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Chapter 1

Preface

These notes are intended for the introductory course ’Investerings- og Fi-
nansieringsteori’ given in the third year of the joint mathematics-economics
program at the University of Copenhagen. At this stage they are still far from
complete. The notes (the dominant part of which are written by DL) aim
to fill a gap between elementary textbooks such as Copeland and Weston1

or Brealey and Myers2, and more advanced books which require knowledge
of finance theory and often cover continuous-time modelling, such as Duffie3

and Campbell, Lo and MacKinlay4 and Leroy and Werner.5

Except for a brief introduction to the Black-Scholes model, the aim is to
present important parts of the theory of finance through discrete-time models
emphasizing definitions and setups which prepare the students for the study
of continuous-time models.

At this stage the notes have no historical accounts and hardly references
any original papers or existing standard textbooks. This will be remedied in
later versions but at this stage, in addition to the books already mentioned,
we would like to acknowledge having included things we learned from the
classic Hull 6, the also recommendable Luenberger7, as well as Jarrow and

1T. Copeland and F. Weston: Financial Theory and Corporate Policy
2Brealey and Myers: Principles of Corporate Finance.McGraw-Hill 4th ed. 1991.
3Duffie, D: Dynamic Asset Pricing Theory.

3rd ed. Princeton 2001.
4Campbell, J., A. Lo and A.C. MacKinlay: The Econometrics of Financial Markets.

Princeton 1997.
5LeRoy, S. L. and J. Werner: Principles of Financial Economics, Cambridge 2001.
6Hull, J.: Options, Futures and Other Derivative Securities. Prentice-Hall. 4th ed.

1999
7Luenberger, D., ”Investment Science”, Oxford, 1997.
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Turnbull8, and Jensen. 9

8Jarrow R. and S. Turnbull: Derivative Securities.Cincinnati: South-Western (1996).
9Jensen, B.A. Rentesregning. DJØFs forlag. 2001.



Chapter 2

Introduction

A student applying for student loans is investing in his or her human capital.
Typically, the income of a student is not large enough to cover living expenses,
books etc., but the student is hoping that the education will provide future
income which is more than enough to repay the loans. The government
subsidizes students because it believes that the future income generated by
highly educated people will more than compensate for the costs of subsidy,
for example through productivity gains and higher tax revenues.

A first time home buyer is typically not able to pay the price of the new
home up front but will have to borrow against future income and using the
house as collateral.

A company which sees a profitable investment opportunity may not have
sufficient funds to launch the project (buy new machines, hire workers) and
will seek to raise capital by issuing stocks and/or borrowing money from a
bank.

The student, the home buyer and the company are all in need of money
to invest now and are confident that they will earn enough in the future to
pay back loans that they might receive.

Conversely, a pension fund receives payments from members and promises
to pay a certain pension once members retire.

Insurance companies receive premiums on insurance contracts and deliv-
ers a promise of future payments in the events of property damage or other
unpleasant events which people wish to insure themselves against.

A new lottery millionaire would typically be interested in investing his or
her fortune in some sort of assets (government bonds for example) since this
will provide a larger income than merely saving the money in a mattress.

The pension fund, the insurance company and the lottery winner are all
looking for profitable ways of placing current income in a way which will
provide income in the future.

9
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A key role of financial markets is to find efficient ways of connecting
the demand for capital with the supply of capital. The examples above
illustrated the need for economic agents to substitute income intertemporally.
An equally important role of financial markets is to allow risk averse agents
(such as insurance buyers) to share risk.

In understanding the way financial markets allocate capital we must un-
derstand the chief mechanism by which it performs this allocation, namely
through prices. Prices govern the flow of capital, and in financial markets
investors will compare the price of some financial security with its promised
future payments. A very important aspect of this comparison is the riskiness
of the promised payments. We have an intuitive feeling that it is reason-
able for government bonds to give a smaller expected return than stocks in
risky companies, simply because the government is less likely to default. But
exactly how should the relationship between risk and reward (return on an
investment) be in a well functioning market? Trying to answer that question
is a central part of this course. The best answers delivered so far are in a set
of mathematical models developed over the last 40 years or so. One set of
models, CAPM and APT, consider expected return and variance on return
as the natural definitions of reward and risk, respectively and tries to answer
how these should be related. Another set of models are based on arbitrage
pricing, which is a very powerful application of the simple idea, that two
securities which deliver the same payments should have the same price. This
is typically illustrated through option pricing models and in the modelling
of bond markets, but the methodology actually originated partly in work
which tried to answer a somewhat different question, which is an essential
part of financial theory as well: How should a firm finance its investments?
Should it issue stocks and/or bonds or maybe something completely differ-
ent? How should it (if at all) distribute dividends among shareholders? The
so-called Modigliani-Miller theorems provide a very important starting point
for studying these issues which currently are by no means resolved.

A historical survey of how finance theory has evolved will probably be
more interesting at the end of the course since we will at that point under-
stand versions of the central models of the theory.

But let us start by considering a classical explanation of the significance
of financial markets in a microeconomic setting.

2.1 The Role of Financial Markets

Consider the definition of a private ownership economy as in Debreu (1959):
Assume for simplicity that there is only one good and one firm with pro-
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duction set Y . The ith consumer is characterized by a consumption set Xi,
a preference preordering �i, an endowment ωi and shares in the firm θi.
Given a price system p, and given a profit maximizing choice of production
y, the firm then has a profit of π(p) = p · y and this profit is distributed to
shareholders such that the wealth of the ith consumer becomes

wi = p · ωi + θiπ(p) (2.1)

The definition of an equilibrium in such an economy then has three seem-
ingly natural requirements: The firm maximizes profits, consumers maximize
utility subject to their budget constraint and markets clear, i.e. consumption
equals the sum of initial resources and production. But why should the firm
maximize its profits? After all, the firm has no utility function, only con-
sumers do. But note that given a price system p, the shareholders of the firm
all agree that it is desirable to maximize profits, for the higher profits the
larger the consumers wealth, and hence the larger is the set of feasible con-
sumption plans, and hence the larger is the attainable level of utility. In this
way the firm’s production choice is separated from the shareholders’ choice
of consumption. There are many ways in which we could imagine sharehold-
ers disagreeing over the firm’s choice of production. Some examples could
include cases where the choice of production influences on the consumption
sets of the consumers, or if we relax the assumption of price taking behavior,
where the choice of production plan affects the price system and thereby the
initial wealth of the shareholders. Let us, by two examples, illustrate in what
sense the price system changes the behavior of agents.

Example 1 Consider a single agent who is both a consumer and a producer.
The agent has an initial endowment e0 > 0 of the date 0 good and has to
divide this endowment between consumption at date 0 and investment in
production of a time 1 good. Assume that only non-negative consumption is
allowed. Through investment in production, the agent is able to transform
an input of i0 into f(i0) units of date 1 consumption. The agent has a
utility function U(c0, c1) which we assume is strictly increasing. The agent’s
problem is then to maximize utility of consumption, i.e. to maximize U(c0, c1)
subject to the constraints c0 + i0 ≤ e0 and c1 = f(i0) and we may rewrite
this problem as

max v(c0) ≡ U(c0, f(e0 − c0))

s.t. c0 ≤ e0

If we impose regularity conditions on the functions f and U (for example
that they are differentiable and strictly concave and that utility of zero con-
sumption in either period is -∞) then we know that at the maximum c∗0 we



12 CHAPTER 2. INTRODUCTION

will have 0 < c∗0 < e0 and v
′
(c∗0) = 0 i.e.

D1U(c∗0, f(e0 − c∗0)) · 1−D2U(c∗0, f(e0 − c∗0))f
′
(e0 − c∗0) = 0

where D1 means differentiation after the first variable. Defining i∗0 as the
optimal investment level and c∗1 = f(e0 − c∗0), we see that

f
′
(i∗0) =

D1U(c∗0, c
∗
1)

2U(c∗0, c
∗
1)

and this condition merely says that the marginal rate of substitution in pro-
duction is equal to the marginal rate of substitution of consumption.

The key property to note in this example is that what determines the
production plan in the absence of prices is the preferences for consumption
of the consumer. If two consumers with no access to trade owned shares in
the same firm, but had different preferences and identical initial endowments,
they would bitterly disagree on the level of the firm’s investment.

Example 2 Now consider the setup of the previous example but assume
that a price system (p0, p1) (whose components are strictly positive) gives
the consumer an additional means of transferring date 0 wealth to date
1 consumption. Note that by selling one unit of date 0 consumption the
agent acquires p0

p1
units of date 1 consumption, and we define 1 + r = p0

p1
. The

initial endowment must now be divided between three parts: consumption at
date 0 c0, input into production i0 and s0 which is sold in the market and
whose revenue can be used to purchase date 1 consumption in the market.

With this possibility the agent’s problem becomes that of maximizing
U(c0, c1) subject to the constraints

c0 + i0 + s0 ≤ e0

c1 ≤ f(i0) + (1 + r)s0

and with monotonicity constraints the inequalities may be replaced by equal-
ities. Note that the problem then may be reduced to having two decision
variables c0 and i0 and maximizing

v(c0, i0) ≡ U(c0, f(i0) + (1 + r)(e0 − c0 − i0)).

Again we may impose enough regularity conditions on U (strict concavity,
twice differentiability, strong aversion to zero consumption) to ensure that it
attains its maximum in an interior point of the set of feasible pairs (c0, i0)
and that at this point the gradient of v is zero, i.e.

D1U(c∗0, c
∗
1) · 1−D2U(c∗0, f(i∗0) + (1 + r)(e0 − c∗0 − i∗0))(1 + r) = 0

D2U(c∗0, f(i∗0) + (1 + r)(e0 − c∗0 − i∗0))(f
′
(i∗0)− (1 + r)) = 0
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With the assumption of strictly increasing U, the only way the second equality
can hold, is if

f
′
(i∗0) = (1 + r)

and the first equality holds if

D1U(c∗0, c
∗
1)

D2U(c∗0, c
∗
1)

= (1 + r)

We observe two significant features:
First, the production decision is independent of the utility function of

the agent. Production is chosen to a point where the marginal benefit of
investing in production is equal to the ’interest rate’ earned in the market.
The consumption decision is separate from the production decision and the
marginal condition is provided by the market price. In such an environment
we have what is known as Fisher Separation where the firm’s decision is
independent of the shareholder’s utility functions. Such a setup rests criti-
cally on the assumptions of the perfect competitive markets where there is
price taking behavior and a market for both consumption goods at date 0.
Whenever we speak of firms having the objective of maximizing sharehold-
ers’ wealth we are assuming an economy with a setup similar to that of the
private ownership economy of which we may think of the second example as
a very special case.

Second, the solution to the maximization problem will typically have a
higher level of utility for the agent at the optimal point: Simply note that
any feasible solution to the first maximization problem is also a solution
to the second. This is an improvement which we take as a ’proof’ of the
significance of the existence of markets. If we consider a private ownership
economy equilibrium, the equilibrium price system will see to that consumers
and producers coordinate their activities simply by following the price system
and they will obtain higher utility than if each individual would act without
a price system as in example 1.
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Chapter 3

Payment Streams under
Certainty

3.1 Security markets and arbitrage

In this section we consider a very simple setup with no uncertainty. There
are three reasons that we do this:

First, the terminology of bond markets is conveniently introduced in this
setting, for even if there were uncertainty in our model, bonds would be
characterized by having payments whose size at any date are constant and
known in advance.

Second, the classical NPV rule of capital budgeting is easily understood
in this framework.

And finally, the mathematics introduced in this section will be extremely
useful in later chapters as well.

A note on notation: If v ∈ RN is a vector the following conventions are
used:

• v ≥ 0 means that all of v′s coordinates are non-negative. This we would
also write as v ∈ RN+ ∪ {0} .

• v > 0 means that v ≥ 0 and that at least one coordinate is strictly
positive. This we would also write as v ∈ RN+ .

• v � 0 means that every coordinate is strictly positive. This we would
also write as v ∈ RN++.

Throughout we use v> to denote the transpose of the vector v. Vectors
without the transpose sign are always thought of as column vectors.

15
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We now consider a model for a financial market with T+1 dates: 0, 1, ..., T
and no uncertainty.

Definition 1 A security market consists of a pair (π,C) where π ∈ RN and
C is an N × T−matrix.

The interpretation is as follows: By paying the price πi at date 0 one
is entitled to a stream of payments (ci1, ..., ciT ) at dates 1, . . . , T. Negative
components are interpreted as amounts that the owner of the security has
to pay. There are N different payment streams trading. But by forming
portfolios, these payment streams can be bought or sold in any quantity and
they may be combined in portfolios to form new payment streams:

Definition 2 A portfolio θ is an element of RN . The payment stream gen-
erated by θ is C>θ ∈ RT . The price of the portfolio θ at date 0 is π · θ.

Note that allowing portfolios to have negative coordinates means that we
allow securities to be sold. We often refer to a negative position in a security
as a short position and a positive position as a long position. Before we
even think of adopting (π,C) as a model of a security market we want to
check that the price system is sensible. If we think of the financial market as
part of an equilibrium model in which the agents use the market to transfer
wealth between periods, we clearly want a payment stream of (1, ...., 1) to
have a lower price than (2, ..., 2). We also want payment streams that are
non-negative at all times to have a non-negative price. More precisely, we
want to rule out arbitrage opportunities in the security market model:

Definition 3 A portfolio θ is an arbitrage opportunity if it satisfies one of
the following conditions:

1. π · θ = 0 and C>θ > 0.

2. π · θ < 0 and C>θ ≥ 0.

The interpretation is that it should not be possible to form a portfolio at
zero cost which delivers non-negative payments at all future dates and even
gives a strictly positive payment at some date. And it should not be possible
to form a portfolio at negative cost (i.e. a portfolio which gives the owner
money now) which never has a negative cash flow in the future.

Definition 4 The security market is arbitrage-free if it contains no arbitrage
opportunities.
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To give a simple characterization of arbitrage-free markets we need a
lemma which is very similar to Farkas’ theorem of alternatives (proved in
Matematik 2OK using separating hyperplanes):

Lemma 1 (Stiemke’s lemma) Let A be an n ×m−matrix: Then precisely
one of the following two statements is true:

1. There exists x ∈ Rm++ such that Ax = 0.

2. There exists y ∈ Rn such that y>A > 0.

We will not prove this lemma here. But it is the key to our next theorem:

Theorem 2 The security market (π,C) is arbitrage-free if and only if there
exists a strictly positive vector d ∈ RT++ such that π = Cd.

In the context of our security market the vector d will be referred to as
a vector of discount factors. This use of language will be clear shortly.
Proof.

Define the matrix

A =


−π1 c11 c12 · · · c1T

−π2 c21 c22 · · · c2T
...

...
...

. . .
...

−πN cN1 cN2 · · · cNT


First, note that the existence of x ∈ RT+1

++ such that Ax = 0 is equivalent
to the existence of a vector of discount factors since we may define

di =
xi
x0

i = 1, . . . , T.

Hence if the first condition of Stiemke’s lemma is satisfied, a vector d exists
such that π = Cd.The second condition corresponds to the existence of an
arbitrage opportunity: If y>A > 0 then we have either

(y>A)1 > 0 and (y>A)i ≥ 0 i = 1, . . . , T + 1

or

(y>A)1 = 0 , y>A ≥ 0 and (y>A)i > 0 some i ∈ {2, . . . , T + 1}

and this is precisely the condition for the existence of an arbitrage opportu-
nity. Now use Stiemke’s lemma.
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Definition 5 The security market is complete if for every y ∈ RT there
exists a θ ∈ RN such that C>θ = y.

In linear algebra terms this means that the rows of C span RT , and in our
interpretation it means that any desired payment stream can be generated
by an appropriate choice of portfolio.

Theorem 3 Assume that (π,C) is arbitrage-free. Then the market is com-
plete if and only if there is a unique vector of discount factors.

Proof. Since the market is arbitrage-free we know that there exists d � 0
such that π = Cd. Now if the model is complete C>is onto and hence C is
one-to-one and therefore d must be unique. For the other direction assume
that the model is incomplete and hence C is not one-to-one. Then there
exists a vector d

′ 6= 0 such that 0 = Cd
′
. Since d� 0, we may choose ε > 0

such that d + εd
′ � 0.Clearly, this produces a vector of discount factors

different from d.

3.2 Zero-coupon bonds and the term struc-

ture of interest rates.

Assume throughout this section that the model (π,C) is complete and arbitrage-
free and let d> = (d1, . . . , dT ) be the unique vector of discount factors. Since
there must be at least T securities to have a complete model, C must have
at least T rows. On the other hand if C has exactly T linearly independent
rows, then adding other securities to C will not add any more possibilities
of wealth transfer to the market. Hence we can assume that C is a regular
T × T matrix.

Definition 6 A zero coupon bond with maturity t is given by the t′th unit
vector et of RT .

Next we see why the words ’discount factors’ were chosen:

Proposition 4 The price of a zero coupon bond with maturity t is dt.

Proof. Let θt be the portfolio such that C>θt = et. Then

π>θt = (Cd)>θt = d>C>θt = d>et = dt.

Note from the definition of d that we get the value of a stream of payments c
by computing

∑T
t=1 ctdt. In other words, the value of a stream of payments is
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obtained by discounting back the individual components. There is nothing
in our definition of d which prevents ds > dt even when s > t,but in the
models we will consider this will not be relevant: It is safe to think of dt as
decreasing in t corresponding to the idea that the longer the maturity of a
zero coupon bond, the smaller is its value at time 0.

From the discount factors we may derive various types of interest rates
which are essential in the study of bond markets.:

Definition 7 The spot rate at date 0 is given by

r0 =
1

d1

− 1.

The (one-period) time t− forward rate at date 0, is equal to

f(0, t) =
dt
dt+1

− 1,

where d0 = 1 by convention.

The interpretation of the spot rate should be straightforward: Buying 1
d1

units of a maturity 1 zero coupon bond costs 1
d1
d1 = 1 at date 0 and gives a

payment at date 1 of 1
d1

= 1 + r0.
The forward rate tells us the rate at which we may agree at date 0 to

borrow (or lend) between dates t and t+1. To see this, consider the following
strategy at time 0 :

• Sell 1 zero coupon bond with maturity t.

• Buy dt
dt+1

zero coupon bonds with maturity t+ 1.

Note that the amount raised by selling precisely matches the amount used
for buying and hence the cash flow from this strategy at time 0 is 0. Now
consider what happens if the positions are held to the maturity date of the
bonds:

At date t the cash flow is then −1 and at date t + 1 the cash flow is
dt
dt+1

= 1 + f(0, t).

Definition 8 The yield (or yield to maturity) at time 0 of a zero coupon
bond with maturity t is given as

y(0, t) =

(
1

dt

) 1
t

− 1.
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Note that
dt(1 + y(0, t))t = 1.

and that one may therefore think of the yield as an ’average interest rate’
earned on a zero coupon bond. In fact, the yield is a geometric average of
forward rates:

1 + y(0, t) = ((1 + f(0, 0)) · · · (1 + f(0, t− 1)))
1
t

Definition 9 The term structure of interest rates (or the yield structure of
interest rates) at date 0 is given by (y(0, 1), . . . , y(0, T )).

Note that if we have any one of the vector of yields, the vector of forward
rates and the vector of discount factors, we may determine the other two.
Therefore we could equally well define a term structure of forward rates and
a term structure of discount factors. In these notes unless otherwise stated,
we think of the term structure of interest rates as the yields of zero coupon
bonds as a function of time to maturity. It is important to note that the term
structure of interest rate depicts yields of zero coupon bonds. We do however
also speak of yields on securities which have no negative payments(and some
strictly positive payments):

Definition 10 The yield (or yield to maturity) of a security c> = (c1, . . . , cT )
with c > 0 and price π is the unique solution y > −1 of the equation

π =
T∑
i=1

ci
(1 + y)i

.

Example 3 (Compounding Periods) In most of the analysis in this chap-
ter the time is “stylized”; it is measured in some unit (which we think of and
refer to as “years”) and cash-flows occur at dates {0, 1, 2, . . . , T}. But it
is often convenient (and not hard) to work with dates that are not integer
multiples of the fundamental time-unit. We quote interest rates in units of
years−1 (“per year’), but to any interest rate there should be a number, m,
associated stating how often the interest is compounded. By this we mean
the following: If you invest 1 $ for n years at the m-compounded rate rm you
end up with (

1 +
rm
m

)mn
. (3.1)

The standard example: If you borrow 1$ in the bank, a 12% interest rate
means they will add 1% to you debt each month (i.e. m = 12) and you
will end up paying back 1.1268 $ after a year, while if you make a deposit,
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they will add 12% after a year (i.e. m = 1) and you will of course get 1.12$
back after one year. If we keep rm and n fixed in (3.1) (and then drop the
m-subscript) and and let m tend to infinity, it is well known that we get:

lim
m→∞

(
1 +

r

m

)mn
= enr,

and in this case we will call r the continuously compounded interest rate. In
other words: If you invest 1 $ and the continuously compounded rate rc for
a period af lenght t, you will get back etrc . Note also that a continuously
compounded rate rc can be used to find (uniquely for any m) rm such that
1 $ invested at m-compounding corresonds to 1 $ invested at continuous
compounding, i.e. (

1 +
rm
m

)m
= erc .

This means that in order to avoid confusion – even in discrete models –
there is much to be said in favor of quoting interest rates on a continuously
compounded basis. But then again, in the highly stylized discrete models
it would be pretty artificial, so we will not do it (rather it will always be
m = 1).

3.3 Annuities, serial loans and bullet bonds.

Typically, zero-coupon bonds of all maturities do not trade in financial mar-
kets and one therefore has to deduce prices of zero-coupon bonds from other
types of bonds trading in the market. Three of the most common types of
bonds which do trade in most bond markets are annuities, serial loans and
bullet bonds. We now show how knowing to which of these three types a
bond belongs and knowing three characteristics, namely the maturity, the
principal and the coupon rate, will enable us to determine the bond’s cash
flow completely.

Let the principal or face value of the bond be denoted F. Payments on the
bond start at date 1 and continue to the time of the bond’s maturity, which
we denote τ . The payments are denoted ct. We think of the principal of a
bond with coupon rate R and payments c1, . . . , cτ as satisfying the following
difference equation:

pt = (1 +R)pt−1 − ct t = 1, . . . , τ , (3.2)

with the boundary conditions p0 = F and pτ = 0.
Think of pt as the remaining principal right after a payment at date

t has been made. For accounting and tax purposes and also as a helpful tool
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in designing particular types of bonds, it is useful to split payments into a
part which serves as reduction of principal and one part which is seen as an
interest payment. We define the reduction in principal at date t as

δt = pt−1 − pt

and the interest payment as

it = Rpt−1 = ct − δt.

Definition 11 An annuity with maturity τ , principal F and coupon rate R
is a bond whose payments are constant between date 1 and date τ and whose
principal evolves according to (3.2).

Note that with constant payments we may write the remaining principal
at time t as

pt = (1 +R)tF − c
t−1∑
j=0

(1 +R)j t = 1, 2, . . . , τ .

To satisfy the boundary condition pτ = 0 we must therefore have

F − c
τ−1∑
j=0

(1 +R)j−τ = 0

i.e.

c = F

(
τ−1∑
j=0

(1 +R)j−τ

)−1

= F
R(1 +R)τ

(1 +R)τ − 1
.

It is common to use the shorthand notation

αneR = (“Alfahage”) =
(1 +R)n − 1

R(1 +R)n
.

Having found what the size of the payment must be we may derive the interest
and the deduction of principal as well:

Let us calculate the size of the payments and see how they split into
deduction of principal and interest payments.
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First, we derive an expression for the remaining principal:

pt = (1 +R)tF − F

ατeR

t−1∑
j=0

(1 +R)j

=
F

ατeR

(
(1 +R)tατeR −

(1 +R)t − 1

R

)
=

F

ατeR

(
(1 +R)τ − 1

R(1 +R)τ−t
− (1 +R)τ − (1 +R)τ−t

R(1 +R)τ−t

)
=

F

ατeR
ατ−teR.

This gives us the interest payment and the deduction immediately for the
annuity:

it = R
F

ατeR
ατ−t+1eR

δt =
F

ατeR
(1−Rατ−t+1eR).

Definition 12 A bullet bond1 with maturity τ ,principal F and coupon rate
R is characterized by having it = ct for t = 1, . . . , τ − 1 and cτ = (1 +R)F.

The fact that we have no reduction in principal before τ forces us to have
ct = RF for all t < τ.

Definition 13 A serial bond with maturity τ , principal F and coupon rate
R is characterized by having δt constant for all t = 1, . . . , τ .

Since the deduction in principal is constant every period and we must have
pτ = 0, it is clear that δt = F

τ
for t = 1, . . . , τ . From this it is straightforward

to calculate the interest using it = Rpt−1.
We summarize the characteristics of the three types of bonds in the table

below:

payment interest deduction of principal
Annuity Fα−1

τeR R F
ατeR

ατ−t+1eR
F

ατeR
(1−Rατ−t+1eR)

Bullet
RF for t < τ
(1 +R)F for t = τ

RF
0 for t < τ
F for t = τ

Serial F
τ

+R
(
F − t−1

τ
F
)

R
(
F − t−1

τ
F
)

F
τ

1In Danish: Et st̊aende l̊an
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Example 4 (A Simple Bond Market) Consider the following bond mar-
ket where time is measured in years and where payments are made at dates
{0, 1, . . . , 4}:

Bond (i) Coupon rate (Ri) Price at time 0 (πi(0))
1 yr bullet 5 100.00
2 yr bullet 5 99.10

3 yr annuity 6 100.65
4 yr serial 7 102.38

We are interested in finding the zero-coupon prices/yields in this market.
First we have to determine the payment streams of the bonds that are traded
(the C-matrix). Since α3e6 = 2.6730 we find that

C =


105 0 0
5 105 0 0

37.41 37.41 37.41 0
32 30.25 28.5 26.75


Clearly this matrix is invertible so et = C>θt has a unique solution for all
t ∈ {1, . . . , 4} (namely θt = (C>)−1et). If the resulting t-zero-coupon bond
prices, dt(0) = π(0) · θt, are strictly positive then there is no arbitrage.
Performing the inversion and the matrix multiplications we find that

(d1(0), d2(0), d3(0), d4(0))> = (0.952381, 0.898458, 0.839618, 0.7774332),

or alternatively the following zero-coupon yields

100 ∗ (y(0, 1), y(0, 2), y(0, 3), y(0, 4))> = (5.00, 5.50, 6.00, 6.50).

Now suppose that somebody introduces a 4 yr annuity with a coupon rate
of 5 % . Since α4e5 = 3.5459 this bond has a unique arbitrage-free price of

π5(0) =
100

3.5459
(0.952381 + 0.898458 + 0.839618 + 0.7774332) = 97.80.

Notice that bond prices are always quoted per 100 units (e.g. $ or DKK) of
principal. This means that if we assume the yield curve is the same at time
1 the price of the serial bond would be quoted as

π4(1) =
d1:3(0) · C4,2:4

0.75
=

76.87536

0.75
= 102.50

(where d1:3(0) means the first 3 entries of d(0) and C4,2:4 means the entries 2
to 4 in row 4 of C).
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Example 5 (Reading the Financial Pages) This example gives concrete
calculations for a specific Danish Government bond traded at the Copen-
hagen Stock Exchange(CSX): A bullet bond with a 7 % coupon rate and
yearly coupon payments that matures on December 15th 2004. On January
4th, 2000 the following information about the bond was available on the
homepage of CSX:

Bond type Maturity date Price on Jan. 4rd 2000 Yield
7% government bullet Dec. 15th 2004 106.33 5.50 %

Let us see how the yield was calculated. First, we have to be aware that bond
trades are settled 3 trading days later than the trade is agreed upon. So if
we buy this bond on Jan. 4th, the first cash-flow occurs on Jan. 7th, or as
we will write it: 2000/01/07. And how large is it? By convention we have to
pay the price (106.33) plus compensate the seller of the bond for the accrued
interest over the period 1999/12/15-2000/01/07. Since there are more than
30 days (by any counting convention) to the next coupon payment we pay
an amount to the seller and receive the next coupon. The amount paid in
accrued interest is

a =
#days between 1999/12/15 and 2000/01/07

360
× coupon payment.

By (Danish bond market) convention the distance between dates Y1/M1/D1

and Y2/M2/D2 is

(D̃2 − D̃1) + 30 ∗ (M2 −M1) + 360 ∗ (Y2 − Y1)

where D̃i = min(Di, 30). This is (one version of) the day-count convention
called 30/360. In this case we find that we have to pay (22/360)∗7 = 0.42778
DKK in accrued interest. So now we can write down the cash-flows:

Date tk Cash-flow (ck) dk = (1 + y)−tk PV= dk ∗ ck
2000/01/07 0.00 -106.7578
2000/12/15 0.93889 7 0.95097 6.6568
2001/12/15 1.93889 7 0.90140 6.3098
2002/12/15 2.93889 7 0.85440 5.9808
2003/12/15 3.93889 7 0.80986 5.6690
2004/12/15 4.93889 107 0.76764 82.1377

SUM 106.7541

And what can we learn from this example? Besides being able to understand
and replicate some the numbers we see in the news, we should know that
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bond markets have a variety of conventions that are not very homogeneous
(settlement takes place after 3 days in Denmark, but after 7 in Euroland;
banks typically use actual days when counting; the convention 30/360 does
not mean the same in Europe and the U.S., . . .) Of course we are not in-
terested in learning the conventions in this (or any?) course, but we must
realize that they can be of great practical importance (especially since bond
market transactions can be extremely large).

Example 6 The following example is meant to illustrate the perils of relying
too much on yields. Especially if they are used incorrectly! The numbers
are taken from Jakobsen and Tanggaard.2 Consider the following small bond
market:

Bond (i) 100*Coupon rate (Ri) Price at time 0 (πi(0)) 100*Yield
1 yr bullet 10 100.00 10.00
2 yr bullet 10 98.4 10.93
3 yr bullet 10 95.5 11.87
4 yr bullet 10 91.8 12.74
5 yr bullet 10 87.6 13.58
5 yr serial 10 95.4 11.98

Now consider a portfolio manager with the following argument: “Let us sell
1 of each of the bullet bonds and use the money to buy the serial bond. The
weighted yield on our liabilities (the bonds sold) is

100 ∗ 10 + 98.4 ∗ 10.93 + 95.5 ∗ 11.87 + 91.8 ∗ 12.74 + 87.6 ∗ 13.58

100 + 98.4 + 95.5 + 91.8 + 87.6
= 11.76%,

while the yield on our assets (the bond we bought) is 11.98%. So we just sit
back and take a yield gain of 0.22%.” But let us look for a minute at the
cash-flows from this arrangement (Note that one serial bond has payments
(30, 28, 26, 24, 22) and that we can buy 473.3/95.4 = 4.9612 serial bonds for

2Jakobsen, S. and C. Tanggard: Faldgruber i brugen af effektiv rente og varighed,
finans/invest, 2/87.
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the money we raise.)

Time 0 1 2 3 4 5
Liabilities
1 yr bullet 100 -110 0 0 0 0
2 yr bullet 98.4 -10 -110 0 0 0
3 yr bullet 95.5 -10 -10 -110 0 0
4 yr bullet 91.8 -10 -10 -10 -110 0
5 yr bullet 87.6 -10 -10 -10 -10 -110

Assets
5 yr serial -473.3 148.84 138.91 128.99 119.07 109.15

Net position
0 -1.26 -1.19 -1.01 -0.93 -0.75

So we see that what have in fact found is a sure-fire way of throwing money
away. So what went wrong? The yield on the liability side is not 11.76%. The
yield of a portfolio is a non-linear function of all payments of the portfolio,
and it is not a simple function (such as a weighted average) of the yields of
the individual components of the portfolio. The correct calculation gives that
the yield on the liabilities is 12.29%. This suggests that we should perform
the exact opposite transactions. And we should, since from the table of cash-
flow we see that this is an arbitrage-opportunity (“a free lunch”). But how
can we be sure to find such arbitrages? By performing an analysis similar to
that in Example 4, i.e. pick out a sufficient number of bonds to construct
zero-coupon bonds and check if all other bonds are priced correctly. If not
it is easy to see how the arbitrage-opportunities are exploited. If we pick
out the 5 bullets and do this, we find that the correct price of the serial is
94.7, which is confirmation that arbitrage-opportunities exists in the market.
Note that we do not have to worry if it is the serial that is overpriced or the
bullets that are underpriced.
Of course things are not a simple in practice as in this example. Market
imperfections (such as bid-ask spreads) and the fact that there are more
payments dates the bonds make it a challenging empirical task to estimate
the zero-coupon yield curve. Nonetheless the idea of finding the zero-coupon
yield curve and using it to find over- and underpriced bonds did work wonders
in the Danish bond market in the ’80ies (the 19 80’ies, that is).
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3.4 IRR, NPV and capital budgeting under

certainty.

The definition of internal rate of return (IRR) is the same as that of yield,
but we use it on arbitrary cash flows, i.e. on securities which may have
negative cash flows as well:

Definition 14 An internal rate of return of a security (c1, . . . , cT ) with price
π 6= 0 is a solution y > −1 of the equation

π =
T∑
i=1

ci
(1 + y)i

.

Hence the definitions of yield and internal rate of return are identical for
positive cash flows. It is easy to see that for securities whose future payments
are both positive and negative we may have several IRRs. This is one reason
that one should be very careful interpreting and using this measure at all
when comparing cash flows. We will see below that there are even more
serious reasons. When judging whether a certain cash flow is ’attractive’ the
correct measure to use is Net Present Value:

Definition 15 The PV and NPV of security (c1, . . . , cT ) with price c0 given
a term structure (y(0, 1), . . . , y(0, T )) are defined as

PV (c) =
T∑
i=1

ci
(1 + y(0, i))i

NPV (c) =
T∑
i=1

ci
(1 + y(0, i))i

− c0

Next, we will see how these concepts are used in deciding how to invest under
certainty.

Assume throughout this section that we have a complete security market
as defined in the previous section. Hence a unique discount function d is
given as well as the associated concepts of interest rates and yields. We let
y denote the term structure of interest rates and use the short hand notation
yi for y(0, i).

In capital budgeting we analyze how firms should invest in projects whose
payoffs are represented by cash flows. Whereas we assumed in the security
market model that a given security could be bought or sold in any quantity
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desired, we will use the term project more restrictively: We will say that the
project is scalable by a factor λ 6= 1 if it is possible to start a project which
produces the cash flow λc by paying λc0 initially. A project is not scalable
unless we state this explicitly and we will not consider any negative scaling.

In a complete financial market an investor who needs to decide on only
one project faces a very simple decision: Accept the project if and only if
it has positive NPV. We will see why this is shortly. Accepting this fact
we will see examples of some other criteria which are generally inconsistent
with the NPV criterion. We will also note that when a collection of projects
are available capital budgeting becomes a problem of maximizing NPV over
the range of available projects. The complexity of the problem arises from
the constraints that we impose on the projects. The available projects may
be non-scalable or scalable up to a certain point, they may be mutually
exclusive (i.e. starting one project excludes starting another), we may impose
restrictions on the initial outlay that we will allow the investor to make
(representing limited access to borrowing in the financial market), we may
assume that a project may be repeated once it is finished and so on. In all
cases our objective is simple: Maximize NPV.

First, let us note why looking at NPV is a sensible thing to do:

Proposition 5 Given a cash flow c = (c1, . . . , cT ) and given c0 such that
NPV (c0; c) < 0. Then there exists a portfolio θ of securities whose price is
c0 and whose payoff satisfies

C>θ >

 c1
...
cT

 .

