consequently the function

g(t) := EP [U(X(t))]

is defined on a neighborhood of zero and has a maximum at zero. Using the
differentiability of U and differentiating under the integral sign (don’t worry

226 CHAPTER 9. UTILITY MAXIMIZATION

about justification) we obtain

0 = g′(0) = EP [U ′(X0)f].

Thus the linear functionals φ(f) := EP [U ′(X0)f] and ψ(f) := EQ[f] on Bε

satisfy
ψ(f) = 0 ⇒ φ(f) = 0

and from this it follows that there is a constant λ such that φ = λψ. Let Z
denote the Radon-Nikodym derivative

Z = dQ/dP

of the measures P and Q on FT . Then Z > 0, P -almost surely (by equiva-
lence of P and Q), and

EQ[f] = EP [Zf], ∀f ∈ L1(Q). (9.10)

With this the equality φ = λψ can be rewritten as

EP [(U ′(X0)− λZ)f] = 0, f ∈ Bε.

From this it follows that U ′(X0) − λZ = 0, equivalently X0 = I(λZ), P -
almost surely on the set [X0 ≥ ε]. Since here ε > 0 was arbitrary we must
have X0 = I(λZ), P -almost surely on the set [X0 > 0].

With this motivation we try to maximize (9.8) with a random variableX0

of the form X0 = I(λZ) with λ > 0. Since U is increasing a maximizer X0

will have to satisfy EQ[X0] = x. This allows us to determine λ. Obviously
we now need the condition:

ρ := inf{λ > 0 : EQ[I(λZ)] <∞} < +∞, (9.11)

equivalently EQ[I(λZ)] <∞ for some λ > 0. Otherwise the set X (x) won’t
contain a random variable of the form X0 = I(λZ) with λ > 0. Given (9.11)
we can apply the Dominated Convergence Theorem and (9.2) to show that
the function

h(λ) := EQ[I(λZ)] <∞

is finite and continuous for all λ > ρ and that h(λ) ↓ 0 for λ ↑ +∞ and
h(λ) ↑ +∞ for λ ↓ 0. Consequently there is a unique constant λ0 > 0 such
that

EQ[X0] = x for X0 = I(λ0Z).

We now claim that

9.2. MAXIMIZATION OF TERMINAL UTILITY 227

Theorem 1 X0 maximizes the expected utility EP [U(X)] for X ∈ X (x).

Proof. Let X ∈ X (x) and note that EQ[X] ≤ x while EQ[X0] = x and so
EQ[X0 − X] ≥ 0. Using (9.1) with x = X and y = λ0Z (thus I(y) = X0)
we obtain

U(X)− λ0ZX ≤ U(X0)− λ0ZX0,

P -almost surely. Rearrange this as

U(X0)− U(X) ≥ λ0ZX0 − λ0ZX.

Now take the expectation EP and use (9.10) to obtain

EP [U(X0)− U(X)] ≥ λ0E
Q[X0 −X] ≥ 0.

228 CHAPTER 9. UTILITY MAXIMIZATION

Appendix A

Matrices

We collect some facts and introduce notation used in the text.

A.1 Matrix pseudo square roots

Let C be a positive definite n × n matrix. Then there exists a uniquely
determined upper triangular matrix n × n R and a uniquely determined
lower trinagular matrix L such that

C = RR′ = LL′.

The matrices R and L are pseudo square roots of the matrix C. The algo-
rithm to compute R and L is called the Cholesky factorization of C and is
implemented in the class Matrix.h. If the matrix C is only positive semidef-
inite we can compute pseudo square roots of C from the eigenvalues and
eigenvectors of C as follows: Let

λ1 ≥ λ2 ≥ . . . ≥ λn

be the eigenvalues of C (which are nonnegative), and {u1, u2, . . . , un} an
orthonormal basis of Rn consisting of eigenvectors uj of C satisfying Cuj =
λjuj . Let Λ = diag(λj) denote the diagonal matrix with entries Λjj = λj

down the diagonal, set √
Λ = diag(

√
λj)

and let U be the n× n matrix with columns cj(U) = uj . Then

CU = (Cu1, Cu2, . . . , Cun) = (λ1u1, λ2u2, . . . , λnun) = UΛ

229

230 APPENDIX A. MATRICES

(recall that multiplication by a diagonal matrix on the right multiplies the
columns) and so

C = UΛU ′ = RR′ (A.1)

where
R = U

√
Λ = (

√
λ1u1,

√
λ2u2, . . . ,

√
λnun).

Note also that
R′R =

√
ΛU ′U

√
Λ = Λ (A.2)

because of the orthogonality of U . If

λ1 ≥ λ2 ≥ . . . λr > λr+1 = . . . = λn = 0 (A.3)

then we can drop the zero columns of R and write

C = RrR
′
r,

where Rr is the n×r matrix Rr = (
√
λ1u1,

√
λ2u2, . . . ,

√
λrur). Even if (A.3)

is not true we can approximate the matrix C with the r-factor factorization

C ' RrR
′
r.

The matrix Rr is called the (approximate) rank r root of C. To see how
accurate this approximation is set Cr = RrR

′
r and let Λ0, Λ1 denote the

diagonal matrices resulting from Λ by setting the first r respectively the
remaining n − r diagonal elements (eigenvalues) equal to zero. Then Λ =
Λ0 + Λ1 and RrR

′
r = UΛ1U

′ from which it follows that

C − Cr = RR′ −RrR
′
r = U(Λ− Λ1)U ′ = UΛ0U

′.

For any matrix A let

‖A‖2 = Tr(A′A) =
∑

ij
a2

ij

denote the trace norm of A. Then ‖UA‖ = ‖A‖ = ‖A′‖ for each unitary
matrix U . This implies that

‖C − Cr‖2 = ‖Λ0‖2 = λ2
r+1 + . . .+ λ2

n.

Consequently the relative error in the rank two approximation of C is given
by

‖C − Cr‖
‖C‖ =

√
λ2

r+1 + . . .+ λ2
n

λ2
1 + . . .+ λ2

n

.

A.1. MATRIX PSEUDO SQUARE ROOTS 231

This error will be small if the sum of the first r eigenvalues is much bigger
than the sum of the remaining n− r eigenvalues. An analysis such as this is
useful if we want to reduce matrix sizes for speedier simulation. See (B.1.

Optimality. Next we show that all positive definite rank r matrices D
satisfy

‖C −D‖2 ≥ λ2
1 + . . .+ λ2

r = ‖C − Cr‖2. (A.4)

In other words: Cr is the optimal approximant in the trace norm. To see
this we need the following inequality:

Theorem 1 Let Q be an n × n matrix with nonnegative entries and V
denote the set of all vectors x ∈ Rn satisfying

x1 ≥ x2 ≥ . . . ≥ xn ≥ 0.

If Q satisfies
∑

j Qij ≤ 1, for all i, and
∑

iQij ≤ 1, for all j, then

(Qx, y) ≤ (x, y), ∀x, y ∈ V. (A.5)

Remark. The brackets denote the inner product as usual. The special case
of permutation matrices yields the rearrangement inequality

x1y1 + . . .+ xnyn ≥ xπ(1)y1 + . . .+ xπ(n)yn, x, y ∈ V,

where π is any permutation of {1, 2, . . . , n}.
Proof. Note that V is closed under addition and multiplication with nonneg-
ative scalars. Fix x ∈ V . If the inequality (A.5) is satisfied for two vectors
y = z, w ∈ V then it is also satisfied for all linear combinations y = az+ bw
with nonnegative coefficients a,b. Each vector y ∈ V can be written as a
linear combination with nonnegative coefficients

y = ynf1 + (yn−1 − yn)f2 + . . .+ (y1 − y2)fn

of the vectors

fk = e1 + e2 + . . .+ ek = (1, 1, . . . , 1, 0, . . . , 0) ∈ V,

where the ek form the standard basis of Rn. Consequently it suffices to
verify (A.5) for the vectors y = fk, k = 1, 2 . . . , n, that is,

k∑
i=1

n∑
j=1

Qijxj ≤
k∑

j=1

xj , ∀x ∈ V, k = 1, 2, . . . , n.

232 APPENDIX A. MATRICES

Fix k. The same reasoning as above shows that we have to check this
inequality only for the vectors x = fm, m = 1, 2 . . . , n. For x = fm the
inequality assumes the form

k∑
i=1

m∑
j=1

Qij ≤ k ∧m.

Interchanging the order of summation if necessary we may assume k ≤ m
and the inequality now follows from the assumptions on Q.

