
Lecture-V

Stochastic Processes and the Basic Term-Structure Equation

1 Stochastic Processes

Any variable whose value changes over time in an uncertain way is called a Stochastic Process.
Stochastic Processes can be classi�ed as DISCRETE time or CONTINUOUS time. A type
of process that is of extensive interest in Finance is the Markov Process. An example of the
Markov process is the well known Brownian Motion also called the Wiener Process.

1.1 Markov Process

A Markov Process is a particular type of stochastic process where only the present value of
a variable is relevant for predicting the future. The past history of the variable and the way
in which the present has emerged from the past are irrelevant.

1.2 Wiener Process

A Wiener process is a particular type of Markov process. The behavior of a variable Z which
follows a Wiener process, can be understood by considering the changes in its value in small
intervals of time. Consider a small interval of time �t and de�ne �Z as the change in Z

during �t: There are two basic properties �Z must have for Z to be following a Wiener
process.

1. �Z is related to �t by the equation �Z = �
p
�t where � � N(0; 1)

2. The values of �Z for any two di�erent short intervals of time �t are independent.
Property 2 implies that Z is a Markov Process. Now

� E(�Z) = E
�
�
p
�t
�
=
p
�tE(�) = 0

� V (�Z) = V
�
�
p
�t
�
= �tV (�) = �t

Property 2 implies that Z is a Markov Process. Let us now consider the change in Z for a
relatively longer period of time. This could be broken up into smaller intervals of �t: Let
there be N intervals. Then N = T

�t
: Thus

Z(T )� Z(0) =
NX
i=1

�i
p
�t
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and

E[Z(T )� Z(0)] =
NX
i=1

p
�tE(�i) = 0

V [Z(T )� Z(0)] =
NX
i=1

�tV (�i) = N�t = T

A function is

� o(�t) if lim�t!0
f(�t)
�t

�! 0

� O(�t) if lim�t!0
f(�t)
�t

�! constant

) V [(�Z)2] = V [�2�t] = [�t]2| {z }
o(dt)

cz }| {
V [�2]

where c is a constant.

1.3 Generalised Wiener Process

A generalized Wiener process for a variable x can be de�ned in terms of dZ as follows:

dx = adt+ bdZ

where a and b are constants.

1.4 Ito's Process

This is a generalized Wiener process where the parameters a and b are functions of the value
of the underlying variable x and time t: Algebraically it can be written as

dx = a(t; x)dt + b(t; x)dZ

where a(t; x) is called the drift rate and b2(t; x) is called the variance rate.

1.5 Ito's Lemma

Consider the Ito's process
dx = a(t; x)dt + b(t; x)dZ

The simplest form of Ito's lemma is given by:

dG =
@G

@x
dx+

1

2

@2G

@x2
(dx)2 +

@G

@t
dt

Ito's Lemma shows that a function G of t and x follows the process

dG =

 
@G

@t
+ a

@G

@x
+

1

2
b2
@2G

@x2

!
dt+

@G

@x
bdZ

where dZ is the same Wiener process and G also follows an Ito process with the given drift
and variance rates.
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1.6 Some examples of Stochastic Integration

1. If dX(t) = �(X(t); t)dt+ �(X(t); t)dZ(t) then

)
Z t

0
dX(v) =

Z t

0
�(X(v); v)dv +

Z t

0
�(X(v); v)dZ(v)

) X(t) = X(0) +
Z t

0
�(X(v); v)dv +

Z t

0
�(X(v); v)dZ(v)

2. If

) X(t) = X(0) +
Z t

0
�(X(v); v)dv +

Z t

0
�(X(v); v)dZ(v)

There is no t contained in � and �: Then

) dX(t) = �(X(t); t)dt+ �(X(t); t)dZ(t)

3. If

X(t) = X(0) +
Z t

0
�(X(v); v; t)dv +

Z t

0
�(X(v); v; t)dZ(v)

Then

) dX(t) = �(X(t); t; t)dt+ �(X(t); t; t)dZ(t) +

�Z
t

0

@�(X(v); v; t)

@t
dv +

Z
t

0

@�(X(v); v; t)

@t
dZ(v)

�
dt

2 Vasicek

A general form of term structure models was proposed by Vasicek in 1977. He made three
assumptions which are:

1. the spot rate follows a continuous Markov process

2. the price P (t; s) of a discount bond is determined by the assessment at time t; of the
segment r(�); t � � � s of the spot rate process over the term of the bond

3. the market is e�cient; that is, there are no transactions costs, information is available
to all investors simultaneously andevery investor acts rationally.

The Markov property implies that the spot rate process is characterized by a single state
variable namely its current value. Processes that are Markov and Continuous are called
di�usion processes.We now formally present the model as

dr = �r(t; r)dt+ �r(t; r)dZ (1)

where Z(t) is a Wiener process with incremental variance dt: The functions �r and �r are
the instantaneous drift and variance respectively of the process r: All the models we study
in this section of the course are variations of the above model. In the Merton as is the case
here �r is constant. In the CIR and Courtadon however, �r may depend on r(t).
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2.1 The Term Structure Equation

Assumption (2) implies that P = P (t; r): Using Ito's lemma to di�erentiate this expression
we get

dP =

 
@P

@t
+ �r

@P

@r
+

1

2
�2r
@2P

@r2

!
dt+

@P

@r
�rdZ

dP = P�p(t; r)� P�p(t; r)dZ

where �p and �p are the expressions given in the equation above. Hence �p and �2p are
the mean and variance respectively of the instantaneous rate of return t on a bond with
maturity date s; given that the current spot rate is r: Now consider an investor who at time
t issues an amount W1 of a bond with maturity date s1 and simultaneously buys an amount
W2 maturing at time s2: The total worth W = W2 �W1 of the portfolio thus constructed
changes over time according to the accumulation equation

dW = (W2�p(t; s2)�W1�p(t; s1))dt� (W2�p(t; s2)�W1�p(t; s1))dZ

Let

W1 =
W�p(t; s2)