Conversely, if NPV (c0; c) > 0, then every θ with C> θ = c satisfies π>θ > c0.

Proof. Since the security market is complete, there exists a portfolio θc such
that C>θc = c. Now π>θc < c0 (why?), hence we may form a new portfolio by
investing the amount c0 − π>θc in some zero coupon bond (e1, say) and also

invest in θc. This generates a stream of payments equal to C>θc+ (c0−π>θc)
d1

e1 >
c and the cost is c0 by construction. The second part is left as an exercise!
TCIMACRO

The interpretation of this lemma is the following: One should never accept
a project with negative NPV since a strictly larger cash flow can be obtained
at the same initial cost by trading in the capital market. On the other hand,
a positive NPV project generates a cash flow at a lower cost than the cost
of generating the same cash flow in the capital market. It might seem that
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this generates an arbitrage opportunity since we could buy the project and
sell the corresponding future cash flow in the capital market generating a
profit at time 0. However, we insist on relating the term arbitrage to the
capital market only. Projects should be thought of as ’endowments’: Firms
have an available range of projects. By choosing the right projects the firms
maximize the value of these ’endowments’.

Some times when performing NPV−calculations, we assume that ’the
term structure is flat’ . What this means is that the discount function has
the particularly simple form

dt =
1

(1 + r)t

for some constant r, which we will usually assume to be non-negative, al-
though our model only guarantees that r > −1 in an arbitrage-free market.
A flat term structure is very rarely observed in practice - a typical real world
term structure will be upward sloping: Yields on long maturity zero coupon
bonds will be greater than yields on short bonds. Reasons for this will be
discussed once we model the term structure and its evolution over time -
a task which requires the introduction of uncertainty to be of any interest.
When the term structure is flat then evaluating the NPV of a project having
a constant cash flow is easily done by summing the geometric series. The
present value of n payments starting at date 1, ending at date n each of size
c, is

n∑
i=1

cdi = cd
n−1∑
i=0

di = cd
1− dn

1− d
, d 6= 1

Another classical formula concerns the present value of a geometrically grow-
ing payment stream (c, c(1 + g), . . . , c(1 + g)n−1) as

n∑
i=1

c
(1 + g)i−1

(1 + r)i

=
c

1 + r

n−1∑
i=0

(1 + g)i

(1 + r)i

=
c

r − g

(
1−

(
1 + g

1 + r

)n)
.

Although we have not taken into account the possibility of infinite payment
streams, we note for future reference, that for 0 ≤ g < r we have what is
known as Gordon’s growth formula:
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∞∑
i=1

c(1 + g)i−1

(1 + r)i
=

c

r − g
.

3.4.1 Some rules which are inconsistent with the NPV
rule.

Corresponding to our definition of internal rate of return in Chapter 3, we
define an internal rate of return on a project c with initial cost c0 > 0,
denoted IRR(c0; c), as a solution to the equation

c0 =
T∑
i=1

ci
(1 + x)i

, x > −1

As we have noted earlier such a solution need not be unique unless c > 0
and c0 > 0.

Note that an internal rate of return is defined without referring to the
underlying term structure. The internal rate of return describes the level of a
flat term structure at which the NPV of the project is 0. The idea behind its
use in capital budgeting would then be to say that the higher the level of the
interest rate, the better the project (and some sort of comparison with the
existing term structure would then be appropriate when deciding whether to
accept the project at all). But as we will see in the following example, IRR
and NPV may disagree on which project is better: Consider the projects
shown in the table below (whose last column shows a discount function d):

date proj 1 proj 2 d
0 -100 -100 1
1 50 50 0.95
2 5 80 0.85
3 90 4 0.75

IRR 0.184 0.197 -
NPV 19.3 18.5 -

Project 2 has a higher IRR than project 1, but 1 has a larger NPV than
2. Using the same argument as in the previous section it is easy to check,
that even if a cash flow similar to that of project 2 is desired by an investor,
he would be better off investing in project 1 and then reforming the flow of
payments using the capital market.
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Another problem with trying to use IRR as a decision variable arises when
the IRR is not uniquely defined - something which typically happens when
the cash flows exhibit sign changes. Which IRR should we then choose?

One might also contemplate using the payback method and count the
number of years it takes to recover the initial cash outlay - possibly after
discounting appropriately the future cash flows. Project 2 in the table has
a payback of 2 years whereas project 1 has a payback of three years. The
example above therefore also shows that choosing projects with the shortest
payback time may be inconsistent with the NPV method.

3.4.2 Several projects.

Consider someone with c0 > 0 available at date 0 who wishes to allocate
this capital over the T + 1 dates, and who considers a project c with initial
cost c0. We have seen that precisely when NPV (c0; c) > 0 this person will
be able to obtain better cash flows by adopting c and trading in the capital
market than by trading in the capital market alone.

When there are several projects available the situation really does not
change much: Think of the i′th project (pi0, p) as an element of a set Pi ⊂
R
T+1. Assume that 0 ∈ Pi all i representing the choice of not starting the

i’th project. For a non-scalable project this set will consist of one point in
addition to 0.

Given a collection of projects represented by (Pi)i∈I . Situations where
there is a limited amount of money to invest at the beginning (and borrow-
ing is not permitted), where projects are mutually exclusive etc. may then
be described abstractly by the requirement that the collection of selected
projects (pi0, p

i)i∈I are chosen from a feasible subset P of the Cartesian prod-
uct ×i∈IPi. The NPV of the chosen collection of projects is then just the sum
of the NPVs of the individual projects and this in turn may be written as
the NPV of the sum of the projects:

∑
i∈I

NPV (pi0; pi) = NPV

(∑
i∈I

(pi0, p
i)

)
.

Hence we may think of the chosen collection of projects as producing one
project and we can use the result of the previous section to note that clearly
an investor should choose a project giving the highest NPV. Rather than
elaborating on this point, we consider an example.

Example 7 Consider the following example from Copeland and Weston (1988):
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project NPV initial cost
1 30.000 200.000
2 16.250 125.000
3 19.250 175.000
4 12.000 150.000

Assume that all projects are non-scalable, and assume that we can only
invest up to an amount of 300.000. This capital constraint forces us to choose,
i.e. projects become mutually exclusive to some extent. Clearly, with no
constraints all projects would be adopted since the NPVs are positive in all
cases. Note that project 1 generates the largest NPV but it also uses a large
portion of the budget: If we adopt 1, there is no room for additional projects.
The only way to deal with this problem is to stick to the NPV-rule and go
through the set of feasible combinations of projects and compute the NPV.
It is not hard to see that combining projects 2 and 3 produces the maximal
NPV given the capital constraint.

If the projects were assumed scalable, the situation would be different:
Then project 1 adopted at a scale of 1.5 would clearly be optimal. This is
simply because the amount of NPV generated per dollar invested is larger for
project 1 than for the other projects. Exercises will illustrate other examples
of NPV-maximization.

The moral of this section is simple: Given a perfect capital market, in-
vestors who are offered projects should simply maximize NPV. This is merely
an equivalent way of saying that profit maximization with respect to the ex-
isting price system (as represented by the term structure) is the appropriate
strategy when a perfect capital market exists. The technical difficulties arise
from the constraints that we impose on the projects and these constraints
easily lead to linear programming problems, integer programming problems
or even non-linear optimization problems.

However, real world projects typically do not generate cash flows which
are known in advance. Real world projects involve risk and uncertainty and
therefore capital budgeting under certainty is really not sophisticated enough
for a manager deciding which projects to undertake. A key objective of this
course is to try and model uncertainty and to construct models of how risky
cash flows are priced. This will give us definitions of NPV which work for
uncertain cash flows as well.
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3.5 Duration, convexity and immunization.

3.5.1 Duration with a flat term structure.

In this chapter we introduce the notions of duration and convexity which are
often used in practical bond risk management and asset/liability manage-
ment. It is worth stressing that when we introduce dynamic models of the
term structure of interest rates in a world with uncertainty, we obtain much
more sophisticated methods for measuring and controlling interest rate risk
than the ones presented in this section.

Consider a financial market which is arbitrage-free and complete and
where the discount function d = (d1, . . . dT ) satisfies

di =
1

(1 + r)i
for i = 1, . . . , T.

This corresponds to the assumption of a flat term structure. We stress that
this assumption is rarely satisfied in practice but we will see how to relax
this assumption.

What we are about to investigate are changes in present values as a
function of changes in r. This makes perfect sense even in a world of certainty,
but sometimes we will speak freely of ’interest changes’ occurring even though
strictly speaking, we still do not have uncertainty in our model.

With a flat term structure, the present value of a payment stream c =
(c1, . . . , cT ) is given by

PV (c; r) =
T∑
t=1

ct
(1 + r)t

We have now included the dependence on r explicitly in our notation since
what we are about to model are essentially derivatives of PV (c; r) with re-
spect to r.

Let c be a non-negative payment stream.

Definition 16 The duration D(c; r) of c is given by

D(c; r) =

(
− ∂

∂r
PV (c; r)

)
1 + r

PV (c; r)
(3.3)

=
1

PV (c; r)

T∑
t=1

t
ct

(1 + r)t
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This duration is called the Macaulay duration and is the “classical” one
(many more advanced durations have been proposed in the literature). Rather
that saying it is based on a flat term structure, we could refer to it as being
based on the yield of the bond (or portfolio). Note that defining

wt =
ct

(1 + r)t
1

PV (c; r)
(3.4)

we have
∑T

t=1 wt = 1, hence

D(c; r) =
T∑
t=1

t wt.

Definition 17 The convexity of c is given by

K(c; r) =
T∑
t=1

t2 wt. (3.5)

where wt is given by (3.4).

Let us try to interpret D and K by computing the first and second deriva-
tives3 of PV (c; r) with respect to r.

PV ′(c; r) = −
T∑
t=1

t ct
1

(1 + r)t+1

= − 1

1 + r

T∑
t=1

t ct
1

(1 + r)t

PV ′′(c; r) =
T∑
t=1

t (t+ 1)
ct

(1 + r)t+2

=
1

(1 + r)2

[
T∑
t=1

t2ct
1

(1 + r)t
+

T∑
t=1

tct
1

(1 + r)t

]

Now consider the relative change in PV (c; r) when r changes to r + ∆r, i.e.

PV (c; r + ∆r)− PV (c; r)

PV (c; r)

3From now on we write PV ′(c; r) and PV ′′(c; r) instead of ∂
∂rPV (c; r) resp. ∂2

∂r2PV (c; r)
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By considering a second order Taylor expansion of the numerator, we obtain

PV (c; r + ∆r)− PV (c; r)

PV (c; r)
≈

PV ′(c; r)∆r + 1
2
PV ′′(c; r)(∆r)2

PV (c; r)

= −D ∆r

(1 + r)
+

1

2
(K +D)

(
∆r

1 + r

)2

Hence D and K can be used to approximate the relative change in
PV (c; r) as a function of the relative change in r (or more precisely, rela-

tive changes in 1 + r, since ∆(1+r)
1+r

= ∆r
1+r

).

Sometimes one finds the expression modified duration defined by

MD(c; r) =
D

1 + r

and using this in a first order approximation, we get the relative change in
PV (c; r) expressed by −MD(c; r)∆r, which is a function of ∆r itself. The
interpretation of D as a price elasticity gives us no reasonable explanation of
the word ’duration’, which certainly leads one to think of quantity measured
in units of time. If we use the definition of wt we have the following simple
expression for the duration:

D(c; r) =
T∑
t=1

t wt.

Notice that wt expresses the present value of ct divided by the total present
value, i.e. wt expresses the weight by which ct is contributing to the total
present value. Since

∑T
t=1 wt = 1 we see that D(c; r) may be interpreted as

a ’mean waiting time’. The payment which occurs at time t is weighted by
wt.

Example 8 For the government bullet bond in Example 5 the present value
of the payment stream is 106.75 and therefore the duration is∑4

k=1 tkck(1 + y)−tk

PV
=

464.06

106.75
= 4.35

while the convexity is∑4
k=1 t

2
kck(1 + y)−tk

PV
=

2172.753

106.75
= 20.35,
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and the following table shows the the exact and approximated relative chances
in present value when the yield changes:

Yield 4yield Exact rel. (%) First order Second order
PV-change approximation approximation

0.04 -0.0150 6.434 6.181 6.430
0.05 -0.0050 2.084 2.060 2.088
0.055 0 0 0 0
0.060 0.0050 -2.036 -2.060 -2.032
0.070 0.0150 -5.941 -6.180 -5.930

Notice that since PV is a decreasing, convex function of y we know that the
first order approximation will underestimate the effect of decreasing y (and
overestimate the effect of increasing it).

Notice that for a zero coupon bond with time to maturity t the duration
is t. For other kinds of bonds with time to maturity t, the duration is less
than t. Furthermore, note that investing in a zero coupon bond with yield
to maturity r and holding the bond to expiration guarantees the owner an
annual return of r between time 0 and time t. This is not true of a bond
with maturity t which pays coupons before t. For such a bond the duration
has an interpretation as the length of time for which the bond can ensure an
annual return of r :

Let FV (c; r,H) denote the (future) value of the payment stream c at time
H if the interest rate is fixed at level r. Then

FV (c; r,H) = (1 + r)HPV (c; r)

=
H−1∑
t=1

ct(1 + r)H−t + cH +
T∑

t=H+1

ct
1

(1 + r)t−H

Consider a change in r which occurs an instant after time 0. How would
such a change affect FV (c; r,H)? There are two effects with opposite direc-
tions which influence the future value: Assume that r decreases. Then the
first sum in the expression for FV (c; r,H) will decrease. This decrease can
be seen as caused by reinvestment risk: The coupons received up to time H
will have to be reinvested at a lower level of interest rates. The last sum will
increase when r decreases. This is due to price risk : As interest rates fall
the value of the remaining payments after H will be higher since they have
to be discounted by a smaller factor. Only cH is unchanged.

The natural question to ask then is for which H these two effects cancel
each other. At such a time point we must have ∂

∂r
FV (c; r,H) = 0 since an

infinitesimal change in r should have no effect on the future value. Now,
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∂

∂r
FV (c; r,H) =

∂

∂r

[
(1 + r)HPV (c; r)

]
= H(1 + r)H−1PV (c; r) + (1 + r)HPV ′(c; r)

Setting this expression equal to 0 gives us

H =
−PV ′(c; r)
PV (c; r)

(1 + r)

i.e. H = D(c; r)

Furthermore, at H = D(c; r), we have ∂2

∂r2FV (c; r,H) > 0. This you can

check by computing ∂2

∂r2

(
(1 + r)HPV (c; r)

)
,reexpressing in terms D and K,

and using the fact that K > D2. Hence, at H = D(c; r), FV (c; r,H) will have
a minimum in r. We say that FV (c; r,H) is immunized towards changes in r,
but we have to interpret this expression with caution: The only way a bond
really can be immunized towards changes in the interest rate r between time
0 and the investment horizon t is by buying zero coupon bonds with maturity
t. Whenever we buy a coupon bond at time 0 with duration t, then to a first
order approximation, an interest change immediately after time 0, will leave
the future value at time t unchanged. However, as date 1 is reached (say)
it will not be the case that the duration of the coupon bond has decreased
to t − 1. As time passes, it is generally necessary to adjust bond portfolios
to maintain a fixed investment horizon, even if r is unchanged. This is true
even in the case of certainty.

Later when we introduce dynamic hedging strategies we will see how a
portfolio of bonds can be dynamically managed so as to truly immunize the
return.

3.5.2 Relaxing the assumption of a flat term structure.

What we have considered above were parallel changes in a flat term structure.
Since we rarely observe this in practice, it is natural to try and generalize
the analysis to different shapes of the term structure. Consider a family of
structures given by a function r of two variables, t and x. Holding x fixed
gives a term structure r(·, x).

For example, given a current term structure (y1, . . . , yT ) we could have
r(t, x) = yt + x in which case changes in x correspond to additive changes
in the current term structure (the one corresponding to x = 0). Or we could
have 1 + r(t, x) = (1 + yt)x, in which case changes in x would produce multi-
plicative changes in the current (obtained by letting x = 1) term structure.
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Now let us compute changes in present values as x changes:

∂PV

∂x
= −

T∑
t=1

tct
1

(1 + r(t, x))t+1

∂r(t, x)

∂x

which gives us

∂PV

∂x

1

PV
= −

T∑
t=1

twt
1 + r(t, x)

∂r(t, x)

∂x

where

wt =
ct

(1 + r(t, x))t
1

PV

We want to try and generalize the ’investment horizon’ interpretation of
duration, and hence calculate the future value of the payment stream at
time H and differentiate with respect to x. Assume that the current term
structure is r(·, x0).

FV (c; r(H, x0), H) = (1 + r(H, x0))HPV (c; r(t, x0))

Differentiating

∂

∂x
FV (c; r(H, x), H) = (1 + r(H, x))H

∂PV

∂x

+H(1 + r(H, x))H−1∂r(H, x)

∂x
PV (c; r(t, x))

Evaluate this derivative at x = x0 and set it equal to 0 :

∂PV

∂x

∣∣∣∣
x=x0

1

PV
= −H ∂r(H, x)

∂x

∣∣∣∣
x=x0

(1 + r(H, x0))−1

and hence we could define the duration corresponding to the given parametriza-
tion as the value D for which

∂PV

∂x

∣∣∣∣
x=x0

1

PV
= −D ∂r(D, x)

∂x

∣∣∣∣
x=x0

(1 + r(D, x0))−1.

The additive case would correspond to

∂r(D, x)

∂x

∣∣∣∣
x=0

= 1,
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and the multiplicative case to

∂r(D, x)

∂x

∣∣∣∣
x=1

= 1 + yD.

Note that the multiplicative case gives us the duration measure (called the
Fisher-Weil duration)

Dmult = −∂PV
∂x

1

PV
=

T∑
t=1

twt

which is just like the original measure although the weights of course reflect
the structure y(0, t).

Example 9 Consider again the small bond market from Example 4. We
have already found the zero-coupon yields in the market, and find that the
Fisher-Weil duration of the 4 yr serial bond is

1

102.38

(
32

1.0500
+

2 ∗ 30.25

1.05502
+

3 ∗ 28.5

1.06003
+

4 ∗ 26.75

1.06504

)
= 2.342,

and the following table gives the yields, Macaulay durations based on yields
and Fisher-Weil durations for all the coupon bonds:

Bond Yield ( ) M-duration FW-duration
1 yr bullet 5 1 1
2 yr bullet 5.49 1.952 1.952

3 yr annuity 5.65 1.963 1.958
4 yr serial 5.93 2.354 2.342

3.5.3 An example

We finish this chapter with an example (with something usually referred to
as a barbell strategy) which is intended to cause some concern. Some of the
claims are for you to check!

A financial institution issues 100 million $ worth of 10 year bullet bonds
with time to maturity 10 years and a coupon rate of 7 percent. Assume that
the term structure is flat at r = 7 percent. The revenue (of 100 million $) is
used to purchase 10-and 20 year annuities also with coupon rates of 7%. The
numbers of the 10 and 20 year annuities purchased are chosen in such a way
that the duration of the issued bullet bond matches that of the portfolio of
annuities. Now there are three facts you need to know at this stage. Letting
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T denote time to maturity, r the level of the term structure and γ the coupon
rate, we have that the duration of an annuity is given by

Dann =
1 + r

r
− T

(1 + r)T − 1
.

Note that since payments on an annuity are equal in all periods we need not
know the size of the payments to calculate the duration.

The duration of a bullet bond is

Dbullet =
1 + r

r
− 1 + r − T (r −R)

R ((1 + r)T − 1) + r

which of course simplifies when r = R.
The third fact you need to check is that if a portfolio consists of two

securities whose values are P1 and P2 respectively, then the duration of the
portfolio P1 + P2 is given as

D(P1 + P2 ) =
P1

P1 + P2

D(P1) +
P2

P1 + P2

D(P2).

Using these three facts you will note that a portfolio consisting of 23.77
million dollars worth of the 10-year annuity and 76.23 million dollars worth of
the 20-year annuity will produce a portfolio whose duration exactly matches
that of the issued bullet bond. By construction the present value of the two
annuities equals that of the bullet bond. The present value of the whole
transaction in other words is 0 at an interest level of 7 percent. However,
for all other levels of the interest rate, the present value is strictly positive!
In other words, any change away from 7 percent will produce a profit to the
financial institution. We will have more to say about this phenomenon in
the exercises and we will return to it when discussing the term structure of
interest rates in models with uncertainty. As you will see then, the reason
that we can construct the example above is that we have set up an economy
in which there are arbitrage opportunities.
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Chapter 4

Arbitrage pricing in a
one-period model

One of the biggest success stories of financial economics is the Black-Scholes
model of option pricing. But even though the formula itself is easy to use,
a rigorous presentation of how it comes about requires some fairly sophis-
ticated mathematics. Fortunately, the so-called binomial model of option
pricing offers a much simpler framework and gives almost the same level of
understanding of the way option pricing works. Furthermore, the binomial
model turns out to be very easy to generalize (to so-called multinomial mod-
els) and more importantly to use for pricing other derivative securities (i.e.
different contract types or different underlying securities) where an extension
of the Black-Scholes framework would often turn out to be difficult. The flex-
ibility of binomial models is the main reason why these models are used daily
in trading all over the world.

Binomial models are often presented separately for each application. For
example, one often sees the ”classical” binomial model for pricing options on
stocks presented separately from binomial term structure models and pricing
of bond options etc.

The aim of this chapter is to present the underlying theory at a level
of abstraction which is high enough to understand all binomial/multinomial
approaches to the pricing of derivative securities as special cases of one model.

Apart from the obvious savings in allocation of brain RAM that this pro-
vides, it is also the goal to provide the reader with a language and framework
which will make the transition to continuous-time models in future courses
much easier.

43
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4.1 An appetizer.

Before we introduce our model of a financial market with uncertainty for-
mally, we present a little appetizer. Despite its simplicity it contains most
of the insights that we are about to get in this chapter.

Consider a one-period model with two states of nature, ω1 and ω2. At
time t = 0 nothing is known about the time state, at time t = 1 the state is
revealed. State ω1 occurs with probability p. Two securities are traded:

• A stock which costs S at time 0 and is worth uS at time 1 in one state
and dS in the other.

• A money market account which costs 1 at time 0 and is worth R at
time 1 regardless of the state.

Assume 0 < d < R < u. (This condition will be explained later.) We
summarize the setup with a graph:

r�����
��

��
��

�

H
HHHHHHHH

HHHr

r
(

1
S

)

(
R
uS

)
ω1

(
R
dS

)
ω2

p

1− p

Now assume that we introduce into the economy a European call option
on the stock with exercise price K and maturity 1 . At time 1 the value
of this call is equal to (where the notation [y]+ (or sometimes (y)+) means
max(y, 0))

C1(ω) =

{
[uS −K]+ if ω = ω1

[dS −K]+ if ω = ω2

We will discuss options in more detail later. For now, note that it can be
thought of as a contract giving the owner the right but not the obligation to
buy the stock at time 1 for K.
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To simplify notation, let Cu = C1(ω1) and Cd = C1(ω2). The question is:
What should the price of this call option be at time 0? A simple portfolio
argument will give the answer: Let us try to form a portfolio at time 0 using
only the stock and the money market account which gives the same payoff
as the call at time 1 regardless of which state occurs. Let (a, b) denote,
respectively, the number of stocks and units of the money market account
held at time 0. If the payoff at time 1 has to match that of the call, we must
have

a(uS) + bR = Cu

a(dS) + bR = Cd

Subtracting the second equation from the first we get

a(u− d)S = Cu − Cd

i.e.

a =
Cu − Cd
S(u− d)

and algebra gives us

b =
1

R

uCd − dCu
(u− d)

where we have used our assumption that u > d. The cost of forming the
portfolio (a, b) at time 0 is

(Cu − Cd)
S (u− d)

S +
1

R

uCd − dCu
(u− d)

· 1

=
R (Cu − Cd)
R (u− d)

+
1

R

uCd − dCu
(u− d)

=
1

R

[
R− d
u− d

Cu +
u−R
u− d

Cd

]
.

We will formulate below exactly how to define the notion of no arbitrage
when there is uncertainty, but it should be clear that the argument we have
just given shows why the call option must have the price

C0 =
1

R

[
R− d
u− d

Cu +
u−R
u− d

Cd

]
Rewriting this expression we get

C0 =

(
R− d
u− d

)
Cu
R

+

(
u−R
u− d

)
Cd
R
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and if we let

q =
R− d
u− d

we get

C0 = q
Cu
R

+ (1− q)Cd
R
.

If the price were lower, one could buy the call and sell the portfolio (a, b),
receive cash now as a consequence and have no future obligations except to
exercise the call if necessary.

Some interesting features of this example will be much clearer as we go
along:

• The probability p plays no role in the expression for C0.

• A new set of probabilities

q =
R− d
u− d

and 1− q =
u−R
u− d

emerges (this time we also use that d < R < u) and with this set of
probabilities we may write the value of the call as

C0 = Eq

[
C1(ω)

R

]
i.e. an expected value using q of the discounted time 1 value of the
call.

• If we compute the expected value using q of the discounted time 1 stock
price we find

Eq

[
S(ω)

R

]
=

(
R− d
u− d

)
1

R
(uS) +

(
u−R
u− d

)
1

R
(dS) = S

The method of pricing the call really did not use the fact that Cu and Cd
were call-values. Any security with a time 1 value depending on ω1 and ω2

could have been priced.

4.2 The single period model

The mathematics used when considering a one-period financial market with
uncertainty is exactly the same as that used to describe the bond market in
a multiperiod model with certainty: Just replace dates by states.



4.2. THE SINGLE PERIOD MODEL 47

Given two time points t = 0 and t = 1 and a finite state space

Ω = {ω1, . . . , ωS} .

Whenever we have a probability measure P (or Q) we write pi (or qi) instead
of P ({ωi}) (or Q ({ωi})).

A security price system is a vector π ∈ RN and an N×S matrix D where
we interpret the i’th row (di1, . . . , diS) of D as the payoff at time 1 of the
i’th security in states 1, . . . , S, respectively. The price at time 0 of the i’th
security is πi. A portfolio is a vector θ ∈ RN whose coordinates represent the
number of securities bought at time 0. The price of the portfolio θ bought
at time 0 is π · θ.

Definition 18 An arbitrage in the security price system (π,D) is a portfolio
θ which satisfies either

π · θ ≤ 0 ∈ R and D>θ > 0 ∈ RS

or
π · θ < 0 ∈ R and D>θ ≥ 0 ∈ R S

A security price system (π,D) for which no arbitrage exists is called arbitrage-
free.

Remark 1 Our conventions when using inequalities on a vector in Rk are
the same as described in Chapter 3.

When a market is arbitrage-free we want a vector of prices of ’elementary
securities’ - just as we had a vector of discount factors in Chapter 3.

Definition 19 ψ ∈ RS++ (i.e. ψ � 0) is said to be a state-price vector for
the system (π,D) if it satisfies

π = Dψ

Clearly, we have already proved the following in Chapter 3:

Proposition 6 A security price system is arbitrage-free if and only if there
exists a state-price vector.

Unlike the model we considered in Chapter 3, the security which pays 1
in every state plays a special role here. If it exists, it allows us to speak of
an ’interest rate’:
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Definition 20 The system (π,D) contains a riskless asset if there exists a
linear combination of the rows of D which gives us (1, . . . , 1) ∈ RS.

In an arbitrage-free system the price of the riskless asset d0 is called the
discount factor and R0 ≡ 1

d0
is the return on the riskless asset. Note that

when a riskless asset exists, and the price of obtaining it is d0, we have

d0 = θ>0 π = θ>0 Dψ = ψ1 + · · ·+ ψS

where θ0 is the portfolio that constructs the riskless asset.
Now define

qi =
ψi
d0

, i = 1, . . . , S

Clearly, qi > 0 and
∑S

i=1 qi = 1, so we may interpret the qi’s as probabilities.
We may now rewrite the identity (assuming no arbitrage) π = Dψ as follows:

π = d0Dq =
1

R0

Dq, where q = (q1, . . . , qS)>

If we read this coordinate by coordinate it says that

πi =
1

R0

(q1di1 + . . .+ qSdiS)

which is the discounted expected value using q of the i’th security’s payoff
at time 1. Note that since R0 is a constant we may as well say ”expected
discounted . . .”.

We assume throughout the rest of this section that a riskless asset exists.

Definition 21 A security c = (c1, . . . , cS) is redundant given the security
price system (π,D) if there exists a portfolio θc such that Dtθc = c.

Proposition 7 Let an arbitrage-free system (π,D) and a redundant security

c by given. The augmented system
(
π̂, D̂

)
obtained by adding πc to the vector

π and c ∈ RS as a row of D is arbitrage-free if and only if

πc =
1

R0

(q1c1 + . . .+ qScS) ≡ ψ1c1 + . . .+ ψScS.

Proof. Assume πc < ψ1c1 + . . . + ψScS. Buy the security c and sell the
portfolio θc. The price of θc is by assumption higher than πc, so we receive
a positive cash-flow now. The cash-flow at time 1 is 0. Hence there is an
arbitrage opportunity. If πc > ψ1c1 + . . .+ ψScS reverse the strategy. �
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Definition 22 The market is complete if for every y ∈ RS there exists a
θ ∈ RN such that

D>θ = y

i.e. if the rows of D (the columns of D>) span RS.

Proposition 8 If the market is complete and arbitrage-free, there exists pre-
cisely one state-price vector ψ.

The proof is exactly as in Chapter 3 and we are ready to do contingent
claims pricing! Here is how it is done in a one-period model: Construct a
set of securities (the D-matrix,) and a set of prices. Make sure that (π,D)
is arbitrage-free. Make sure that either

(a) the model is complete, i.e. there are as many linearly independent
securities as there are states

or
(b) the contingent claim we wish to price is redundant given (π,D).
Clearly, (a) implies (b) but not vice versa. (a) is almost always what is

done in practice. Given a ”contingent claim” c = (c1, . . . , cS). Now compute
the price of the contingent claim as

π (c) =
1

R0

Eq (c) ≡ 1

R0

S∑
i=1

qici

where qi = ψi
d0
≡ R0ψi. The portfolio generating the claim is the solution to

D>θc = c, and since we can always in a complete model reduce the matrix
to an S × S invertible matrix without changing the model this can be done
by matrix inversion.

Let us return to our example in the beginning of this chapter: The security
price system is {(

1
S

)
,

(
R R
uS dS

)}
.

For this to be arbitrage-free, proposition (6) tells us that there must be a
solution (ψ1, ψ2) with ψ1 > 0 and ψ2 > 0 to the equation(

1
S

)
=

(
R R
uS dS

)(
ψ1

ψ2

)
.

u 6= d ensures that the matrix

(
R R
uS dS

)
has full rank. u > d can be

assumed without loss of generality. We find

ψ1 =
R− d

R (u− d)
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ψ2 =
u−R

R (u− d)

and note that the solution is strictly positive precisely when u > R > d
(given our assumption that u > d > 0).

Clearly the riskfree asset has a return of R, and

q1 = Rψ1 =
R− d
u− d

q2 = Rψ2 =
u−R
u− d

are the probabilities defining the measure q which can be used for pricing.
Note that the market is complete, and this explains why we could use the
procedure in the previous example to say what the correct price at time 0 of
any claim (c1, c2) should be.

4.3 The economic intuition

At first, it may seem surprising that the ’objective’ probability p does not
enter into the expression for the option price. Even if the the probability is
0.99 making the probability of the option paying out a positive amount very
large, it does not alter the option’s price at time 0. Looking at this problem
from a mathematical viewpoint, one can just say that this is a consequence of
the linear algebra of the problem: The cost of forming a replicating strategy
does not depend on the probability measure and therefore it does not enter
into the contract. But this argument will not (and should not) convince a
person who is worried by the economic interpretation of a model. Addressing
the problem from a purely mathematical angle leaves some very important
economic intuition behind. We will try in this section to get the economic
intuition behind this ’invariance’ to the choice of p straight. This will provide
an opportunity to outline how the financial markets studied in this course fit
in with a broader microeconomic analysis.

Before the more formal approach, here is the story in words: If we argue
(erroneously) that changing p ought to change the option’s price at time 0,
the same argument should also lead to a suggested change in S0. But the
experiment involving a change in p is an experiment which holds S0 fixed.
The given price of the stock is supposed to represent a ’sensible’ model of the
market. If we change p without changing S0 we are implicitly changing our
description of the underlying economy. An economy in which the probability
of an up jump p is increased to 0.99 while the initial stock price remains
fixed must be a description of an economy in which payoff in the upstate has



4.3. THE ECONOMIC INTUITION 51

lost value relative to a payoff in the downstate. These two opposite effects
precisely offset each other when pricing the option.

The economic model we have in mind when studying the financial market
is one in which utility is a function of wealth in each state and wealth is
measured by a scalar (kroner, dollars, . . .). Think of the financial market
as a way of transferring money between different time periods and different
states. A real economy would have a (spot) market for real goods also (food,
houses, TV-sets, . . .) and perhaps agents would have known endowments of
real goods in each state at each time. If the spot prices of real goods which
are realized in each state at each future point in time are known at time 0,
then we may as well express the initial endowment in terms of wealth in each
state. Similarly, the optimal consumption plan is associated with a precise
transfer of wealth between states which allows one to realize the consumption
plan. So even if utility is typically a function of the real goods (most people
like money because of the things it allows them to buy), we can formulate
the utility as a function of the wealth available in each state.

Consider1 an agent who has an endowment e = (e1, . . . , eS) ∈ RS+. This
vector represents the random wealth that the agent will have at time 1. The
agent has a utility function U : RS+ → R which we assume to be concave,
differentiable and strictly increasing in each coordinate. Given a financial
market represented by the pair (π,D), the agent’s problem is

max
θ
U(e + D>θ) (4.1)

s.t. π>θ ≤ 0.

If we assume that there exists a security with a non-negative payoff which
is strictly positive in at least one state, then because the utility function
is increasing we can replace the inequality in the constraint by an equality.
And then the interpretation is simply that the agent sells endowment in some
states to obtain more in other states. But no cash changes hands at time 0.
Note that while utility is defined over all (non-negative) consumption vectors,
it is the rank of D which decides in which directions the consumer can move
away from the initial endowment.

Now make sure that you can prove the following

Proposition 9 If there exists a portfolio θ with D>θ > 0 then the agent can
find a solution to the maximization problem if and only if (π,D) is arbitrage-
free.

1This closely follows Darrell Duffie: Dynamic Asset Pricing Theory. Princeton Univer-
sity Press. 1996
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The ’only if’ part of this statement shows how no arbitrage is a necessary
condition for existence of a solution to the agent’s problem and hence for the
existence of equilibrium for economies where agents have increasing utility
(no continuity assumptions are needed here). The ’if’ part uses continuity
and compactness (why?) to ensure existence of a maximum, but of course to
discuss equilibrium would require more agents and then we need some more
of our general equilibrium apparatus to prove existence.

The important insight is the following (see Proposition 1C in Duffie
(1996)):

Proposition 10 Assume that there exists a portfolio θ with D>θ > 0. If
there exists a solution θ∗ to (4.1) and the associated optimal consumption
is given by c∗ := e + D>θ∗ >> 0, then the gradient ∇U(c∗) (thought of
as a column vector) is proportional to a state-price vector. The constant of
proportionality is positive.