With this we can proceed to the proof of (A.4). Let C = UΛU ′ be as above
and choose a unitary matrix V such that D = VMV ′ with M = diag(µj)
a diagonal matrix with µr+1 = . . . = µn = 0. Set W = UV . Then W is
unitary and

‖C −D‖2 = ‖U(C −D)U ′‖2 = ‖Λ−WMW ′‖2 = Tr(X ′X),

where X = Λ−WMW ′ is symmetric. It follows that

‖C −D‖2 = Tr(Λ2)− 2Tr(ΛWMW ′) + Tr(WM2W ′). (A.6)

Here Tr(Λ2) =
∑n

j=1 λ
2
j and Tr(WM2W ′) = Tr(M2) =

∑r
j=1 µ

2
j . Finally

(WMW ′)ii =
r∑

j=1

W 2
ijµj

and so

Tr(ΛWMW ′) =
n∑

i=1

r∑
j=1

W 2
ijλiµj = (Qλ, µ),

where the matrix Q with entries Qij = W 2
ij satisfies the assumptions of

(A.5). The vectors λ = (λj) and µ = (µj) have nonnegative decreasing
components and it follows that

Tr(ΛWMW ′) ≤ (λ, µ) =
∑r

j=1
λjµj .

Entering this into equation (A.6) we obtain

‖C −D‖2 ≥
r∑

j=1

(λj − µj)2 +
n∑

j=r+1

λ2
j

as desired.

A.2. MATRIX EXPONENTIALS 233

If x, y are vectors in Rn we let (x, y) or x · y denote the dot product of x
and y, that is,

(x, y) = x · y =
∑n

i=1
xiyi.

Suppose we have a factorization C = RR′. By definition of the matrix
transpose we hve the identity∑n

i,j=1
Cijxixj = (Cx, x) = (RR′x, x) = (R′x,R′x) = ||R′x||2.

Let ei, 1 ≤ i ≤ n denote the standard basis of Rn (coordinate i is one, all
other coordinates are zero). Then x =

∑n
i=1 xiei. Fix 1 ≤ p < q ≤ n and

write
z := xp,q :=

∑q

i=p
xiei.

Then we can write∑q

i,j=p
Cijxixj =

∑n

i,j=1
Cijzizj = ||R′z||2 = ||R′xp,q||2. (A.7)

A.2 Matrix exponentials

Let A be any (not necessarily symmetric) square matrix. The following
approximation can be used to implement the matrix exponential exp(A).
Let ||·|| be any submultiplicative matrix norm. Then ||exp(A)|| ≤ exp(||A||).
Choose n such that 2n > ||A|| and set B = 2−nA. Then exp(A) = exp(B)2

n

which can be computed by squaring exp(B) n times. Note that ||B|| ≤ 1.
We need to compute exp(B). Set U = 2−6B. Then ||U || ≤ 1/64 := f and
we can compute exp(B) as exp(U)2

6
that is, by squaring exp(U) six times:

exp(B) = [exp(U)]2
6

'
[
I + U + U2/2! + . . .+ Uk/k!

]26

, (A.8)

where k will be chosen below. Set

E = exp(U) and F = I + U + U2/2! + . . .+ Uk/k!.

Then exp(B) = E64 and E and F commute and consequently the error
err = E64 − F 64 in (A.8) satisfies

E64 − F 64 = (E − F)(E63 + E62F + . . .+ EF 62 + F 63)

Since ||E||, ||F || ≤ exp (||U ||) ≤ exp(f) it follows that

||err|| ≤ 64exp(63f)||E − F ||.

234 APPENDIX A. MATRICES

Here

||E − F || = ||
∑∞

j=k+1
U j/j!||

≤
∑∞

j=k+1
f j/j!

≤ [1 + f + f2/2! + . . .]fk+1/(k + 1)!
≤ exp(f)fk+1/(k + 1)!.

from which it follows that

||err|| ≤ 64exp(64f)fk+1/(k + 1)! = e fk/(k + 1)!. (A.9)

For k = 8, the error estimate on the right is less than 2.67e-20. We now
compute exp(A) as

exp(A) = E2n+6 ' F 2n+6
.

Note that we do not have an estimate for the error ||exp(A)−F 2n+6 || merely
for the error ||exp(B)−F 26 || to within close to machine precision. It is hoped
that the subsequent n repeated squares do not lose too much precision.

To compute the approximation (A.8) for exp(B) we need 7 matrix multi-
plications to obtain I+U +U2/2!+ . . .+Uk/k! and then 6 repeated squares
to raise this to power 26. We then have to perform [log2(||A||)]+1 additional
repeated squares for a total of [log2(||A||)] + 14 matrix multiplications. Ob-
viously the smallest submultiplicative matrix norm is desired here, however
in practice we must stick with what we can easily compute and this is the
norm

||A||2 =
∑

ij
A2

ij .

Appendix B

Multinormal Random
Vectors

The distribution of a multinormal vector Y is completely determined by
its mean y and covariance matrix C which is symmetric and nonnegative
definite. This section treats the simulation of Y and the conditioning of Y
on any one of its components. We assume that the covariance matrix has
full rank and hence is positive definite.

B.1 Simulation

If the Zj , 1 ≤ j ≤ n, are independent standard normal (N(0, 1)) random
variables, then Z = (Z1, Z2, . . . , Zn) is an n-dimensional standard normal
vector:

E(Z2
j) = 1, E(ZiZj) = 0, i 6= j. (B.1)

Such a vector can be simulated by simulating independent draws Xj ∈ (0, 1),
from a uniform distribution on (0, 1) and setting Zj = N−1(Xj), where N−1

is the inverse cumulative normal distribution function.
Once we have a standard normal vector Z we can get a general N(y, C)-

vector Y = (Y1, Y2, . . . , Yn) with mean yj = E(Yj) and covariance matrix C,
Cij = E[(Yi− yi)(Yj − yj)] as follows: factor the positive definite covariance
matrix C as

C = RR′

where R is upper triangular (Cholesky factorization of C). We claim that
then the vector

Y = y +RZ, that is, (B.2)

235

236 APPENDIX B. MULTINORMAL RANDOM VECTORS

Yi = yi +
∑n

k=i
RikZk,

is multinormal with distribution N(y, C). Since a sum of independent nor-
mal variables is normal, every linear combination of components of Y is a
normal variable and it follows that Y is multinormal. Let ri denote row i of
R. From (B.1) it follows that E(Y) = y and, for i ≤ j,

E[(Yi − yi)(Yj − yj)] =
∑n

k=j
RikRjk = ri · rj = (RR′)ij = Cij

as desired. Here only the relation C = RR′ has been used. Conversely if we
have a multinormal vector Y with mean y and covariance matrix C = RR′

we can write

Y
d= y +RZ = y + Z1c1(R) + Z2c2(R) + . . .+ Zncn(R), (B.3)

where Z is a standard normal vector, d= denotes equality in distribution and
cj(R) denotes column j of R.

B.2 Conditioning

Let us now investigate what happens if the multinormal vector Y is con-
ditioned on the last component Yn. We want to determine the conditional
distribution of the vector (Y1, Y2, . . . , Yn−1) given that Yn = u. It will turn
out that this distribution is again multinormal with new means and covari-
ances which will be determined. To see this write

Y1
d= y1 +R11Z1 +R12Z2 + . . .+R1nZn (B.4)

Y2
d= y2 +R22Z2 + . . .+R2nZn

. . .

Yn
d= yn +RnnZn

where the upper triangular matrix R factors the covariance matrix C of Y as
C = RR′, the Zj are independent standard normal and d= denotes equality
in distribution. The factorization and triangularity imply that Rnn =

√
Cnn

and R1nRnn = C1n and so

R1n/Rnn = C1n/Cnn.

Now note that
Yn

d= u ⇐⇒ Zn
d= R−1

nn(u− yn).

B.2. CONDITIONING 237

Substitute this into (B.4) and observe that conditioning Zn has no effect
on the other Zj by independence. Consequently, conditional on Yn = u, we
have

Y1
d= ŷ1 +R11Z1 +R12Z2 + . . .+R1,n−1Zn−1

Y2
d= ŷ2 +R22Z2 + . . .+R2,n−1Zn

. . .

Yn−1
d= ŷn−1 +Rn−1,n−1Zn−1

with independent standard normal vectors Zj . From this it follows that the
Yj are again multinormal with conditional means

ŷj = E(Yj |Yn = u) = yj + (u− yn)Cjn/Cnn

and conditional covariances

E(YiYj |Yn = u)− ŷiŷj = Cij −RinRjn.