�p(t; s1)� �p(t; s2)

W2 =
W�p(t; s1)

�p(t; s1)� �p(t; s2)

substituting these values in the equation above we get

dW =
W [�p(t; s2)�p(t; s1)� �p(t; s1)�p(t; s2)]

�p(t; s1)� �p(t; s2)
dt

Since the above equation does not have a random term, the investor's portfolio is riskless.
Hence the portfolio should provide a riskless return. Hence

dW =Wr(t)dt

�p(t; s2)�p(t; s1)� �p(t; s1)�p(t; s2)

�p(t; s1)� �p(t; s2)
= r(t)

�p(t; s2)�p(t; s1)� �p(t; s1)�p(t; s2) = r(t)[�p(t; s1)� �p(t; s2)]

�p(t; s2)�p(t; s1)� r(t)�p(t; s1) = �p(t; s1)�p(t; s2)� r(t)�p(t; s2)

�p(t; s2)� r(t)

�p(t; s2)
=

�p(t; s1)� r(t)

�p(t; s1)

Excess return divided by standard deviation should be equal across all maturities. Since the
above equation is valid for arbitrary maturity dates s1; s2 it follows that the ratio

�p(t;s)�r(t)
�p(t;s)

is

independent of s: Let q(t; r) denote the common value of such ratio for a bond of a maturity
date given that the current spot rate is r(t) = r: Then

q(t; r) =
�p(t; s; r)� r(t)

�p(t; s; r)
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where s � t: The quantity q(t; r) is called the market price of risk as it speci�es the increase
in expected instantaneous rate of return on a bond per an additional unit of risk. We will
now use the above equation for the price of a discount bond.

q(t; r) =
�p(t; s; r)� r(t)

�p(t; s; r)

�p(t; s; r)� r(t) = �p(t; s; r)q(t; r)

Substituting �p and �p from the term structure equation we get

1

P (t; s; r)

"
@

@t
+ �r

@

@r
+

1

2
�2r

@2

@r2

#
P � r(t) = � 1

P
�r
@P

@r
q(t; r)

@P

@t
+ �r

@P

@r
+

1

2
�2r
@2P

@r2
� rP = ��r

@P

@r
q(t; r)

@P

@t
+ �r

@P

@r
+

1

2
�2r
@2P

@r2
+ �r

@P

@r
q(t; r)� rP = 0

@P

@t
+ [�r + �rq(t; r)]

@P

@r
+

1

2
�2r
@2P

@r2
� rP = 0 (2)

for t � s

This is the basic equation for pricing of discount bonds in a market characterised by our
three assumptions. This equation is called the TERM STRUCTURE EQUATION(TSE).
All single factor term structure models are special cases of equation (2): The TSE is a partial
di�erential equation for P (t; s; r):Once the character of the spot rate process r(t) is described
and the market price of risk q(t; r) speci�ed, the bond prices are obtained by solving the
TSE subject to the boundary condition P (s; s; r) = 1: The term structure R(t; T ) of interest
rates is then readily evaluated from the equation

R(t; T ) = � 1

T
logP (t; t+ T; r(t))

2.2 Stochastic Representation Of The Bond Price

Solutions of stochastic di�erential equations of the type such as the TSE can be represented
in an integral form in terms of the underlying stochastic process. Such representation for
the bond price as a solution to the TSE and its boundary condition is as follows:

P (t; s) = Et exp
�
�
Z s

t
r(�)d� � 1

2

Z s

t
q2(�; r(�))d� +

Z s

t
q(�; r(�))dZ(�)

�

for t � s To prove the above de�ne

V (u) = exp
�
�
Z u

t
r(�)d� � 1

2

Z u

t
q2(�; r(�))d� +

Z u

t
q(�; r(�))dZ(�)

�

Now let us Ito di�erentiate the process P (u; s)V (u): Let f = PV and then df = d(PV )

d(PV ) =
@(PV )

@P
dP +

1

2

@2(PV )

@P 2
dP 2 +

@(PV )

@V
dV +

1

2

@2(PV )

@V 2
dV 2 +

@2(PV )

@P@V
dPdV
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Now
1

2

@2(PV )

@V 2
dV 2 = 0

and
1

2

@2(PV )

@P 2
dP 2 = 0

Hence

d(PV ) = V dP + PdV + dPdV

) d(PV ) = V
�
@P
@t

+ �r
@P
@r

+ 1
2
�r

@2P
@r2

�
du + V @P

@r
�2dZ + PV

�
�r � 1

2
q2
�
du + PV qdZ +

1
2
PV q2du+ V @P

@r
�pqdu

) d(PV ) = V
�
@P
@t

+ (�r + �rq)
@P
@r

+ 1
2
�2r

@2P
@r2
� rP

�
du+ PV qdZ + V @P

@r
�rdZ

d(PV ) = PV qdZ + V
@P

@r
�rdZ

by virtue of the TSE. Integrating from t to s and taking expectation yields

Et(P (s; s)V (s)� P (t; s)V (t)) = 0

because P (s; s) = 1; V (t) = 1 and P (t; s) = E[V (S)]: Hence proved.
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