Proof. Since c∗ is strictly positive, then for any portfolio θ there exists
some k(θ) such that c∗ + αD>θ ≥ 0 for all α in [−k(θ), k(θ)]. Define

gθ : [−k(θ), k(θ)]→ R

as
gθ(α) = U(c∗ + αD>θ)

Now consider a θ with π>θ = 0. Since c∗ is optimal, gθ must be maximized
at α = 0 and due to our differentiability assumptions we must have

g′θ(0) = (∇U(c∗))>D>θ = 0.

We can conclude that any θ with π>θ = 0 satisfies (∇U(c∗))>D>θ = 0. Trans-
posing the last expression, we may also write θ>D∇U(c∗) = 0. In words, any
vector which is orthogonal to π is also orthogonal to D∇U(c∗). This means
that µπ = D∇U(c∗) for some µ showing that ∇U(c∗) is proportional to a
state-price vector. Choosing a θ+ with D>θ+ > 0 we know from no arbitrage
that π>θ+ > 0 and from the assumption that the utility function is strictly
increasing, we have ∇U(c∗)D>θ+ > 0. Hence µ must be positive.

To understand the implications of this result we turn to the special case
where the utility function has an expected utility representation, i.e. where
we have a set of probabilities (p1, . . . , pS) and a function u such that

U(c) =
S∑
i=1

piu(ci).
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In this special case we note that the coordinates of the state-price vector
satisfy

ψi = λpiu
′(c∗i ), i = 1, . . . , S. (4.2)

where λ is some constant of proportionality. Now we can state the economic
intuition behind the option example as follows (and it is best to think of
a complete market to avoid ambiguities in the interpretation): Given the
complete market (π,D) we can find a unique state price vector ψ. This state
price vector does not depend on p. Thus if we change p and we are think-
ing of some agent out there ’justifying’ our assumptions on prices of traded
securities, it must be the case that the agent has different marginal utili-
ties associated with optimal consumption in each state. The difference must
offset the change in p in such a way that (4.2) still holds. We can think
of this change in marginal utility as happening in two ways: One way is to
change utility functions altogether. Then starting with the same endowment
the new utility functions would offset the change in probabilities so that the
equality still holds. Another way to think of state prices as being fixed with
new probabilities but utility functions unchanged, is to think of a different
value of the initial endowment. If the endowment is made very large in one
state and very small in the other, then this will offset the large change in
probabilities of the two states. The analysis of the single agent can be carried
over to an economy with many agents with suitable technical assumptions.
Things become particularly easy when the equilibrium can be analyzed by
considering the utility of a single, ’representative’ agent, whose endowment
is the sum of all the agents’ endowments. An equilibrium then occurs only if
this representative investor has the initial endowment as the solution to the
utility maximization problem and hence does not need to trade in the market
with the given prices. In this case the aggregate endowment plays a crucial
role. Increasing the probability of a state while holding prices and the utility
function of the representative investor constant must imply that the aggre-
gate endowment is different with more endowment (low marginal utility) in
the states with high probability and low endowment (high marginal utility)
in the states with low probability. This intuition is very important when we
discuss the Capital Asset Pricing Model later in the course.

A market where we are able to separate out the financial decisions as
above is the one we will have in our mind throughout this course. But do keep
in mind that this leaves out many interesting issues in the interaction between
real markets and financial markets. For example, it is easy to imagine that an
incomplete financial market (i.e. one which does not allow any distribution
of wealth across states and time periods) makes it impossible for agents to
realize consumption plans that they would find optimal in a complete market.
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This in turn may change equilibrium prices on real markets because it changes
investment behavior. For example, returning to the house market, the fact
that financial markets allows young agents to borrow against future income,
makes it possible for more consumers to buy a house early in their lives. If
all of a sudden we removed the possibility of borrowing we could imagine
that house prices would drop significantly, since the demand would suddenly
decrease.



Chapter 5

Arbitrage pricing in the
multi-period model

5.1 An appetizer

It is fair to argue that to get realism in a model with finite state space we
need the number of states to be large. After all, why would the stock take
on only two possible values at the expiration date of the option? On the
other hand, we know from the previous section that in a model with many
states we need many securities to have completeness, which (in arbitrage-free
models) is a requirement for pricing every claim. And if we want to price
an option using only the underlying stock and a money market account, we
only have two securities to work with. Fortunately, there is a clever way out
of this.

Assume that over a short time interval the stock can only move to two
different values and split up the time interval between 0 and T (the maturity
date of an option) into small intervals in which the stock can be traded.
Then it turns out that we can have both completeness and therefore arbitrage
pricing even if the number of securities is much smaller than the number of
states. Again, before we go into the mathematics, we give an example to
help with the intuition.

Assume that Ω = {ω1, ω2, ω3, ω4} and that there are three dates: t ∈
{0, 1, 2}. We specify the behavior of the stock and the money market account
as follows: Assume that 0 < d < R < u and that S > 0. Consider the
following graph:

55
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At time 0 the stock price is S, the money market account is worth 1.
At time 1, if the state of the world is ω1 or ω2, the prices are uS and R ,
respectively, whereas if the true state is ω3 or ω4, the prices are dS and R.
And finally, at time t = 2, the prices of the two instruments are as shown in
the figure above. Note that ω ∈ Ω describes a whole ”sample path” of the
stock price process and the money market account, i.e. it tells us not only
the final time 2 value, but the entire history of values up to time 2.

Now suppose that we are interested in the price of a European call option
on the stock with exercise price K and maturity T = 2. At time 2, we know
it is worth

C2 (ω) = [S2 (ω)−K]+

where S2 (ω) is the value of the stock at time 2 if the true state is ω.
At time 1, if we are in state ω1 or ω2, the money market account is

worth R and the stock is worth uS, and we know that there are only two
possible time 2 values, namely (R2, u2S) or (R2, duS). But then we can use
the argument of the one period example to see that at time 1 in state ω1 or
ω2 we can replicate the calls payoff by choosing a suitable portfolio of stock
and money market account: Simply solve the system:

au2S + bR2 =
[
u2S −K

]+ ≡ Cuu

aduS + bR2 = [duS −K]+ ≡ Cdu
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for (a, b) and compute the price of forming the portfolio at time 1. We find

a =
Cuu − Cdu
uS (u− d)

, b =
uCdu − dCuu
(u− d)R2

.

The price of this portfolio is

auS + bR =
R

R

(Cuu − Cdu)
(u− d)

+
uCdu − dCuu

(u− d)R

=
1

R

[
(R− d)

(u− d)
Cuu +

(u−R)

(u− d)
Cud

]
=: Cu

This is clearly what the call is worth at time t = 1 if we are in ω1

or ω2, i.e. if the stock is worth uS at time 1. Similarly, we may define
Cud := [udS −K]+ (which is equal to Cdu) and Cdd = [d2S −K]

+
. And now

we use the exact same argument to see that if we are in state ω3 or ω4, i.e.
if the stock is worth dS at time 1, then at time 1 the call should be worth
Cd where

Cd :=
1

R

[
(R− d)

(u− d)
Cud +

(u−R)

(u− d)
Cdd

]
.

Now we know what the call is worth at time 1 depending on which state
we are in: If we are in a state where the stock is worth uS, the call is worth
Cu and if the stock is worth dS, the call is worth Cd.

Looking at time 0 now, we know that all we need at time 1 to be able to
”create the call”, is to have Cu when the stock goes up to uS and Cd when
it goes down. But that we can accomplish again by using the one-period
example: The cost of getting

(
Cu
Cd

)
is

C0 :=
1

R

[
(R− d)

(u− d)
Cu +

(u−R)

(u− d)
Cd

]
.

If we let q = R−d
u−d and if we insert the expressions for Cu and Cd, noting

that Cud = Cdu, we find that

C0 =
1

R2

[
q2Cuu + 2q (1− q)Cud + (1− q)2 Cdd

]
which the reader will recognize as a discounted expected value, just as in the
one period example. (Note that the representation as an expected value does
not hinge on Cud = Cdu.)

The important thing to understand in this example is the following: Start-
ing out with the amount C0, an investor is able to form a portfolio in the
stock and the money market account which produces the payoffs Cu or Cd
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at time 1 depending on where the stock goes. Now without any additional
costs, the investor can rearrange his/her portfolio at time 1, such that at
time 2, the payoff will match that of the option. Therefore, at time 0 the
price of the option must be C0.

This ”dynamic hedging” argument is the key to pricing derivative securi-
ties in discrete-time, finite state space models. We now want to understand
the mathematics behind this example.

5.2 Price processes, trading and arbitrage

Given a probability space (Ω,F , P ) with Ω finite, let F := 2Ω (i.e. the set of
all subsets of Ω) and assume that P (ω) > 0 for all ω ∈ Ω. Also assume that
there are T+1 dates, starting at date 0, ending at date T. To formalize how
information is revealed through time, we introduce the notion of a filtration:

Definition 23 A filtration F = {Ft}Tt=0 is an increasing sequence of σ-
algebras contained in F :F0 ⊆ F1 ⊆ . . . ⊆ FT .

We will always assume that F0 = {∅,Ω} and FT = F . Since Ω is finite,
it will be easy to think of the σ−algebras in terms of partitions:

Definition 24 A partition Pt of Ω is a collection of non-empty subsets of
Ω such that

•
⋃

Pi∈PtPi = Ω

• Pi ∩ Pj = ∅ whenever i 6= j, Pi, Pj ∈ Pt.

Because Ω is finite, there is a one-to-one correspondence between parti-
tions and σ−algebras: The elements of Pt corresponds to the atoms of Ft.

The concepts we have just defined are well illustrated in an event-tree:
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The event tree illustrates the way in which we imagine information about
the true state being revealed over time. At time t = 1, for example, we may
find ourselves in one of two nodes: ξ11 or ξ12. If we are in the node ξ11, we
know that the true state is in the set {ω1, ω2, . . . , ω5}, but we have no more
knowledge than that. In ξ12, we know (only) that ω ∈ {ω6, ω7, . . . , ω9}. At
time t = 2 we have more detailed knowledge, as represented by the partition
P2. Elements of the partition Pt are events which we can decide as having
occurred or not occurred at time t, regardless of what the true ω is. At
time 1, we will always know whether {ω1, ω2, . . . , ω5} has occurred or not,
regardless of the true ω. If we are at node ξ12, we would be able to rule out
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the event {ω1, ω2} also at time 1, but if we are at node ξ11, we will not be
able to decide whether this event has occurred or not. Hence {ω1, ω2} is not
a member of the partition.

Make sure you understand the following

Remark 2 A random variable defined on (Ω,F , P ) is measurable with re-
spect to Ft precisely when it is constant on each member of Pt.

A stochastic process X := (Xt)t=0,...,T is a sequence of random vari-
ables X0, X1, . . . , XT . The process is adapted to the filtration F if Xt is
Ft−measurable (which we will often write: Xt ∈ Ft) for t = 0, . . . , T.
Returning to the event tree setup, it must be the case, for example, that
X1(ω1) = X1(ω5) if X is adapted, but we may have X1(ω1) 6= X1(ω6).

Given an event tree, it is easy to construct adapted processes: Just assign
the values of the process using the nodes of the tree. For example, at time
1, there are two nodes ξ11 and ξ12. You can choose one value for X1 in ξ11

and another in ξ12. The value chosen in ξ11 will correspond to the value of
X1 on the set {ω1, ω2, . . . , ω5} , the value chosen in ξ12 will correspond to
the common value of X1 on the set {ω6, . . . , ω9}. When Xt is constant on an
event At we will sometimes write Xt(At) for this value. At time 2 there are
five different values possible for X2. The value chosen in the top node is the
value of X2 on the set {ω1, ω2}.

As we have just seen it is convenient to speak in terms of the event tree
associated with the filtration. From now on we will refer to the event tree
as the graph Ξ and use ξ to refer to the individual nodes. The notation
p(ξ) will denote the probability of the event associated with ξ; for example
P (ξ11) = P ({ω1, ω2, . . . , ω5}). This graph Ξ will also allow us to identify
adapted processes with vectors in RΞ. The following inner products on the
space of adapted processes will become useful later: Let X,Y be adapted
processes and define∑

ξ∈Ξ

X(ξ)Y (ξ) ≡
∑

{(t,Au):Au∈Pt,0≤t≤T}

Xt(Au)Yt(Au)

E
∑
ξ∈Ξ

X(ξ)Y (ξ) ≡
∑
ξ∈Ξ

P (ξ)X(ξ)Y (ξ)

≡
∑

{(t,Au):Au∈Pt,0≤t≤T}

P (Au)Xt(Au)Yt(Au)

Now we are ready to model financial markets in multi-period models.
Given is a vector of adapted dividend processes

δ = (δ1, . . . , δN)
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and a vector of adapted security price processes

S = (S1, . . . , SN).

The interpretation is as follows: Sit(ω) is the price of security i at time t if the
state is ω. Buying the i′th security at time t ensures the buyer (and obligates
the seller to deliver) the remaining dividends δit+1, δ

i
t+2, . . . , δ

i
T .

1 Hence the
security price process is to be interpreted as an ex-dividend price process
and in particular we should think of ST as 0. In all models considered in
these notes we will also assume that there is a money market account which
provides locally riskless borrowing and lending. This is modeled as follows:
Given an adapted process - the spot rate process

ρ = (ρ0, ρ1, . . . , ρT−1).

To make the math work, all we need to assume about this process is that it
is strictly greater than −1 at all times and in all states, but for modelling
purposes it is desirable to have it non-negative. Now we may define the
money market account as follows:

Definition 25 The money market account has the security price process

S0
t = 1, t = 0, 1, . . . , T − 1

S0
T = 0.

and the dividend process

δ0
t (ω) = ρt−1(ω) for all ω and t = 1, . . . , T − 1,

δ0
T (ω) = 1 + ρT−1(ω).

This means that if you buy one unit of the money market account at time
t you will receive a dividend of ρt at time t+ 1. Since ρt is known already at
time t, the dividend received on the money market account in the next period
t+ 1 is known at time t. Since the price is also known to be 1 you know that
placing 1 in the money market account at time t and selling the asset at time
t+ 1 will give you 1 +ρt.This is why we refer to this asset as a locally riskless
asset.You may of course also choose to keep the money in the money market
account and receive the stream of dividends. Reinvesting the dividends in the
money market account will make this account grow according to the process
R defined as

Rt = (1 + ρ0) · · · (1 + ρt−1).

1We will follow the tradition of probability theory and often suppress the ω in the
notation.
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We will need this process to discount cash flows between arbitrary periods
and therefore introduce the following notation:

Rs,t ≡ (1 + ρs) · · · (1 + ρt−1).

Definition 26 A trading strategy is an adapted process

φ = (φ0
t , . . . , φ

N
t )t=0,...,T−1.

and the interpretation is that φit(ω) is the number of the i′th security held at
time t if the state is ω. The requirement that the trading strategy is adapted
is very important. It represents the idea that the strategy should not be able
to see into the future. Returning again to the event tree, when standing in
node ξ11, a trading strategy can base the number of securities on the fact
that we are in ξ11 (and not in ξ12), but not on whether the true state is ω1

or ω2.
The dividend stream generated by the trading strategy φ is denoted δφ

and it is defined as

δφ0 = −φ0 · S0

δφt = φt−1 · (St + δt)− φt · St for t = 1, . . . , T.

Definition 27 An arbitrage is a trading strategy for which δφt is a positive
process, i.e. always nonnegative and δφt (ω) > 0 for some t and ω. The model
is said to be arbitrage-free if it contains no arbitrage opportunities.

In words, there is arbitrage if we can adopt a trading strategy which at
no point in time requires us to pay anything but which at some time in some
state gives us a strictly positive payout. Note that since we have included the
initial payout as part of the dividend stream generated by a trading strategy,
we can capture the definition of arbitrage in this one statement. This one
statement captures arbitrage both in the sense of receiving money now with
no future obligations and in the sense of paying nothing now but receiving
something later.

Definition 28 A trading strategy φ is self-financing if it satisfies

φt−1 · (St + δt) = φt · St for t = 1, . . . , T.

The interpretation is as follows: Think of forming a portfolio φt−1 at
time t − 1. Now as we reach time t, the value of this portfolio is equal to
φt−1 · (St + δt), and for a self-financing trading strategy, this is precisely the
amount of money which can be used in forming a new portfolio at time t.
We will let Φ denote the set of self-financing trading strategies.
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5.3 No arbitrage and price functionals

We have seen in the one period model that there is equivalence between the
existence of a state price vector and absence of arbitrage. In this section we
show the multi-period analogue of this theorem.

The goal of this section is to prove the existence of the multi-period
analogue of state-price vectors in the one-period model. Let L denote the set
of adapted processes on the given filtration.

Definition 29 A pricing functional F is a linear functional

F : L→R

which is strictly positive, i.e.

F (X) ≥ 0 for X ≥ 0

F (X) > 0 for X > 0.

Definition 30 A pricing functional F is consistent with security prices if

F (δφ) = 0 for all trading strategies φ.

Note that if there exists a consistent pricing functional we may arbitrarily
assume that the value of the process 1{t=0} (i.e. the process which is 1 at time
0 and 0 thereafter) is 1.

By Riesz’ representation theorem we can represent the functional F as

F (X) =
∑
ξ∈Ξ

X(ξ)f(ξ)

With the convention F (1{t=0}) = 1, we then note that if there exists a trading
strategy φwhich is initiated at time 0 and which only pays a dividend of 1 in
the node ξ, then

φ0 · S0 = f(ξ).

Hence f(ξ) is the price at time 0 of having a payout of 1 in the node ξ.

Proposition 11 The model (δ, S) is arbitrage-free if and only if there exists
a consistent pricing functional.

Proof. First, assume that there exists a consistent pricing functional F. Any
dividend stream δφ generated by a trading strategy which is positive must
have F (δφ) > 0 but this contradicts consistency. Hence there is no arbitrage.
The other direction requires more work:
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Define the sets

L
1 =

{
X ∈ L

∣∣∣∣∣X > 0 and
∑
ξ∈Ξ

X(ξ) = 1

}
L

0 =
{
δφ ∈ L |φ trading strategy

}
and think of both sets as subsets of RΞ. Note that L1is convex and compact
and that L0 is a linear subspace, hence closed and convex. By the no arbitrage
assumption the two sets are disjoint. Therefore, there exists a separating
hyperplane H(f ;α) := {x ∈ RΞ : f · x = α} which separates the two sets
strictly and we may choose the direction of f such that f · x ≤ α for x ∈ L0.
Since L0 is a linear subspace we must have f · x = 0 for x ∈ L0 (why?).
Strict separation then gives us that f · x > 0 for x ∈ L1, and that in turn
implies f � 0 (why?). Hence the functional

F (X) =
∑
ξ∈Ξ

f(ξ)X(ξ)

is consistent.
By using the same geometric intuition as in Chapter 2, we note that there

is a connection between completeness of the market and uniqueness of the
consistent price functional:

Definition 31 The security model is complete if for every X ∈ L there exists
a trading strategy φ such that δφt = Xt for t ≥ 1.

If the model is complete and arbitrage-free, there can only be one consis-
tent price functional (up to multiplication by a scalar). To see this, assume
that if we have two consistent price functionals F,G both normed to have
F (1{t=0}) = G(1{t=0}) = 1. Then for any trading strategy φ we have

0 = −φ0 · S0 + F (1{t>0}δ
φ)

= −φ0 · S0 +G(1{t>0}δ
φ)

hence F and G agree on all processes of the form 1{t>0}δ
φ. But they also

agree on 1{t=0} and therefore they are the same since by the assumption of
completeness every adapted process can be obtained as a linear combination
of these processes.

Given a security price system (π,D), the converse is shown in a way
very similar to the one-period case. Assume the market is arbitrage-free and
incomplete. Then there exists a process π in L, whose restriction to time
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t ≥ 1 is orthogonal to any dividend process generated by a trading strategy.
By letting π0 = 0 and choosing a sufficiently small ε > 0, the functional
defined by

(F + επ) (δφ) =
∑
ξ∈Ξ

(f(ξ) + επ(ξ)) δφ(ξ)

is consistent. Hence we have shown:

Proposition 12 If the market is arbitrage-free, then the model is complete
if and only if the consistent price functional is unique.

5.4 Conditional expectations and martingales

Consistent price systems turn out to be less interesting for computation when
we look at more general models, and they do not really explain the strange
probability measure q which we saw earlier. We are about to remedy both
problems, but first we need to make sure that we can handle conditional
expectations in our models and that we have a few useful computational
rules at our disposal.

Definition 32 The conditional expectation of an Fu−measurable random
variable Xu given Ft,where Ft ⊆ Fu, is given by

E(Xu |Ft )(ω) =
1

P (At)

∑
Av∈Pu:Av⊆At

P (Av)Xu(Av) for ω ∈ At

where we have written Xu(Av) for the value of Xu(ω) on the set Av and
where At ∈ Pt.

We will illustrate this definition in the exercises. Note that we obtain
an Ft−measurable random variable since it is constant over elements of the
partition Pt. The definition above does not work when the probability space
becomes uncountable. Then one has to adopt a different definition which we
give here and which the reader may check is satisfied by the random variable
given above in the case of finite sample space:

Definition 33 The conditional expectation of an Fu−measurable random
variable Xu given Ft is a random variable E(Xu |Ft ) which is Ft−measurable
and satisfies ∫

At

E(Xu |Ft )dP =

∫
At

XudP

for all At ∈ Ft.
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It is easy to see that the conditional expectation is linear, i.e. if Xu, Yu ∈
Fu and a, b ∈ R, then

E(aXu + bYu |Ft ) = aE(Xu |Ft ) + bE(Yu |Ft ).

We will also need the following computational rules for conditional expecta-
tions:

E(E(Xu |Ft )) = EXu (5.1)

E(ZtXu |Ft ) = ZtE(Xu |Ft ) whenever Zt ∈ Ft (5.2)

E(E(Xu |Ft ) |Fs ) = E(Xu |Fs ) whenever s < t < u (5.3)

Note that a consequence of (5.2) obtained by letting Xu = 1, is that

E(Zt |Ft ) = Zt whenever Zt ∈ Ft. (5.4)

Now we can state the important definition:

Definition 34 A stochastic process X is a martingale with respect to the
filtration F if it satisfies

E(Xt |Ft−1 ) = Xt−1 all t = 1, . . . , T.

You can try out the definition immediately by showing:

Lemma 13 A stochastic process defined as

Xt = E(X |Ft ) t = 0, 1, . . . , T

where X ∈ FT , is a martingale.

Proof. Use (5.3)!
Let EP (Y ;A) ≡

∫
A
Y dP for any random variable Y and A ∈ F . Using

this notation and the definition (33) of a martingale, this lemma says that

E(X;A) = E(Xt;A) for all t andA ∈ Ft

When there can be no confusion about the underlying filtration we will
often write Et(X) instead of E(X |Ft ).

Two probability measures are equivalent when they assign zero probabil-
ity to the same sets and since we have assumed that P (ω) > 0 for all ω, the
measures equivalent to P will be the ones which assign strictly positive prob-
ability to all events.

We will need a way to translate conditional expectations under one mea-
sure to conditional expectations under an equivalent measure. To do this we
need the density process:
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Definition 35 Let the density process Z be defined as

ZT (ω) =
Q(ω)

P (ω)

and
Zt = EP (ZT | Ft) t = 0, 1, . . . , T.

We will need (but will not prove) the following result of called the Abstract
Bayes Formula.

Proposition 14 Let X be a random variable on (Ω,F). Then

EQ(X| Ft) =
1

Zt
EP (XZT | Ft).

5.5 Equivalent martingale measures

In this section we state and prove what is sometimes known as the funda-
mental theorem of asset pricing. This theorem will explain the mysterious
q−probabilities which arose earlier and it will provide an indispensable tool
for constructing arbitrage-free models and pricing contingent claims in these
models.

We maintain the setup with a money market account generated by the
spot rate process ρ and N securities with price- and dividend processes S =
(S1, . . . , SN), δ = (δ1, . . . , δN). Define the corresponding discounted processes

S̃, δ̃ by defining for each i = 1, . . . , N

S̃it =
Sit
R0,t

t = 0, . . . , T,

δ̃
i

t =
δit
R0,t

t = 1, . . . , T.

Definition 36 A probability measure Q on F is an equivalent martingale
measure (EMM) if Q(ω) > 0 all ω and for all i = 1, . . . , N

S̃it = EQ
t

(
T∑

j=t+1

δ̃
i

j

)
t = 0, . . . , T − 1. (5.5)

The term martingale measure has the following explanation: Given a
(one-dimensional) security price process S whose underlying dividend process
only pays dividend δT at time T. Then the existence of an EMM will give us

S̃t = EQ
t

(
δ̃T

)
t = 0, . . . , T − 1.
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and therefore the process (S̃0, S̃1, . . . , S̃T−1, δ̃T ) is a martingale, cf. Lemma
(13).

We are now ready to formulate and prove what is sometimes known as
’the fundamental theorem of asset pricing’ in a version with discrete time
and finite state space:

Theorem 15 In our security market model the following statements are
equivalent:

1. There are no arbitrage opportunities.

2. There exists an equivalent martingale measure.

Proof. We have already seen that no arbitrage is equivalent to the ex-
istence of a consistent price functional F. Therefore, what we show in the
following is that there is a one-to-one correspondence between consistent
price functionals (up to multiplication by a positive scalar) and equivalent
martingale measures. We will need the following notation for the restriction
of F to an Ft−measurable random variable: Let δX be a dividend process
whose only payout is X at time t.Define

Ft(X) = F (δX).

If we assume (as we do from now on) that F0(1) = 1, we may think of
Ft(1A) as the price a time 0 of a claim (if it trades) paying off 1 at time t if
ω ∈ A. Note that since we have a assumed the existence of a money market
account, we have

FT (R0,T ) = 1 (5.6)

First, assume there is no arbitrage and let F be a consistent price func-
tional. Our candidate as equivalent martingale measure is defined as follows:

Q(A) = FT (1AR0,T ) A ∈ F ≡ FT . (5.7)

By the strict positivity, linearity and (5.6) we see that Q is a probability
measure which is strictly positive on all ω.We may write (5.7) as

EQ1A = FT (1AR0,T ) A ∈ F ≡ FT

and by writing a random variable X as a sum of constants times indicator
functions, we note that

EQ(X) = FT (XR0,T ) (5.8)
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Now we want to check the condition (5.5). By definition (33) this is equivalent
to showing that for every security we have

EQ(1AS̃
i
t) = EQ

(
1A

T∑
j=t+1

δ̃
i

j

)
t = 1, . . . , T. (5.9)

Consider for given A ∈ Ft the following trading strategy φ:

• Buy one unit of stock i at time 0 (this costs Sit ). Invest all dividends
before time t in the money market account and keep them there at
least until time t.

• At time t, if ω ∈ A (and this we know at time t since A ∈ Ft) sell the
security and invest the proceeds in the money market account, i.e. buy
Sit units of the 0′th security and roll over the money until time T .

• If ω /∈ A, then hold the i′th security to time T.

This strategy clearly only requires an initial payment of Si0. The dividend
process generated by this strategy is non-zero only at time 0 and at time
T.At time T the dividend is

δφT = 1ARt,T

(
Sit +

t∑
j=1

δijRj,t

)
+ 1Ac

T∑
j=1

δijRj,T

= 1AR0,T

(
S̃it +

t∑
j=1

δ̃
i

j

)
+ 1Ac

T∑
j=1

δijRj,T

One could also choose to just buy the i’th security and then roll over the
dividends to time T. Call this strategy ψ.This would generate a terminal
dividend which we may write in a complicated but useful way as

δψT = 1A

T∑
j=1

δijRj,T + 1Ac
T∑
j=1

δijRj,T

= 1AR0,T

T∑
j=1

δ̃
i

j + 1Ac
T∑
j=1

δijRj,T

The dividend stream of both strategies at time 0 is −Si0.We therefore have

FT (δφT ) = FT (δψT )
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which in turn implies

FT

(
1AR0,T

(
S̃it +

t∑
j=1

δ̃
i

j

))
= FT

(
1AR0,T

T∑
j=1

δ̃
i

j

)

i.e.

FT

(
1AR0,T S̃

i
t

)
= FT

(
1AR0,T

T∑
j=t+1

δ̃
i

j

)
.

Now use (5.8) to conclude that

EQ(1AS̃
i
t) = EQ(1A

T∑
j=t+1

δ̃
i

j)

and that is what we needed to show. Q is an equivalent martingale measure.
Now assume that Q is an equivalent martingale measure. Define for an

arbitrary dividend process δ

F (δ) = EQ

T∑
j=0

δ̃j

Clearly, F is linear and strictly positive. Now consider the dividend process
δφ generated by some trading strategy φ. To show consistency we need to
show that

φ0 · S̃0 = EQ

T∑
j=1

δ̃
φ

j .

Notice that we know that for individual securities we have

S̃i0 = EQ

T∑
j=1

δ̃
i

j.

We only need to extend that to portfolios. We do some calculations (where
we make good use of the rule EQEj = EQEj−1)

EQ

T∑
j=1

δ̃
φ

j = EQ

(
T∑
j=1

φj−1 · (S̃j + δ̃j)− φj · S̃j

)

= EQ

(
T∑
j=1

φj−1 ·

(
EQ
j

(
T∑
k=j

δ̃k

))
− φj · E

Q
j

(
T∑

k=j+1

δ̃k

))
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= EQ

(
T∑
j=1

φj−1 ·

(
EQ
j−1

(
T∑
k=j

δ̃k

))
−

T∑
j=2

φj−1 · E
Q
j−1

(
T∑
k=j

δ̃k

))

= EQ

(
φ0 ·

(
EQ

0

T∑
k=1

δ̃k

))
= EQ

(
φ0 · S̃0

)
= φ0 · S̃0

This completes the proof. �
Earlier, we established a one-to-one correspondence between consistent

price functionals (normed to 1 at date 0) and equivalent martingale measures.
Therefore we have also proved the following

Corollary 16 Assume the security model is arbitrage-free. Then the market
is complete if and only if the equivalent martingale measure is unique.

Another immediate consequence from the definition of consistent price
functionals and equivalent martingale measures is the following

Corollary 17 Let the security model defined by (S, δ) (including the money
market account) on (Ω, P,F ,F) be arbitrage-free and complete. Then the
augmented model obtained by adding a new pair (SN+1, δN+1) of security price
and dividend processes is arbitrage-free if and only if

S̃N+1
t = EQ

t

(
T∑

j=t+1

δ̃
N+1

j

)
(5.10)

i.e.
SN+1
t

R0,t

= EQ
t

(
T∑

j=t+1

δN+1
j

R0,j

)
where Q is the unique equivalent martingale measure for (S, δ).

In the special case where the discount rate is deterministic the expression
simplifies somewhat. For ease of notation assume that the spot interest rate
is not only deterministic but also constant and let R = 1 + ρ. Then (5.10)
becomes

SN+1
t = RtEQ

t

(
T∑

j=t+1

δN+1
j

R0,j

)
(5.11)

= EQ
t

(
T∑

j=t+1

δN+1
j

Rj−t

)
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5.6 One-period submodels

Before we turn to applications we note a few results for which we do not
give proofs. The results show that the one-period model which we analyzed
earlier actually is very useful for analyzing multi-period models as well.

Given the market model with the N−dimensional security price process
S and dividend process δ and assume that a money market account exists as
well. Let At ∈ Pt and let

N (At) ≡ |{B ∈ Pt+1 : B ⊆ At}| .

This number is often referred to as the splitting index at At. In our
graphical representation where the set At is represented as a node in a graph,
the splitting index at At is simply the number of vertices leaving that node.
At each such node we can define a one-period submodel as follows: Let

π(t, At) ≡
(
1, S1

t (At), . . . , S
N
t (At)

)
.

Denote by B1, . . . , BN(At) the members of Pt+1 which are subsets of At and
define

D(t, At) ≡


1 + ρt(At) · · · 1 + ρt(At)

S0
t+1(B1) + δ0

t+1(B1)
... S0

t+1(BN(At)) + δ0
t+1(BN(At))

...
...

...
SNt+1(B1) + δNt+1(B1) · · · SNt+1(BN(At)) + δNt+1(BN(At))

 .

Then the following results hold:

Proposition 18 The security market model is arbitrage-free if and only if
the one-period model (π(t, At), D(t, At)) is arbitrage-free for all (t, At) where
At ∈ Pt.

Proposition 19 The security market model is complete if and only if the
one-period model (π(t, At), D(t, At)) is complete for all (t, At) where At ∈
Pt.

In the complete, arbitrage-free case we obtain from each one-period sub-
model a unique state price vector ψ(t, At) and by following the same proce-
dure as outlined in chapter (4) we may decompose this into a discount factor,
which will be 1 + ρt(At), and a probability measure q1, . . . , qN(At). The prob-
abilities thus obtained are then the conditional probabilities qi = Q(Bi |At )
for i = 1, . . . , N(At). From these conditional probabilities the martingale
measure can be obtained.
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The usefulness of these local results is that we often build multi-period
models by repeating the same one-period structure.We may then check ab-
sence of arbitrage and completeness by looking at a one-period submodel
instead of the whole tree.

5.7 The multi-period model on matrix form

As a final curiosity we note that it is in fact possible to embed a multi-period
model into one giant one-period model by stacking the one-period submodels
defined above into a giant matrix. Instead of giving the abstract notation
for how this is done, we indicate for the two-period model of chapter (5) how
this is done. Consider the following table in which we have defined a set of
’elementary securities’:

0 1,1 1,2 2,1 2,2 2,3 2,4

S0
1 −1 R R 0 0 0 0
S1

1 −S uS dS 0 0 0 0
S0({ω1,ω2}) 0 −R 0 R2 R2 0 0
S1({ω1, ω2}) 0 −uS 0 u2S duS 0 0
S0({ω3, ω4}) 0 0 −R 0 0 R2 R2

S1({ω3, ω4}) 0 0 −dS 0 0 udS d2S

Each elementary security is to be thought of as arising from buying the
security at one node and selling at the successor nodes. The pairs 1,1 ; 1,2 etc.
in the top row are to be read as date 1, partition element 1; date 1 partition
element 2, etc. Note that the setup is very much as in the application of
Stiemke’s lemma to one-period models in that we include negative prices for
one date and positive prices for the subsequent date. Define

Dbig =


−1 R R 0 0 0 0
−S uS dS 0 0 0 0
0 −R 0 R2 R2 0 0
0 −uS 0 u2S duS 0 0
0 0 −R 0 0 R2 R2

0 0 −dS 0 0 udS d2S


What you can check for yourself now is that we can define a trading

strategy as a vector θ ∈ R6 and then interpret Dtop
big θ as the dividend process

generated by the trading strategy. A self-financing strategy would be one for
which the dividend process was non-zero at all dates 1, . . . , T − 1 (although
this could easily be relaxed to a definition of self-financing up to a liquidation
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date t < T ). Arbitrage may then be defined as a trading strategy generating
a positive, non-zero dividend stream. If the market is arbitrage-free, the
corresponding vector of state prices is an element of R7 and if we normalize
the first component to be 1, the state prices correspond to time-zero prices
of securities delivering one unit of account at nodes of the tree.

We will not go further into this but note that it may be a useful way of
representing a multi-period model when one wants to introduce short-selling
constraints into the model.



Chapter 6

Option pricing

The classical application of the arbitrage pricing machinery we have devel-
oped is to the pricing of options. The pricing models we obtain are used
with minor modifications all over the world as the basis for trading billions
of dollars worth of contracts every day. For students planning to become
traders of financial derivatives this of course gives plenty of motivation for
learning these models. But recent collapses of financial institutions have also
reminded us that financial managers and executives must understand the way
the derivatives markets work. A manager who understands the markets well
may use them for effective risk management and will be able to implement
effective control mechanisms within a firm to make sure that traders use the
markets in accordance with the firm’s overall objectives.