More generally assume that we want to condition on the last j+1 variables
Yn−j , . . . , Yn and are interested only in the conditional expectation (rather
than the whole conditional distribution). Write

Ya = (Y1, . . . , Yn−j−1), ya = (y1, . . . , yn−j−1),
Yb = (Yn−j , . . . , Yn), yb = (yn−j , . . . , yn),

apply the condtional expectationE[·|Yb] to (B.4) and note that Z1, . . . , Zn−j−1

are mean zero variables which are independent of Yb. Here we are using that
we are conditioning on the last j + 1 variables. By independence the condi-
tional mean of Z1, . . . , Zn−j−1 will also be zero and thus (B.4) becomes

Y1
d= y1 +R1jZj + . . .+R1nZn

Y2
d= y2 +R2jZj + . . .+R2nZn

. . .

Yn
d= yn +RnnZn

This equality holds in the mean E[·|Yb]. Let A, B be the matrices

A = (Rik)
i=n−j−1,k=n
i=1,k=j , B = (Rik)j≤i≤k≤n.

Solving for Z from the last j + 1 equations and substituting into the first
n− j − 1 equations we obtain

E [Ya|Yb] = ya +AB−1Yb.

238 APPENDIX B. MULTINORMAL RANDOM VECTORS

If we want to condition on other coordinates of Y we simply commute them
into the last places and switch the corresponding rows in the covariance
matrix of Y .

B.3 Factor analysis

A second approach to simulating an n-dimensional normal vector Y is to
diagonalize the covariance matrix C of Y . This reveals more information
about Y than the Cholesky fatorization C = RR′. Moreover we do not have
to assume that the covariance matrix has full rank. Let

λ1 ≥ λ2 ≥ . . . ≥ λn

be the eigenvalues of C (which are nonnegative) and U an orthogonal matrix
such that

UCU ′ = Λ := diag(λj)

is a diagonal matrix. Then the λj are the eigenvalues of C and the columns
uj = colj(U) an orthonormal basis of associated eigenvectors: Cuj = λjuj .
We have seen in (A.1) that the matrix L given by

L = U
√

Λ = (
√
λ1u1,

√
λ2u2, . . . ,

√
λnun).

is a pseudo square root of C:

C = LL′.

Let y = E(Y). Because of C = LL′ we can write

Y
d= LZ = Z1

√
λ1u1 + Z2

√
λ2u2 + . . .+ Zn

√
λnun (B.5)

(equality in distribution) with independent standard normal variables Zj .
Note that

‖Y ‖2 d= λ1Z
2
1 + λ2Z

2
2 + . . .+ λnZ

2
n

by orthogonality of U and since E(Z2
j) = 1 the variance E(‖Y ‖2) satisfies

E(‖Y ‖2) = λ1 + λ2 + . . .+ λn. (B.6)

In case all eigenvalues are nonzero the random vector Y depends on n or-
thogonal standard normal factors Zj . However if

λ1 ≥ λ2 ≥ . . . λr > λr+1 = . . . = λn = 0 (B.7)

B.3. FACTOR ANALYSIS 239

then (B.5) becomes

Y
d= Z1

√
λ1u1 + Z2

√
λ2u2 + . . .+ Zr

√
λrur

and Y depends only on r < n such factors. Here r is the rank of the
covariance matrix C which now allows the factorization C = LrL

′
r where Lr

is the n× r matrix

Lr = (
√
λ1u1,

√
λ2u2, . . . ,

√
λrur). (B.8)

Even if (B.7) is not true we can approximate the random vector Y with the
r-factor approximation

Yr = Z1

√
λ1u1 + Z2

√
λ2u2 + . . .+ Zr

√
λrur.

Setting Wr = Zr+1

√
λr+1u2 + . . . + Zn

√
λnun we have the orthogonal de-

composition

Y
d= Yr +Wr with Yr ·Wr = 0

and so

‖Y ‖2 d= ‖Yr‖2 + ‖Wr‖2

Consequently the r-factor approximation Yr of Y explains 100q% of the
variability of Y where

q =
E‖Yr‖2

E‖Y ‖2 =
λ1 + λ2 + . . .+ λr

λ1 + λ2 + . . .+ λn
.

The variable Yr has covariance matrix Cr = LrL
′
r and this matrix approxi-

mates the covariance matrix C of Y with relative error

‖C − Cr‖
‖C‖ =

√
λ2

r+1 + . . .+ λ2
n

λ2
1 + . . .+ λ2

n

.

See (A.1). This error will be small if the sum of the first r eigenvalues is
much bigger than the sum of the remaining n − r eigenvalues. An analysis
such as this is useful if we want to limit the number of factors for example
to speed up simulation or reduce the dimension in PY (dy)-integrals:

240 APPENDIX B. MULTINORMAL RANDOM VECTORS

B.3.1 Integration with respect to PY

The dimensional reduction corresponding to zero eigenvalues of the covari-
ance matrix also takes place when integrating with respect to the distribu-
tion PY of Y . Let

nr(z) = (2π)−r/2e−
1
2
‖z‖2 , z ∈ Rr,

denote the the r-dimensional standard normal density. The r-factor approx-
imation Yr of Y satisfies Yr = LrZr, with Lr as in (B.8) and Zr a standard
normal vector in Rr. This implies that PYr = Lr(PZr) (image measure)
where PZr(dz) = nr(z)dz. If f : Rn → R is measurable and nonnegative the
image measure theorem now implies that∫

Rn
f(y)dPYr(dy) =

∫
Rr

(f ◦ Lr)(z)dPZr(dz) (B.9)

=
∫

Rr
f(ρ1 · z, ρ2 · z, . . . , ρn · z)nr(z)dz,

where ρj = rj(Lr) is the jth row of Lr, j = 1, . . . , n. In particular this
integral has been reduced from dimension n to dimension r.

Appendix C

Martingale Pricing

Here is an informal review of martingale pricing of options without entering
into technical details.

C.1 Numeraire measure

Cash prices Sj(t), t ∈ [0, T], of traded assets are not in general local mar-
tingales because of growth and inflationary drift inherent in the economy.
This drift can often be eliminated by replacing cash with a numeraire which
is itself a traded asset subject to this drift.

More formally assume that the market consists of assets Sj(t) which
are semimartingales in some probability P on the filtered probablity space
(Ω, (Ft)t∈[0,T]). Fix an asset B = S0(t) as the numeraire and assume that
the market of relative prices SB

j (t) = Sj(t)/B(t) (prices in the numeraire B)
is arbitrage free. Under suitable technical assumptions we can switch to an
equivalent probability PB in which the relative prices are local martingales.
A rigorous investigation of the relation between the absence of arbitrage
and the existence of local martingale measures PB is completely beyond the
scope of this book ([DS94]).

An equivalent numeraire probability associated with the numeraire B is
any probability PB which is equivalent to the original probability and in
which all the relative prices SB

j (t) are local martingales.
In many concrete models of asset prices one fixes a numeraire (often the

risk free bond) and finds an explicit numeraire measure associated with this
numeraire. Frequently the relative prices SB

j (t) are in fact martingales in the
numeraire probability. Let us assume that this is the case. It then follows
that the relative price of any selffinancing dynamic portfolio trading in the

241

242 APPENDIX C. MARTINGALE PRICING

assets Sj(t) is a PB-martingale also. This is trivial for static portfolios (linear
combinations of assets Sj) and uses properties of the stochastic integral in
the case of dynamic portfolios.

In particular the relative price cB(t) of any option which can be repli-
cated by trading in the assets Sj will be a PB-martingale also. Any trading
strategy can be made selffinancing by investing excess cash in a designated
asset such as the riskfree bond for example. In the case of a cash shortfall
this means that cash is generated by a short sale of this asset. In other
words, the strategy is financed by trading in the designated asset.

Suppose this option expires at time T with cash payoff h. Then the
option cash price c(t) satisfies c(T) = h and hence cB(T) = h/B(T). Since
cB(t) is a PB-martingale it follows that

cB(t) = EPB
t [h/B(T)],

where Et[·] denotes the conditional expectation in the probability PB con-
ditioning on all information Ft generated by time t. This is the so called
martingale pricing formula. It is predicated on the assumption that the
option can be replicated by trading in the assets Sj since this implies the
martingale property of the option price process from the martingale property
of the underlying asset prices (in the numeraire B). We assume generally
that this assumption is satisfied. In many market models it is the case for
all options with payoff which is a deterministic function of the asset price
path (market completeness). The cash price c(t) of the option then assumes
the form

c(t) = B(t)EPB
t [h/B(T)], t ≤ T.