From a theoretical perspective, options are very important in several areas
of finance. We will see later in the course how they are indispensable for
our understanding of a firm’s choice of capital structure. Also, a modern
theory of capital budgeting relies critically on recognizing options involved
in projects, so-called real options. And in actuarial science options appear
when modelling reinsurance contracts.

6.1 Terminology

A European (American) call option on an underlying security S, with strike
price K and expiration date T, gives the owner the right, but not the obli-
gation, to buy S at a price of K at (up to and including) time T.

A European (American) put option on an underlying security S, with
strike price K and expiration date T, gives the owner the right, but not the
obligation, to sell S at a price of K at (up to and including) time T.

The strike price is also referred to as the exercise price, and using the

75
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right to buy or sell is referred to as exercising the option.
There is no good reason for the American/European terminology - both

types are traded in America and Europe.
In the definition above, we think of the person selling a call option (say),

often referred to as the person writing an option, as actually delivering the
underlying security to the option holder if the option holder decides to exer-
cise. This is referred to as physical delivery. In reality, options are often cash
settled. This means that instead of the option holder paying K to the writer
of the call and the writer delivering the stock, the holder merely receives an
amount ST −K from the option writer.

Some common examples of options are stock options in which the under-
lying security is a stock, currency options in which the underlying security
is a foreign currency and where the strike price is to be thought of as an
exchange rate, bond options which have bonds as underlying security and
index options whose underlying security is not really a security but a stock
market index (and where the contracts are then typically cash settled.) It
will always be assumed that the underlying security has non-negative value.

6.2 Diagrams, strategies and put-call parity

Before we venture into constructing exact pricing models we develop some
feel for how these instruments work. In this section we focus on what can
be said about options if all we assume is that all securities (stocks, bonds,
options) can be bought and sold in arbitrary quantities at the given prices
with no transactions costs or taxes. This assumption we will refer to as an
assumption of frictionless markets. We will also assume that at any time t
and for any date T > t, there exists a zero coupon bond with maturity T in
the market whose price at time t is d(t, T ).

An immediate consequence of our frictionless markets assumption is the
following

Proposition 20 The value of an American or European call option at the
expiration date T is equal to CT = max(ST − K, 0), where ST is the price
of the underlying security at time T.The value of an American or European
put option at the expiration date T is equal to max(K − ST , 0).

Proof. Consider the call option. If ST < K, we must have CT = 0, for
if CT > 0 you would sell the option, receive a positive cash flow, and there
would be no exercise.1 If ST ≥ K, we must have CT = ST − K. For if

1Actually, here we need to distinguish between whether the person who bought the
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CT > ST −K you would sell the option and buy the stock. After the option
has been exercised, you are left with a total cash flow of CT−ST +K > 0, and
you would have no future obligations arising from this trade. If CT < ST−K,
buy the option, exercise it immediately, and sell the stock. The total cash
flow is −CT + ST −K > 0, and again there would be no future obligations
arising from this trade. The argument for the put option is similar.

We often represent payoffs of options at an exercise date using payoff
diagrams, which show the value of the option as a function of the value of
the underlying:

6
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K ST
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option is an idiot or a complete idiot. Both types are not very smart to pay something for
the option at time T . The idiot, however, would realize that there is no reason to pay K
to receive the stock which can be bought for less in the market. The complete idiot would
exercise the option. Then you as the person having sold the option would have to buy the
stock in the market for ST , but that would be more than financed by the K you received
from the complete idiot.
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Of course, you can turn these hockey sticks around in which case you are
looking at the value of a written option:
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Note that we are only looking at the situation at an exercise date (i.e.
date T for a European option). Sometimes we wish to take into account that
the option had an initial cost at date 0, c0 for a call, p0 for a put, in which
case we get the following profit diagrams:
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Of course, we are slightly allergic to subtracting payments occurring at dif-
ferent dates without performing some sort of discounting. Therefore, one
may also choose to represent the prices of options by their time T forward
discounted values c0

d(0,T )
and p0

d(0,T )
.

The world of derivative securities is filled with special terminology and
here are a few additions to your vocabulary: A call option with strike price
K is said to be (deep) in-the-money at time t if St > K (St � K).The
opposite situation St < K (St � K) is referred to as the call option being
(deep) out-of-the-money. If St ≈ K, the option is said to be at-the-money.
The same terminology applies to put options but with ’opposite signs’: A



6.2. DIAGRAMS, STRATEGIES AND PUT-CALL PARITY 79

put option is in-the-money if St < K.
The diagrams we have seen so far considered positions consisting of just

one option. We considered a long position, i.e. a position corresponding
to holding the option, and we considered a short position, i.e. a position
corresponding to having written an option. One of the attractive features
of options is that they can be combined with positions in other options, the
underlying security and bonds to produce more complicated payoffs than
those illustrated in the profit diagrams above. We will see examples of this
in the exercises. Note that you should think of the payoff diagram for holding
the stock and the diagram for holding the bond as being represented by:
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d(T, T )

ST

1

Until further notice we will assume that the stock does not pay any dividends
in the time interval [0, T ]. This means that if you own the stock you will not
receive any cash unless you decide to sell the stock. With this assumption
and the maintained assumption of frictionless markets we will give some re-
strictions on option prices which follow solely from arbitrage considerations.

The most important relation is the so-called put-call parity for European
options. Consider the portfolio strategy depicted in the table below and the
associated cash flows at time t and time T. Assume that both options are
European, expire at date T and have strike price equal to K :

strategy\cashflow date t date T, ST ≤ K date T, ST > K

sell 1 call ct 0 K − ST
buy 1 put −pt K − ST 0
buy stock −St ST ST
sell K bonds Kd(t, T ) −K −K
total cash flow must be 0 0 0

Note that we have constructed a portfolio which gives a payoff of 0 at time
T no matter what the value of ST . Since the options are European we need
not consider any time points in (t, T ). This portfolio must have price 0, or else
there would be an obvious arbitrage strategy. If, for example, the portfolio
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had positive value, we would sell the portfolio (corresponding to reversing
the strategy in the table) and have no future obligations. In other words
we have proved that in a frictionless market we have the following

Proposition 21 (Put-call parity) The price ct of a European call and the
price pt of a European put option with expiration date T and exercise price
K must satisfy

ct − pt = St −Kd(t, T ).

Note one simple but powerful consequence of this result: When deciding
which parameters may influence call and put prices the put-call parity gives
a very useful way of testing intuitive arguments. If St, K and d(t, T ) are
fixed, then a change in a parameter which produces a higher call price, must
produce a higher put-price as well. One would easily for example be tricked
into believing that in a model where ST is stochastic, a higher mean value of
ST given St would result in a higher call price since the call option is more
likely to finish in-the-money and that it would result in a lower put price since
the put is more likely then to finish out-of-the money. But if we assume that
St and the interest rate are held fixed, put-call parity tells us that this line
of reasoning is wrong.

Also note that for K = St
d(t,T )

we have ct = pt. This expresses the fact that
the exercise price for which ct = pt is equal to the forward price of S at time
t. A forward contract is an agreement to buy the underlying security at the
expiration date T of the contract at a price of Ft. Note that Ft is specified
at time t and that the contract unlike an option forces the holder to buy. In
other words you can lose money at expiration on a forward contract. The
forward price Ft is decided so that the value of the forward contract at date
t is 0. Hence the forward price is not a price to be paid for the contract at
date t. It is more like the exercise price of an option. Which value of Ft then
gives the contract a value of 0 at date t? Consider the following portfolio
argument:

strategy\cashflow date t date T

buy 1 stock −St ST
sell St

d(t,T )
bonds St − St

d(t,T )

sell 1 forward 0 Ft − ST
total cash flow 0 Ft − St

d(t,T )

Note that the cash flow at timeT is known at time t and since the cash flow
by definition of the forward price is equal to 0 at date t, the cash flow at
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date T must be 0 as well. Hence

Ft =
St

d(t, T )
.

Note that buying a call and selling a put, both with exercise price K and
expiration date T, is equivalent to buying forward at the price K. Therefore
the convention that the forward contract has value 0 at date t is exactly
equivalent to specifying K so that ct = pt.

6.3 Restrictions on option prices

In this section we derive some bounds on call prices which much be satisfied
in frictionless markets. The line of reasoning used may of course be used on
put options as well.

Consider a European call option with expiration date T and exercise price
K. Assume that the underlying security does not pay any dividends during
the life of the option. Then the value of the option ct satisfies

St ≥ ct ≥ max (0, St −Kd(t, T )) . (6.1)

Proof. Clearly, ct ≥ 0.Also, the corresponding put option satisfies pt ≥ 0.
Hence

ct ≥ ct − pt = St −Kd(t, T ) (6.2)

where we have used put-call parity. To see that St ≥ ct, assume that St < ct
and consider the strategy of buying the stock and selling the option. That
gives a positive cash flow at time t. If at time T, ST > K and the option is
exercised the stock is delivered to the option holder and K is received. If
the option is not exercised, the stock can be sold at non-negative value.

It is clear that an American option is more valuable than the correspond-
ing European option, hence we note that the price Ct of an American option
also satisfies Ct ≥ St−Kd(t, T ). If interest rates are positive, i.e. d(t, T ) < 1,
this produces the interesting result that the value of the American call is al-
ways strictly greater than the immediate exercise value St −K when t < T.
This shows the important result that an American option on a non-dividend
paying stock should never be exercised early. Our inequalities above show
that it will be better to sell the option. A corresponding result does not hold
for put options. This is perhaps not so surprising considering that postpon-
ing the exercise of a put postpones the receipt of K, whereas delaying the
exercise of a call delays the payment of K.



82 CHAPTER 6. OPTION PRICING

Typically, stocks pay dividends and it is important to take this into ac-
count when pricing options. It will often be the case that the option contract
does not take into account whether the underlying stock pays dividends. A
dividend payment will normally produce a drop in the stock price and an
owner of a call option will be hurt by this drop without receiving the benefit
of a dividend. A date t is denoted an ex-dividend date if purchasing the stock
at time s < t gives the new owner part in the next dividend payment whereas
a purchase at time t does not. For simplicity, we assume in the following
that the dividend payment takes place at the ex-dividend date. Furthermore,
we will assume that the size of the dividend is known some time before the
dividend date. In a world with no taxes it ought to be the case then that
the drop in the stock price around the dividend date is equal to the size of
the dividend. Assume, for example, that the drop in the stock price is less
than D. Then buying the stock right before the dividend date for a price of
St− and selling it for St+ immediately after the dividend date will produce a
cash flow of St+ +D−St− > 0. This resembles an arbitrage opportunity and
it is our explanation for assuming in the following that St− = St+ +D.

Now let us consider the price at time 0 of a European call option on a
stock which is known to pay one dividend D at time t. Then

c0 ≥ max (0, S0 −Kd(0, T )−Dd(0, t)) .

Again, c0 ≥ 0 is trivial. Assume c0 < S0 − Kd(0, T ) − Dd(0, t). Then
buy the left hand side and sell the right hand side. At time t, we must pay
dividend D on the stock we have sold, but that dividend is exactly received
from the D zero coupon bonds with maturity t. At time T the value of the
option we have sold is equal to max (0, ST −K) . The value of the right hand
side is equal to ST − K. If ST ≥ K the total position is 0.If ST < K the
total position has value K − ST . Hence we have constructed a positive cash
flow while also receiving money initially. This is an arbitrage opportunity
and hence we rule out c0 < S0 −Kd(0, T )−Dd(0, t).

There are many possible variations on the dividend theme. If dividends
are not known at time 0 we may assume that they fall within a certain
interval and then use the endpoints of this interval to bound calls and puts.
The reader may verify that the maximal dividend is important for bounding
calls and the minimum dividend for bounding put prices.

However, we maintain the assumption of a known dividend and finish this
section by another important observation on the early exercise of American
calls on dividend paying stocks. Assume that the stock pays a dividend at
time t and that we are at time 0 < t. It is then not optimal to exercise the
option at time 0 whereas it may be optimal right before time t. To see that it
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is not optimal at time 0, note that the American option contains as a part of
its rights an option with expiration date s ∈ (0, t), and since this option is an
option on a non-dividend paying stock we know that its value is larger than
S0 −K, which is the value of immediate exercise. Therefore, the American
option is also more worth than S0 − K and there is no point in exercising
before t. To see that it may be optimal to exercise right before t, consider
a firm which pays a liquidating dividend to all its shareholders. The stock
will be worthless after the liquidation and so will the call option. Certainly,
the option holder is better off to exercise right before the dividend date to
receive part of the liquidating dividend.

The picture is much more complicated for puts. In the next section we
will see how to compute prices for American puts in binomial models and
this will give us the optimal exercise strategy as well.

6.4 Binomial models for stock options

In this section we will go through the binomial model for pricing stock op-
tions. Our primary focus is the case where the underlying security is a
non-dividend paying stock but it should be transparent that the binomial
framework is highly flexible and will easily handle the pricing and hedging
of derivative securities with more complicated underlying securities.

We consider a model with T periods and assume throughout that the
following two securities trade:

1. A money market account with a constant spot rate process ρ. Let
1 + ρt = R, where R ≥ 1. Hence we have for s < t

Rs,t = Rt−s.

2. A stock2 S , which pays no dividends3 , whose price at time 0 is S0 and
whose evolution under the measure P is described in the tree (where
we have assumed that u > R > d > 0) shown below.

2Since there is only one stock we will write S instead of S1.
3To comply with the mathematical model of the previous chapter we should actually

say that the stock pays a liquidating dividend of ST at time T . We will however speak of
ST as the price at time T of the stock.
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The mathematical description of the process is as follows: Let U1, . . . , UT
be a sequence of i.i.d. Bernoulli variables, let p = P (U1 = 1) and define

Nt =
t∑
i=1

Ui.

Think of Nt as the number of up-jumps that the stock has had between
time 0 and t. Clearly, this is a binomially distributed random variable. Let
u > R > d > 0 be constants. Later, we will see how these parameters are
chosen in practice. Then

St = S0u
Ntdt−Nt . (6.3)

Using the results on one-period submodels it is clear that the model is
arbitrage free and complete and that the equivalent martingale measure is
given in terms of conditional probabilities as

Q(St = uSt−1|St−1) ≡ q =
R− d
u− d

Q(St = dSt−1|St−1) = 1− q =
u−R
u− d

.
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6.5 Pricing the European call

We now have the martingale measure Q in place and hence the value at time
t of a European call with maturity T is given in an arbitrage-free model by

Ct =
1

RT−tE
Q (max(0, ST −K) |Ft ) .

Using this fact we get the following

Proposition 22 Let the stock and money market account be as described in
section 6.4. Then the price of a European call option with exercise price K
and maturity date T is given as

Ct =
1

RT−t

T−t∑
i=0

(
T − t
i

)
qi(1− q)T−t−i max(0, Stu

idT−t−i −K).

Proof. Since the money market account and S0 are deterministic, we have
that we get all information by observing just stock-prices, or equivalently the
U ’s, i.e. Ft = σ(S1, . . . , St) = σ(U1, . . . , Ut). By using (6.3) twice we can
write

ST = Stu
(NT−Nt)d(T−t)−(NT−Nt) = Stu

Zd(T−t)−Z ,

where Z = NT − Nt =
∑T

j=t+1 Uj
Q∼ bi(q; (T − t)), and Z is independent of

Ft (because the U ’s are independent). Therefore

RT−tCt = EQ((ST −K)+|Ft) = EQ((Stu
Zd(T−t)−Z −K)+|Ft).

At this point in the narrative we need something called “the useful rule”. It
states the following: Suppose we are given a function f : R2 7→ R, a σ-algebra
F , an F -measurable random variable X and a random variable Y that is
independent of F . Define the function g : R 7→ R by g(x) = E(f(x, Y )).
Then E(f(X,Y )|F) = g(X). We then use this in the above expression with
St playing the role of X, Z as Y , and f(x, y) = (xuyd(T−t)−y−K)+. By using
the general transformation rule for discrete random variables E(h(Y )) =∑

yi
h(yi)P (Y = yi), and the fact that Z is Q-binomially distributed we get

in the notation of “the useful rule” that

g(x) =
T−t∑
i=0

(
T − t
i

)
qi(1− q)(T−t)−i(xuid(T−t)−i −K)+,

and the desired result follows. �
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We rewrite the expression for C0 using some handy notation. Let a be
the smallest number of upward jumps needed for the option to finish in the
money, i.e.

a = min
j∈N
{j|S0u

jdT−j > K}

= min
j∈N
{j|j lnu+ (T − j) ln d > ln(K/S0)}

= min
j∈N
{j|j > ln(K/(S0d

T ))/ ln(u/d)}

=

 ln
(

K
S0dT

)
ln
(
u
d

)
+ 1.

Letting

Ψ(a;T, q) =
T∑
i=a

(
T
i

)
qi(1− q)T−i,

we may write (you may want to check the first term on the RHS)

C0 = S0Ψ (a;T, q′)− K

RT
Ψ (a;T, q) (6.4)

where
q′ =

u

R
q.

Using put-call parity gives us the price of the European put:

Corollary 23 The price of a European put option with T periods to matu-
rity, exercise price T and the stocks as underlying security has a price at time
0 given by

P0 =
K

RT
(1−Ψ (a;T, q))− S0 (1−Ψ (a;T, q′))

Note that our option pricing formulae use T to denote the number of
periods until maturity. Later, we will be more explicit in relating this to
actual calendar time.

6.6 Hedging the European call

We have already seen in a two period model how the trading strategy repli-
cating a European call option may be constructed. In this section we simply
state the result for the case with T periods and we then note an interesting
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way of expressing the result. We consider the case with a money market
account and one risky asset S and assume that the market is complete and
arbitrage-free. The European call option has a payout at maturity of

δcT = max(ST −K, 0).

Proposition 24 A self-financing trading strategy replicating the dividend
process of the option from time 1 to T is constructed recursively as follows:
Find φT−1 = (φ0

T−1, φ
1
T−1) such that

φ0
T−1R + φ1

T−1ST = δcT .

For t = T − 2, T − 3, . . . , 1 find φt = (φ0
t , φ

1
t ) such that

φ0
tR + φ1

tSt+1 = φ0
t+1 + φ1

t+1St+1.

The trading strategy is self-financing by definition, replicates the call
and its initial price of φ0

0 + φ1
0S0 is equal to the arbitrage-free price of the

option. We may easily extend to the case where both the underlying and the
contingent claim have dividends other than the one dividend of the option
considered above. In that case the procedure is the following:Find φT−1 =
(φ0

T−1, φ
1
T−1) such that

φ0
T−1R + φ1

T−1(ST + δT ) = δcT .

For t = T − 2, T − 3, . . . , 1 find φt = (φ0
t , φ

1
t ) such that

φ0
tR + φ1

t (St+1 + δt+1) = φ0
t+1 + φ1

t+1St+1 + δct+1.

In this case the trading strategy is not self-financing in general but it matches
the dividend process of the contingent claim, and the initial price of the
contingent claim is still φ0

0 + φ1
0S0.

An additional insight into the hedging strategy is given by the proposition
below.

Recall the notation

S̃t =
St
R0,t

for the discounted price process of the stock. Let Ct denote the price process
of a contingent claim whose dividend process is δc and let

C̃t =
Ct
R0,t

δ̃
c

t =
δct
R0,t
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denote the discounted price and dividend processes of the contingent claim.
Define the conditional covariance under the martingale measure Q as follows:

CovQ (Xt+1, Yt+1 |Ft ) = EQ ((Xt+1 −Xt) (Yt+1 − Yt)| Ft)

One may then show the following (but we will omit the proof):

Proposition 25 Assume that the stock pays no dividends during the life of
the option. The hedging strategy which replicates δc is computed as follows:

φ1
t =

CovQ
(
S̃t+1, C̃t+1 + δ̃

c

t+1

∣∣∣Ft)
VARQ

(
S̃t+1 |Ft

) t = 0, 1, . . . , T − 1

φ0
t = C̃t − φ1

t S̃t t = 0, 1, . . . , T − 1

Note the similarity with regression analysis! We will not go further into
this at this stage. But this way of looking at hedging is important when
defining so-called risk minimal trading strategies in incomplete markets.

The number of stocks held at time t in the replicating strategy is called
the hedge ratio. The hedge ratio for a call option is a number between 0 and
1, and it is larger the more in-the-money the call is.

6.7 Recombining tree representation

If the number of time periods T is large it the tree representing the stock
price evolution grows very rapidly. The number of nodes at time t is equal
to 2t, and since for example 220 = 1048576 we see that when you implement
this model in a spreadsheet and you wish to follow Ct and the associated
hedging strategy over time, you may soon run out of space. Fortunately, in
many cases there is a way around this problem: If your security price process
is Markov and the contingent claim you wish to price is path-independent,
you can use a recombining tree to do all of your calculations. Let us look
at each property in turn4: The process S is a Markov chain under Q if it
satisfies

Q(St+1 = st+1 |St = st, . . . S1 = s1, S0 = s0 ) = Q(St+1 = st+1 |St = st )

for all t and all (st+1, st, . . . , s1, s0). Intuitively, standing at time t, the current
value of the process st is sufficient for describing the distribution of the

4These properties are interesting to consider for the stock only since the money market
account trivially has all nice properties discussed in the following.
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Figure 6.1: A lattice, i.e. a recombining tree.

process at time t+ 1. The binomial model of this chapter is clearly a Markov
chain. An important consequence of this is that when Ft = σ(S0, . . . , St)
then for any (measurable) function f and time points t < u there exists a
function g such that

EQ (f(Su) |Ft ) = g(St). (6.5)

In other words, conditional expectations of functions of future values given
everything we know at time t can be expressed as a function of the value
of St at time t. The way S arrived at St is not important. We used this
fact in the formula for the price of the European call: There, the conditional
expectation given time t information became a function of St. The past did
not enter into the formula. We can therefore represent the behavior of the
process S in a recombining tree, also known as a lattice, as shown in Figure
6.1 in which one node at time t represents exactly one value of St. Another
way of stating this is to say that the tree keeps track of the number of up-
jumps that have occurred, not the order in which they occurred. A full event
tree would keep track of the exact timing of the up-jumps.

To see what can go wrong, Figure 6.2 shows a process that is not Markov.
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The problem is at time 2 when the value of the process is S0, we need to
know the pre-history of S to decide whether the probability of going up to
uS is equal to q or q′. In standard binomial models such behavior is normally
precluded.

Note that now the number of nodes required at time t is only t+ 1, and
then using several hundred time periods is no problem for a spreadsheet.

A technical issue which we will not address here is the following: Normally
we specify the process under the measure P, and it need not be the case that
the Markov property is preserved under a change of measure. However,
one may show that if the price process is Markov under P and the model
is complete and arbitrage-free, then the price process is Markov under the
equivalent martingale measure Q as well.

A second condition for using a recombining tree to price a contingent
claim is a condition on the contingent claim itself:

Definition 37 A contingent claim with dividend process δc is path indepen-
dent if δt = ft(St) for some (measurable) function f.

Indeed if the claim is path independent and the underlying process is
Markov, we have

Ct = R0,tE

(
T∑

i=t+1

δ̃
c

i

∣∣∣∣∣Ft
)
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= R0,tE

(
T∑

i=t+1

fi(Si)

∣∣∣∣∣Ft
)

= R0,tE

(
T∑

i=t+1

fi(Si)

∣∣∣∣∣St
)

and the last expression is a function of St by the Markov property. A Euro-
pean option with expiration date T is path-independent since its only divi-
dend payment is at time T and is given as max(ST −K, 0).

The Asian option is an example of a contingent claim which is not path-
independent. An Asian option on the stock, initiated at time 0, expiration
date T and exercise price K has a payoff at date T given by

Casian
T = max

(
0,

(
1

T + 1

T∑
t=0

St

)
−K

)
Hence the average of the stock price over the period determines the option
price. Clearly, ST is not sufficient to describe the value of the Asian option
at maturity. To compute the average value one needs the whole path of S.
As noted above, even in a binomial model keeping track of the whole path
for, say, 50 periods becomes intractable.

6.8 The binomial model for American puts

We describe in this section a simple way of pricing the American put option
in a binomial model. Strictly speaking, an American put is not a contingent
claim in the sense we have thought of contingent claims earlier. Generally, we
have thought of contingent claims as random variables or sometimes as pro-
cesses but a put is actually not specified until an exercise policy is associated
with the put. What we will do in the following is to simultaneously solve
for the optimal exercise policy, i.e. the one that maximizes the expected,
discounted value of the cash flows under the martingale measure, and the
price of the option. The argument given is not a proof but should be enough
to convince the reader that the right solution is obtained (it is fairly easy to
show that another exercise policy will create arbitrage opportunities for the
option writer).

The value of an American put at its maturity is easy enough:5

PT = max(0, K − ST ). (6.6)
5Or is it? As it stands Pt is really the value at time t given that the put has not been

exercised at times 0, 1, t − 1. But that will most often be exactly what we are interested
in; if we exercised the put to years ago, we really don’t care about it anymore.
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Now consider the situation one period before maturity. If the put has
not been exercised at that date, the put option holder has two possibilities:
Exercise the put at time T − 1 or hold the put to maturity. The value of
holding the put to maturity is given as the discounted (back to time T − 1)
value of (6.6), whereas the value at time T − 1 of exercising immediately is
K − ST−1 something only to be considered of course if K > ST−1. Clearly,
the put option holder has a contract whose value is given by the maximal
value of these two strategies, i.e.6

PT−1 = max

(
K − ST−1, E

Q

(
PT
R

∣∣∣∣FT−1

))
.

Now continue in this fashion by working backwards through the tree to obtain
the price process of the American put option given by the recursion

Pt−1 = max

(
K − St−1, E

Q

(
Pt
R

∣∣∣∣Ft−1

))
t = 1, . . . , T.

Once this price process is given we see that the optimal exercise strategy is
to exercise the put the first time t for which

K − St > EQ

(
Pt+1

R

∣∣∣∣Ft) .
This way of thinking is easily translated to American call options on dividend
paying stocks for which early exercise is something to consider.

6.9 Implied volatility

We assume in this section that the Black-Scholes formula is known to the
reader: The price at time t of a European call option maturing at time T ,
when the exercise price is K and the underlying security is a non-dividend
paying stock with a price of St, is given in the Black-Scholes framework by

Ct = StΦ (d1)−Ke−r(T−t)Φ (d2)

where

d1 =
log
(
St
K

)
+
(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

and
d2 = d1 − σ

√
T − t

6We do not need 0 in the list of arguments of max since positivity is assured by PT ≥ 0.
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where Φ is the cumulative distribution function of a standard normal distri-
bution.

Consider the Black-Scholes formula for the price of a European call on an
underlying security whose value at time 0 is S0: Recall that Φ is a distribution
function, hence Φ(x) → 1 as x → ∞ and Φ(x) → 0 as x → −∞. Assume
throughout that T > 0. From this it is easy to see that c0 → S0 as σ →
∞. By considering the cases S0 < K exp(−rT ) , S0 = K exp(−rT ) and
S0 > K exp(−rT ) separately, it is easy to see that as σ → 0, we have
c0 → max (0, S0 −K exp(−rT )) . By differentiating c0 with respect to σ,
one may verify that c0 is strictly increasing in σ. Therefore, the following
definition makes sense:

Definition 38 Given a security with price S0. Assume that the risk free
rate (i.e. the rate of the money market account) is equal to r. Assume that
the price of a call option on the security with exercise price K and time to
maturity T is observed to have a price of cobs with

max(0, S0 −K exp(−rT )) < cobs < S0.

Then the implied volatility of the option is the unique value of σ for which

c0(S0, K, T, σ, r) = cobs.

In other words, the implied volatility is the unique value of the volatility
which makes the Black-Scholes model ’fit’ cobs. Clearly, we may also asso-
ciate an implied volatility to a put option whose observed price respects the
appropriate arbitrage bounds.

A very important reason for the popularity of implied volatility is the
way in which it allows a transformation of option prices which are hard to
compare into a common scale. Assume that the price of a stock is 100 and
the riskfree rate is 0.1. If one observed a price of 9.58 on a call option on the
stock with exercise price 100 and 6 months to maturity and a price of 2.81
on a put option on the stock with exercise price 95 and 3 months to maturity
then it would require a very good knowledge of the Black-Scholes model to
see if one price was in some way higher than the other. However, if we are
told that the implied volatility of the call is 0.25 and the implied volatility
of the put is 0.30, then at least we know that compared to the Black-Scholes
model, the put is more expensive than the call. This way of comparing is in
fact so popular that traders in option markets typically do not quote prices
in (say) dollars, but use ’vols’ instead.

If the Black-Scholes model were true the implied volatility of all options
written on the same underlying security should be the same, namely equal
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to the volatility of the stock and this volatility would be a quantity we could
estimate from historical data. In short, in a world where the Black-Scholes
model holds, historical volatility (of the stock) is equal to implied volatility
(of options written on the stock). In practice this is not the case - after
all the Black-Scholes model is only a model. The expenses of hedging an
option depend on the volatility of the stock during the life of the option.
If, for example, it is known that, after a long and quiet period, important
news about the underlying stock will arrive during the life of the option, the
option price should reflect the fact that future fluctuations in the stock price
might be bigger than the historical ones. In this case the implied volatility
would be higher than the historical.

However, taking this knowledge of future volatility into account one could
still imagine that all implied volatilities of options on the same underlying
were the same (and equal to the ’anticipated’ volatility). In practice this is
not observed either. To get an idea of why, we consider the notion of portfolio
insurance.

6.10 Portfolio insurance, implied volatility and

crash fears

Consider a portfolio manager who manages a portfolio which is diversified
so that the value of her portfolio follows that of the market stock index.
Assume that the value of her portfolio is 1000 times the value of the index
which is assumed to be at 110. The portfolio manager is very worried about
losing a large portion of the value of the portfolio over the next year - she
thinks that there is a distinct possibility that the market will crash. On the
other hand she is far from certain. If she were certain, she could just move
the money to a bank at a lower but safer expected return than in the stock
market. But she does not want to exclude herself from the gains that a surge
in the index would bring. She therefore decides to buy portfolio insurance
in such a way that the value of her portfolio will never fall below a level of
(say) 90.000. More specifically, she decides to buy 1000 put options with one
year to maturity and an exercise price of 90 on the underlying index. Now
consider the value of the portfolio after a year as a function of the level of
the index ST :

value of index ST ≥ 90 ST < 90
value of stocks ST × 1000 ST × 1000
value of puts 0 1000× (90− ST )

total value ST × 1000 > 90.000 90.000
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Although it has of course not been costless to buy put options, the port-
folio manager has succeeded in preventing the value of her portfolio from
falling below 90.000. Since the put options are far out-of-the-money (such
contracts are often called “lottery tickets”) at the time of purchase they are
probably not that expensive. And if the market booms she will still be a
successful portfolio manager.

But what if she is not alone with her fear of crashes. We may then imagine
a lot of portfolio managers interested in buying out-of-the-money put options
hence pushing up the price of these contracts. This is equivalent to saying
that the implied volatility goes up and we may experience the scenario shown
in the graph below, in which the implied volatility of put options is higher
for low exercise price puts:

-
exercise price

6

Imp . BS-vol.

S0

This phenomenon is called a “smirk”. If (as it is often seen from data) the
implied volatility is increasing (the dotted part of the curve) for puts that are
in the money, then we have what is known as a “smile”. Actually options that
are deeply in-the-money are rarely traded, so the implied volatility figures
used to draw “the other half” of the smile typically comes from out-of-the-
money calls. (Why/how? Recall the put-call parity.)

A smirk has been observed before crashes and it is indicative of a situation
where the Black-Scholes model is not a good model to use. The typical
modification allows for stock prices to jump discontinuously but you will
have to wait for future courses to learn about this.

6.11 Debt and equity as options on firm value

In this section we consider a very important application of option pricing.
Our goal is to learn a somewhat simplified but extremely useful way of think-
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ing about a firm which is financed by debt and equity (see below). A fun-
damental assumption in this section is that a firm has a market value given
by a stochastic process V. In Arrow-Debreu economies in which we know
prices and production plans adopted by the firms, it is easy to define the
value of a firm as the (net) value of its production. In reality things are of
course a lot more complicated. It is hard to know, for example, what the
value of Novo-Nordisk is - i.e. what is the market value of the firm’s assets
(including know-how, goodwill etc.). Part of the problem is of course that it
is extremely difficult to model future prices and production levels. But in a
sense the actual value does not matter for this section in that the ’sign’ of
the results that we derive does not depend on what the value of the firm is -
only the ”magnitude’ does.

The fundamental simplification concerns the capital structure of the firm.
Assume that the firm has raised capital to finance its activities in two ways:
It has issued stocks (also referred to as equity) and debt. The debt consists
of zero coupon bonds with face value D maturing at time T. Legally what
distinguishes the debt holders from the stock holders is the following: The
stock holders control the firm and they decide at time T whether the firm
should repay its debt to the bondholders. If the bondholders are not repaid
in full they can force the firm into bankruptcy and take over the remaining
assets of the firm (which means both controlling and owning it). The stocks
will then be worthless. If the stockholders pay back D at maturity to the
bondholders, they own the firm entirely. They may then of course decide to
issue new debt to finance new projects but we will not worry about that now.

It is clear that the stockholders will have an interest in repaying the
bondholders precisely when VT > D. Only then will the expense in paying
back the debt be more than outweighed by the value of the firm. If VT < D
(and there are no bankruptcy costs) the stockholders will default on their
debt, the firm will go into bankruptcy and the bondholders will take over.
In short, we may write the value of debt and equity at time T as

BT = min (D,VT ) = D −max (D − VT , 0)

ST = max(VT −D, 0).

In other words, we may think of equity as a call option on the value of
the firm and debt as a zero coupon bond minus a put option on the value
of the firm. Assuming then that V behaves like the underlying security in
the Black-Scholes model and that there exists a money market account with
interest rate r, we can use the Black-Scholes model to price debt and equity
at time 0 :

B0 = D exp(−rT )− p0(V0, D, T, σ, r)
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S0 = c0(V0, D, T, σ, r)

where p0, c0 are Black-Scholes put and call functions.
Let us illustrate a potential conflict between stockholders and bondholders

in this model. Assume that at time 0 the firm has the possibility of adopting
a project which will not alter the value of the firm at time 0, but which will
have the effect of increasing the volatility of the process V. Since both the
value of the call and the put increases when σ increases we see that the
stockholders will like this project since it increases the value of the equity
whereas the bondholders will not like the project since the put option which
they have in a sense written will be a greater liability to them. This is a very
clear and very important illustration of so-called asset substitution, a source
of conflict which exists between stock-and bondholders of a firm. This setup
of analyzing the value of debt and equity is useful in a number of contexts
and you should make sure that you understand it completely. We will return
to this towards the end of the course when discussing corporate finance.
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Chapter 7

The Black-Scholes formula

7.1 Black-Scholes as a limit of binomial mod-

els

So far we have not specified the parameters p, u, d and R which are of course
critical for the option pricing model. Also, it seems reasonable that if we
want the binomial model to be a realistic model for stock prices over a certain
interval of time we should use a binomial model which divides the (calendar)
time interval into many sub-periods. In this chapter we will first show that if
one divides the interval into finer and finer periods and choose the parameters
carefully, the value of the option converges to a limiting formula, the Black-
Scholes formula, which was originally derived in a continuous time framework.
We then describe that framework and show how to derive the formula in it.

Our starting point is an observed stock price whose logarithmic return
satisfies

EP

[
ln

(
St
St−1

)]
= µ

and

V P

(
ln

(
St
St−1

))
= σ2,

where St is the price of the stock t years after the starting date 0. Also,
assume that the money market account has a continuously compounded re-
turn of r, i.e. an amount of 1 placed in the money market account grows
to exp(r) in one year. Note that since RT = exp (T ln (R)), a yearly rate of
R = 1.1 (corresponding to a yearly rate of 10%) translates into the contin-
uous compounding analogue r = ln (1.1) and this will be a number smaller
than 0.1.

99
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Consider pricing an option on this stock with time to maturity T years
in a binomial model. Divide each year into n periods. This gives a binomial
model with nT periods. In this tree, which we label the nth tree, choose

un = exp

(
σ

√
1

n

)
,

dn = exp

(
−σ
√

1

n

)
=

1

un
,

Rn = exp
( r
n

)
,

and

pn =
1

2
+

1

2

µ

σ

√
1

n
.

With the setup in the nth model specified above you may show by simple
computation that the one-year logarithmic return satisfies

EP

[
ln

(
S1

S0

)]
= n {pn ln (un) + (1− pn) ln (dn)} = µ

and

V P

(
ln

(
S1

S0

))
= σ2 − 1

n
µ2,

so the log-return of the price process has the same mean and almost the same
variance as the process we have observed. And since

V P

(
ln

(
S1

S0

))
→ σ2 for n→∞,

it is presumably so that large values of n brings us closer to to “desired”
model.

The above story was primarily motivational. Let us now investigate pre-
cisely what happens to stock and call prices when n tends to infinity. For
each n we may compute the price of a call option with maturity T in the
binomial model and we know that it is given as

Cn = S0Ψ
(
an;nT ; q

′

n

)
− K

(Rn)T
Ψ (an;nT ; qn) (7.1)

where

qn =
Rn − dn
un − dn

, q′n =
un
Rn

qn
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and an is the smallest integer larger than ln
(
K/(S0d

Tn
n )
)
/ ln (un/dn). Note

that alternatively we may write(7.1) as

Cn = S0Q
′(Sn(T ) > K)−Ke−rTQ(Sn(T ) > K) (7.2)

where Sn(T ) = S0u
j
nd

Tn−j
n and j

Q∼ bi(Tn, qn) and j
Q′∼ bi(Tn, q′n). It is easy

to see that

MQ
n := EQ(lnSn(T )) = lnS0 + Tn(qn lnun + (1− qn) ln dn)

V Q
n := V Q(lnSn(T )) = Tnqn(1− qn)(lnun − ln dn)2,

and that similar expressions (with q′n instead of qn) hold for Q′-moments.
Now rewrite the expression for MQ

n in the following way:

MQ
n − lnS0 = Tn

(
σ√
n

er/n − e−σ/
√
n

eσ/
√
n − e−σ/

√
n
− σ√

n

eσ/
√
n − er/n

eσ/
√
n − e−σ/

√
n

)
= T

√
nσ

(
2er/n − eσ/

√
n − e−σ/

√
n

eσ/
√
n − e−σ/

√
n

)
.

Recall the Taylor-expansion to the second order for the exponential function:
exp(±x) = 1± x+ x2/2 + o(x2). From this we get

er/n = 1 + r/n+ o(1/n)

e±σ/
√
n = 1± σ/

√
n+ σ2/(2n) + o(1/n).

Inserting this in the MQ
n expression yields

MQ
n − lnS0 = T

√
nσ

(
2r/n− σ2/n+ o(1/n)

2σ/
√
n+ o(1/n)

)
= Tσ

(
2r − σ2 + o(1)

2σ + o(1/
√
n)

)
→ T

(
r − σ2

2

)
for n→∞.

Similar Taylor expansions for V Q
n , MQ′

n and V Q′
n show that

V Q
n → σ2T,

MQ′

n − lnS0 → T

(
r +

σ2

2

)
(note the change of sign on σ2),

V Q′

n → σ2T.
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So now we know what the Q/Q′ moments converge to. Yet another way
to think of lnSn(T ) is as a sum of Tn independent Bernoulli-variables with
possible outcomes (ln dn, lnun) and probability parameter qn (or q′n). This
means that we have a sum of (well-behaved) independent random variables
for which the first and second moments converge. Therefore we can use a
version of the Central Limit Theorem1 to conclude that the limit of the sum
is normally distributed, i.e.

lnSn(T )
Q/Q′→ N(lnS0 + (r ± σ2/2)T, σ2T ).

This means (almost by definition of the form of convergence implied by CLT)
that when determining the limit of the probabilities on the right hand side of
(7.2) we can (or: have to) substitute lnSn(T ) by a random variable X such
that

X
Q/Q′∼ N(lnS0 +(r±σ2/2)T, σ2T )⇔ X − lnS0 − (r ± σ2/2)T

σ
√
T

Q/Q′∼ N(0, 1).

The final analysis:

lim
n→∞

Cn = lim
n→∞

(
S0Q

′(lnSn(T ) > lnK)−Ke−rTQ(lnSn(T ) > lnK)
)

= S0Q
′(X > lnK)−Ke−rTQ(X > lnK)

= S0Q
′
(
X − lnS0 − (r + σ2/2)T

σ
√
T

>
lnK − lnS0 − (r + σ2/2)T

σ
√
T

)
−Ke−rTQ

(
X − lnS0 − (r − σ2/2)T

σ
√
T

>
lnK − lnS0 − (r − σ2/2)T

σ
√
T

)
Now multiply by −1 inside the Q’s (hence reversing the inequalities), use that
the N(0, 1)-variables on the left hand sides are symmetric and continuous,
and that ln(x/y) = lnx− ln y. This shows that

lim
n→∞

Cn = S0Φ (d1)−Ke−rTΦ (d2) ,

where Φ is the standard normal distribution function and

d1 =
ln
(
S0

K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

,

d2 =
ln
(
S0

K

)
+
(
r − 1

2
σ2
)
T

σ
√
T

= d1 − σ
√
T .

1Actually you cannot quite make do with the De Moivre-version that you know from
Stat 0 because we do not have a scaled sum of identically distributed random variables.
You need the notion of a triangular array and the Lindeberg-Feller-version of the Central
Limit Theorem. Yet another reason to take Stat 2b.
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This formula for the call price is called the Black-Scholes formula. So far
we can see it just as an artifact of going to the limit in a particular way
in a binomial model. But the formula is so strikingly beautiful and simple
that there must be more to it than that. In particular, we are interested in
the question: Does that exist a “limiting” model in which the above formula
is the exact call option price? The answer is: Yes. In the next section we
describe what this “limiting” model looks like, and show that the Black-
Scholes formula gives the exact call price in the model. That does involve
a number of concepts, objects and results that we cannot possibly make
rigorous in this course, but the reader should still get a “net benefit” and
hopefully an appetite for future courses in financial mathematics.

7.2 The Black-Scholes model

The Black-Scholes formula for the price of a call option on a non-dividend
paying stock is one of the most celebrated results in financial economics.
In this chapter we will indicate how the formula is derived. A rigorous
derivation requires some fairly advanced mathematics which is beyond the
scope of this course. Fortunately, the formula is easy to interpret and to
apply. Even if there are some technical details left over for a future course,
the rigorous understanding we have from our discrete-time models of how
arbitrage pricing works will allow us to apply the formula safely.

The formula is formulated in a continuous time framework with random
variables that have continuous distribution. The continuous-time and infinite
state space setup will not be used elsewhere in the course.2 But let us mention
that if one wants to develop a theory which allows random variables with
continuous distribution and if one wants to obtain results similar to those of
the previous chapters, then one has to allow continuous trading as well. By
’continuous trading’ we mean that agents are allowed to readjust portfolios
continuously through time.

If X is normally distributed X ∼ N (α, σ2) , then we say that Y :=
exp(X) is lognormally distributed and write Y ∼ LN(α, σ2). There is one
thing you must always remember about lognormal distributions:

If Y ∼ LN(α, σ2) then E(Y ) = exp

(
α +

σ2

2

)
.

2A setup which combines discrete time and continuous distributions will be encountered
later when discussing CAPM and APT, but the primary focus of these models will be to
explain stock price behavior and not – as we are now doing – determining option prices
for a given behavior of stock prices
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If you have not seen this before, then you are strongly urged to check it.
(With that result you should also be able to see why there is no need to
use “brain RAM” remembering the variance of a lognormally distributed
variable.) Often the lognormal distribution is preferred as a model for stock
price distributions since it conforms better with the institutional fact that
prices of a stock are non-negative and the empirical observation that the
logarithm of stock prices seem to show a better fit to a normal distribution
than do prices themselves. However, specifying a distribution of the stock
price at time t, say, is not enough. We need to specify the whole process of
stock prices, i.e. we need to state what the joint distribution (St1 , . . . , StN )
is for any 0 ≤ t1 < . . . < tN . To do this the following object is central.

Definition 39 A (standard) Brownian motion ((S)BM) is a stochastic pro-
cess B = (Bt)t∈[0;∞[ -i.e. a sequence of random variables indexed by t such
that:

1. B0 = 0

2. Bt −Bs ∼ N (0, t− s) ∀ s < t

3. B has independent increments, i.e. for every N and a set of N time
points t1 < . . . < tN , Bt1 , Bt2 − Bt1 , Bt3 − Bt2 , . . . , BtN − BtN−1

are
independent random variables.

That these demands on a process can be satisfied simultaneously is not
trivial. But don’t worry, Brownian motion does exist. It is, however, a fairly
“wild” object. The sample paths (formally the mapping t 7→ Bt and intu-
itively simply the graph you get by plotting “temperature/stock price/. . .”
against time) of BM are continuous everywhere but differentiable nowhere.
The figure shows a simulated sample path of a BM and should give an indica-
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tion of this.

A useful fact following from the independent increment property is that
for any measurable f : R→R for which E [|f (Bt −Bs)|] <∞ we have

E [f (Bt −Bs)| Fs] = E [f (Bt −Bs)] (7.3)

where Fs = σ {Bu : 0 ≤ u ≤ s} .
The fundamental assumption of the Black-Scholes model is that the stock

price can be represented by

St = S0 exp (αt + σBt) (7.4)

where Bt is a SBM. Such a process is called a geometric BM (with drift).
Furthermore, it assumes that there exists a riskless asset (a money market
account). One dollar invested in the money market account will grow as

βt = exp(rt) (7.5)

where r is a constant (typically r > 0). Hence βt is the continuous time
analogue of R0,t.

What does (7.4) mean? Note that since Bt ∼ N (0, t), St has a lognormal
distribution and

ln

(
St1
S0

)
= αt1 + σBt1 ,
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ln

(
St2
St1

)
= α (t2 − t1) + σ (Bt2 −Bt1)

Since αt, α (t2 − t1), and σ are constant, we see that ln
(
St1
S0

)
and ln

(
St2
St1

)
are independent. The return, defined in this section as the logarithm of the
price relative, that the stock earns between time t1 and t2 is independent
of the return earned between time 0 and time t1, and both are normally
distributed. We refer to σ as the volatility of the stock - but note that it
really describes a property of the logarithmic return of the stock. There are
several reasons for modelling the stock price as geometric BM with drift or
equivalently all logarithmic returns as independent and normal. First of all,
unless it is blatantly unreasonable, modelling “random objects” as “niid”
is the way to start. Empirically it is often a good approximation to model
the logarithmic returns as being normal with fixed mean and fixed variance
through time.3 From a probabilistic point of view, it can be shown that if
we want a stock price process with continuous sample paths and we want
returns to be independent and stationary (but not necessarily normal from
the outset), then geometric BM is the only possibility. And last but not
least: It gives rise to beautiful financial theory.

If you invest one dollar in the money market account at time 0, it will
grow as βt = exp(rt). Holding one dollar in the stock will give an uncertain
amount at time t of exp(αt+σBt) and this amount has an expected value of

E exp(αt + σBt) = exp(αt +
1

2
σ2t).

The quantity µ = α + 1
2
σ2 is often referred to as the drift of the stock. We

have not yet discussed (even in our discrete models) how agents determine µ
and σ2, but for now think of it this way: Risk averse agents will demand µ
to be greater than r to compensate for the uncertainty in the stock’s return.
The higher σ2 is, the higher should µ be.

7.3 A derivation of the Black-Scholes formula

In this section we derive the Black-Scholes model taking as given some facts
from continuous time finance theory. The main assertion is that the funda-
mental theorem of asset pricing holds in continuous time and, in particular,
in the Black-Scholes setup:

St = S0 exp (αt + σBt)
3But skeptics would say many empirical analyses of financial data is a case of “believing

is seeing”rather than the other way around.



7.3. A DERIVATION OF THE BLACK-SCHOLES FORMULA 107

βt = exp(rt)

What you are asked to believe in this section are the following facts:

• There is no arbitrage in the model and therefore there exists an equiv-
alent martingale measure Q such that the discounted stock price St

βt
is

a martingale under Q. (Recall that this means that EQ
[
St
βt
|Fs
]

= Ss
βs

).

The probabilistic behavior of St under Q is given by

St = S0 exp

((
r − 1

2
σ2

)
t+ σB̃t

)
, (7.6)

where B̃t is a SBM under the measure Q.

• To compute the price of a call option on S with expiration date T
and exercise price K, we take the discounted expected value of CT =
[ST −K]+ assuming the behavior of St given by (7.6).

Recall that in the binomial model we also found that the expected return
of the stock under the martingale measure was equal to that of the riskless
asset.(7.6) is the equivalent of this fact in the continuous time setup. Before
sketching how this expectation is computed note that we have not defined
the notion of arbitrage in continuous time. Also we have not justified the
form of St under Q. But let us check at least that the martingale behavior
of St

βt
seems to be OK (this may explain the ”−1

2
σ2t”-term which is in the

expression for St). Note that

EQ

[
St
βt

]
= EQ

[
S0 exp

(
−1

2
σ2t+ σB̃t

)]
= S0 exp

(
−1

2
σ2t

)
EQ
[
exp

(
σB̃t

)]
.

But σB̃t ∼ N (0, σ2t) and since we know how to compute the mean of the
lognormal distribution we get that

EQ

[
St
βt

]
= S0 =

S0

β0

, since β0 = 1.

By using the property (7.3) of the Brownian motion one can verify that

EQ

[
St
βt

∣∣∣∣Fs] =
Ss
βs

, (Fs = ”information at time s”).
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but we will not do that here.4

Accepting the fact that the call price at time 0 is

C0 = exp (−rT )EQ

[
S0 exp

((
r − 1

2
σ2

)
T + σB̃T

)
−K

]+

we can get the Black-Scholes formula: We know that σBT ∼ N (0, σ2T ) and
also “the rule of the unconscious statistician”, which tells us that to compute
E [f (X)] for some random variable X which has a density p (x), we compute∫
f (x) p (x) dx. This gives us

C0 = e−rT
∫
R

[
S0e

(r−σ2/2)T+x −K
]+ 1√

2πσ
√
T
e−

1
2
x2

σ2T dx

The integrand is different from 0 when

S0e
(r−σ2/2)T+x > K

i.e. when5

x > ln(K/S0)−
(
r − σ2/2

)
T ≡ d

So

C0 = e−rT
∫ ∞
d

(
S0e

(r− 1
2
σ2)T+x −K

) 1√
2πσ
√
T
e−

1
2
x2

σ2T dx

= e−rTS0

∫ ∞
d

1√
2πσ
√
T
e(r− 1

2
σ2)T+xe−

1
2
x2

σ2T︸ ︷︷ ︸
:=A

dx−Ke−rT
∫ ∞
d

1√
2πσ
√
T
e−

1
2
x2

σ2T dx︸ ︷︷ ︸
:=B

.

It is easy to see that B = Ke−rTProb(Z > d), where Z ∼ N(0, σ2T ). So by
using symmetry and scaling with σ

√
T we get that

B = Ke−rTΦ (d2) ,
4If you want to try it yourself, use

E

[
St
βt

∣∣∣∣Fs] = E

[
StβsSs
Ssβtβs

∣∣∣∣Fs]
=

Ss
βs
E

[
Stβs
Ssβt

∣∣∣∣Fs]
and then see if you can bring (7.3) into play and use

E [exp (σ(Bt −Bs))] = exp
(

1
2
σ2(t− s)

)
.

5This should bring up memories of the quantity a which we defined in the binomial
model.
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where (as before)

d2 = − d

σ
√
T

=
ln
(
S0

K

)
+
(
r − 1

2
σ2
)
T

σ
√
T

.

So “we have half the Black-Scholes formula”. The A-term requires a little
more work. First we use the change of variable y = x/(σ

√
T ) to get (with

a few rearrangements, a completion of the square, and a further change of
variable (z = y − σ

√
T ))

A = S0e
−Tσ2/2

∫ ∞
−d2

1√
2π
eσ
√
Ty−y2/2dy

= S0e
−Tσ2/2

∫ ∞
−d2

1√
2π
e−(y−σ

√
T )2/2+Tσ2/2dy

= S0

∫ ∞
−d1

1√
2π
e−z

2/2dz,

where as per usual d1 = d2 + σ
√
T . But the last integral we can write as

Prob(Z > d1) for a random variable Z ∼ N(0, 1), and by symmetry we get

A = S0Φ(d1),

which yields the “promised” result.

Theorem 26 The unique arbitrage-free price of a European call option on
a non-dividend paying stock in the Black-Scholes framework is given by

C0 = S0Φ (d1)−Ke−rTΦ (d2)

where

d1 =
ln
(
S0

K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

and
d2 = d1 − σ

√
T ,

where Φ is the cumulative distribution function of a standard normal distri-
bution.

As stated, the Black-Scholes formula says only what the call price is at time
0. But it is not hard to guess what happens if we want the price at some
time t ∈ [0;T ]: The same formula applies with S0 substituted by St and T
substituted by T − t. You may want to “try your hand” with conditional
expectations and properties of BM by proving this.
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7.3.1 Hedging the call

There is one last thing about the Black-Scholes model/formula you should
know. Just as in the binomial model the call option can be hedged in the
Black-Scholes model. This means that there exists a self-financing trading
strategy involving the stock and the bond such that the value of the strategy
at time T is exactly equal to the payoff of the call, (ST −K)+. (This is in
fact the very reason we can talk about a unique arbitrage-free price for the
call.) It is a general fact that if we have a contract whose price at time t can
be written as

π(t) = F (t, St)

for some deterministic function F , then the contract is hedged by a strategy
consisting of

φ1(t) =
∂F

∂x
(t, x)

∣∣∣∣
x=St

units of the stock and φ0(t) = π(t) − φ1(t)St $ in the bank account. Note
that this is a strategy that is continuously adjusted.

For the Black-Scholes model this applies to the call with

FBScall(t, x) = xΦ

(
ln
(
x
K

)
+ (r + σ2/2) (T − t)
σ
√
T − t

)

−Ke−r(T−t)Φ

(
ln
(
x
K

)
+ (r − σ2/2) (T − t)
σ
√
T − t

)
.

The remarkable result (and what you must forever remember) is that the
partial derivative (wrt. x) of this lengthy expression is simple:6

∂FBScall

∂x
(t, x) = Φ

(
ln
(
x
K

)
+ (r + σ2/2) (T − t)
σ
√
T − t

)
= Φ(d1),

where the last part is standard and understandable but slightly sloppy no-
tation. So to hedge the call option in a Black-Scholes economy you have to
hold (at any time t) Φ(d1) units of the stock. This quantity is called the delta
(or: 4) hedge ratio for the call option. The “lingo” comes about because of
the intimate relation to partial derivatives; 4 is approximately the amount
that the call price changes, when the stock price changes by 1. In this course
we will use computer simulations to illustrate, justify, and hopefully to some
degree understand the result.

6At one time or another you are bound to be asked to verify this, so you may as well
do it right away. Note that if you just look at the B-S formula, forget that S0 (or x) also
appears inside the Φ’s, and differentiate, then you get the right result with a wrong proof.



Chapter 8

Some notes on term structure
modelling

8.1 Introduction

After the brief encounter with continuous time modelling in Chapter 7 we
now return to the discrete time, finite state space models of Chapter 5. They
still have a great deal to offer.

One of the most widespread applications of arbitrage pricing in the multi-
period finite state space model is in the area of term structure modelling. We
saw in Chapter 3 how the term structure could be defined in several equiv-
alent ways through the discount function, the yields of zero coupon bonds
and by looking at forward rates. In this chapter we will think of the term
structure as the yield of zero coupon bonds as a function of time to maturity.
In Chapter 3 we considered the term structure at a fixed point in time. In
this chapter our goal is to look at dynamic modelling of the evolution of the
term structure. This topic could easily occupy a whole course in itself so
here we focus merely on explaining a fundamental method of constructing
arbitrage-free systems of bond prices. Once this method is understood the
reader will be able to build models for the evolution of the term structure
and price interest rate related contingent claims.

We also consider a few topics which are related to term structure mod-
elling and which we can discuss rigorously with our arbitrage pricing tech-
nology. These topics are the difference between forwards and futures and
the role of ’convexity effects’ - or Jensen’s inequality - can rule out various
properties of term structure evolutions. We also look briefly at so-called swap
contracts which are quite important in bond markets.

111
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8.2 Constructing an arbitrage free model

Our goal is to model prices of zero coupon bonds of different maturities and
through time. Let P (t, Ti), 0 ≤ t ≤ Ti ≤ T , denote the price at time t of
a zero coupon bond with maturity Ti. To follow the notation which is most
commonly used in the literature we will deviate slightly from the notation
of Chapter 5. To be consistent with Chapter 5 we should write P (t, Ti) for
the price of the bond prior to maturity. i.e. when t < Ti and then have
a dividend payment δ(Ti) = 1 at maturity and a price process satisfying
P (t, Ti) = 0 for t ≥ Ti. We will instead write the dividend into the price and
let

P (t, t) = 1

for all t. (You should have gotten used to this deceptive notation in Chapters
6 and 7.)

We will consider models of bond prices which use the spot rate process
ρ = (ρt)t=0,...,T−1 as the fundamental modelling variable. Recall that the
money market account is a process with value 1 and dividend at date t <
T given by ρt−1 and a dividend of 1 + ρT at time T. We will need our simple
notation for returns obtained by holding money over several periods in the
money market account:

Definition 40 The return of the money market account from period t to u
is

Rt,u = (1 + ρt)(1 + ρt+1) · · · (1 + ρu−1), for t < u

Make sure you understand that Rt,t+1 is known at time t, whereas Rt,t+2

is not!
From the fundamental theorem of asset pricing (Theorem 15) we know

that the system consisting of the money market account and zero coupon
bonds will be arbitrage free if and only if(

P (t, Ti)

R0,t

)
0≤t≤Ti

is a martingale for every Ti under some measure Q. Here, we use the fact
that the zero coupon bonds only pay one dividend at maturity and we have
denoted this dividend P (Ti, Ti) for the bond maturing at date Ti. It is not
easy, however, to specify a family of sensible and consistent bond prices. If
T is large there are many maturities of zero coupon bonds to keep track of.
They all should end up having price 1 at maturity, but that is about all we
know. How do we ensure that the large system of prices admits no arbitrage
opportunities?
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What is often done is the following: We simply construct bond prices
as expected discounted values of their terminal price 1 under a measure Q
which we specify in advance (as opposed to derive from bond prices). More
precisely:

Proposition 27 Given a spot rate process ρ = (ρt)t=0,...,T−1. Let

Ft = σ(ρ0, ρ1, . . . , ρT ).

For a given Q define

P (t, Ti) = EQ
t

[
1

Rt,Ti

]
for 0 ≤ t ≤ Ti ≤ T ,

where EQ
t [·] is short hand for EQ [· | Ft] . Then the system consisting of the

money market account and the bond price processes (P (t, Ti))t=0,...,T is arbi-
trage free.

Proof. The proof is an immediate consequence of the definition of prices,
since

P (t, Ti)

R0,t

=
1

R0,t

EQ
t

[
1

Rt,Ti

]
= EQ

t

[
1

R0,Ti

]
and this we know defines a martingale for each Ti by Lemma 13. �

It is important to note that we take Q as given. Another way of putting
this is that a P -specification of the short rate (however well it may fit the
data) is not enough to determine Q, bond prices and the Q-dynamics of the
short rate. If you only have a short rate process, the only traded asset is the
bank account and you cannot replicate bonds with that. Later courses will
explain this in more detail.

Example 10 Here is a simple illustration of the procedure in a model where
the spot rate follows a binomial process.
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(
0.9174
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(
0.8929

)

(
0.9091

)

(
0.9259

)
ZCB prices

The spot rate at time 0 is 0.10. At time 1 it becomes 0.11 with probability
1
2

and 0.09 with probability 1
2

(both probabilities under Q) Given that it is
0.09 at time 1, it becomes either 0.10 or 0.08 at time 2, both with probability
1
2
. The bond prices have been computed using Proposition 27. Note that a

consequence of Proposition 27 is that (check it!)

P (t, Ti) =
1

1 + ρt
EQ
t [P (t+ 1, Ti)]

and therefore the way to use the proposition is to construct bond prices
working backwards through the tree. For a certain maturity Ti we know
P (Ti, Ti) = 1 regardless of the state. Now the price of this bond at time
Ti − 1 can be computed as a function of ρTi−1, and so forth. The term
structure at time 0 is now computed as follows

r(0, 1) =
1

P (0, 1)
− 1 = 0.1

r(0, 2) =

(
1

P (0, 2)

) 1
2

− 1 = 0.09995

r(0, 3) =

(
1

P (0, 3)

) 1
3

− 1 = 0.0998

using definitions in Chapter 3. So the term structure in this example is
decreasing in t - which is not what is normally seen in the market (but it
does happen, for instance in Denmark in 1993 and in the U.S. in 2000). In
fact, one calls the term structure ”inverted” in this case. Note that when the
Q-behavior of r has been specified we can determine not only the current term
structure, we can find the term structure in any node of the tree. (Since the
model only contains two non-trivial zero-coupon bonds at time 1, the term
structure only has two points at time 1.)



8.2. CONSTRUCTING AN ARBITRAGE FREE MODEL 115

So Example 10 shows how the term structure is calculated from a Q-tree
of the short rate. But what we (or: practitioners) are really interested in
is the reverse question: Given todays (observed) term structure, how do we
construct a Q-tree of the short rate that is consistent with the term structure?
(By consistent we mean that if we use the tree for ρ in Example 10-fashion we
match the observed term structure at the first node.) Such a tree is needed
for pricing more complicated contracts (options, for instance).

First, it is easy to see that generally such an “inversion” is in no way
unique; a wide variety of ρ-trees give the same term structure. But that is
not bad; it means that we impose a convenient structure on the ρ-process
and still fit observed term structures. Two such conveniences are that the
development of ρ can be represented in a recombining tree (a lattice), or in
other words that ρ is Markovian, and that the Q-probability 1/2 is attached
to all branches. (It may not be totally clear that we can do that, but it is
easily seen from the next example/subsection.)

8.2.1 Constructing a Q-tree for the short rate that fits
the initial term structure

Imagine a situation where two things have been thrust upon us.

1. The almighty (“God “or “The Market”) has determined todays term
structure,

(P (0, 1), P (0, 2), . . . , P (0, T )).

2. Our not-so-almighty boss has difficulties understanding probability be-
yond the tossing of a fair coin and wants answers fast, so he(s secretary)
has drawn the ρ-lattice in Figure 8.1.

All we have to do is “fill in the blanks’. Optimistically we start, and in
the box corresponding to (t = 0, i = 0) we have no choice but to put

ρ0(0) =
1

P (0, 1)
− 1.

To fill out boxes corresponding to (t = 1, i = 0) and (t = 1, i = 1) we have
the equation

P (0, 2) =
1

ρ0(0)

(
1

2
× 1

1 + ρ1(0)
+

1

2
× 1

1 + ρ1(1)

)
, (8.1)

which of course has many solutions. (Even many sensible ones.) So we
can/have to put more structure on the problem. Two very popular ways of
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Figure 8.1: The ρ-lattice we must complete.

doing this are these functional forms: 1

Ho/Lee-specification: ρt(i) = aimp(t) + bhisti

Black/Derman/Toy-specification: ρt(i) = aimp(t) exp(bhisti)

For each t we fit by choosing an appropriate aimp, while bhist is considered a
known constant. bhist is called a volatility parameter and is closely related
(as you should be able to see) to the conditional variance of the short rate (or
its logarithm). This means that it is fairly easy to estimate from historical
time series data of the short rate. With bhist fixed, (8.1) can be solved hence
determining what goes in the two “t = 1”-boxes. We may have to solve the
equation determining aimp(1) numerically, but monotonicity makes this an
easy task (by bisection or Newton-Raphson, for instance).

And now can can do the same for t = 2, . . . , T − 1 and we can put our
computer to work and go to lunch. Well, yes and no. Even though we take
a long lunch there is a good chance that the computer is not finished when
we get back. Why? Note that as it stands, every time we make a guess at
aimp(t) (and since a numerical solution is involved we are likely to be making a
number of these) we have to work our way backward trough the lattice all the
way down to 0. And this we have to do for each t. While not a computational
catastrophe (a small calculation shows that the computation time grows as
T 3), it does not seem totally efficient. We would like to go through the lattice
only once (as it was the case when the initial term structure was determined

1Of course there is a reason for the names attached. As so often before, this is for later
courses to explain.
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from a known ρ-lattice). Fortunately there is a way of doing this. We need
the following lemma.

Lemma 28 Consider the binomial ρ-lattice in Figure 8.1. Let ψ(t, i) be the
price at time 0 of a security that pays 1 at time t if state/level i occurs at
that time. Then ψ(0, 0) = 1, ψ(0, i) = 0 for i > 0 and the following forward
equation holds:

ψ(t+ 1, i) =


ψ(t,i)

2(1+ρt(i))
+ ψ(t,i−1)

2(1+ρt(i−1))
0 < i < t+ 1,

ψ(t,i−1)
2(1+ρt(i−1))

i = t+ 1,
ψ(t,i)

2(1+ρt(i))
i = 0.

Proof. We do the proof only for the “0 < i < t + 1”-case, the others are
similar. Recall that we can think of Ft-measurable random variables (of the
type considered here) as vectors in in Rt+1. Since conditional expectation
is linear, we can (for s ≤ t) think of the Fs-conditional expectation of an
Ft-measurable random variable as a linear mapping from R

t+1 to Rs+1. In
other words it can be represented by a (s+ 1)× (t+ 1)-matrix. In particular
the time t− 1 price of a contract with time t price X can be represented as

EQ
t

(
X

1 + ρt−1

)
= Πt−1X

Now note that in the binomial model there are only two places to go from a
given point, so the Πt−1-matrices have the form

Πt−1 =


1−q

1+ρt−1(0)
q

1+ρt−1(0)
0

1−q
1+ρt−1(1)

q
1+ρt−1(1)

. . . . . .

0 1−q
1+ρt−1(t−1)

q
1+ρt−1(t−1)


︸ ︷︷ ︸

t+1 columns

t rows

Let ei(t) be the i’th vector of the standard base in Rt. The claim that pays
1 in state i at time t+ 1 can be represented in the lattice by ei+1(t+ 2) and
by iterated expectations we have

ψ(t+ 1, i) = Π0Π1 · · ·Πt−1Πtei+1(t+ 2).

But we know that multiplying a matrix by ei(t) from the right picks out the
i’th column. For 0 < i < t + 1 we may write the i + 1’st column of Πt as
(look at i = 1)

1− q
1 + ρt(i− 1)

ei(t+ 1) +
q

1 + ρt(i)
ei+1(t+ 1).
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Hence we get

ψ(t+ 1, i) = Π0Π1 · · ·Πt−1

(
1− q

1 + ρt(i− 1)
ei(t+ 1) +

q

1 + ρt(i)
ei+1(t+ 1)

)
=

1− q
1 + ρt(i− 1)

Π0Π1 · · ·Πt−1ei(t+ 1)︸ ︷︷ ︸
ψ(t,i−1)

+
q

1 + ρt(i)
Π0Π1 · · ·Πt−1ei+1(t+ 1)︸ ︷︷ ︸

ψ(t,i)

,

and since q = 1/2, this ends the proof. �

Since P (0, t) =
∑t

i=0 ψ(t, i), we can use the following algorithm to fit the
initial term structure.

1. Let ψ(0, 0) = 1 and put t = 1.

2. Let λt(aimp(t − 1)) =
∑t

i=0 ψ(t, i) where ψ(t, i) is calculated from the
ψ(t−1, ·)’s using the specified aimp(t−1)-value in the forward equation
from Lemma 28.
Solve λt(aimp(t− 1)) = P (0, t) numerically for aimp(t− 1).

3. Increase t by one. If t ≤ T then go to 2., otherwise stop.

An inspection reveals that the computation time of this procedure only
grows as T 2, so we have “gained an order”, which can be quite significant
when T is large. And don’t worry: There will be exercises to help you
understand and implement this algorithm.

8.3 On the impossibility of flat shifts of flat

term structures

Now let us demonstrate that in our term structure modelling framework it
is impossible to have only parallel shifts of a flat term structure. In other
words, in a model with no arbitrage we cannot have bond prices at time 0
given as

P (0, t) =
1

(1 + r)t

for some r ≥ 0, t = 1, . . . , T and

P (1, t) =
1

(1 + r̃)t−1 , t = 2, . . . , T,
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where r̃ is a random variable (which takes on at least two different values
with positive probability). To assign meaning to a ”flat term structure” at
time 1 we should have T ≥ 3.

Now consider the zero-coupon bonds with maturity dates 2 and 3. If the
term structure is flat at time 0 we have for some r ≥ 0

P (0, 2) =
1

(1 + r)2 and P (0, 3) =
1

(1 + r)3

and if it remains flat at time 1, there exist a random variable r̃ such that

P (1, 2) =
1

1 + r̃
and P (1, 3) =

1

(1 + r̃)2 .

Furthermore, in an arbitrage-free model it will be the case that

P (0, 2) =
1

1 + r
EQ [P (1, 2)]

=
1

1 + r
EQ

[
1

1 + r̃

]
and

P (0, 3) =
1

1 + r
EQ [P (1, 3)]

=
1

1 + r
EQ

[
1

(1 + r̃)2

]
Combining these results, we have

1

1 + r
= EQ

[
1

(1 + r̃)

]
and

1

(1 + r)2 = EQ

[
1

(1 + r̃)2

]
which contradicts Jensen’s inequality, for if

1

1 + r
= EQ

[
1

(1 + r̃)

]
then since u 7−→ u2 is strictly convex and r̃ not constant we must have

1

(1 + r)2 < EQ

[
1

(1 + r̃)2

]
.
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Note that the result does not say that it is impossible for the term structure to
be flat. But it is inconsistent with no arbitrage to have a flat term structure
and only have the possibility of moves to other flat term structures.

This explains what goes “wrong” in the example in Section 3.5.3. There
the term structure was flat. We then created a position that had a value of
0 at that level of interest rates, but a strictly positive value with at flat term
structure at any other level. But if interest rates are really stochastic then
an arbitrage-free model cannot have only flat shifts of flat structure.

8.4 On forwards and futures

A forward and a futures contract are very similar contracts: The buyer
(seller) of either type of contract is obligated to buy (sell) a certain asset
at some specified date in the future for a price - the delivery price - agreed
upon today. The forward/futures price of a certain asset is the delivery price
which makes the forward/futures contract have zero value initially. It is very
important to see that a forward/futures price is closer in spirit to the exercise
price of an option than to the price of an option contract. Whereas an option
always has positive value (and usually strictly positive) initially, both futures
and forwards have zero value initially because the delivery price is used as a
balancing tool.