All kinds of numeraires are useful. For example B(t) could be the money
market account in which case the relative prices cB(t) are discounted prices.
If on the other hand if B(t) is the zero coupon bond maturing at time T ,
then the relative prices cB(t) are forward prices at time T .

It is often more natural to work with these relative prices than with
cash prices. For example discounted prices or forward prices at a fixed date
eliminate interest rates from explicit consideration. To switch back to cash
prices we then only need to be able to observe the price of the numeraire
asset in the market and to multiply with this observed price.

C.2 Change of numeraire.

Assume that PA is a numeraire measure associated with the numeraire A and
that B is another numeraire (that is positive semimartingale). If BA = B/A

C.2. CHANGE OF NUMERAIRE. 243

is a PA-martingale we can define a numeraire probability PB associated with
the numeraire B which is equivalent to PA as follows: on measurable sets D
one defines

PB(D) = EPA [f1D], that is EPB [1D] = EPA [f1D].

with density f = cB(T)/A(T) normalized such that PB is a probability mea-
sure. Since B/A is a PA-martingale by assumption we obtain c = A(0)/B(0)
(processes at time zero are assumed to be constants). The martingale prop-
erty of B/A the yields

ft := EPA
t [f] = cB(t)/A(t).

The defining relation for PB extends from indicator functions h = 1D to non-
negative functions h and finally to all functions h for which the expectation
on the left is defined as

EPB [h] = EPA [fh]

One now verifies that for conditional expectations

EPB
t [h] = EPA

t [fh]/ft (C.1)

(Bayes theorem, the denominator on the right is necessary for normalization,
let h=1)). For a proof multiply with ft and pull ft into the expectation on
the left to transform this into

EPB
t [fth] = EPA

t [fh]

equivalently

EPB [fthk] = EPB

[
EPA

t [fh]k
]

= EPB

[
EPA

t [fhk]
]

for all Ft-measurable indicator functions k. By defintion of PB this is equiv-
alent with

EPA [ffthk] = EPA

[
fEPA

t [fhk]
]

Now condition the inside of the expectation on the right on Ft. Using the
Double Expectation Theorem the right hand side becomes EPA

[
ftE

PA
t [fhk]

]
.

Move ft into the conditional expectation on the right to obtain the left hand
side again using the Double Expectation Theorem.

Recall that ft = cB(t)/A(t) and replace h with h/B(T) in (C.1) to obtain

B(t)EPB
t [h/B(T)] = A(t)EPA

t [h/A(T)] . (C.2)

244 APPENDIX C. MARTINGALE PRICING

This is the symmetric numeraire change formula. Using this with h = S(T)
it follows that S(t)/A(t) is a PA-martingale if and only if S(t)/B(t) is a
PB-martingale. By standard extension this remains true if “martingale” is
repalced with “local martingale”.

The numeraire measures PA, PB associated with different numeraires
are equivalent and hence the switch from one numeraire to the other has no
effect on the quadratic variation (the volatility) of a continuous price process
S(t). Only the bounded variation part (the drift) is affected. It is possible
to analyze exactly how the drift terms are related by the switch from the
numeraire A to the numeraire B (Girsanov’s theorem). The details of this
are necessary if we deal with a general continous semimartingale and we
want to switch from the dynamics in the PA-measure to the dynamics in the
PB-measure.

Frequently the whole point of a numeraire change is to switch to a nu-
meraire in which the processes under consideration are local martingales
and hence driftless. In this case we do not have to know the details of the
change of numeraire technique. See C.4 below for an application to the
option exchange assets.

C.3 Exponential integrals

In this section we derive some formulas for the means of exponentials of
quadratic polynomials of normal variables and related variables. Recall first
that the cumulative normal distribution function N(x) is defined as

N(x) =
1√
2π

∫ x

−∞
e−t2/2dt

and satisfies N(+∞) = 1. From this we derive some integrals which are
needed in the sequel. Assume first that a > 0 and note that

ax2 + bx+ c =
(√

a x+
b

2
√
a

)2

+D where D = c− b2

4a
.

It follows that

1√
2π

∫ +∞

−∞
e−

1
2
(at2+bt+c)dt =

1√
a
e−D/2. (C.3)

Indeed, denoting the integral on the left with I we can write

I =
1√
2π

∫ +∞

−∞
exp

{
−1

2

[(
t
√
a+

b

2
√
a

)2

+D

]}
dt

C.3. EXPONENTIAL INTEGRALS 245

=
1√
a

1√
2π

∫ +∞

−∞
e−D/2e−u2/2du =

1√
a
e−D/2,

where the substitution u = t
√
a + b

2
√

a
has been employed. Now we relate

this to expectations of exponentials of standard normal variables X. First
we claim that

f(b) := E
(
e−(aX+b)2eαX

)
=

1√
1 + 2a2

e−
1
2
D (C.4)

where

−1
2
D =

α2

2
− (b+ aα)2

1 + 2a2
.

Indeed denoting the expectation on the left with E and using (C.3) we can
write

E =
1√
2π

∫ +∞

−∞
e−(ax+b)2eαxe−x2/2dx

=
1√
2π

∫ +∞

−∞
exp

{
−1

2
[(1 + 2a2)x2 + 2(2ab− α)x+ 2b2]

}
dx

=
1√

1 + 2a2
e−

1
2
D

where

D = 2b2 − (2ab− α)2

1 + 2a2
= 2

(b+ aα)2

1 + 2a2
− α2,

as desired. Let us note the special case E
(
eαX

)
= eα

2/2. Set

k = α− 2ab and q = 1 + 2a2

and note that
d

dα

(
−1

2
D

)
=
k

q
.

Differente (C.4) with resepct to α commuting the derivative with the expec-
tation to obtain

E
(
Xe−(aX+b)2eαX

)
= f ′(α) = k

e−D/2

q
√
q
. (C.5)

Denote the right hand side with g(α), and differentiate with respect to α
again observing that dk/dα = 1 to obtain

E
(
X2e−(aX+b)2eαX

)
= g′(α) =

e−D/2

q2
√
q

[q + k2]. (C.6)

246 APPENDIX C. MARTINGALE PRICING

Putting all this together we finally have the general formula

E
(
(AX2 +BX + C)e−(aX+b)2eαX

)
=
e−D/2

q2
√
q

[A(q+k2)+Bqk+Cq2] (C.7)

Let us summarize the three special cases of this formula which we actually
need

E
(
e−(aX+b)2eαX

)
=

e−D/2

√
q

(C.8)

E
(
(aX +B)e−(aX+b)2eαX

)
=

e−D/2

q
√
q

[ak +Bq] (C.9)

E
(
(aX +B)2e−(aX+b)2eαX

)
=

e−D/2

q
√
q

[(ak +Bq)2 + a2q] (C.10)

Completing the square in the exponent one finds that

1√
2π

∫ x

−∞
exp

[
−1

2
(t2 + 2mt+ n)

]
dt = e(m

2−n)/2N(x+m). (C.11)

Next we claim

E
(
eaX+bN(αX + β)

)
= e

a2

2
+bN

(
β + aα√
1 + α2

)
. (C.12)

It will suffice to show this for b = 0. Set

f(u) = E
(
eaXN(αX + u)

)
note that f(−∞) = 0, differentiate with respect to u and commute the
derivative with the expectation to obtain

f ′(u) =
1√
2π
E
(
eaXe−

1
2
(αX+u)2

)
=

1√
2π

1√
2π

∫ ∞

−∞
eaxe−

1
2
(αx+u)2e−

1
2
x2
dx

=
1√
2π

1√
2π

∫ ∞

−∞
e−

1
2
((1+α2)x2+2(αu−a)x+u2)dx.

Using (C.3) this becomes

f ′(u) =
1√
2π

1√
1 + α2

e−D/2,

C.3. EXPONENTIAL INTEGRALS 247

where

D(u) = u2 − (αu− a)2

1 + α2
=
(

u√
1 + α2

)2

+
2aα√
1 + α2

u√
1 + α2

− a2

1 + α2
.