The following example might clarify this: If a stock trades at $100 today
and we were to consider buying a futures contract on the stock with delivery
in three months and if we had an idea that this stock would not move a
lot over the next three months, then we would be happy to pay something
for a contract which obligated us to buy the stock in three months for, say,
$50. Even though things could go wrong and the stock fall below $50 in
three months we consider that a much smaller risk of loss than the chance of
gaining a lot from the contract. Similarly, we would not obligate ourselves
to buying the stock in three months for, say, $150 without receiving some
money now. Somewhere in between $50 and $150 is a delivery price at which
we would neither pay nor insist on receiving money to enter into the contract.

In a market with many potential buyers and sellers there is an equilib-
rium price at which supply meets demand: The number of contracts with
that delivery price offered at zero initial cost equals the number of contracts
demanded. This equilibrium price is the forward/futures price (depending
on which contract we consider). In the following we will look at this defini-
tion in a more mathematical way and we will explain in what sense futures
and forwards are different. Although they produce different cash flows (see
below) that only results in a price difference when interest rates are stochas-
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tic. Therefore, we will illustrate this difference with an example involving
futures/forwards on bonds. We will ignore margin payments (i.e. payments
that one or both sides of the contract have to make initially to guarantee
future payments) in this presentation.

First, let us look at the key difference between forwards and futures by
illustrating the cash flows involved in both types of contracts: Let Ft denote
the forward price at time t for delivery of an underlying asset at time T and
let Φt denote the futures price of the same asset for delivery at T , where
t ≤ T . Strictly speaking, we should write Ft,T and Φt,T instead of Ft and
Φt respectively, since it is important to keep track of both the date at which
the contract is entered into and the delivery date. But we have chosen to
consider the particular delivery date T and then keep track of how the futures
and forward prices change as a function of t. The cash flows produced by the
two types of contracts, if bought at time t, are as follows:

t t+1 t+2 · · · T-1 T
Forward 0 0 0 · · · 0 ST − Ft
Futures 0 Φt+1 − Φt Φt+2 − Φt+1 · · · ΦT−1 − ΦT−2 ST − ΦT−1

where ST is the price of the underlying asset at time T . The forward cash
flow is self-explanatory. The futures cash flow can be explained as follows:
If you buy a futures contract at date t you agree to buy the underlying asset
at time T for Φt. At time t+ 1 markets may have changed and the price at
which futures trade changed to Φt+1. What happens is now a resettlement of
the futures contract. If Φt+1 is bigger than Φt you (the buyer of the futures
at time t) receive the amount Φt+1 −Φt from the seller at time t+1 whereas
you pay the difference between Φt+1 and Φt to the seller if Φt+1 < Φt. The
story continues as shown in the figure.

We have already seen that if the underlying asset trades at time t and
a zero coupon bond with maturity T also trades then the forward price is
given as

Ft =
St

P (t, T )

i.e.

Ft = St (1 + r (t, T ))T−t (8.2)

where r(t, T ) is the internal rate of return on the zero coupon bond.

To see what Φt is requires a little more work: First of all to avoid arbitrage
we must have ΦT = ST . Now consider ΦT−1. In an arbitrage free system there
exists an equivalent martingale measure Q. The futures price ΦT−1 is such
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that the cash flow promised by the contract (bought at T − 1) has value 0.
We must therefore have

0 = EQ
T−1

[
ST − ΦT−1

RT−1,T

]
but since RT−1,T is FT−1-measurable this implies

0 =
1

RT−1,T

EQ
T−1 [ST − ΦT−1]

i.e.
ΦT−1 = EQ

T−1 [ST ] (8.3)

Since Q is a martingale measure recall that

ST−1

R0,T−1

= EQ
T−1

[
ST
R0,T

]
i.e.

ST−1 =
1

1 + ρT−1

EQ
T−1 [ST ]

hence we can write (8.3) as

ΦT−1 =
(
1 + ρT−1

)
ST−1

and that is the same as (8.2) since the yield on a one period zero coupon bond
is precisely the spot rate. So we note that with one time period remaining
we have ΦT−1 = FT−1. But that also follows trivially since with one period
remaining the difference in cash flows between forwards and futures does not
have time to materialize.

Now consider ΦT−2. By definition ΦT−2 should be set such that the cash
flow of the futures contract signed at T − 2 has zero value:

0 = EQ
T−2

[
ΦT−1 − ΦT−2

RT−2,T−1

+
ST − ΦT−1

RT−2,T

]
(8.4)

Now note that using the rule of iterated expectations and the expression for
ΦT−1 we find

EQ
T−2

[
ST − ΦT−1

RT−2,T

]
=

1

RT−2,T−1

EQ
T−2

[
EQ
T−1

[
ST − ΦT−1

RT−1,T

]]
= 0
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so (8.4) holds precisely when

0 = EQ
T−2

[
ΦT−1 − ΦT−2

RT−2,T−1

]
=

1

RT−2,T−1

EQ
T−2 [ΦT−1 − ΦT−2]

i.e. we have
ΦT−2 = EQ

T−2 [ΦT−1] = EQ
T−2 [ST ] .

This argument can be continued backwards and we arrive at the expression

Φt = EQ
t [ST ] (8.5)

Note that (8.5) is not in general equal to (8.2):

Under Q, we have St = EQ
t

[
ST
Rt,T

]
so if 1

Rt,T
and ST are uncorrelated under

Q we may write

St = EQ
t

[
1

Rt,T

]
EQ
t [ST ] = P (t, T )Φt

which would imply that

Φt =
St

P (t, T )
= Ft

Hence, if 1
Rt,T

and ST are uncorrelated under Q, the forward price Ft
and the futures price Φt are the same. A special case of this is when interest
rates are deterministic, i.e. all future spot rates and hence Rt,T are known at
time t.

Note that in general,

Φt − Ft =
1

P (t, T )

(
P (t, T )EQ

t [ST ]− St
)

=
1

P (t, T )

(
EQ
t

[
1

Rt,T

]
EQ
t [ST ]− St

)
=

1

P (t, T )

(
EQ
t

(
ST
Rt,T

)
− CovQt

(
1

Rt,T

, ST

)
− St

)
=

−1

P (t, T )

(
CovQt

(
1

Rt,T

, ST

))
.

Note that margin payments go to the holder of a futures contract when
spot prices rise, i.e. in states where ST is high. If 1

R(t,T )
is negatively correlated

with ST , then interest rates tend to be high when the spot price is high and
hence the holder of a futures contract will receive cash when interest rates
are high. Hence a futures contract is more valuable in that case and the
futures price should therefore be set higher to keep the contract value at 0.
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8.5 On swap contracts

A swap contract is an agreement to exchange one stream of payments for
another. A wide variety of swaps exists in financial markets; they are of-
ten tailor-made to the specific need of a company/an investor and can be
highly complex. However, we consider only the valuation of the simplest2

interest rate swap where fixed interest payments are exchanged for floating
rate interest payments.

This swap you may see referred to as anything from “basis” to “forward
starting ???monthly payer swap settled in arrears”. Fortunately the pay-
ments are easier to describe. For a set of equidistant dates (Ti)

n
i=0, say δ

apart, it is a contract with cash flow (per unit of notational principal) 1

P (Ti−1, Ti)
− 1︸ ︷︷ ︸

floating leg

− δκ︸︷︷︸
fixed leg

 at date Ti for i = 1, . . . , n,

where κ is a constant (an interest rate with δ-compounding quoted on yearly
basis.) You should convince yourself why the so-called floating leg does
in fact correspond to receiving floating interest rate payments. The term
(1/P (Ti−1, Ti) − 1)/δ is often called the (12*δ)-month LIBOR (which an
acronym for London Interbank Offer Rate, and does not really mean anything
nowadays, it is just easy to pronounce). Note that the payment made at Ti
is known at Ti−1.

It is clear that since the payments in the fixed leg are deterministic, they
have a value of

δκ
n∑
i=1

P (t, Ti).

The payments in the floating leg are not deterministic. But despite this,
we can find their value without a stochastic model for bond prices/interest
rates. Consider the following simple portfolio strategy:

Time Action Net cash flow
t Sell 1 Ti-ZCB

Buy 1 Ti−1-ZCB P (t, Ti)− P (t, Ti−1)
Ti−1 Use principal received from Ti−1-ZCB

to buy 1/P (Ti−1, Ti) Ti-ZCBs 0
Ti Close position 1/P (Ti−1, Ti)− 1

2Simple objects are often referred to as plain vanilla objects. But what is seen as simple
depends very much on who is looking.
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This means that the Ti-payment in the floating leg has a value of P (t, Ti−1)−
P (t, Ti), so when summing over i see that the value of the floating leg is

P (t, T0)− P (t, Tn).

In the case where t = T0 this is easy to remember/interpret. A bullet-like
bond that has a principal of 1 pays a coupon that is the short rate must
have a price of 1 (lingo: “it is trading at par”). The only difference between
this contract and the floating leg is the payment of the principal at time
Tn; the time t value of this is P (t, Tn) hence the value of the floating leg is
1− P (t, Tn).

All in all the swap has a value of

V = P (t, T0)− P (t, Tn)− δκ
n∑
i=1

P (t, Ti)).

But there is a further twist; these basis swaps are only traded with one κ
(for each length; each n), namely the one that makes the value 0. This rate
is called the swap rate (at a given date for a given maturity)

κn(t) =
P (t, T0)− P (t, Tn)

δ
∑n

i=1 P (t, Ti)
. (8.6)

In practice (8.6) is often used “backwards”, meaning that swap rates for
swaps of different lengths (called the “swap curve”) are used to infer discount
factors/the term structure. Note that this is easy to do recursively if we can
“get started”, which is clearly the case if t = T0.3

The main point is that the basis swap can be priced without using a
full dynamic model, we only need today’s term structure. But it takes only
minor changes in the contract specification for this conclusion to break down.
For instance different dynamic models with same current term structure give
different swap values if the ith payment in the basis swap is transferred to
date Ti−1 (where it is first known; this is called settlement in advance) or if
we swap every 3 months against the 6-month LIBOR.

The need for a swap-market can also be motivated by the following exam-
ple showing swaps can offer comparative advantages. In its swap-formulation
it is very inspired by Hull’s book, but you you should recognize the idea from
introductory economics courses (or David Ricardo’s work of 1817, whichever
came first). Consider two firms, A and B, each of which wants to borrow

3There should be a “don’t try this at work” disclaimer here. In the market different
day count conventions are often used on the two swap legs, so things may not be quite
what they seem.
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$10M for 5 years. Firm A prefers to pay a floating rate, say one that is
adjusted every year. It could be that the cash-flows generated by the invest-
ment (that it presumably needs the $10M for) depend (positively) on the
interest rate market conditions. So from their point of view a floating rate
loan removes risk. Firm B prefers to borrow at a fixed rate. In this way is
knows in advance exactly how much it has to pay over the 5 years, which it
is quite concievable that someone would want. The firms contact their banks
and recieve the following loan offers: (Lingo: “bp” means basispoints (pron-
uonced “beeps” if you’re really cool) and is one hundredth of a percentage
point, i.e. “100bp = 1%” )

Firm Fixed Floating
A 5Y-ZCB-rate + 50bp 1Y-ZCB-rate + 30bp
B 5Y-ZCB-rate + 170bp 1Y-ZCB-rate + 100bp

So B gets a systematically “worse deal” than A, which could be because is of
lower credit quality than A. But “less worse” for a floating rate loan, where
they only have to pay 70bp more than A compared to 120bp for a fixed rate
loan. So A could take the floating rate offer and B the fixed rate offer, and
everybody is mildly happy. But consider the following arrangement: A takes
the fixed rate offer from the bank and B the floating rate. A then offers to
lend B the 10M as a fixed rate loan “at the 5Y-ZCB-rate + 45bp”, whereas B
offers to lend A its 10M floating rate loan “at the 1Y-ZCB-rate” (and would
maybe add “flat” to indicate that there is no spread). In other words A and
B are exchanging, or swapping, their bank loans. The result:

A: Pays (5Y-ZCB-rate + 50bp) (to bank), Pays 1Y-ZCB-rate (to B)
and receives (5Y-ZCB-rate + 45bp) (from B). In net-terms: Pays 1Y-ZCB-
rate+5bp

B: Pays (1Y-ZCB-rate + 100bp) (to bank), Pays (5Y-ZCB-rate + 45bp)
(to A) and receives (1Y-ZCB-rate) (from A). In net-terms: Pays 5Y-ZCB-
rate+145bp
So this swap-arrangement has put both A and B in a better position (by
25bp) than they would have been had they only used the bank.

But when used in the finance/interest rate context, there is somewhat of
a snag in this story. We argued that the loans offered reflected differences in
credit quality. If that is so, then it must mean that default (“going broke”) is
a possibility that cannot be ignored. It is this risk that the bank is “charging
extra” for. With this point of view the reason why the firms get better deals
after swapping is that each chooses to take on the credit risk from the other
party. If firm B defaults, firm A can forget about (at least part of) what’s
in the “receives from B”-column, but will (certainly with this construction)
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only be able to get out of its obligations to B to a much lesser extent. So
the firms are getting lower rates by taking on default risk, which a risk of
the type “a large loss with a small probability”. One can quite sensibly ask
if that is the kind of risks that individual firms want to take.

One could try to remedy the problem by saying that we set up a financial
institution through which the swapping takes place. This institution should
ensure payments to the non-defaulting party (hence taking “credit risk” ×
2), in return for a share of the possible “lower rate”-gain from the swap, and
hope for some “law of large numbers”-diversification effect. But that story
is questionable; isn’t that what the bank is doing in the first place?

So the morale is two-fold: i) If something seems to be too good to be true
it usually is. Also in credit risk models. ii) The only way to see if the spreads
offered to firms A and B are set such that there is no gain without extra risk,
i.e. consistent with no arbitrage, is to set up a real dynamic stochastic model
of the defaults (something that subsequent courses will do), just as stochastic
term structure models help us realize that non-flat yield curves do not imply
arbitrage.

8.6 On expectation hypotheses

Recall that the spot rate in our term structure models is a stochastic pro-
cess. At time 0 we do not know what the spot rate will be at time 1.We
may however from current bond prices compute the one-period forward rate
f(1, 2) and it is natural to think that this rate at least carries some infor-
mation about the level of the spot rate at time 1.For example, one type of
expectation hypothesis would argue, that the expected value of spot rates is
equal to the corresponding forward rates. As we shall see shortly, there is
little reason to think that this is satisfied in arbitrage-free models. There are
a number of other expectation hypotheses that one can formulate concerning
future levels of interest rates, bond prices, yields and forward rates. Although
we will no go through all of these in great detail, one point should be clear
after this: There is essentially only one expectation hypothesis which follows
as a simple consequence of no arbitrage (and an assumption of risk neutral
agents). Many other form of expectation hypothesis have little mathematical
justification, often there are inconsistent with each other, and very often the
same form of the expectation hypotheses cannot hold for different maturities.

But let us begin with the good news. We know that in an arbitrage-free
model, we have for any zero coupon bond with maturity Ti that

P (t, Ti) =
1

1 + ρt
EQ
t [P (t+ 1, Ti)] .
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Hence standing at time t, the expected return under Q of holding a bond in
one period is

EQ
t [P (t+ 1, Ti)]

P (t, Ti)
− 1 = ρt

and this does not depend on the maturity of the bond. Hence under Q, the
one-period return on all bonds is the same. This is a mathematical conse-
quence of no arbitrage. It becomes a hypothesis, which we may call the local
expectations hypothesis, once we claim that this also holds under the measure
P which governs the evolution of interest rates in the real world. This would
of course be true if P = Q, something which only holds in an economy in
which all agents are risk-neutral.

Let us assume that P = Q and consider an extension (called the “return
to maturity hypothesis”) of this local hypothesis to n periods which equates
the expected return from rolling over the money market account in n periods
with that of holding an n−period bond. This would be equivalent to stating
that

EQ
t (Rt,t+n) = (1 + y(t, t+ n))n

where y(t, t+n) is the yield at time t of a bond maturing at time t+n. What
if we claim that this holds for all n? Then Jensen’s inequality brings us into
trouble since from our fundamental pricing relationship we have

P (t, t+ n) =

1

(1 + y(t, t+ n))n
= EQ

t

[
1

Rt,t+n

]
and unless interest rates are deterministic we have

EQ
t

[
1

Rt,t+n

]
>

1

EQ
t Rt,t+n

.

Finally let us consider another popular hypothesis about the term struc-
ture of interest rates, which states that forward rates are unbiased predictors
of spot rates. Our discussion of this hypothesis will be much clearer if we
have at our disposal the concept of forward measures.

Proposition 29 Given a term structure model with Q as the martingale
measure. Define the random variable ZT

T as

ZT
T =

1

R0,T+1P (0, T + 1)
.
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Then a new probability measure QT is defined by letting

QT (A) = EQ
(
ZT
T 1A

)
, A ∈ F . (8.7)

Under this measure, the forward rate process (f(t, T ))t=0,...,T is a martingale.
Proof. First note that since ρ > −1, ZT

T > 0.Also,

EQ
(
ZT
T

)
=

1

P (0, T + 1)
EQ 1

R0,T+1

= 1

and therefore (8.7) defines a new probability measure on Ω. Let

ZT
t = EQ

t

(
ZT
T

)
=

1

R(0, t)P (0, T + 1)
EQ
t

(
1

Rt,T+1

)
=

P (t, T + 1)

R(0, t)P (0, T + 1)
.

Now note that

EQ
t

(
ρT

Rt,T+1

)
= P (0, T + 1)R0,tE

Q
t

(
ρT

R0,T+1P (0, T + 1)

)
=

P (t, T + 1)

ZT
t

EQ
t

(
ZT
T ρT

)
= P (t, T + 1)EQT

t (ρT ) .

Therefore,

EQT

t (ρT ) =
1

P (t, T + 1)
EQ
t

(
ρT

Rt,T+1

)
=

1

P (t, T + 1)
EQ
t

(
1 + ρT
Rt,T+1

− 1

Rt,T+1

)
=

1

P (t, T + 1)
EQ
t

(
1

Rt,T

− 1

Rt,T+1

)
=

P (t, T )

P (t, T + 1)
− 1

= f(t, T ).

This proves the martingale property.
This proposition shows that there exists a measure (and this measure

is called the T−forward measure) under which the expected spot rate at
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time T is equal to the forward rate. Typically, the forward measure is not
equal to P , and it is not equal to Q unless interest rates are deterministic.
Furthermore, one may check that for f(t, T ) and f(t, T + 1) to be unbiased
estimators of rT and rT+1,respectively, the spot interest rate at time T must
be deterministic. The moral of all this, is that viewing the forward rate as
unbiased estimators of future spot rates is problematic.

8.7 Why P = Q means risk neutrality

In this section we will keep referring to the measure P which is the measure
determining the actual evolution of prices. To make sure that the meaning
of P is clear, we can say that a statistician estimating parameters of prices is
trying to find P. We have seen that the version of the expectations hypoth-
esis known as the local expectations hypothesis holds under the martingale
measure Q used for pricing. Recall that the measure Q is a measure which
allows us to give convenient expressions for prices of claims and derivative
securities but not a measure governing the actual movement of prices.

We have stated earlier somewhat loosely that P and Q are actually the
same when agents are risk neutral. Since we have not seen many agents this
statement needs some elaboration. A quick sketch of this line of reasoning
is the following: Recall that under Q all securities have the same one period
returns: They are equal to the short rate. If Q = P it would be the case
that actual expected returns were the same for all assets, regardless of their
variances. This would only be possible in a world where agents are risk
neutral and therefore do not care about risk (variance, say) but look only at
expected returns and prefer more expected return to less. In fact, if there
is as much as one risk neutral agent in the economy and two assets have
different expected returns, then this one agent would ruin the equilibrium by
demanding infinitely much of the asset with the high expected return and
financing the purchase by selling the asset with low expected return in infinite
quantities. Therefore, we may say that Q = P follows from risk neutrality
of at least one agent. The argument can be made more precise by explicitly
modelling the inter-temporal optimization problem of a representative agent
who maximizes an additively separable expected utility of consumption over
a certain time period. When this is done we can interpret the pricing relation

P (t, Ti) =
1

1 + ρt
EQ
t [P (t+ 1, Ti)]

in terms of marginal utilities. The key result is that in equilibrium the prices
of bonds adjust in such a way that the increase in marginal utility for the
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agent obtained by selling the bond at date t and using the proceeds for
consumption is exactly equal to the marginal loss of expected utility at date
t+ 1 resulting from the smaller amount of money for consumption available
by selling the position in that bond at time t+1. Let us consider a one-period
case. If we denote by C0 (known at time 0) and C1 (stochastic viewed from
time 0) the optimal consumption of the agent at dates 0 and 1, it will be the
case in equilibrium that the price of the i′th asset satisfies

P i(0)u′(C0) = EP
0

[
P i(1)u′(C1)

]
i.e.

P i(0) = EP
0

[
P i(1)u′(C1)

u′(C0)

]
= EP

t

[
P i(1)Z1

1 + ρ0

]
where

Z1 =
u′(C1)

EP
0 u
′(C1)

1 + ρ0 =
u′(C0)

EP
t u
′(C1)

and this we may then write as

P i(0) = EQ
t

[
P i(1)

1 + ρ0

]
where Q is defined by

Q(A) = EP (1AZ1).

This establishes the connection between utility maximization and the equiv-
alent martingale measure. An agent who is risk neutral will have an affine
utility function, and hence for such an agent u′(C1) is constant (i.e. does not
vary with ω as C1 does). In that case Z1 = 1 and P = Q.

It is clear that P = Q is sufficient for the local expectation hypothesis to
hold but it may seem to be too strong a requirement. After all, it is only an
expectation of one random variable that we are referring to and one could
imagine that a measure change would not alter this particular expectation.
To analyze this question a little further, consider the fundamental definition
of a new measure through the random variable Z1 :

Q(A) = EP (1AZ1).
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For some random variable X,which could be the spot rate at some future
date, we have

EQ(X) = EP (XZ)

and therefore EQ(X) = EP (X) if and only if

EP (X(Z − 1)) = 0.

Since E(Z − 1) = 0 this is the same as requiring

Cov(X,Z) = 0.

Therefore, for the change of measure to preserve a mean value we must have
that the variable in question is uncorrelated with the change of measure
variable Z, and this will typically not hold in the term structure models we
consider.



Chapter 9

Portfolio Theory

Matrix Algebra

First we need a few things about matrices. (A very useful reference for math-
ematical results in the large class imprecisely defined as “well-known”is Berck
& Sydsæter (1992), “Economists’ Mathematical Handbook”, Springer.)

• When x ∈ Rn and V ∈ Rn×n then

∂

∂x
(x>Vx) = (V + V>)x

• A matrix V ∈ Rn×n is said to be positive definite if z>Vz > 0 for all
z 6= 0. If V is positive definite then V−1 exists and is also positive
definite.

• Multiplying (appropriately) partitioned matrices is just like multiplying
2× 2-matrices.

• When X is an n-dimensional random variable with covariance matrix
Σ then

Cov(AX + B,CX + D) = AΣC>,

where A, B, C, and D are deterministic matrices such that the multi-
plications involved are well-defined.

Basic Definitions & Justification of Mean-Variance Analysis

We will consider an agent who wants to invest in the financial markets. We
look at a simple model with only two time-points, 0 and 1. The agent has
an initial wealth of W0 to invest. We are not interested in how the agent
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determined this amount, it’s just there. There are n financial assets to choose
from and these have prices

Si,t for i = 1, . . . , n and t = 0, 1,

where Si,1 is stochastic and not known until time 1. The rate of return on
asset i is defined as

ri =
Si,1 − Si,0

Si,0
,

and r = (r1, . . . , rn)> is the vector of rates of return. Note that r is stochastic.
At time 0 the agent chooses a portfolio, that is he buys ai units of asset

i and since all in all W0 is invested we have

W0 =
n∑
i=1

aiSi,0.

(If ai < 0 the agent is selling some of asset i; in most of our analysis short-
selling will be allowed.)

Rather than working with the absolute number of assets held, it is more
convenient to work with relative portfolio weights. This means that for the
ith asset we measure the value of the investment in that asset relative to
total investment and call this wi, i.e.

wi =
aiSi,0∑n
i=1 aiSi,0

=
aiSi,0
W0

.

We put w = (w1, . . . wn)>, and have that w>1 = 1. In fact, any vector
satisfying this condition identifies an investment strategy. Hence in the fol-
lowing a portfolio is a vector whose coordinate sum to 1. Note that in this
one period model a portfolio w is not a stochastic variable (in the sense of
being unknown at time 0).

The terminal wealth is

W1 =
n∑
i=1

aiSi,1 =
n∑
i=1

ai(Si,1 − Si,0) +
n∑
i=1

aiSi,0

= W0

(
1 +

n∑
i=1

Si,0ai
W0

Si,1 − Si,0
Si,0

)
= W0(1 + w>r), (9.1)

so if we know the relative portfolio weights and the realized rates of return,
we know terminal wealth. We also see that

E(W1) = W0(1 + w>E(r))
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and

Var(W1) = W 2
0 Cov(w>r,w>r) = W 2

0 w>Var(r)w.

In this chapter we will look at how agents should choose w. We will
focus on how to choose w such that for a given expected rate of return, the
variance on the rate of return is minimized. This is called mean-variance
analysis. Intuitively, it sounds reasonable enough, but can it be justified?

An agent has a utility function, u, and let us for simplicity say that he
derives utility from directly from terminal wealth. (So in fact we are saying
that we can eat money.) We can expand u in a Taylor series around the
expected terminal wealth,

u(W1) = u(E(W1)) + u′(E(W1))(W1 − E(W1))

+
1

2
u′′(E(W1))(W1 − E(W1))2 +R3,

where the remainder term R3 is

R3 =
∞∑
i=3

1

i!
u(i)(E(W1))(W1 − E(W1))i,

“and hopefully small”. With appropriate (weak) regularity condition this
means that expected terminal wealth can be written as

E(u(W1)) = u(E(W1)) +
1

2
u′′(E(W1))Var(W1) + E(R3),

where the remainder term involves higher order central moments. As usual
we consider agents with increasing, concave (i.e. u′′ < 0) utility functions
who maximize expected wealth. This then shows that to a second order
approximation there is a preference for expected wealth (and thus, by (9.1),
to expected rate of return), and an aversion towards variance of wealth (and
thus to variance of rates of return).

But we also see that mean-variance analysis cannot be a completely gen-
eral model of portfolio choice. A sensible question to ask is: What restrictions
can we impose (on u and/or on r) to ensure that mean-variance analysis is
fully consistent with maximization of expected utility?

An obvious way to do this is to assume that utility is quadratic. Then the
remainder term is identically 0. But quadratic utility does not go too well
with the assumption that utility is increasing and concave. If u is concave
(which it has to be for mean-variance analysis to hold ; otherwise our interest
would be in maximizing variance) there will be a point of satiation beyond
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which utility decreases. Despite this, quadratic utility is often used with a
“happy-go-lucky” assumption that when maximizing, we do not end up in
an area where it is decreasing.

We can also justify mean-variance analysis by putting distributional re-
strictions on rates of return. If rates of return on individual assets are nor-
mally distributed then the rate of return on a portfolio is also normal, and
the higher order moments in the remainder can be expressed in terms of the
variance. In general we are still not sure of the signs and magnitudes of
the higher order derivatives of u, but for large classes of reasonable utility
functions, mean-variance analysis can be formally justified.

9.1 The Mathematics of the Efficient Frontier

9.1.1 The case with no riskfree asset

First we consider a market with no riskfree asset and n risky assets. Later
we will include a riskfree asset, and it will become apparent that we have
done things in the right order.

The risky assets have a vector of rates of return of r, and we assume that

E(r) = µ, (9.2)

Var(r) = Σ, (9.3)

where Σ is positive definite (hence invertible) and not all coordinates of µ
are equal. As a covariance matrix Σ is always positive semidefinite, the
definiteness means that there does not exist an asset whose rate of return
can be written as an affine function of the other n− 1 assets’ rates of return.
Note that the existence of a riskfree asset would violate this.

Consider the following problem:

minw
1

2
w>Σw := σ2

P subject to w>µ = rP

w>1 = 1

First note that our assumptions on µ and Σ ensure that a unique finite
solution exits for any value of rP . Second note that the problem can be
interpreted as choosing portfolio weights (the second constraint ensures that
w is a vector of portfolio weights) such that the variance on the return on the
portfolio (w>Σw; the “1/2” is just there for convenience) is minimized given
that we want a specific expected rate of return (rP ; “P is for portfolio”).
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To solve the problem we set up the Lagrange-function with multipliers

L(w, λ1, λ2) =
1

2
w>Σw − λ1(w>µ− rP )− λ2(w>1− 1).

The first-order conditions for optimality are

∂L
∂w

= Σw − λ1µ− λ21 = 0, (9.4)

w>µ− rP = 0, (9.5)

w>1− 1 = 0. (9.6)

Usually we might say “and these are linear equations that can easily be
solved”, but working on them algebraically leads to a much deeper under-
standing and intuition about the model. Note that invertibility gives that
we can write (9.4) as (check for yourself)

w = Σ−1[µ 1]

[
λ1

λ2

]
, (9.7)

and (9.5)-(9.6) as

[µ 1]>w =

[
rP
1

]
. (9.8)

Multiplying both sides of (9.7) by [µ 1]> and using (9.8) gives[
rP
1

]
= [µ 1]>w = [µ 1]>Σ−1[µ 1]︸ ︷︷ ︸

:=A

[
λ1

λ2

]
. (9.9)

By using the multiplication rules for partitioned matrices we see that

A =

[
µ>Σ−1µ µ>Σ−11
µ>Σ−11 1>Σ−11

]
:=

[
a b
b c

]
We now show that A is positive definite, in particular it is invertible. To this
end let z> = (z1, z2) 6= 0 be an arbitrary non-zero vector in R2. Then

y = [µ 1]

[
z1

z2

]
= [z1µ z21] 6= 0,

because the coordinates of µ are not all equal. From the definition of A we
get

∀z 6= 0 : z>Az = y>Σ−1y > 0,



138 CHAPTER 9. PORTFOLIO THEORY

because Σ−1 is positive definite (because Σ is). In other words, A is positive
definite. Hence we can solve (9.9) for the λ’s,[

λ1

λ2

]
= A−1

[
rP
1

]
,

and insert this into (9.7) in order to determine the optimal portfolio weights

ŵ = Σ−1[µ 1]A−1

[
rP
1

]
. (9.10)

The portfolio ŵ is called the minimum variance portfolio for a given mean rP
(So we can’t be bothered to say the correct full phrase: “minimum variance
on rate of return for a given mean rate on return rP ”.) Twice the optimal
value (i.e. the minimal portfolio return variance) is

σ̂2
P = ŵ>Σŵ

= [rP 1]A−1[µ 1]>Σ−1ΣΣ−1[µ 1]A−1[rP 1]>

= [rP 1]A−1
(
[µ 1]>Σ−1[µ 1]

)︸ ︷︷ ︸
=A by def.

A−1[rP 1]>

= [rP 1]A−1

[
rP
1

]
,

where symmetry (of Σ and A and their inverses) was used to obtain the
second line. But note that

A−1 =
1

ac− b2

[
c −b
−b a

]
,

which gives us

σ̂2
P =

a− 2brP + cr2
P

ac− b2
. (9.11)

In (9.11) the relation between the variance of the minimum variance portfolio
for a given rp, σ̂

2
P , is expressed as a parabola and is called the variance

portfolio frontier or locus. In mean-standard deviation-space the relation
is expressed as a hyperbola. Figure 9.1 illustrates what things look like in
mean-variance-space. (When using graphical arguments you should be quite
careful to use “the right space”; for instance lines that are straight in one
space, are not straight in the other.) The upper half of the curve in Figure
9.1 (the solid line) identifies the set of portfolios that have the highest mean
return for a given variance; these are called mean-variance efficient portfolios.
The portfolios on the bottom half (the dotted part) are called inefficient
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Figure 9.1: The minimum variance portfolio frontier.

portfolios. Figure 9.1 also shows the global minimum variance portfolio, the
portfolio with the smallest possible variance for any given mean return. Its
mean, rG, is found by minimizing (9.11) with respect to rP , and is rgmv = b

c
.

By substituting this in the general σ̂2-expression we obtain

σ̂2
gmv =

a− 2brgmv + cr2
gmv

ac− b2
=
a− 2b(b/c) + c(b/c)2

ac− b2
=

1

c
,

while the general formula for portfolio weights gives us

ŵgmv =
1

c
Σ−11.

Example 11 (A Recurrent Numerical Example) Consider the case with
3 assets (referred to as A, B, and C) and

µ =

 0.1
0.12
0.15

 , Σ =

 0.25 0.10 −0.10
0.10 0.36 −0.30
−0.10 −0.30 0.49

 .
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Figure 9.2: The minimum variance frontiers and individual assets for Exam-
ple 11

The all-important A-matrix is then

A =

[
0.33236 2.56596

2.565960 20.04712

]
,

which means that the locus of mean-variance portfolios is given by

σ̂2
P = 4.22918− 65.3031rP + 255.097r2

P .

The locus is illustrated in Figure 9.2 in both in (variance, expected return)-
space and (standard deviation, expected return)-space.

An important property of the set of minimum variance portfolios is is so-
called two-fund separation. This means that the minimum variance portfolio
frontier can be generated by any two distinct frontier portfolios.

Proposition 30 Let xa and xb be two minimum variance portfolios with
mean returns ra and rb, ra 6= rb. Then every minimum variance portfolio,
xc is a linear combination of xa and xb. Conversely, every portfolio that is
a linear combination of xa and xb (i.e. can be written as αxa + (1 − α)xb)
is a minimum variance portfolio. In particular, if xa and xb are efficient
portfolios, then αxa + (1− α)xb is an efficient portfolio for α ∈ [0; 1].
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Proof. To prove the first part let rc denote the mean return on a given
minimum variance portfolio xc. Now choose α such that rc = αra+(1−α)rb,
that is α = (rc − rb)/(ra − rb) (which is well-defined because ra 6= rb). But
since xc is a minimum variance portfolio we know that (9.10) holds, so

xc = Σ−1[µ 1]A−1

[
rc
1

]
= Σ−1[µ 1]A−1

[
αra + (1− α)rb
α + (1− α)

]
= αxa + (1− α)xb,

where the third line is obtained because xa and xb also fulfill (9.10). This
proves the first statement. The second statement is proved by “reading from
right to left” in the above equations. This shows that xc = αxa+(1−α)xb is
the minimum variance portfolio with expected return αra + (1− α)rb. From
this, the validity of the third statement is clear. �

Another important notion is orthogonality of portfolios. We say that two
portfolios xP and xzP (“z is for zero”) are orthogonal if the covariance of
their rates of return is 0, i.e.

x>zPΣxP = 0. (9.12)

Often xzP is called xP ’s 0-β portfolio (we’ll see why later).

Proposition 31 For every minimum variance portfolio, except the global
minimum variance portfolio, there exists a unique orthogonal minimum vari-
ance portfolio. Furthermore, if the first portfolio has mean rate of return rP ,
its orthogonal one has mean

rzP =
a− brP
b− crP

.

Proof. First note that rzP is well-defined for any portfolio except the global
minimum variance portfolio. By (9.10) we know how to find the minimum
variance portfolios with means rP and rzP = (a− brP )/(b− crP ). This leads
to

x>zPΣxP = [rzP 1]A−1[µ 1]>Σ−1ΣΣ−1[µ 1]A−1[rP 1]>

= [rzP 1]A−1
(
[µ 1]>Σ−1[µ 1]

)︸ ︷︷ ︸
=A by def.