It follows that

f(β) =
∫ β

−∞
f ′(u)du =

1√
2π

∫ β

−∞
1√

1 + α2
e−

1
2
D(u)du

=
1√
2π

∫ β√
1+α2

−∞
exp

[
−1

2

(
t2 +

2aα√
1 + α2

t− a2

1 + α2

)]
du,

where the substitution t = u/
√

1 + α2 has been employed. Use (C.11) with
n = − a2

1+α2 and m = aα√
1+α2

and observe that m2 − n = a2 to obtain

f(β) = ea
2/2N

(
β + aα√
1 + α2

)
,

as desired.
Let a > 0 and Y be a standard normal variable. A straightforward compu-
tation with the normal density shows that

E
[
eaY −K

]+
= ea

2/2N

(
a2 − log(K)

a

)
−KN

(−log(K)
a

)
. (C.13)

Finally if Y , Z are any jointly normal variables with means y = E(Y),
z = E(Z) and covariance matrix C we want to compute the expectation

E
[
eY −KeZ

]+
. Write

Y = y + aU + bW

Z = z + cW

where U , W are independent standard normal variables and the upper tri-
angular matrix

R =

(
a b
0 c

)
satisfies C = RR′, that is

a2 + b2 = C11, bc = C12, c2 = C22.

With this

E
(
eY −KeZ

)+
= E

(
ey+aU+bW −Kez+cW

)+
. (C.14)

248 APPENDIX C. MARTINGALE PRICING

Conditioning on W = w we can write

E
(
eY −KeZ

)+
=
∫
E
[
(eY −KeZ)+|W = w

]
PW (dw), (C.15)

where U is still standard normal, Y = y + bw + aU and Z = z + cw and so

E
[
(eY −KeZ)+|W = w

]
= ey+bwE

[
eaU −Kez−y+(c−b)w

]+
.

Using (C.13) we obtain

E
[
(eY −KeZ)+|W = w

]
=

ey+bw+a2/2N

(
−c− b

a
w +

a2 − log(K) + y − z

a

)
−

Kez+cwN

(
−c− b

a
w +

−log(K) + y − z

a

)
Integrating this with respect to PW (dw) it follows that

E
[
eY −KeZ

]+
=

ey+a2/2E

[
ebWN

(
−c− b

a
W +

a2 − log(K) + y − z

a

)]
−

Kez+cWE

[
N

(
−c− b

a
W +

−log(K) + y − z

a

)]
.

Using (C.12) this evaluates

E
[
eY −KeZ

]+
= ey+(a2+b2)/2N

(
a2 − log(K) + y − z√

a2 + (c− b)2

)
−

Kez+c2/2N

(
−log(K) + y − z√

a2 + (c− b)2

)
.

Here a2 + (c− b)2 = C11 + C22 − 2C12 and we have

Proposition C.3.1 Assume that Y , Z are jointly normal variables with
means y = E(Y), z = E(Z) and covariance matrix C. Then

E
[
eY −KeZ

]+
= f(y, z, C), (C.16)

where the function f of the mean and covariance matrix is given by

f(y, z, C) = ey+C11/2N

(
C11 − C12 − log(K) + y − z√

C11 + C22 − 2C12

)
−

Kez+C22/2N

(
C12 − C22 − log(K) + y − z√

C11 + C22 − 2C12

)
.

C.4. OPTION TO EXCHANGE ASSESTS 249

C.4 Option to exchange assests

Let us now examine the option to exchange assets with a view of deriving
analytic approximations to the price in the case of stochastic volatility and
covariation. Suppose that S1(0) and S2(0) are constants and that S1(t),
S2(t) are positive continuous local martingales in the probability P . We
can then regard P as a numeraire measure associated with the constant
numeraire 1. The option to receive one share of S1 in exchange for K shares
of S2 at time T has payoff

h = (S1(T)−KS2(T))+ . (C.17)

We are now interested in to obtain an analytic approximation for the expec-
tation EP

t [h]. To do this we assume that S2 is actually a martingale under
P . We can then regard S2 as a new numeraire with associated equivalent
numeraire probability P2 in which Q = S1/S2 is a local martingale and
which satisfies

EP
t [h] = S2(t)EP2

t [h/S2(T)] = S2(t)EP2
t

[
(exp(Y (T))−K)+

]
. (C.18)

where Y (t) = log(Q(t)). This is the symmetric numeraire change formula
(C.2)) where the numeraire associated with P is the constant 1. In case
S1 = S, S2 = 1 this is the payoff of the call on S with strike price K, Q = S
and P2 = P .

The following computation of the conditional expectation (C.18) uses
some heavy machinery but makes it very clear which role the quadratic
variation of the logarithm Y = log(Q) (the returns on Q) plays in the
determination of the option price. The main ingredient is the representation
of a continuous local martingale as a time change of a suitable Brownian
motion.

In our application to caplet, swaption and bond option prices it will be
useful to write the pricing formula in terms of the quadratic variation of
Y since we can then use rules from the stochastic calculus to compute this
quantity in the concrete cases below.

The more usual approach has to assume that volatility is deterministic
from the start but we can then identify the quadratic variation in the formula
and argue the general case by analogy. This is indicated at the end of this
section.

The process Y (t) is a continuous semimartingale in the probability P2

and so has a decomposition

Y (t) = A(t) +M(t)

250 APPENDIX C. MARTINGALE PRICING

where M(t) is a local martingale and A(t) a bounded variation process with
A(0) = 0 under P2. Using Ito’s formula on the identity Q(t) = exp(Y (t))
we obtain

dQ(t) = Q(t)dY (t) +
1
2
Q(t)d〈Y 〉t

= S(t)dM(t) +Q(t)dA(t) +
1
2
Q(t)d〈Y 〉t

Here dQ(t) and Q(t)dM(t) are the differentials of local martingales while
the remaining terms are the differentials of bounded variation processes.
Since the local martingale on the right cannot have a nonconstant bounded
variation part it follows that

Q(t)dA(t) +
1
2
Q(t)d〈Y 〉t = 0

and hence the differential 2dA(t)−d〈Y 〉t vanishes, that is, the process 2A(t)−
〈Y 〉t is constant. Because of A(0) = 0 this process vanishes at time t = 0
and it follows that

A(t) = −1
2
〈Y 〉t. (C.19)

Thus
Y (t) = −1

2
〈Y 〉t +M(t)

Now the local martingale M(t) can be written as a time change

M(t) = M(0) +W (τ(t)) = Y (0) +W (τ(t))

of a suitable P2-Brownian motion W where

τ(t) = 〈M〉t = 〈Y 〉t. (C.20)

This is a nontrivial martingale representation theorem ([KS96], Theorem
4.6). Note that M(0) = Y (0) is constant. The logarithm Y (t) is the process
of “returns” and the quadratic variation τ(t) the cumulative “volatility” of
returns of the quotient Q on [0, t]. We have

Y (t) = Y (0)− 1
2
〈Y 〉t +W (τ(t)).

Replace t with T > t and subtract the two identities to obtain

Y (T) = Y (t)− 1
2
〈Y 〉Tt + [W (τ(T))−W (τ(t))]. (C.21)

C.4. OPTION TO EXCHANGE ASSESTS 251

Now assume that the volatility τ(s) is nonstochastic and condition on Ft.
Given Ft and hence Y (t) the variable Y (T) is normal with mean
Y (t)− 2−1〈Y 〉Tt and variance Σ2(t, T) = τ(T)− τ(t) = 〈Y 〉Tt . With this the
usual computation shows that the expectation (C.18) is given by

EP
t [h] = S1(t)N(d+)−KS2(t)N(d−), where (C.22)

d± = Σ(t, T)−1log(Q(t)/K)± 1
2
Σ(t, T) and

Σ(t, T) =
√
〈Y 〉Tt . (C.23)

Note carefully that we have assumed that the Sj are local martingales under
P . Forward prices under the forward martingale measure P and discounted
prices under the spot martingale measure P have this property but cash
prices do not. Since P can be regarded as a numeraire measure associated
with the numeraire 1 the expectation (C.22) is then also the martingale price
of the option to exchange assets.

Of course the above reasoning is only correct if the volatility τ(s) =
〈Y 〉s is deterministic. Otherwise W (τ(T))−W (τ(t)) need not be a normal
variable. However equation (C.22) can be used as an approximation in
the case of stochastic volatility. Wether or not it is a good approximation
depends on the volatility τ(s). We do have to make an adjustment though:
the quantity Σ(t, T) to be used in (C.22) must be known by time t (when
the formula is used), that is, it must be Ft-measurable. More rigorously:
since the left hand side of (C.22) is Ft-measurable so must be the right hand
side.

We can think of Σ(t, T) as a forecast at time t for the volatility of returns
on the quotient Q = S1/S2 on the interval [t, T] to option expiry.

In short: to get an approximation for EP
t [h] under stochastic volatility

we use (C.22) where Σ2(t, T) is an Ft-measurable estimate of the quadratic
variation 〈Y 〉Tt (a constant in case t = 0). There is no reason to believe that
this works in general but it does work in the cases which we have in mind
(approximate caplet, swaption and bond option prices).

We should note that the volatility τ(s) = 〈Y 〉s does not change if we
switch from some probability P to an equivalent probability P0. This is
useful since P0 will be the probability associated with a change of numeraire
designed to make the Sj local martingales. We can then still compute the
volatility τ(s) in the original probability P . We will apply this in cases
where Y is a deterministic function of other state variables and we will use
Ito’s formula to estimate the quadratic variation 〈Y 〉Tt , see C.5.

252 APPENDIX C. MARTINGALE PRICING

Simplified derivation in case of deterministic volatility. The usual approach
assumes that Q follows a dynamics

dQ(t) = Q(t)σ(t) · dW (t)

where W is a Brownian motion under P2 and the volatility σ(t) is deter-
ministic. The dynamics is driftless since Q is a local martingale under P2.
From this it follows that the logarithm Y = log(Q) satisfies

dY (s) = −1
2
σ2(s)dt+ σ(s) · dW (s).

Integration over the interval [t, T] yields

Y (T) = Y (t)− 1
2
Σ2(t, T) +

∫ T

t
σ(s) · dW (s),

where

Σ2(t, T) =
∫ T

t
σ2(s)ds.

Since σ(s) is deterministic the integral
∫ T
t σ(s) · dW (s) is a mean zero nor-

mal variable with variance Σ2(t, T). With this information the expectation
(C.22) can be computed.

Finally we have to note only that the quadratic variation 〈Y 〉 satisfies
d〈Y 〉t = σ2(t)dt from which it follows that Σ2(t, T) is the quadratic variation
of Y on the interval [t, T].

C.5 Ito’s formula

This is a brief review of the manipulation of stochastic differentials and Ito’s
formula for Ito integrals:

X(t) =
∫ t

0
ν(s)dW (s),

where W is an n-dimensional Brownian motion and ν(s) a W -integrable
n× n matrix valued process with rows νi(s). Let

Xi(t) =
∫ t

0
νi(s) · dW (s)

denote the components of X. Then the covariation 〈Xi, Xj〉 satisfies

d〈Xi, Xj〉s = νi(s) · νj(s)ds.

C.5. ITO’S FORMULA 253

Let f = f(x), x ∈ Rn be a twice continuously differentiable function. Then
Ito’s formula states that

f(X(t)) = A(t) +
n∑

i=1

∫ t

0

∂f

∂xi
(X(s))dXi(s),

where A(t) is a continuous bounded variation process, in fact

A(t) = f(X(0)) +
1
2

n∑
i,j=1

∫ t

0

∂2f

∂x2
i

(X(s)) νi(s) · νj(s)ds.

The continuous bounded variation process A does not contribute to the
quadratic variation of X and using the rule〈∫ t

0
Hi(s)dXi(s),

∫ t

0
Hj(s)dXj(s)

〉
=

∫ t

0
Hi(s)Hj(s)d〈Xi, Xj〉s

=
∫ t

0
Hi(s)Hj(s) νi(s) · νj(s)ds

(from the defining property of the stochastic integral) combined with the
bilinearity of the covariation bracket 〈·, ·〉 we obtain

〈f(X)〉t = 〈f(X), f(X)〉t =
∫ t

0

∑n

i,j=1

∂f

∂xi
(X(s))

∂f

∂xj
(X(s)) νi(s) · νj(s)ds.

254 APPENDIX C. MARTINGALE PRICING

Appendix D

Optional Sampling Theorem

D.1 Optional Sampling Theorem

Let Xt, t = 0, 1, . . . , T , be a sequence of random variables adapted to the
filtration (Ft)t∈[0,T], that is, the Ft form an increasing chain of σ-fields and
each Xt is Ft-measurable. Then the sequence X is called a supermartingale
(with respect to the filtration (Ft)) if it satisfies Et (Xt+1) ≤ Xt, for all
t < T , equivalently

E [1A(Xt+1 −Xt)] ≤ 0, for all t < T and A ∈ Ft. (D.1)

Recall also that an optional time τ (for the filtration (Ft)) is a random
variable with values in { 0, 1, . . . , T } such that the event [τ ≤ t] is Ft-
measurable, for each t ∈ [0, T].

Theorem 1 Assume that Xt, t = 0, 1, . . . , T , is a supermartingale and let
τ and ρ be optional times with values in [0, T] satisfying ρ ≥ τ . Then
E(Xρ) ≤ E(Xτ).

Proof. Recall that Xρ is defind as (Xρ)(ω) = Xρ(ω)(ω), for each state ω in
the probability space. For such a state ω we have

(Xρ −Xτ)(ω) =
∑ρ(ω)−1

t=τ(ω)
Xt+1(ω)−Xt(ω).

This can be rewritten as

Xρ −Xτ =
∑

t<T
1[τ≤t<ρ](Xt+1 −Xt).

Here the event [τ ≤ t < ρ] = [τ ≤ t] ∩ [ρ ≤ t]c is Ft-measurable, for each
t < T . The result now follows by taking expectations and using (D.1).

255

256 APPENDIX D. OPTIONAL SAMPLING THEOREM

Appendix E

Notes on the C++ code

We conclude with some notes on the C++ code and a survey of the C++
classes.

E.1 Templates

We have already seen in (2.7) how the straightforward use of templates can
reduce the size of the code while increasing its scope. Templates can also
be essential if we have to avoid virtual functions because of performance
considerations. A virtual function call carries a small overhead. Usually
the function itself does enough work to make this overhead insignificant by
comparison.

On occasion however this is not the case. Suppose for example that we
want to design a matrix class. Only the minimum amount of memory will
be allocated for each matrix type. For example an upper triangular matrix
of dimension n will allocate a triangular array of Reals

Real** data=new Real*[n];
for(int i=0;i<n;i++)data[i]=new Real[n-i];

and define a subscripting operator

Real& operator()(int i, int j){ return data[i][j-i]; }

A square matrix by comparison will allocate a rectangular array

Real** data=new Real*[n];
for(int i=0;i<n;i++)data[i]=new Real[n];

and define a subscripting operator

257

258 APPENDIX E. NOTES ON THE C++ CODE

Real& operator()(int i, int j){ return data[i][j]; }

With the exception of these differences these matrix classes can share a large
amount of code. In a classical inheritance hierarchy both classes UpperTrian-

gularMatrix and SquareMatrix would inherit from a common base Matrix which
factors out the common code and implements it in terms of a few pure vir-
tual functions which account for the differences of the concrete subclsses.
The subscripting operator

class Matrix {

virtual Real& operator()(int i, int j) = 0;

};

is one of these virtual functions. Unfortunately this operator does very little
and is performance critical. Looking at the above definitions it is a prime
candidate for inlining but virtual functions cannot be inlined since it is not
known at compile time which code actually will be called upon.

Consequently the above approach is not a good idea. Instead we make
Matrix a class template which inherits from its template parameter

template<class MatrixBase>
class Matrix : public MatrixBase {

// class body

};

The characteristics which are unique to each matrix type are defined in the
template parameter MatrixBase such as

class Square {

int n; // dimension
Real** data;

Square(int dim) : n(dim), data(new Real*[dim])
{

for(int i=0;i<n;i++)data[i]=new Real[n];
}

Real& operator()(int i, int j){ return data[i][j]; }

};

E.1. TEMPLATES 259

class UpperTriangular {

int n; // dimension
Real** data;

UpperTriangular(int dim) : n(dim), data(new Real*[dim])
{

for(int i=0;i<n;i++)data[i]=new Real[n-i];
}

Real& operator()(int i, int j){ return data[i][j-i]; }

};

followed by definitions

typedef Matrix<Square> SquareMatrix;
typedef Matrix<UpperTriangular> UpperTriangularMatrix;

The classes SquareMatrix and UpperTriangularMatrix define concrete types with-
out a common base class and the subscripting operator is nonvirtual and
will be inlined.

Function templates have yet another very useful feature: a template
function is instantiated only if it used (called) somewhere. If this does not
occur the building blocks (classes and class members) referred to in the
definition of the function template need not be declared anywhere.