A−1[rP 1]>
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= [rzP 1]A−1

[
rP
1

]
(9.13)

=

[
a− brP
b− crP

1

]
1

ac− b2

[
c −b
−b a

] [
rP
1

]
=

1

ac− b2

[
a− brP
b− crP

1

] [
crP − b
a− brP

]
= 0,

which was the desired result. �

Proposition 32 Let xmv (6= xgmv, the global minimum variance portfolio) be
a portfolio on the mean-variance frontier with rate of return rmv, expected rate
of return µmv and variance σ2

mv. Let xzmv be the corresponding orthogonal
portfolio, xP be an arbitrary portfolio, and use similar notation for rates of
return on these portfolios. Then the following holds:

µP − µzmv = βP,mv(µmv − µzmv),

where

βP,mv =
Cov(rP , rmv)

σ2
mv

.

Proof. Consider first the covariance between return on asset i and xmv. By
using (9.10) we get

Cov(ri, rmv) = e>i Σxmv

= e>i [µ 1]A−1

[
µmv

1

]
= [µi 1]A−1

[
µmv

1

]
.

From calculations in the proof of Proposition 31 we know that the covari-
ance between xmv and xzvp is given by (9.13). We also know that it is 0.
Subtracting this 0 from the above equation gives

Cov(ri, rmv) = [µi − µzmv 0]A−1

[
µmv

1

]
= (µi − µzmv)

cµmv − b
ac− b2︸ ︷︷ ︸

:=γ

, (9.14)
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where we have used the formula for A−1. Since this holds for all individual
assets and covariance is bilinear, it also holds for portfolios. In particular for
xmv,

σ2
mv = γ(µmv − µzmv),

so γ = σ2
mv/(µmv−µzmv). By substituting this into (9.14) we get the desired

result for individual assets. But then linearity ensures that it holds for all
portfolios. �

Proposition 32 says that the expected excess return on any portfolio (over
the expected return on a certain portfolio) is a linear function of the expected
excess return on a minimum variance portfolio. It also says that the expected
excess return is proportional to covariance.

9.1.2 The case with a riskfree asset

We now consider a portfolio selection problem with n + 1 assets. These are
indexed by 0, 1, . . . , n, and 0 corresponds to the riskfree asset with (determin-
istic) rate of return r0. For the risky assets we let ri

e denote the excess rate of
return over the riskfree asset, i.e. the actual rate of return less r0. We let µe

denote the mean excess rate of return, and Σ the variance (which is of course
unaffected). A portfolio is now a n+ 1-dimensional vector whose coordinate
sum to unity. But in the calculations we let w denote the vector of weights
w1, . . . , wn corresponding to the risky assets and write w0 = 1−w>1.

With these conventions the mean excess rate of return on a portfolio P
is

reP = w>µe

and the variance is
σ2
P = w>Σw.

Therefore the mean-variance portfolio selection problem with a riskless asset
can be stated as

minw
1

2
w>Σw subject to w>µe = reP .

Note that w>1 = 1 is not a constraint; some wealth may be held in the
riskless asset.

As in the previous section we can set up the Lagrange-function, differen-
tiate it, at solve to first order conditions. This gives the optimal weights

ŵ =
reP

(µe)>Σ−1µe
Σ−1µe, (9.15)
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Figure 9.3: The capital market line.

and the following expression for the variance of the minimum variance port-
folio with mean excess return rP :

σ̂2
P =

(reP )2

(µe)>Σ−1µe
. (9.16)

So we have determined the efficient frontier. For required returns above
the riskfree rate, the efficient frontier in standard deviation-mean space is a
straight line passing through (0, r0) with a slope of

√
(µe)>Σ−1µe. This line

is called the capital market line.
The tangent portfolio, x, is the minimum variance portfolio with all

wealth invested in the risky assets, i.e. x>tan1 = 1. The mean excess re-
turn on the tangent portfolio is

retan =
µ>Σ−1µ

1>Σ−1µ
,

which may be positive or negative. It is economically plausible to assert
that the riskless return is lower than the mean return of the global minimum
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variance portfolio of the risky assets. In this case the situation is as illustrated
in Figure 9.3, and that explains why we use the term “tangency”. When
retan > 0, the tangent portfolio is on the capital market line. But the tangent
portfolio must also be on the “risky assets only” efficient frontier. So the
straight line (the CML) and the hyperbola intersect at a point corresponding
to the tangency portfolio. But clearly the CML must be above the efficient
frontier hyperbola (we are minimizing variance with an extra asset). So the
CML is a tangent to the hyperbola.

For any portfolio, P we define the Sharpe-ratio as excess return relative
to standard deviation,

Sharpe-ratioP =
µP − r0

σP
.

In the case where retan > 0, we see note from Figure 9.3 that the tangency
portfolio is the “risky assets only”-portfolio with the highest Sharpe-ratio
since the slope of the CML is the Sharpe-ratio of tangency portfolio. (Gen-
erally/”strictly algebraically” we should say that xtan has maximal squared
Sharpe-ratio.)

Note that a portfolio with full investment in the riskfree asset is orthogo-
nal to any other portfolio; this means that we can prove the following result
in exactly the manner as Proposition 32.

Proposition 33 Let xmv be a portfolio on the mean-variance frontier with
rate of return rmv, expected rate of return µmv and variance σ2

mv. Let xP be
an arbitrary portfolio, and use similar notation for rates of return on these
portfolios. Then the following holds:

µP − r0 = βP,mv(µmv − r0),

where

βP,mv =
Cov(rP , rmv)

σ2
mv

.

9.2 The Capital Asset Pricing Model (CAPM)

With the machinery of portfolio optimization in place, we are ready to for-
mulate one of the key results of modern finance theory, the CAPM-relation.
Despite the clearly unrealistic assumptions on which the result is built it still
provides invaluable intuition on what factors determine the price of assets in
equilibrium. Note that until now, we have mainly been concerned with pric-
ing (derivative) securities when taking prices of some basic securities as given.
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Here we try to get more insight into what determines prices of securities to
begin with.

We consider an economy with n risky assets and one riskless asset. Here,
we let ri denote the rate of return on the i’th risky asset and we let r0 denote
the riskless rate of return. We assume that r0 is strictly smaller than the
return of the global minimum variance portfolio.

Just as in the case of only risky assets one can show that with a riskless
asset the expected return on any asset or portfolio can be expressed as a
function of its beta with respect to an efficient portfolio. In particular, since
the tangency portfolio is efficient we have

Eri − r0 = βi,tan(Ertan − r0) (9.17)

where

βi,tan =
Cov(ri, rtan)

σ2
tan

(9.18)

The critical component in deriving the CAPM is the identification of the
tangency portfolio as the market portfolio. The market portfolio is defined
as follows: Assume that the initial supply of risky asset j at time 0 has a
value of P j

0 . (So P j
0 is the number of shares outstanding times the price per

share.) The market portfolio of risky assets then has portfolio weights given
as

wmj =
P 0
j∑n

i=1 P
0
i

(9.19)

Note that it is quite reasonable to think of a portfolio with these weights as
reflecting “the average of the stock market”.

Now if all (say K) agents are mean-variance optimizers (given wealths of
Wi(0) to invest), we know that since there is a riskless asset they will hold a
combination of the tangency portfolio and the riskless asset since two fund
separation applies. Hence all agents must hold the same mix of risky assets
as that of the tangency portfolio. This in turn means that in equilibrium
where market clearing requires all the risky assets to be held, the market
portfolio (which is a convex combination of the individual agents’ portfolios)
has the same mixture of assets as the tangency portfolio. Or in symbols: Let
φi denote the fraction of his wealth that agent i has invested in the tangency
portfolio. By summing over all agents we get

Total value of asset j =
K∑
i=1

φiWi(0)xtan(j)

= xtan(j)× Total value of all risky assets,
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where we have used that market clearing condition that all risky assets must
be held by the agents. (This is a very weak consequence of equilibrium; some
would just call it an accounting identity. The main economic assumption is
that agents are mean-variance optimizers so that two fund separation ap-
plies.) Hence we may as well write the market portfolio in equation (9.17).
This is the CAPM:

Eri − r0 = βi,m(Erm − r0) (9.20)

where βi,m is defined using the market portfolio instead of the tangency
portfolio. Note that the type of risk for which agents receive excess returns
are those that are correlated with the market. The intuition is as follows: If
an asset pays off a lot when the economy is wealthy (i.e. when the return of
the market is high) that asset contributes wealth in states where the marginal
utility of receiving extra wealth is small. Hence agents are not willing to pay
very much for such an asset at time 0. Therefore, the asset has a high return.
The opposite situation is also natural at least if one ever considered buying
insurance: An asset which moves opposite the market has a high pay off in
states where marginal utility of receiving extra wealth is high. Agents are
willing to pay a lot for that at time 0 and therefore the asset has a low return.
Indeed it is probably the case that agents are willing to accept a return on
an insurance contract which is below zero. This gives the right intuition but
the analogy with insurance is actually not completely accurate in that the
risk one is trying to avoid by buying an insurance contract is not linked to
market wide fluctuations.

Note that one could still view the result as a sort of relative pricing result
in that we are pricing everything in relation to the given market portfolio.
To make it more clear that there is an equilibrium type argument underlying
it all, let us see how characteristics of agents help in determining the risk
premium on the market portfolio. Consider the problem of agent i in the one
period model. We assume that returns are multivariate normal and that the
utility function is twice differentiable and concave1:

max
w

E(ui(W
i
1))

s.t.W i
1 = W0(w>r + (1−w>1)r0)

When forming the Lagrangian of this problem, we see that the first order
condition for optimality is that for each asset j and each agent i we have

E
(
u′i(W

i
1)(rj − r0)

)
= 0 (9.21)

1This derivation follows Huang and Litzenberger: Foundations for Financial Economics
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Remembering that Cov(X, Y ) = EXY − EXEY we rewrite this as

E
(
u′i(W

i
1)
)
E(rj − r0) = −Cov(u′i(W

i
1), rj)

A nice lemma known as Stein’s lemma says that for bivariate normal distri-
bution (X, Y ) we have

Cov(g(X), Y ) = Eg′(X)Cov(X,Y )

and using this we have the following first order condition:

E
(
u′i(W

i
1)
)
E(rj − r0) = −Eu′′i (W i

1)Cov(W i
1, rj)

i.e.
−E (u′i(W

i
1))E(rj − r0)

Eu′′i (W
i
1)

= Cov(W i
1, rj)

Now define the following measure of agent i’s absolute risk aversion:

θi :=
−Eu′′i (W i

1)

Eu′i(W
i
1)

.

Then summing across all agents we have that

E(rj − r0) =
1∑K
i=1

1
θi

Cov(W1, rj)

=
1∑K
i=1

1
θi

W0Cov(rm, rj)

where the total wealth at time 1 held in risky assets is W1 =
∑K

i=1 W
i
1, W0

is the total wealth in risky assets at time 0, and

rm =
W1

W0

− 1

therefore is the return on the market portfolio. Note that this alternative
representation tells us more about the risk premium as a function of the
aggregate risk aversion across agents in the economy. By linearity we also
get that

Erm − r0 = WM
0 V ar(rm)

1∑K
i=1

1
θi

,

which gives a statement as to the actual magnitude expected excess return
on the market portfolio. A high θi corresponds to a high risk aversion and
this contributes to making the risk premium larger, as expected. Note that if
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one agent is very close to being risk neutral then the risk premium (holding
that person’s initial wealth constant) becomes close to zero. Can you explain
why that makes sense?

The derivation of the CAPM when using returns is not completely clear
in the sense that finding an equilibrium return does not separate out what
is found exogenously and what is found endogenously. One should think
of the equilibrium argument as determining the initial price of assets given
assumptions on the distribution of the price of the assets at the end of the
period. A sketch of how the equilibrium argument would run is as follows:

1. Given the expected value and the covariance of end of period asset
prices for all assets

2. Given a utility function for each investor which depends only on mean
and variance of end-of-period wealth. Assume that utility decreases as
a function of variance and increases as a function of mean. Assume
also sufficient differentiability

3. Let investor i have an initial fraction of the total endowment of risky
asset j.

4. Assume that there is riskless lending and borrowing at a fixed rate r.
Hence the interest rate is exogenous.

5. Given initial prices of all assets, agent i chooses portfolio weights on
risky assets to maximize end of period utility. The difference in price
between the initial endowment of risky assets and the chosen portfolio
of risky assets is borrowed n/placed in the money market at the riskless
rate. (In equilibrium where all assets are being held this implies zero
net lending/borrowing.)

6. Compute the solution as a function of the initial prices.

7. Find a set of initial prices such that markets clear, i.e such that the
sum of the agents positions in the risky assets sum up to the initial
endowment of assets.

8. The prices will reflect characteristics of the agents’ utility functions,
just as we saw above.

9. Now it is possible to derive the CAPM relation by computing expected
returns etc. using the endogenously determined initial prices. This is
a purely mathematical exercise translating the formula for prices into
formulas involving returns.
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Hence CAPM is to be thought of as an equilibrium argument explaining asset
prices.

There are of course many unrealistic assumptions underlying the CAPM.
The distributional assumptions are clearly problematic. Even if basic secu-
rities like stocks were well approximated by normal distributions there is no
hope that options would be well approximated due to their truncated payoffs.
An answer to this problem is to go to continuous time modelling where ’local
normality’ holds for very broad classes of distributions but that is outside
the scope of this course. Note also that a conclusion of CAPM is that all
agents hold the same mixture of risky assets which casual inspection show
is not the case. A final problem, originally raised by Roll (1977)2, concerns
the observability of the market portfolio and the logical equivalence between
the statement that the market portfolio is efficient and the statement that
the CAPM relation holds. To see that observability is a problem think for
example of human capital. Economic agents face many decisions over a life
time related to human capital - for example whether it is worth taking a loan
to complete an education, weighing off leisure against additional work which
may increase human capital etc. Many empirical studies use all traded stocks
(and perhaps bonds) on an exchange as a proxy for the market portfolio but
clearly this is at best an approximation. And what if the test of the CAPM
relation is rejected using that portfolio? The relation At the intuitive level,
the (9.17) tells us that this is equivalent to the inefficiency of the chosen
portfolio. Hence one can always argue that the reason for rejection was not
that the model is wrong but that the market portfolio is not chosen correctly
(i.e. is not on the portfolio frontier). Therefore, it becomes very hard to
truly test the model. While we are not going to elaborate on the enormous
literature on testing the CAPM, note also that even at first glance it is not
easy to test what is essentially a one period model. To get estimates of the
fundamental parameters (variances, covariances, expected returns) one will
have to assume that the model repeats itself over time, but when firms change
the composition of their balance sheets they also change their betas.

Hence one needs somehow to accommodate betas which change over time
and this inevitably requires some statistical compromises.

2R. Roll (1977): A critique of the asset pricing theory’s test; Part I, Journal of Financial
Economics, 4:pp 129 - 76
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9.3 Relevant, but not particularly structured,

remarks on CAPM

9.3.1 Systematic and non-systematic risk

This section follows Huang and Litzenberger’s Chapters 3 and 4. We have
two versions of the capital asset pricing model. The most “popular” version,
where we assumed the existence of a riskless asset whose return is r0, states
that the expected return on any asset satisfies

Eri − r0 = βi,m(Erm − r0). (9.22)

This version we derived in the previous section. The other version is the
so-called zero-beta CAPM, which replaces the return on the riskless asset by
the expected return on m′s zero-covariance portfolio:

Eri − Erzm = βi,m(Erm − Erzm).

This version is proved by assuming mean-variance optimizing agents, using
that two-fund separation then applies, which means that the market portfolio
is on the mean-variance locus (note that we cannot talk about a tangent
portfolio in the model with no riskfree asset) and using Proposition 32. Note
that both relations state that excess returns (i.e. returns in addition to the
riskless returns) are linear functions of βim.

From now on we will work with the case in which a riskless asset exists, but
it is easy to translate to the zero-beta version also. Dropping the expectations
(and writing “error terms” instead) we have also seen that if the market
portfolio m is efficient, the return on any portfolio (or asset) q satisfies

rq = (1− βq,m)rf + βq,mrm + εq,m

where
Eεq,m = Eεq,mrm = 0.

Hence
Var(rq) = β2

q,mVar (rm) + Var(εq,m).

This decomposes the variance of the return on the portfolio q into its system-
atic risk β2

qmVar (rm) and its non-systematic or idiosyncratic risk Var(εq,m).
The reason behind this terminology is the following: We know that there ex-
ists a portfolio which has the same expected return as q but whose variance
is β2

qmVar (rm) - simply consider the portfolio which invests 1 − βqm in the
riskless asset and βq,m, in the market portfolio. On the other hand, since this
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portfolio is efficient, it is clear that we cannot obtain a lower variance if we
want an expected return of Erq. Hence this variance is a risk which is corre-
lated with movements in the market portfolio and which is non-diversifiable,
i.e. cannot be avoided if we want an expected return of Erq. On the other
hand as we have just seen the risk represented by the term VAR(εq,m) can
be avoided simply by choosing a different portfolio which does a better job
of diversification without changing expected return.

9.3.2 Problems in testing the CAPM

Like any model CAPM builds on simplifying assumptions. The model is
popular nonetheless because of its strong conclusions. And it is interesting
to try and figure out whether the simplifying assumptions on the behavior of
individuals (homogeneous expectations) and on the institutional setup (no
taxation, transactions costs) of trading are too unrealistic to give the model
empirical relevance. What are some of the obvious problems in testing the
model?

First, the model is a one period model. To produce estimates of mean
returns and standard deviations, we need to observe years of price data. Can
we make sure that the distribution of returns over several years remain the
same3?

Second (and this a very important problem) what is the ’market portfo-
lio’ ? Since investments decisions of firms and individuals in real life are not
restricted to stocks and bonds but include such things as real estate, edu-
cation, insurance, paintings and stamp collections, we should include these
assets as well, but prices on these assets are hard to get and some are not
traded at all.

A person rejecting the CAPM could always be accused of not having
chosen the market portfolio properly. However, note that if ’proper choice’
of the market portfolio means choosing an efficient portfolio then this is
mathematically equivalent to having the CAPM hold.

This point is the important element in what is sometimes referred to as
Roll’s critique of the CAPM. When discussing the CAPM it is important to
remember which facts are mathematical properties of the portfolio frontier
and which are behavioral assumptions. The key behavioral assumption of
the CAPM is that the market portfolio is efficient. This assumption gives
the CAPM-relation mathematically. Hence it is impossible to separate the
claim ’the portfolio m is efficient’ from the claim that ’CAPM holds with
m acting as market portfolio’.

3Mulitiperiod versions exist, but they also face problems with time varying parameters.
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9.3.3 Testing the efficiency of a given portfolio

Since the question of whether CAPM holds is intimately linked with the
question of the efficiency of a certain portfolio it is natural to ask whether
it is possible to devise a statistical test of the efficiency of a portfolio with
respect to a collection of assets. If we knew expected returns and variances
exactly, this would be a purely mathematical exercise. However, in practice
parameters need to be estimated and the question then takes a more statis-
tical twist: Given the properties of estimators of means and variances, can
we reject at (say) a 5% level that a certain portfolio is efficient? Gibbons,
Ross and Shanken (Econometrica 1989, 1121-1152) answer this question -
and what follows here is a sketch of their test.

Given a portfolio m and N assets whose excess returns are recorded in T
time periods. It is assumed that a sufficiently clear concept of riskless return
can be defined so that we can really determine excess returns for each period.
NOTE: We will change our notation in this section slightly and assume that
rp, Erp and µp refer to excess returns, mean excess returns and estimated
mean excess returns of an asset or portfolio p. Hence using this notation the
CAPM with a riskless asset will read

Erp = βp,mErm.

We want to test this relation or equivalently whetherm is an efficient portfolio
in a market consisting of N assets. Consider the following statistical model
for the excess returns of the assets given the excess return on the portfolio
m :

rit = αi + γi rmt + εit

i = 1, . . . , N and t = 1, . . . ., T

where rit is the (random) excess return4 of asset i in the t′th period, rmt
is the observed excess return on the portfolio in the t′th period, αi, γi are
constants and the εit’s are normally distributed with Cov(εit, εjt) = σij and
Cov(εit, εis) = 0 for t 6= s. Given these data a natural statistical representa-
tion of the question of whether the portfolio m is efficient is the hypothesis
that α1 = · · · = αN = 0. This condition must hold for (9.22) to hold.

To test this is not difficult in principle (but there are some computational
tricks involved which we will not discuss here): First compute the MLE’s
of the parameters. It turns out that in this model this is done merely by
computing Ordinary Least Squares estimators for α, γ and the covariance

4Note this change to excess returns.
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matrix for each period Σ. A so-called Wald test of the hypothesis α = 0 can
then be performed by considering the test statistic

W0 = α̂V ar(α̂)α̂−1

which you will learn more about in a course on econometrics. Here we simply
note that the test statistic measures a distance of the estimated value of
α from the origin. Normally, this type of statistics leads to an asymptotic
chi squared test, but in this special model the distribution can be found
explicitly and even more interesting from a finance perspective, it is shown
in GRS that W0 has the following form

W0 =
(T −N − 1)

N

(
µ̂2
q

σ̂2
q
− µ̂2

m

σ̂2
m

)
(

1 + µ̂2
m

σ̂2
m

)
where the symbols require a little explanation: In the minimum variance
problem with a riskless asset we found that the excess return of any portfolio
satisfies

Erp = βpmErm.

We refer to the quantity
Erp
σ(rp)

as the Sharpe ratio for portfolio p. The Sharpe ratio in words compares excess
return to standard deviation. Note that using the CAPM relation we can
write

Erp
σ(rp)

=
σ(rm)ρmp
σ2(rm)

(Erm)

where ρmp is the correlation coefficient between the return of portfolios p and
m. From this expression we see that the portfolio which maximizes the Sharpe
ratio is (proportional) to m.Only portfolios with this Sharpe ratio are effi-
cient. Now the test statistic W0 compares two quantities: On one side, the
maximal Sharpe ratio that can be obtained when using for parameters in
the minimum variance problem the estimated covariance matrix and the es-
timated mean returns for the economy consisting of the N assets and the
portfolio m. On the other side, the Sharpe ratio for the particular portfolio
m (based on its estimated mean return and standard deviation).

Large values of W0 will reject the hypothesis of efficiency and this corre-
sponds to a case where the portfolio m has a very poor expected return per
unit of standard deviation compared to what is obtained by using all assets.



Chapter 10

The APT model

10.1 Introduction

Although the APT stands for ’Arbitrage Pricing Theory’ the model presented
here is somewhat different from the arbitrage models presented earlier. The
framework is in one sense closer to CAPM in that we consider a one-period
model with risky assets whose distributions may be continuous. On the
other hand, there is also a clear analogue with arbitrage pricing. We will
present the basic idea of the model in two steps which will illustrate how the
restriction on mean return arises.

10.2 Exact APT with no noise

Consider the following model for the returns r1, . . . , rN of N risky assets:

r = µ+Bf

where r = (r1, . . . , rN)> is a vector of random returns, µ = (µ1, . . . , µN)> ,
and B is an N × K−matrix whose entries are real numbers, and f =
(f1, . . . , fK) is a vector of random variables (factors) which satisfies

Efi = 0, i = 1, . . . , K,

Cov(f) = Φ, Φ positive definite.

Note that this means that Eri = µi , i = 1, . . . , N. We will assume that
N > K, and you should think of the number of assets N as being much
larger than the number of factors K. The model then seeks to capture the
idea that returns on assets are correlated through a common dependence on
a (small) number of factors. The goal is to use the assumption of such a
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common dependence to say something about the vector of mean returns µ.
Assume that there is also a riskless asset with return r0. When we talk about
a portfolio, w, we mean a vector in RN where the ith coordinate measures
the relative share of total wealth invested in the ith risky asset, and the rest
in the riskfree asset. (So the term ’investment strategy given by w’ would
probably be better). Hence the coordinates need not sum to 1, and the
expected rate of return on w is

E((1− w>1)r0 + w>r) = r0 + E(w>(r − r01))

= r0 + w>(µ− r01), (10.1)

where as usual 1 = (1, . . . , 1) ∈ RN .
Since N > K it is possible to find a portfolio w ∈ RN of risky assets

which is orthogonal to the column space of B. This we will write as w ∈ (B)⊥.
Now the mean return is r0 +w>(µ−1r0) and by using the “covariance matrix
algebra rules” in the first part of Chapter 9 we see that the variance of the
return on this portfolio is given as

V (w>r) = Cov(w>Bf,w>Bf)

= w>BΦB>w = 0.

A reasonable no arbitrage condition to impose is that a portfolio consisting
only of risky assets which has zero variance should earn the same return as
the riskless asset. Hence the following implication should hold in an arbitrage
free market:

w>1 = 1, w ∈ (B)⊥ : w>µ = r0 ⇐⇒ w>(µ− r01) = 0.

By scaling we see that

w>1 6= 0, w ∈ (B)⊥ : w>(µ− r01) = 0.

By using the same “arbitrage reasoning” on (10.1) we get that

w>1 = 0, w ∈ (B)⊥ : w>µ = 0⇐⇒ w>(µ− r01) = 0.

From these two statements we see that any vector which is orthogonal to the
columns of B is also orthogonal to the vector (µ − r01), and this implies1

1If you prefer a mathematical statement, we are merely using the fact that

(B)⊥ ⊂ (µ− r01)⊥ =⇒ (µ− r01) ⊂ (B).
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that µ − r01 is in the column span of B. In other words, there exists λ =
(λ1, . . . , λK) such that

µ− r01 =Bλ. (10.2)

The vector λ = (λ1, . . . , λK) is called the vector of factor risk premia and
what the relation tells us is that the excess return is obtained by multiplying
the factor loadings with the factor risk premia. This type of conclusion is of
course very similar to the conclusion of CAPM, in which there is ’one factor’
(return on the market portfolio), βim plays the role of the factor loading and
Erm − r0 is the factor risk premium.

10.3 Introducing noise

We continue the intuition building by considering a modification of the model
above. Some of the reasoning here is heuristic - it will be made completely
rigorous below.

Assume that
r = µ+Bf + ε

where r, µ,B and f are as above and ε = (ε1, . . . , εN) is a vector of random
variables (noise terms or idiosyncratic risks) satisfying

Eεi = 0, i = 1, . . . , N,

Cov(εi, fj) = 0, i = 1, . . . , N, j = 1, . . . , K,

Cov(ε) = σ2IN , IN is the N ×N identity matrix.

Clearly, this is a more realistic model since the returns are not completely
decided by the common factors but ’company specific’ deviations captured
by the noise terms affect the returns also. However if the variance in the
noise term is not too large then we can almost eliminate the variance arising
from the noise term through diversification.

Since N > K it is possible to find portfolios of risky assets v1, . . . , vN−K
which are orthogonal and lie in (B)⊥. Let a be the maximal absolute value
of the individual portfolio weights. Now consider the portfolio

v =
1

N −K
(v1 + · · ·+ vN−K).

The variance of the return of this portfolio is

V(v>r) = V(v>Bf + v>ε)

= 0 +
1

(N −K)2 V((v1 + · · ·+ vN−K)>ε)
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≤ 1

(N −K)2
(N −K)a2σ2

=
a2σ2

N −K
,

where the inequality follows from the orthogonality of the vi’s (and the defi-
nition of a).

If we think of N as very large, this variance is very close to 0, and -
entering into heuristic mode - therefore the expected return of this portfolio
ought to be close to that of the riskless asset:

Ev>r = v>µ ≈ r0. (10.3)

By a slight modification of this argument it is possible to construct portfolios
with good diversification which span (B)⊥ and for each portfolio we derive
a relation of the type (10.3). This then would lead us to expect that there
exists factor risk premia such that

µ− r01 ≈Bλ.

The precise theorem will be given below.

10.4 Factor structure in a model with infinitely

many assets

In this section we present a rigorous version of the APT.
Given is a riskless asset with return r0 and an infinite number of risky

assets with random returns (r1, r2, . . .). We will use the following notation
repeatedly: If x = (x1, x2, . . .) is an infinite sequence of scalars or random
variables, then xN is the column vector consisting of the first N elements of
this sequence. Hence rN = (r1, . . . , rN)>.

Definition 41 The returns (r1, r2, . . .) are said to have an approximate fac-
tor structure with factors (f1, . . . , fK) if for all N

rN = µN +BNf + εN

where BN is the N first rows of a matrix B with infinitely many rows and
K columns, where BN has rank K for N large,

Eεi = 0, i = 1, 2, . . . ,

Cov(εi, fj) = 0, i = 1, 2, . . . , j = 1, . . . , K,

Cov(f) = IK (the K ×K identity matrix)

Cov(εN) = ΩN (ΩN is positive definite)
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and where the eigenvalues of ΩN are bounded uniformly in N by a constant
λ.

In other words, the same K factors are governing the returns on an infinite
collection of securities except for noise terms captured by ε which however are
uniformly of small variance. The simplest case would be where the elements
of ε are independent2 and have variance less than or equal to σ2 in which
case λ = σ2. Although our definition is slightly more general you can think
of each element of ε as affecting only a finite number of returns and factors
as affecting infinitely many of the returns.

The assumption that the covariance matrix of the factors is the identity
may seem very restrictive. Note however, that if we have a structure of the
form

r = µ+Bf + ε

which satisfies all the requirements of the definition of an approximate factor
structure with the only exception being that

Cov(f) = Φ (Φ is a positive definite, K ×K-matrix)

then using the representation Φ = CC> for some invertible K ×K matrix
we may choose g such that Cg = f. Then we have

r = µ+BCg + ε

and then this will be an approximate factor structure with g as factors and
BC as factor loadings. To verify this note that

Cov(g) = C−1CC>(C−1)> = IK .

Hence in one sense nothing is lost by assuming the particular structure
of f. We may represent the same distribution of returns in this way as if
we allow a general positive definite matrix to be the covariance matrix of
the factors. However, from a statistical viewpoint the fact that different
choices of parameters may produce the same distributions is a cause for
alarm. This means that we must be careful in saying which parameters
can be identified when estimating the model: Certainly, no observations can
distinguish between parameters which produce the same distribution for the
returns. We will not go further into these problems and to discussions of
what restrictions can be imposed on parameters to ensure identification. We
now need to introduce a modified notion of arbitrage:

2In this case the returns are said to have a strict factor structure.
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Definition 42 An asymptotic arbitrage opportunity is a sequence of portfo-
lios (wN),where wN ∈ RN , in the risky assets which satisfies

lim
N→∞

E(wN · rN) = ∞

and

lim
N→∞

V(wN · rN) = 0.

The requirement that expected return goes to infinity (and not just some
constant greater than the riskless return) may seem too strong, but in the
models we consider this will not make any difference.

The theorem we want to show, which was first stated by Ross and later
proved in the way presented here by Huberman, is the following:

Theorem 34 Given a riskless asset with return r0 > −1 and an infinite
number of risky assets with random returns (r1, r2, ...).Assume that the re-
turns have an approximate factor structure. If there is no asymptotic arbi-
trage then there exists a vector of factor risk premia (λ1, . . . , λK) such that
we have

∞∑
i=1

(µi − r0 − λ1bi1 − · · · − λKbiK)2 <∞. (10.4)

This requires a few remarks: The content of the theorem is that the
expected excess returns of the risky assets are in a sense close to satisfying
the exact APT-relation (10.2): The sum of the squared deviations from the
exact relationship is finite. Note that (unfortunately) this does not tell us
much about the deviation of a particular asset. Indeed the mean return of
an asset may show significant deviation from (10.2). This fact is crucial in
understanding the discussion of whether the APT is a testable model.

The proof must somehow use the same arbitrage argument as in the case
with exact APT above by getting rid of the noise terms through diversifica-
tion. Although this sounds easy, we discover once again that ’the devil is in
the details’. To do the proof we will need the following two technical lemmas:

Lemma 35 Let Ω be a symmetric positive definite N ×N matrix and let λ
be its largest eigenvalue. Then

w>Ωw ≤ λ ‖w‖2 .
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Proof Let (v1, . . . , vN) be an orthonormal set of eigenvectors of Ω and
(λ1, . . . , λN) the corresponding eigenvalues. There exist α1, . . . , αN such that
w =

∑N
1 αivi and hence

w>Ωw =
N∑
1

α2
iλiv

>
i vi

=
N∑
1

α2
iλi

≤ λ
N∑
1

α2
i = λ ‖w‖2 . �

Lemma 36 Let X be a compact set. Let (Ki)i∈I be a family of closed sub-
sets of X which satisfy the finite intersection property⋂

i∈I0

Ki 6= ∅ for all finite subsets I0 ⊂ I.

Then the intersection of all sets is in fact non-empty. i.e.⋂
i∈I

Ki 6= ∅.

Proof If
⋂
i∈I Ki = ∅, then

⋃
i∈I K

c
i is an open covering of X. Since X

is compact the open cover contains a finite subcover
⋃
i∈I0 K

c
i , but then we

apparently have a finite set I0 for which
⋂
i∈I0 Ki = ∅, and this violates

the assumption of the theorem. �

The proof is in two stages. First we prove the following:

Proposition 37 Given a riskless asset with return r0 > −1 and an in-
finite number of risky assets with random returns (r1, r2, ...).Assume that
the returns have an approximate factor structure. If there is no asymptotic
arbitrage then there exists a sequence of factor risk premia vectors (λN),
λN ∈ RK , and a constant A such that for all N

∞∑
i=1

(µi − r0 − λN1 bi1 − · · · − λNKbiK)2 ≤ A. (10.5)
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Proof Let us WLOG assume BNhas rank K for all N . Consider for each N
the regression of the expected excess returns on the columns of BN , i.e. the
λN ∈ RK that solves

min
λ

(µN − r01−BNλN)>(µN − r01−BNλN) = min ||cN ||2

where the residuals are defined by

cN = µN − r01
N −BNγN

By (matrix)-differentiating we get the first order conditions

(BN)>cN = 0

But the K ×K matrix (BN)>BN is invertible (by our rank K assumption),
so the unique solution is

λN = ((BN)>BN)−1(BN)>(µN − r01).

We also note from the first order condition that the residuals cN are orthog-
onal to the columns of BN . To reach a contradiction, assume that there is
no sequence of factor risk premia for which (10.5) holds. Then we must have
||cN || → ∞ (since ||cN ||2 is the left hand side of (10.5) with summation to
N). Now consider the sequence of portfolios given by

wN =
∥∥cN∥∥− 3

2 cN .

The expected excess return is given by

E(wN · (rN − r01
N)) = E(wN · (µN − r01

N +BNf + εN))

= E(wN · (BNγN + cN +BNf + εN))

=
∥∥cN∥∥− 3

2 cN · cN

=
∥∥cN∥∥ 1

2 →∞ as N →∞.

where in the third equality we used the fact that cN is orthogonal to the
columns of B and that both factors and noise terms have expectation 0. The
variance of the return on the sequence of portfolios is given by

V(wN · (rN − r01
N)) = V(wN · (µN − r01

N +BNf + εN))

= V(wN · εN)

=
∥∥cN∥∥−3

(cN)>ΩNcN

≤
∥∥cN∥∥−3

λ
∥∥cN∥∥2 → 0 as N →∞
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where we have used Lemma 35 and the same orthogonality relations as in
the expected return calculations. Clearly, we have constructed an asymptotic
arbitrage opportunity and we conclude that there exists a constant A and a
sequence of factor risk premia such that

∞∑
i=1

(µi − r0 − λN1 bi1 − · · · − λNKbiK)2 ≤ A. �

Now we are ready to finish.
Proof of Theorem 34 Let A be as in the proposition above. Consider the
sequence of sets (HN) where

HN =

{
λ ∈ RK :

N∑
i=1

(µi − r0 − λ1bi1 − · · · − λKbiK)2 ≤ A

}
.