To make clear how this can be an advantage let us look at an example:
suppose we want to implement various options which can be priced either
with Monte Carlo path simulation or in a lattice. To enable Monte Carlo
pricing the option must implement methods to compute a new path of the
underlying assets and a payoff along this path:

void newPath();
Real payoffAlongCurrentPath();

To enable lattice pricing the option has to implement a method computing
the payoff at a node of suitable type

Real payoffAtNode(Node* node);

There is an immediate difficulty: different options will use nodes of different
types so that Node must be the interface to all types of nodes. This interface
has to be sufficiently rich to allow all types of options to compute their payoff

260 APPENDIX E. NOTES ON THE C++ CODE

relying only on functions provided by the interface. All concrete node types
will then have to implement the entire interface and that means that each
node type will have to implement functions which are not appropriate for
its type. An akward way of dealing with this is to provide empty default
implementations in the interface class Node which do nothing but inform the
user that the function is not implemented and then kill the program:

Real
Node::bondPrice(Bond* bond)
{

cout << “Node::bondPrice(Bond*): << endl;
cout << “Not implemented in this generality. Terminating.;
exit(1);

}

These functions can then be overridden selectively as appropriate. With
this we might now try some free standing functions defined in a file called
Pricing.cc:

Real
monteCarloPrice(Option* theOption, int nPath)
{

Real sum=0.0;
for(int i=0;i<nPath;i++){

theOption→newPath();
sum+=theOption→payoffAlongCurrentPath();

}
return sum/nPath;

}

Real
latticePrice(Lattice* theLattice, Option* theOption)
{

// process all nodes of universal base type Node
Node* currentNode = ...;
Real payoff = theOption→payoffAtNode(node);
....

}

When the compiler sees this it will look for definitions of the classes Option,

Lattice and Node and of all the member functions which are called above such
as:

E.1. TEMPLATES 261

Option::newPath();
Option::payoffAlongCurrentPath();
Option::payoffAtNode(Node* node);

as well as any member functions of Lattice and Node which are referred to and
not shown explicitly. Presumably all this will be defined in headers Lattice.h,
Option.h, Node.h and these headers will have to be included in Pricing.cc.

The problem here is that we have to have common interfaces Lattice,
Option and Node which mold all the different and dissimilar types of lattices,
options and nodes into one shape and this will inevitably cause much ak-
wardness. The solution is to parametrize the above functions by the type of
Option and Lattice and make them function templates instead:

template<class Option>
Real monteCarloPrice<Option>(Option* theOption, int nPath)
{

Real sum=0.0;
for(int i=0;i<nPath;i++){

theOption→newPath();
sum+=theOption→payoffAlongCurrentPath();

}
return sum/nPath;

}

template<class Lattice, class Option>
Real latticePrice<Lattice,Option>(Lattice* theLattice, Option* theOption)
{

// the type of node used in theLattice
typedef typename Lattice::NodeType NodeType;
// process all nodes of the relevant type NodeType
NodeType* currentNode = ...;
Real payoff = theOption→payoffAtNode(node);
....

}

Here Lattice and Option are merely typenames signifying unspecified types.
No classes Lattice and Option or any other classes with member functions
which are called in the body of monteCarloPrice and latticePrice need be defined
anywhere. Nothing has to be included in Pricing.cc.

Of course if such classes are not defined then the function templates
monteCarloPrice and latticePrice will be quite useless. The advantage of the
new approach is that we can define lattice classes, option classes and node

262 APPENDIX E. NOTES ON THE C++ CODE

classes (not necessarily called Lattice, Option and Node) which do not conform
to common interfaces and have no common base classes. These classes do not
have to implement the full functionality needed to instantiate both monte-

CarloPrice and latticePrice. Instead we can implement functionality selectively.
For example we can define a type of lattice

class EquityLattice {

typedef EquityNode NodeType;
....

};

using nodes of type EquityNode and an option

class EquityCall {

payoffAtNode(EquityNode* node){....}
....

};

which knows how to compute its payoff at an EquityNode (instead of a general
Node). If the classes EquityLattice and EquityCall provide the members referred
to in the body of latticePrice we can make a function call

latticePrice(theLattice,theOption);

with theLattice of type EquityLattice* and theOption of type EquityCall*. The
compiler deduces the types of the theLattice and theOption automatically,
substitutes EquityLattice for Lattice and EquityCall for Option, looks for the
definition of the classes EquityLattice and EquityCall and checks wether all
class members referred to in the body of latticePrice are defined by these
classes. If everything is found the function latticePrice is instantiated.

The type EquityOption does not have to declare any of the member func-
tions needed in the body of monteCarloPrice.

This provides us with an enormous degree of flexibility. We can define
options which have a Monte Carlo price but no lattice price, options which
have a lattice price but no Monte Carlo price and options which have both.
Lattices can be built using dissimilar types of nodes, the various options can
work with some node types but not others and the various types of lattices,
nodes respectively options do not have to conform to common interfaces
or have common base classes. Yet combinations of them can be used to

E.2. THE C++ CLASSES 263

instantiate the function latticPrice to compute the price of a particular type
of option in a particular type of lattice using a particular type of node. All
that’s necessary is that the concrete types provide the building blocks used
in latticePrice.

The use of templates in program design is highly developed. The inter-
ested reader is referred to the books [JV02] and [Ale01] and the papers
http://www.oonumerics.org/blitz/papers/.

E.2 The C++ classes

The C++ code focuses almost entirely on implementations of the Libor
Market Model and the pricing of interest rate derivatives. Prices are com-
puted only at time zero and Monte Carlo pricing is selfcontained and does
not use the classes RandomVariable or ControlledRandomVariable. Routines for
computing Monte Carlo prices and prices in a lattice are defined in the file
Pricing.h.

Four types of Libor Market Models (LMMs) are implemented which differ
in the type of algorithm used in the simulation: PredictorCorrectorLMM, Fast-

PredictorCorrectorLMM (see 6.5.1) and DriftlessLMM and LowFactorDriftlessLMM

(see 6.8). Driftless simulation involves no approximation and is nearly 3
time faster than predictor-corrector simulation and is thus the preferred ap-
proach. The class LiborMarketModel is the interface to these concrete types
of LMMs.

The information about the factor loadings (6.4) is encapsulated in the
class LiborFactorLoading. In the case of a predictor-corrector simulation these
are the factor loadings (3.11) of the Libor logarithms log(Xj) while in the
case of a driftless simulation they are the factor loadings of the state variables
log(Uj) (6.8).

The factor loadings in turn depend on the volatility surface and volatility
scaling factors cj (6.11.1) and the log-Libor correlations (6.11.2). Three dif-
ferent types of volatility surface are implemented in the file VolatilityAndCorre-

lation.h: constant (CONST), Jaeckel-Rebonato (JR) and our own (M). Two
types of correlations are implemented: Jaeckel-Rebonato (JR) and Coffee-
Shoenmakers (CS). These can be combined arbitrarily to yield six types of
Libor factor loadings.

In addition to the factor loadings only the initial Libors Xj(0 and tenor
structure (Tj)n

j=0 are necessary to fully specify a Libor market model. For
simplicity this information is also aggregated in the class LiborFactorLoading.

To make it easy to set up tests the classes LiborFactorLoading and LiborMar-

264 APPENDIX E. NOTES ON THE C++ CODE

ketModel contain static methods sample() which return a LiborFactorLoading re-
spectively LiborMarketModel with all initial Libors initialized as Xj(0) = 0.04,
randomly initialized volatility scaling factors cj and volatility surface and
correlation structure as indicated in the parameter list. Every type of Libor
market model can be configured and then be used to compute option prices.

The following options are implemented: caplets, swaptions, calls on
bonds and Bermudan swaptions. It is easy to implement others (see for
example the Java code). Monte Carlo pricing is available in all LMMs and
lattice pricing in two and three factor lattices is available in driftless LMMs
with a constant volatility surface. Approximate analytic prices are computed
for all options except Bermudan swaptions.

Pricing routines which compute prices of at the money options are im-
plemented in the file TestLMM.h. These are based on the sample LMMs
returned by the function LiborMarketModel::sample(parameters). If an analytic
price is implemented a relative error is reported as a deviation from the
analytic price. Note however that the analytic price is itself approximate so
that any other of the prices may be closer to the real price.

Lattices and Monte Carlo pricing are set up so that they can be applied
to options on other types of underlyings (asset baskets for example) but no
such options are implemented.

In addition to this there are classes implementing random objects, ran-
dom variables and vectors as well as stochastic processes, and stopping times.
Examples are driftless Ito processes (especially Brownian motion in any
dimension). The most interesting application here is the solution of the
Dirichlet problem on a Euclidean region in any dimension using Brownian
motion.