By the preceding proposition, each HN is non-empty and clearly HN+1 ⊂
HN . Define the functions fN : RK 7→ R by

fN(λ) = (µ−r01−Bλ)>(µ−r01−Bλ) = ||µ−r01||2+(µ−r01)>Bλ+λ>B>Bλ,

where some of the N -superscripts have been dropped for the ease of notation.
Then fN is a convex function (because B>B is always positive semidefinite),
and we see that

HN =
{
λ ∈ RK : f(λ) ≤ A

}
is a closed convex set. Now pick an N so large that B has rank K. To
show that HN is then compact, it suffices (by convexity) to show that for
all nonzero λ ∈ HN there exists a scaling factor (a real number) a such that
aλ 6∈ HN . But since B has full rank, there is no nonzero vector (in RK) that
is orthogonal to all of B’s (N) rows. Hence for an arbitrary nonzero λ ∈ HN

we have that ||Bλ|| 6= 0 and

fN(aλ) = ||µ− r01||2 + a(µ− r01)>Bλ+ a2||Bλ||2,

so by choosing a large enough a we go outside HN , so HN is not compact.
Then we may use Lemma 36 to conclude that

∞⋂
N=1

HN 6= ∅.

Any element λ = (λ1, . . . , λK)> of this non-empty intersection will satisfy
10.4.
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Chapter 11

On financial decisions of the
firm

11.1 Introduction

One may think of decisions of firms as divided into two categories: real
decisions and financial decisions. The real decisions focus on which projects
the firms should undertake, the financial decisions deal with how the firm
should raise money to undertake the desired projects. The area of corporate
finance tries to explain the financial decisions of firms.

This chapter gives a very short introduction to the most basic issues in this
area. The goal is to understand a couple of famous irrelevance propositions
set forth by Modigliani and Miller stating conditions under which the firms
financing decisions are in fact of no consequence. The conditions are in
fact very restrictive but very useful since any discussion on optimality and
rationality of financing decisions must start by relaxing one or several of these
conditions.

We will consider only two types of securities: bonds and stocks. In reality
there are many other types of securities (convertible bonds, callable bonds,
warrants,...) and an important area of research (security design) seeks to
explain why the different types of financing even exist. But we will have
enough to do just learning the basic terminology and the reader will certainly
see how to include more types of securities into the analysis.

Finally, it should be noted that a completely rigorous way of analyzing
the firm’s financing decisions requires general equilibrium theory - especially
a setup with incomplete markets - but such a rigorous analysis will take far
more time than we have in this introductory course.

165



166 CHAPTER 11. ON FINANCIAL DECISIONS OF THE FIRM

11.2 ’Undoing’ the firm’s financial decisions

At the heart of the irrelevance propositions are the investors ability to ’undo’
the firm’s financial decision: If a firm changes the payoff profile of its debt
and equity, the investor can under restrictive assumptions change his portfolio
and have an unchanged payoff of his investments. We illustrate all this in a
one-period, finite state space model.

Given two dates 0 and 1 and a finite state space with S states. Assume
that markets are complete and arbitrage free. Let ps denote the price of an
Arrow-Debreu security for state s, i.e. a security which pays 1 if the state
at date 1 is s and 0 in all other states. Assume that an investment policy
has been chosen by the firm which costs I0 to initiate at time 0 and which
delivers a state contingent payoff at time 1 given by the vector (i.e. random
variable) x = (x1, . . . , xS).

The firm at date 0 may choose to finance its investment by issuing debt
maturing at date 1 with face value D, and by issuing shares of stocks (equity).
Assuming no bankruptcy costs, the payoff at the final date to equity and debt
is given by the random variables

E1 = max(x−D, 0)

B1 = min(x,D)

respectively. If we assume that there are N shares of stocks, the payoff to
each stock is given by S1 = 1

N
E1. Note that the entire cash flow to the

firm is distributed between debt and equity holders. If we define the value
of the firm at time 0 as the value at time 0 of the cash flows generated at
time 1 minus the investment I0, it is clear that the value of the firm at
time 0 is independent of the level of D. This statement is often presented as
Modigliani-Miller theorem but as we have set it up here (and as it is often
presented) it is not really a proposition but an assumption: The value of the
firm is by assumption unaffected by D since by assumption the payoff on
the investment is unaffected by the choice of D. As we shall see below, this
changes for example when there are bankruptcy costs or taxes.

Consider two possible financing choices: One in which the firm chooses
to be an all equity (unlevered) firm and have D = 0, and one in which the
firm chooses a level of D > 0 (a levered firm). We let superscript U denote
quantities related to the unlevered firm and let superscript L refer to the case
of a levered firm. By assumption V L = V U since the assumption of leverage
only results in a different distribution of the ’pie’ consisting of the firm’s
cash flows, not a change in the pie’s size. Now consider an agent who in his
optimal portfolio in equilibrium wants to hold a position of one stock in the
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unlevered firm. The payoff at date 1 of this security is given by

SU1 =
1

N
EU

1 =
1

N
x.

If the firm decides to become a levered firm, the payoff of one stock in the
firm becomes

SL1 =
1

N
max(x−D, 0)

which is clearly different from the unlevered case. However note the following:
Holding 1

N
shares in the levered firm and the fraction 1

N
of the firms debt,

produces a payoff equal to

1

N
max(x−D, 0) +

1

N
min(x,D) =

1

N
x.

From this we see that even if the firm changes from an unlevered to a levered
firm, the investor can adapt to his preferred payoff by changing his portfolio
(something he can always do in a complete market). Similarly, we note from
the algebra above that it is possible to create a position in the levered firm’s
stock by holding one share of unlevered stock and selling the fraction 1

N

of the firm’s debt. In other words, the investor is able to undo the firm’s
financial decision. In general equilibrium models this implies, that if there
is an equilibrium in which the firm chooses no leverage, then there is also
an equilibrium in which the firm chooses leverage and the investors choose
portfolios to offset the change in the firm’s financing decision. This means
that the firm’s capital structure remains unexplained in this case and more
structure must be added to understand how a level of debt may be optimal
in some sense.

It is important to note that something like complete markets is required
and this is very restrictive. In real world terms, to imitate a levered stock in
the firm, the investor must be able to borrow at the same conditions as the
firm (highly unrealistic) and furthermore have the debt contract structured
in such a way, that it imitates the payoffs of the firm when it is in bankruptcy.

We now consider another financing decision at time 0, namely the divi-
dend decision. We consider for simplicity a firm which is all equity financed.
To give this a somewhat more realistic setup, imagine that we are in fact
considering the last period of a firm’s life and that it carries with it an ’en-
dowment’ of cash W0 from previous periods, which you can also think of as
’earnings’ from previous activity. Also, imagine that the firm has N shares
of stock outstanding initially. The value of the firm at time 0 is given by the
value of the cash flows that the firm delivers to shareholders:

V0 = Div0 −∆E0 +
∑
s

psxs



168 CHAPTER 11. ON FINANCIAL DECISIONS OF THE FIRM

where Div0 is the amount of dividends paid at time 0 to the shareholders and
∆E0 is the amount of new shares issued (repurchased if negative) at time 0.
It must be the case that

W0 + ∆E0 = I0 +Div0

i.e. the initial wealth plus money raised by issuing new equity is used either
for investment or dividend payout. If the firm’s investment decision has
been fixed at I0 and W0 is given, then Div0 −∆E0 = W0 − I0 is fixed, and
substituting this into the equation for firm value tells us that firm value
is independent of dividends when the investment decision is given. The
dividend payment can be financed with issuing stocks. This result is also
sometimes referred to as the Modigliani-Miller theorem.

But you might think that if the firm issues new stock to pay for a dividend
payout, it dilutes the value of the old stocks and possibly causes a loss to
the old shareholders. In the world with Arrow-Debreu prices this will not
happen:

Consider a decision to issue new stocks to finance a dividend payment of
Div0.Assume for simplicity that I0 = W0. The number of stocks issued to
raise Div0 amount is given by M where

Div0 =
M

N +M

∑
s

psxs.

The total number of stocks outstanding after this operation is M + N and
the value that the old stockholders are left with is the sum of the dividend
and the diluted value of the stocks, i.e.

Div0 +
N

N +M

∑
s

psxs

=
M

N +M

∑
s

psxs +
N

N +M

∑
s

psxs

=
∑
s

psxs

which is precisely the value before the equity financed dividend payout. This
means that the agent who depends in his optimal portfolio choice on no div-
idends can undo the firm’s decision to pay a dividend by taking the dividend
and investing it in the firms equity. Similarly, if a dividend is desired at time
0 but the firm does not provide one, the investor can achieve it by selling
the appropriate fraction of his stock position. The key observation is that as
long as the value of the shareholders position is unchanged by the dividend
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policy, the investor can use complete financial markets to design the desired
cash flow.

A critical assumption for dividends to have no effect on the value of the
firm and on the shareholder’s wealth is that income from dividend payouts
and income from share repurchases are taxed equally - something which is
not true in many countries. If there is a lower tax on share repurchases it
would be optimal for investors to receive no dividends and have any difference
between W0 and I0 paid out by a share repurchase by the firm. Historically,
one has observed dividend payouts even when there is lower taxes on share
repurchases. Modigliani-Miller then tells us that something must be going on
in the real world which is not captured by our model. The most important
real world feature which is not captured by our model is asymmetric infor-
mation. Our model assumes that everybody agrees on what the cash flows
of the firm will be in each state in the future. In reality, there will almost al-
ways be insiders (managers and perhaps shareholders) who know more about
the firm’s prospects than outsiders (potential buyers of stocks, debtholders)
and both the dividend policy and the leverage may then be used to signal
to the outside world what the prospects of the firm really are. Changing the
outsider’s perception of the firm may then change the value of the firm.

11.3 Tax shield

If we change the model a little bit and assume that there are corporate
taxes but that equity and debt financing are treated differently in the tax
code then the capital structure becomes important. Change the model by
assuming that the cash flows at time 1 are taxed at a rate of τ c but that
interest payments on debt can be deducted from taxable income. Let rD
denote the part of the debt repayment which is regarded as ’interest’. The
after tax cash flow of an unlevered firm at time 1 is given by

V U
1 = (1− τ c)x

whereas the after tax cash flow of the levered firm (assuming full deduction
of interest in all states) is given by

V L
1 = rD + (1− τ c)(x− rD).

The difference in the cash flows is therefore

V L
1 − V U

1 = τ crD
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which means that the levered firm gets an increased value of

V L
0 − V U

0 = τ crD
∑
s

ps.

As D increases, so does the value of this tax shield. Hence, in this setup
financing the firm’s operations with debt only would be optimal. But of
course, it would be hard to convince tax authorities that a 100% debt financ-
ing was not actually a 100% equity financing! On the other hand, it should
at least be the case that a significant fraction of debt was used for financing
when there is a tax shield.

11.4 Bankruptcy costs

However, using a very high level of debt also increases the probability of
bankruptcy. And it would add realism to our model if we assumed that when
bankruptcy occurs, lawyers and accountants receive a significant fraction of
the value left in the firm. This means that the total remaining value of
the firm is no longer distributed to debtholders, and the debtholders will
therefore have an interest in making sure that the level of debt issued by a
firm is kept low enough to reduce the risk of bankruptcy to an acceptable
level.

The trade-off between gains from leverage resulting from a tax shield
and losses due to the increased likelihood of bankruptcy gives a first shot at
defining an optimal capital structure. This is done in one of the exercises.

11.5 Financing positive NPV projects

We have seen earlier that in a world of certainty, one should only start a
project if it has positive NPV. When uncertainty enters into our models
the NPV criterion is still interesting but we need of course to define an
appropriate concept of NPV. Both the arbitrage-free pricing models and the
CAPM models gave us ways of defining present values of uncertain income
streams.

We consider a one-period, finite state space model in which there is a
complete, arbitrage-free market. Denote state prices (Arrow-Debreu prices)
by p = (p1, . . . , pS). Assume that a firm initially (because of previous activity,
say) has a net cash flow at time 1 given by the vector x = (x1 , . . . , xS).The
firm is financed partly by equity and partly by debt, and firm value, equity
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value and debt value at time 0 are therefore given as

V0 =
∑
s

psxs

E0 =
∑
s

ps(xs −D)+

B0 =
∑
s

ps min(xs, D).

We want to consider some issues of financing new investment projects in this
very simple setup. We first note that projects with identical net present
values may have very different effects on debt and equity. Indeed, a positive
NPV project may have a negative effect on one of the two. This means that
the ability to renegotiate the debt contract may be critical for the possibility
of carrying out a positive NPV project.

Consider the following setup in which three projects a, b, c are given, all
assumed to cost 1$ at time 0 to initiate, and with no possibility of scaling.
Also shown is the cash flow x which requires no initial investment and the
corresponding values of debt and equity when the debt has a face value of
30 :

p a b c x E1 B1

state 1 0.4 2 17 2 20 0 20
state 2 0.3 -20 0 4 40 10 30
state 3 0.3 30 -10 6 60 30 30
PV - 3.8 3.8 3.8 38 12 26

Hence there are three projects all of which have an NPV of 2.8. Therefore,
the increase in overall firm value will be 2.8.But how should the projects be
financed? Throughout this chapter, we assume that all agents involved know
and agree on all payouts and state prices. This is an important situation
to analyze to develop a terminology and to get the ’competitive’ situation
straight first.

One possibility is to let the existing shareholders finance it out of their
own pockets, i.e. pay the one dollar to initiate a project and do nothing
about the terms of the debt: Here is what the value of equity looks like in
the three cases at time 0:

Enew
0 Enew

0 − Eold
0 Bnew

0 Bnew
0 −Bold

0

x+ a 18 6 23.8 -2.2
x+ b 11.8 -0.2 30 4
x+ c 15 3 26.8 0.8
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Clearly, only projects a and c will be attractive to the existing sharehold-
ers. Project a is however not something the bondholders would want carried
through since it actually redistributes wealth over to the shareholders. What
if a project is instead financed by issuing new stocks to other buyers? Let
us check when this will be attractive to the old shareholders: This we can
handle theoretically without actually working out the numbers:

To raise one dollar by issuing new equity, the new shareholders must
acquire m shares, where m satisfies

m

n+m
Enew

0 = 1

and where n is the existing number of outstanding shares and Enew
0 is the

value of the equity after a new project has been carried out. Note that in
this way new shareholders are by definition given a return on their investment
consistent with the state prices. The old shareholders will be happy about
the project as long as

n

n+m
Enew

0 − Eold
0 > 0

i.e. as long as they have a capital gain on their shares. But this is equivalent
to requiring that (

1− m

n+m

)
Enew

0 − Eold
0 > 0 i.e.

Enew
0 − Eold

0 > 1

where we have used the definition of m to get to the last inequality. Note that
this requirement is precisely the same as the one stating that in the case of
financing by the old shareholders, the project should cost less to initiate than
the capital gain. Note the similarity with the dividend irrelevance argument.
In the argument we have just given, the shareholders decide whether to get
a capital gain of Enew

0 −Eold
0 and have a negative dividend of 1$, whereas in

the other case, the capital gain is n
n+m

Enew
0 − Eold

0 but there is no dividend.
Now consider debt financing. There are many ways one could imagine

this happening: One way is to let the debtholders finance the projects by
having so much added to face value D that the present value of debt increases
by 1. This requires three very different face values:

new face value Enew
0 Bnew

0

a 40.67 14.8 27
b 27 14.8 27
c 30,33 14.8 27

An interesting special case is the following: Assume that existing bond-
holders are not willing to do any renegotiation of the debt terms. One could
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imagine for example, that the bondholders consisted of a large group of in-
dividuals who cannot easily be assembled to negotiate a new deal. Now, if
project bwere the only available project, then the shareholders would not
enter into this project since the benefits of the project would go to the bond-
holders exclusively. This is the so-called debt overhang problem where it is
impossible to finance a positive NPV project by issuing debt which is junior
to the existing debt. To be able to carry through with project b, the share-
holders would have to talk the debtholders into reducing the face value of
the debt.

In general, it is easy to see that if a project has positive NPV there exists
a way of financing the project which will benefit both debt holders and equity
holders (can you show this?).

A special case which one often sees mentioned in textbooks is the case
where the new project is of the same ’risk class’ as the firm before entering
into the project. This is true of project c. Such a project can always be
financed by keeping the same debt-equity ratio after the financing as before.
This is also left to the reader to show.
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Chapter 12

Efficient Capital Markets

At the intuitive level, the efficient market hypothesis (EMH) states that it is
impossible to ”beat the market”: The return you earn by investing in finan-
cial assets is proportional to the risk you assume. If certain assets had high
returns compared to their risks, investors - who are constantly searching for
and analyzing information about companies, commodities, economic indica-
tors, etc. - would rush to buy these assets, pushing up prices until returns
were ”proportional” to the risk. In this way information about future returns
of financial assets are quickly incorporated into prices which in other words
fully and instantaneously reflect all available relevant information.

A first attempt to make this intuitive statement more rigorous is to elab-
orate a little bit on the definition of ”relevant information” and to interpret
’reflecting information’ as an inability to earn excessive returns. This leads
us to the famous degrees of efficiency:

1. Weak-form efficiency. No investor can earn excess returns developing
trading rules based on historical price or return information. In other words,
the information in past prices or returns is not useful or relevant in achieving
excess returns.

2. Semistrong-form efficiency. No investor can earn excess returns from
trading rules based on any publicly available information. Examples of pub-
licly available information are annual reports of companies, investment advi-
sory data such as ”Heard on the Street” in the Wall Street Journal, or ticker
tape information.

3. Strong-form efficiency. No investor can earn excess returns using any
information, whether publicly available or not.

Of course, we could define efficiency with respect to any information set
It: No trader can earn excess returns between time t and t + 1 given the
information It.

Once we start thinking about this definition, however, we note that it is

175
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still well short of being rigorous. What do we mean by ”risk” and by return
being ”proportional to risk”? And if indeed prices (in some sense) reflect all
available information why are banks and other financial institutions paying
analysts to find information, and traders to ’look for arbitrage’ in the market?
In this note we will analyze the problem of defining market efficiency as
follows:

First, we consider the problem of defining excess return. The only ’model
free’ definition of this concept would be an arbitrage opportunity. Other
definitions are invariably linked to a particular model for security returns.
If we are unable to find arbitrage opportunities can we then ever reject the
hypothesis of ’market efficiency’?

Second, we consider some statistical properties of prices which are often
thought of as being consequences of EMH. We try to give some rigorous
definitions of these properties and (briefly) discuss if they are in any way
necessarily linked to market efficiency.

Third, we look at anomalies and a very interesting challenge to market
efficiency which attempts to show that stock prices are ’too volatile’ in the
sense that they vary much more than accounted for by changes in economic
fundamentals.

Finally we mention some attempts to make the definition of market effi-
ciency completely rigorous in a general equilibrium context.

12.1 Excess returns

First, we try to make ”excess returns” a little more precise: As a first attempt
we could say that for any security P it must be the case that

E [Rt+1 | It] = 1 + rt (12.1)

where rt is the riskless rate of return at time t and

Rt+1 =
Pt+1

Pt
.

But having heard of CAPM and risk aversion we immediately object to
the use of rt: Assets with high risk (as measured e.g. through their β’s)
should (and do!) earn more than the riskless rate. So we restate (12.1) as

E [Rt+1|It] = 1 + rPt (12.2)

where rPt is some return which is suitable for asset P. Note that we may
rewrite (12.2) as

1

1 + rPt
E [Pt+1 | It] = Pt,
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which states that the properly discounted price is a martingale. If markets
are arbitrage free, such a discount factor will exist, so the requirement (12.2)
is really nothing more than a statement of no arbitrage. In practice the
problem is to find a good model for rPt - indeed we spent a lot of time looking
at CAPM which tried to do just that. But if we have a model for rPt and we
see violations of (12.2), it would seem more natural to reject our model for
rPt than to reject market efficiency. Assume for instance that we use CAPM
to model rPt . The literature often refers to a rejection of (12.2) as a rejection
of ”a joint test of CAPM and market efficiency”. Given the very strong
assumptions needed to derive CAPM, this is a somewhat strange statement
(although it is of course logically OK). I would argue that unless there is
a truly compelling and extremely realistic model (in terms of assumptions
describing markets accurately) for rPt , we should consider rejections of (12.2)
as rejections of our choice of asset pricing model and not worry about the
market efficiency implications. Some proponents of efficient markets would
say that it is precisely the belief in efficient markets which causes us to reject
our model and look further for a rational explanation of stock price returns,
and this is of course a valid point. But can we ever reach a situation in which
all conceivable models for rational behavior have been rejected and we have
no choice but to reject the EMH?

The closest to this situation would be a case where the model for rPt fol-
lows from a no arbitrage condition. If, for example, we considered a portfolio
of a written call, a put (both European with same exercise price and date)
and a stock (the underlying security for both options), we know from put-
call-parity that its return should equal the return on a zero-coupon bond.
Violations of this relation which are large enough that traders may take
advantage of it should clearly not persist in well functioning security mar-
kets. In other words, no arbitrage is a necessary condition for markets to
be efficient. And only this provides a test of (12.2) which is not linked to a
particular choice of asset pricing model. Another way of stating this is that
we can use (12.2) to test for violations of relative pricing relations which we
derive from an assumption of no arbitrage. Violations would seem to indicate
an inefficiency of markets.

But to use (12.2) as a definition of efficiency is complicated when we are
looking at ”absolute” quantities like stock prices. We will never be able to
reject efficiency from this alone - critics will always (justly) be able to argue
that our choice of asset pricing model is wrong. A famous paper by DeBondt
and Thaler1 [1986] illustrates the problem well. They did the following:

• Record the returns of a very large number of stocks over a period of
1See Journal of Finance, July 1986, pp. 793-807.
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Figure 12.1: The cumulative excess return (compared to the market) for the
“winner” and “loser” portfolios.

(say) 36 months.

• At the end of the period, form one portfolio of ”winners” i.e. pick (say)
the 35 best performing stocks of the 36 month period.

• Form another portfolio of ”losers” - i.e. pick (say) the 35 worst per-
forming (but still alive!) stocks of the 36 month period.

• Compare the returns to that of the market.

The results are illustrated in Figure 12.1, which shows cumulative excess
returns compared to the market for the two portfolios. We see that the loser
portfolio has a (quite large) positive return over the market, whereas “the
winners” are performing badly. Now we could be tempted to see this as a
clear violation of ”weak-form efficiency” because, intuitively, we are beating
the market using only information of past prices. But are we defining ”excess
return” correctly then? We have seen in the exercises (in a discrete binomial
version) that the beta of an option on a stock may be related to the beta of
the stock. The equivalent of this in a Black-Scholes model where we model
stocks as options on an underlying firm value gives us that

βS = N(d1)
V

S
βV .
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A ”loser” stock will typically have experienced an increase in leverage. This in
turn implies an increase in βS and therefore the increased return on a ”loser”
follows directly from option pricing theory and CAPM. In other words, a more
careful selection of asset pricing model at least gave us a possible explanation
for the results of DeBondt and Thaler. Subsequent research (see for example
Chopra, Lakonishok and Ritter2 [1992]) seems to indicate that correcting for
leverage effects does not destroy the result. But the controversy is far from
over and the key issue is whether more advanced asset pricing models can be
shown to explain the larger returns on losing stocks. Note, however, that the
controversy illustrates the sense in which (12.2) is a ”hard-to-test” definition
of efficiency. We will have to reject it for all conceivable (and reasonable)
asset pricing models before an inefficiency is established. This seems to be a
tough task, especially considering results of Summers3 [1986] which indicate
that many test traditionally employed do not have very large power (i.e.
ability to reject a false hypothesis).

12.2 Martingales, random walks and indepen-

dent increments

As a motivation for this section consider the footnote in Brealey and Myers:

”When economists speak of stock prices as following a random walk,
they are being a little imprecise. A statistician reserves the term random
walk to describe a series that has a constant expected change each period
and a constant degree of variability. But market efficiency does not imply
that expected risks and expected returns cannot shift over time.”

Clearly, we need to be more precise even about the statistician’s definition
if we are to discuss the notions precisely. The purpose of this section is to give
precise content to such concepts as random walk, independent increments and
martingales.

Definition 43 The stochastic process X = (X1, X2, . . .) is a random walk
if it has the form

Xt =
t∑
i=1

εi

where ε1, ε2, . . . is a sequence of independent, identically distributed random
variables.

2Journal of Financial Economics, 1992, pp. 235-268
3Journal of Finance, July 1986, pp.591-601
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We will normally assume that εi has finite variance (and hence finite
expectation as well). If Eεi = 0 we say that the random walk is symmetric.

A weaker concept is that of a process with independent increments:

Definition 44 The stochastic process X = (X1, X2, . . .) is a process with
independent increments if for all t, ∆Xt ≡ Xt − Xt−1 is independent of
(X1, X2, . . . , Xt−1).

Note that a random walk is a process with independent increments, but a
process with independent increments may have the distribution of the incre-
ment change with time. Weaker yet is the notion of orthogonal increments
where we only require increments to be uncorrelated:

Definition 45 The stochastic process X = (X1, X2, . . .) is a process with
orthogonal increments if for all t , EX2

t <∞ and for all t, u

Cov(∆Xt,∆Xu) = 0.

Finally a somewhat different (but as we have seen equally important)
concept

Definition 46 The stochastic process X = (X1, X2, . . .) is a martingale with
respect to the filtration (Ft) if for all t , E |Xt| <∞ and

E(Xt |Ft−1 ) = Xt−1.

If no filtration is specified it is understood that Ft−1 = σ(X1, X2, . . . , Xt−1).

A symmetric random walk is a martingale and so is a process with mean
zero independent increments. A martingale with finite second moments has
orthogonal increments, but it need not have independent increments: Think
for example of the following ARCH process:

Xt = εtσt

where ε1, ε2, . . . is a sequence of i.i.d. N(0, 1) random variables and

σ2
t = α0 + α1x

2
t−1 α0, α1 > 0

where xt−1 is the observed value of Xt−1. The abbreviation ARCH stands for
Autoregressive Conditional Heteroskedasticity which means (briefly stated)
that the conditional variance of Xt given the process up to time t−1 depends
on the process up to time t− 1.
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It is clear from observation of market data, that stock prices have a drift
and they are therefore not martingales. However it could be that by an
appropriate choice of discount factor, as in (12.2), we get the martingale
property. In fact, we know that this will be possible in an arbitrage free
market (and for all types of financial securities), but then we are back to the
situation discussed above in which the specification of the pricing relation
becomes essential.

The independent increment property is often heard as a necessary con-
dition for efficient markets, but research over the last decade has pointed to
ARCH effects in stock prices, exchange rates and other financial securities.4

Another serious problem with all the properties listed above is that it
is perfectly possible to construct sensible general equilibrium models (which
in particular are arbitrage free) in which prices and returns are serially cor-
related (for example because aggregate consumption is serially correlated).
Therefore, it seems unnatural to claim that random walks, independent incre-
ments and martingale properties of prices are in any way logical consequences
of a definition of efficient markets. The most compelling consequence of an
efficiency assumption of no arbitrage is that there exists an equivalent mea-
sure under which securities are martingales but this does not in general say
much about how processes behave in the real world. Indeed, even in the
case of futures contracts which would be very natural candidates to being
martingales, we have seen that in models where agents are risk-averse, the
equivalent martingale measure will in general be different from the empiri-
cally measure and hence the martingale property of futures prices is by no
means a necessary condition for efficiency.

Also, note that bonds for example have predetermined ’final’ value and
therefore it is not at all clear that any of the above mentioned properties of
price processes are even relevant for this class of securities.

12.3 Anomalies

Another way to challenge the EMH is to look for strange patterns in security
prices which seem impossible to explain with any pricing model. Some such
anomalies are week-end effects and year-end effects:

Evidence found in French (1980)5 seems to suggest that returns on Mon-
days were significantly negative, compared to returns on other trading days.
Although the effect is difficult to exploit due to transactions costs, it is still
unclear why the effect exists. Possible explanations have tried to look at

4For an collection of papers see Engle: ARCH.Oxford University Press, 1995.
5Journal of Financial Economics, 1980, pp. 55-69.
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whether there is a tendency for firms to release bad news on Friday after-
noons after trading closes. But if this were the case traders should learn this
an adjust prices accordingly earlier. The week-end effect is hard to explain -
after all it does seem to suggest that traders who are going to trade anyway
should try to sell on Fridays and buy on Mondays.

Another effect documented in several studies is the year-end effect which
shows that stocks have a tendency to fall in December and rise in January.
An obvious reason for such behavior could be tax considerations but it is still
unclear if this explanation is sufficient or whether there is actually an effect
which trading rules can take advantage of.

A famous anomaly is the closed-end mutual fund discount. A closed-end
fund is a mutual fund which holds publicly traded assets, but which only
issues a fixed number of shares and where shareholders can only sell their
shares in the market. Since the assets are so easy to determine, so should
the share price be. However, throughout a long period of time mutual funds
seemed to sell at a discount: The values of the funds’ assets seemed larger
than the market value of shares. Small discounts could be explained by
tax-considerations and illiquidity of markets, but no theory could explain a
pattern (shown in Figure 12.2) like the one observed for the Tricontinental
Corporation6 during 1960-1986.

It seems that finally in 1986 prices adjusted, but that prices should ”in-
stantaneously” have reflected fundamental information seems implausible.

So a newer version of EMH stated in Malkiel [1990]7 could be that ”pricing
irregularities may well exist and even persist for periods of time, but the
financial laws of gravity will eventually take hold and true value will come
out.” Certainly a weakening of our original version of efficiency.

12.4 Excess volatility.

One of the most interesting challenges to EMH argues that there is too much
volatility in stock markets - more than can be explained by any sensible asset
pricing theory. If indeed markets reflect all relevant information it should be
the case that price movements and arrival of new information were somehow
in harmony. Trading alone ought not to generate volatility. Several pieces of
evidence suggest that trading ı́ndeed creates volatility:

1. October 19, 1987. The Dow Jones Industrial Average fell by more than
22% - a much bigger drop than any previous one-day movement. Yet exten-
sive surveys among investment managers seem to suggest that no important

6See Lee, Shleifer and Thaler, Journal of Finance 1991, pp.75-109.
7A Random Walk Down Wall Street.
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Figure 12.2: Percentage discount (= 100* (net asset value per share - share
price of the fund)) at which Tricontinental Corporation was traded 1960-86.

news related to stock prices arrived that day.

2. In the second half of 1986 the stock exchange in New York closed for a
series of Wednesdays to catch up on paperwork. Volatility between Tuesday’s
close and Thursday’s opening of trade was significantly smaller than when
the exchange was open on Wednesdays. As Thaler [1993]8 puts it, traders
react to each others as well as to news.

3. A famous study on ”Orange juice and weather” by Roll [1984]9 suggests
that surprises in weather forecasts for the Florida area, where 98% of oranges
used for orange juice are traded, are too small to explain variations in the
futures price (whose main concern is the likelihood of a freeze)

But perhaps the most controversial attack on EMH is the one put for-
ward by Shiller, and Leroy and Porter. Their line of analysis is that what
determines stock prices must ultimately be some combination of dividends
and earnings of the firm. Since stock price is an expected, discounted value
of future quantities, the price should fluctuate less than the quantities them-
selves.

To understand their line of reasoning, consider the following example:
Assume that the quantity xt (which could be dividends) determines the stock

8R. Thaler (ed.) Advances in Behavioral Finance, Russell Sage Foundation, NY 1993
9American Economic Review, December 1984, pp. 861-880.
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price through a present value relation of the form:

Yt =
∞∑
j=0

βjXe
t (j),

where β is some discount factor, β ∈]0, 1[, and

Xe
t (j) = E[Xt+j|It],

where It can - for simplicity - be thought of as the information generated by
the process X up to time t. If we assume that Xt follows an autoregressive
process of order one, i.e.

Xt − c = φ(Xt−1 − c) + εt

where c > 0, |φ| < 1 and εt’s are independent normally distributed random
variables, then we can calculate the coefficient of dispersion of Xt,

CD(Xt) =
σ(Xt)

E(Xt)

and the similar quantity for Yt. We are interested in CD(Yt)
CD(Xt)

. Using a fact
from time series analysis, which says that Xt be represented in the form

Xt − c =
∞∑
j=0

ϕj(εt−j)

we find

EXt = c V Xt =
1

1− ϕ2

and

EYt =
c

1− β
V Yt =

V Xt

(1− βϕ)2

and hence
CD(Yt)

CD(Xt)
=

1− β
1− βϕ

< 1

by our choice of parameters. In other words, the coefficient of dispersion for
actual prices is less than that of Xt (dividends, earnings). What Shiller, and
Leroy and Porter show is that this result holds for a large class of processes
for X and that the relationship is severely violated for observed data.
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Figure 12.3: Variability of a detrended S&P index (full curve) compared to
the variability of dividends (dotted line).

A useful bound also derived in these authors’ work is the variance bound
on the perfect foresight price

P ∗t =
∞∑
k=0

Xt+k

k∏
j=0

γt+j

(where γt+j is the discount factor between time j and j + 1 as recorded at
time t) which ”knows” all the paid dividends, and the actual price

Pt = EtP
∗
t

Shiller argues that the bound V (Pt) ≤ V (P ∗t ) is grossly violated in practice,
as illustrated in Figure 12.3.

Marsh and Merton [1986] criticize the work of Shiller and argue that with
non-stationary dividend policies, the variance bound relations cannot hold
and should in fact be reversed. Future versions of this chapter will discuss
this controversy!
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12.5 Informationally efficient markets are im-

possible

The title of this section is the title of a paper by Grossman and Stiglitz10

(1980) Their first paragraph in that work sums up an essential problem with
the assumption of informational efficiency:

”If competitive equilibrium is defined as a situation in which prices are
such that all arbitrage profits are eliminated, is it possible that a compet-
itive economy can always be in equilibrium? Clearly not, for then those
who arbitrage make no (private) return from their (privately) costly activity.
Hence the assumption that all markets, including that for information, are
always in equilibrium and always perfectly arbitraged are inconsistent when
arbitrage is costly.” Grossman and Stiglitz go on to build a model in which
gathering (costly) information is part of an equilibrium among informed and
uninformed traders.Without going into details of their model, we note here
that in equilibrium, prices reflect some but not all of the information. There
is a fraction of traders who are informed and spend money to gather infor-
mation, and a fraction of traders who are uninformed but try to learn as
much as possible by observing prices (which they know reflect partly the
knowledge that the informed traders have). If some of the informed traders
give up information gathering, prices will reflect less information and there
will be an incentive for non-informed traders to become informed because
the costs of information gathering will more than compensated for by gains
from trade. If some uninformed traders in the equilibrium situation decide
to become informed prices will reflect more information and there will in fact
be an incentive for some of the informed to give up information gathering
and ’free-ride’ on the information gathered by others which is reflected in
prices. Clearly, a situation in which all information is reflected in prices is
impossible.

This paper has a number of interesting results that we will not go into
here. Suffice it to say that it contains one of the most interesting attempts to
give a formal definition of efficiency which does not have the inherent logical
problems of the original definitions.

There are numerous other more rigorous attempts to define efficiency. A
typical line of approach is to model a situation with asymmetric information
and ask whether the equilibrium price (and possibly the portfolio holdings
of individuals) would be altered if all of the information held by traders
was given to all traders simultaneously. If prices and allocations would not
change in this situation, then it would be fair to say that prices reflected all

10American Economic Review, vol 70, pp. 393-408.
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information.
These models will be discussed in a future version of the notes.