Bibliography

[ABM97] D. Gatarek A. Brace and M. Musiela. The market model of in-
terest rate dynamics. Mathematical Finance, 7(2):127–155, 1997.

[Ale01] A. Alexandrescu. Modern C++ Design. Addison Wesley, 2001.

[Bri] D. Brigo. A note on correlation and rank reduction.

[CHJ] P. Jaeckel C.J. Hunter and M. Joshi. Drift approximation in a
forward rate based LIBOR market model.

[CS99] B. Coffey and J. Schoenmakers. Libor rate models, related deriva-
tives and model calibration, 1999.

[CS00] B. Coffey and J. Schoenmakers. Stable implied calibration of
a multi-factor LIBOR model via a semi-parametric correlation
structure, 2000.

[CZ02] Goukasian Cvitanic and Zapatero. Hedging with monte carlo sim-
ulation, 2002.

[DHM92] R. Jarrow D. Heath and A. Morton. Bond pricing and the term
structure of interest rates, a new methodology. Econometrica,
60(1):77–105, 1992.

[DS94] F Delbaen and W Schachermayer. A general version of the
fundamental theorem of asset pricing. Mathematische Annalen,
300:463–520, 1994.

[HK01] M Haugh and L Kogan. Pricing American options: A duality
approach. 2001.

[Jae02] P. Jaeckel. Monte Carlo Methods in Finance. Wiley, 2002.

265

266 BIBLIOGRAPHY

[Jam97] F. Jamshidan. Libor and swap market models and measures.
Finance and Stochastics, 1:293–330, 1997.

[JR] P. Jaeckel and R. Rebonato. The most general methodology to
create a valid correlation matrix for risk management and option
pricing purposes.

[JT] M. Joshi and J. Theis. Bounding Bermudan swaptions in a swap-
rate market model.

[JV02] N. Josuttis and D. Vandevoorde. C++ Templates: The Complete
Guide. Addison Wesley, 2002.

[KS96] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Cal-
culus. Springer, 1996.

[KS98] I. Karatzas and S. Shreve. Methods of Mathematical Finance.
Springer, 1998.

[Mey02a] M. J. Meyer. http://martingale.berlios.de/Martingale.html, 2002.

[Mey02b] M. J. Meyer. Weights for discrete hedging. preprint, 2002.

[Nie92] H. Niederreiter. Random Number Generation And Quasi Monte
Carlo Methods. Siam, 1992.

[Rog01] L Rogers. Monte carlo valuation of American options, 2001.

[Sch93] M. Schweitzer. Variance optimal hedging in discrete time. working
paper, University of Bonn, 1993.

[TR99] J. Tsitsiklis and B. Van Roy. Optimal stopping of Markov pro-
cesses, Hilbert space theory. IEEE Transacions on Automatic
Control, 44:1840–1851, 1999.

Index

analytic deltas, 118
analytic minimum variance deltas,

126
analytic quotient deltas, 126
antithetic path, 67
antithetic paths, 141
Asset, 67
asset

multidimensional, 138
asset price, dynamics, 65

basket, 138
time step, 140

beta coefficient, 24
betaCoefficient, 26
Black-Scholes asset, 73
branch, 3, 5
Brownian motion

multidimensional, 59
one dimensional, 56

BrownianMotion, 56

calibration
Libor process, caplets, 167
Libor process, experiments, 173
Libor process, swaptions, 171

Call, 87
call

European, formulas, 126
call, European, 87
callable reverse floater, 179
caplet, 174

Central Limit Theorem, 9
Cholesky

factorization, 140
root, 140

CompoundPoissonProcess, class, 53
conditional expectation, 12
conditioning, 32, 33

Markov chain, 50
confidence, 10, 13
ConstantVolatilityAsset, 74
continuation region, 98
continuation value, 49, 93

Markov chain, 50
continued bisection, 42
control variate, european option,

66
control variates, 24

callable reverse floater, 179
caplet, 177
general Libor derivative, 175
reverse floater, 178
swaption, 177
trigger swap, 179

controlledDiscountedMonteCarloPrice,
85

ControlledRandomVariable, class,
25

correlation, 21, 138
correlation base, 159
correlationWithControlVariate, 28
covariance, 21
currentDiscountedPayoff, 83

267

268 INDEX

delta
analytic, 118
analytic approximation, 125
analytic minimum variance, 126
analytic quotient, 126
minimum variance, 119
Monte Carlo, 123
quotient, 124

delta hedging, 118
Dirichlet’s problem, 60
DirichletProblem, class, 60
discount factor, 63
discounted price, 63
discountedGainsFromTrading, 110
discountedHedgeGain, 129
discountedMonteCarloPrice, 85
discountedPayoff, 83
dividend reduction factor, 71
dividends, 65
drawdown, 112
drift, 65
duality

American option price, 94
upper bounds, 94

empirical
distribution, 16
random variable, 17

equidistributed, 183
exercise policy

optimization, 103
exercise strategy, 91

construction, 97
optimal, 92

expectation, 3
iterated conditional, 50

factor
loading, 138
risk, 138

first exit time, 36, 58
forward martingale mesure, 150
forward price, 71

gains from trading, 6, 107
gambler’s fortune, 39
Greeks, 143

hedge, 7
hedge weights, 7
Hedge, class, 127
hedging, 118

delta, 118
implementation, 127
multiasset, 141

histogram, 17
hitting time, 36, 58

information, 2, 5, 11, 31

Law of Large Numbers, 9
Libor

forward, 148
log-Gaussian approximation, 155
market model, 147
process, 148
X0-approximation, 155
X1-approximation, 156

Libor process
calibration to caplets, 167
calibration to swaptions, 171
concrete correlation structure,

166
concrete factor loading, 164
correlation base, 159
correlation structure, 159
dynamics, 149, 151
dynamics, discretization, 161
factor loadings, 158

Libor.LiborProcess.Calibrator, class,
173

INDEX 269

low discrepancy sequence, 184
definition, 185

market probability, 64
market, single asset, 63
Markov chain, 40

conditioning, 50
optimal stopping, 50
stationary finite state, 41

MarkovChainApproximation, 77
martingale pricing, 64
martingale pricing formula, 82
minimum variance deltas, 119
minimumVarianceDelta, 121
Monte Carlo

covariance, 23
expectation, 9
method, 10
variance, 10

Monte Carlo deltas, 123
monteCarloDelta, 124
multiasset, 138

time step, 140

newDiscountedGainsFromTrading,
109

newPathBranch, 76
newWienerIncrements, 75
no free lunch with vanishing risk,

150
numeraire asset, 63

optimal stopping, 48
Markov chain, 50

option, 6
Option, 82
option, American, 89
option, European, 81
option, path independent, 81
optional time, 5, 36

parameter optimization, 99
path, 4, 31

antithetic, 141
functional, 33

path, asset price, 69
PathFunctional, class, 33
pathSegment, 37
Poisson

compound process, 52
variable, 52

predictor-corrector algorithm, 161
probability

market, 7
risk neutral , 7
transition, 40

pureExercise, 101

quotient deltas, 124

random time, 36
random variable, 2
random vector, 4, 21
random walk, 38
RandomVariable, class, 12
Region nD, class, 58
return, 65
return process, 139
reverse floater, 178
risk factor, 138
risk free bond, 63
risk neutral probability, 64
risky asset, 63
ruin

gambler’s, 39
insurance, 54

sample
mean, 10
variance, 10

sampling a process, 5
SFSMarkovChain, class, 42

270 INDEX

short rate, 63
simulationInit, 75
star discrepancy, 184
stochastic process, 4, 31

compound Poisson, 52
sampledAt, 37
sampling at optional time, 36
vector valued, 57

StoppableMarkovChain, class, 51
stopping time, 5, 36
stopping time, optimal, 48
StoppingTime, class, 36
supermartingale, 91
swap rates, 168

aggregate volatility, 171
SyntheticData, class, 173

tenor structure, 148
time, 12

first exit, 36, 58
hitting, 36, 58
optional, 36
random, 36
stopping, 36
stopping optimal, 48

time step, 31
multiasset, 140

time, continuous, 64
time, discrete, 64
trading strategy, 6, 107

multiasset, 141
weight, 107

TradingStrategy, class, 108
transition probability, 40
trigger, 70
trigger swap, 179

uniformly distributed, 183

variance reduction, 24
VectorBrownianMotion, class, 59

volatility, 65, 138

weights
linear equations, 142
trading strategy, 107

X0-approximation, 155
X1-approximation, 156

zero coupon bond, 148
ff, 163

